Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures
Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silic...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 6; pp. 3411 - 3419 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
18.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150–700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250–350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500–700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils. |
---|---|
AbstractList | Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150–700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250–350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500–700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils. Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 ...C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 ...C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 ...C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 ...C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils. (ProQuest: ... denotes formulae/symbols omitted.) Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils.Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils. Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 degree C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 degree C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 degree C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 degree C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils. |
Author | Xiao, Xin Zhu, Lizhong Chen, Baoliang |
AuthorAffiliation | Department of Environmental Science Zhejiang University |
AuthorAffiliation_xml | – name: Department of Environmental Science – name: Zhejiang University |
Author_xml | – sequence: 1 givenname: Xin surname: Xiao fullname: Xiao, Xin – sequence: 2 givenname: Baoliang surname: Chen fullname: Chen, Baoliang email: blchen@zju.edu.cn – sequence: 3 givenname: Lizhong surname: Zhu fullname: Zhu, Lizhong |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28417620$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24601595$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Lb64BeQgAgKHZtkkkzyqFv_QUWxK_g2ZDJ33JSZZJvMtOwn8GubsWuVKuhTLtxfDjk55wDt-eABoYeUPKeE0WNInAhZyfUdtKCCkUIoQffQghBaFrqUX_bRQUrnhBBWEnUP7TMuCRVaLNC3VTQ-dSEOZnTBH-H3IW7WoQ9ft0fY-BafuJRCP81LHDp85npn8zivliY2eXQef3IW8NkYzVVxAtFdQotfumDXJiY8-RZiluk6iOBH_HEbQ78dncUrGDYQzThFSPfR3c70CR7szkP0-fWr1fJtcfrhzbvli9PCCCLGQmneVNCwhnaNFhyYFgygajUHqaWC0ljDjRVSZtuSd401QrVEd0xrpUtSHqKn17qbGC4mSGM9uGSh742HMKWa5U8qCWWi-idKBZWV4JzL_0CJkoqqckYf30LPwxR99jwLkkqpSrJMPdpRUzNAW2-iG0zc1j-Dy8CTHWCSNX2XU7Qu_eIUp1ln9vvsmrMxpBShu0Eoqefy1DflyezxLda68UctcrKu_-uN3SuMTb_5-IP7Dqix0Sk |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2020_125024 crossref_primary_10_1016_j_jes_2020_08_017 crossref_primary_10_1016_j_scitotenv_2021_150102 crossref_primary_10_1016_j_biortech_2020_123708 crossref_primary_10_3390_ma17123030 crossref_primary_10_1007_s11104_024_06684_w crossref_primary_10_1016_j_jaap_2023_106343 crossref_primary_10_1021_acssuschemeng_0c06853 crossref_primary_10_1016_j_envres_2025_121405 crossref_primary_10_1016_j_jclepro_2021_127188 crossref_primary_10_1007_s42773_024_00330_5 crossref_primary_10_1016_j_cej_2021_132195 crossref_primary_10_1016_j_eti_2024_103611 crossref_primary_10_1016_j_jwpe_2025_107026 crossref_primary_10_1016_j_envpol_2021_117562 crossref_primary_10_1021_acsomega_1c02126 crossref_primary_10_1061__ASCE_EE_1943_7870_0001420 crossref_primary_10_1080_00103624_2018_1563096 crossref_primary_10_1016_j_scitotenv_2023_166496 crossref_primary_10_1016_j_cej_2022_141194 crossref_primary_10_3389_fpls_2023_1146416 crossref_primary_10_1007_s10163_018_0805_7 crossref_primary_10_1088_1755_1315_1201_1_012095 crossref_primary_10_1016_j_scitotenv_2023_168545 crossref_primary_10_1016_j_jclepro_2020_120162 crossref_primary_10_2139_ssrn_4100204 crossref_primary_10_1021_es5043468 crossref_primary_10_1007_s11356_024_31935_9 crossref_primary_10_1016_j_cej_2025_159205 crossref_primary_10_1016_j_fuel_2023_129910 crossref_primary_10_1007_s11270_021_05100_8 crossref_primary_10_1111_ejss_13316 crossref_primary_10_1007_s10311_023_01582_6 crossref_primary_10_1016_j_ecoenv_2024_115961 crossref_primary_10_1016_j_pedsph_2022_06_046 crossref_primary_10_1007_s12517_020_05399_3 crossref_primary_10_1016_j_rinma_2024_100545 crossref_primary_10_1007_s13399_021_01346_8 crossref_primary_10_1016_j_ecoenv_2020_111121 crossref_primary_10_1111_gcbb_12931 crossref_primary_10_1021_ie501843y crossref_primary_10_1007_s13762_024_05593_w crossref_primary_10_1016_j_envpol_2021_116455 crossref_primary_10_1021_acs_est_3c08044 crossref_primary_10_1007_s10653_017_9947_0 crossref_primary_10_1016_j_jece_2023_111194 crossref_primary_10_1007_s11356_017_1047_2 crossref_primary_10_1016_j_fuel_2018_10_064 crossref_primary_10_1016_j_jhazmat_2021_125513 crossref_primary_10_1007_s11368_015_1073_y crossref_primary_10_1016_j_chemosphere_2024_143239 crossref_primary_10_1080_15320383_2022_2105811 crossref_primary_10_1016_j_fuel_2023_127631 crossref_primary_10_1016_j_jhazmat_2021_127817 crossref_primary_10_1038_s41598_021_92889_3 crossref_primary_10_3390_ma17133180 crossref_primary_10_1016_j_chemosphere_2020_128490 crossref_primary_10_1016_j_electacta_2021_138694 crossref_primary_10_1016_j_jaap_2017_11_020 crossref_primary_10_1016_j_scitotenv_2018_12_381 crossref_primary_10_1007_s40726_023_00260_z crossref_primary_10_1016_j_scitotenv_2023_166344 crossref_primary_10_1016_j_scitotenv_2016_07_140 crossref_primary_10_1016_j_rhisph_2023_100749 crossref_primary_10_1016_j_chemosphere_2021_132747 crossref_primary_10_1016_j_jece_2025_116179 crossref_primary_10_1016_j_biortech_2018_03_075 crossref_primary_10_1016_j_jssc_2018_02_010 crossref_primary_10_1016_j_eti_2024_103932 crossref_primary_10_1016_j_stress_2024_100473 crossref_primary_10_1080_15226514_2024_2357644 crossref_primary_10_1016_j_biortech_2021_126465 crossref_primary_10_1016_j_scitotenv_2019_136101 crossref_primary_10_1002_jemt_23873 crossref_primary_10_1016_j_apgeochem_2021_104907 crossref_primary_10_1016_j_scitotenv_2020_141545 crossref_primary_10_1016_j_scitotenv_2023_161714 crossref_primary_10_1016_j_fuel_2015_04_019 crossref_primary_10_1007_s11356_020_09250_w crossref_primary_10_1016_j_chemosphere_2023_138859 crossref_primary_10_1016_j_seppur_2023_125077 crossref_primary_10_1016_j_envres_2020_110034 crossref_primary_10_1038_srep22644 crossref_primary_10_1016_j_jclepro_2019_117855 crossref_primary_10_1039_D3EM00117B crossref_primary_10_3390_ma17174306 crossref_primary_10_1016_j_cscee_2024_100938 crossref_primary_10_1016_j_fuel_2024_132224 crossref_primary_10_1016_j_jclepro_2024_143468 crossref_primary_10_1088_1742_6596_2256_1_012005 crossref_primary_10_1016_j_chemosphere_2024_143259 crossref_primary_10_3390_agronomy13071676 crossref_primary_10_3390_ma13245841 crossref_primary_10_1016_j_catena_2021_105284 crossref_primary_10_1016_j_chemosphere_2019_125481 crossref_primary_10_1016_j_jtice_2023_104815 crossref_primary_10_1016_j_envpol_2019_113253 crossref_primary_10_15243_jdmlm_2024_121_6949 crossref_primary_10_1016_j_chemosphere_2018_11_090 crossref_primary_10_1016_j_envpol_2019_113015 crossref_primary_10_1007_s11356_017_9168_1 crossref_primary_10_1016_j_envpol_2019_113017 crossref_primary_10_1016_j_chemosphere_2018_11_177 crossref_primary_10_1016_j_biortech_2019_122141 crossref_primary_10_1016_j_jhazmat_2019_121548 crossref_primary_10_1002_jpln_201800031 crossref_primary_10_1016_j_envpol_2023_123025 crossref_primary_10_1007_s42729_022_00998_3 crossref_primary_10_1021_acs_jafc_7b02266 crossref_primary_10_1007_s11356_021_13742_8 crossref_primary_10_1016_j_plaphy_2022_07_009 crossref_primary_10_3390_agronomy12081923 crossref_primary_10_1007_s11356_020_11572_8 crossref_primary_10_1021_acs_est_1c00392 crossref_primary_10_1007_s10533_022_00938_4 crossref_primary_10_1002_saj2_20773 crossref_primary_10_3390_horticulturae8100893 crossref_primary_10_1016_j_geoderma_2016_08_019 crossref_primary_10_1016_j_scitotenv_2018_12_059 crossref_primary_10_1016_j_jhydrol_2021_126839 crossref_primary_10_1007_s12649_024_02513_4 crossref_primary_10_1007_s11356_018_2976_0 crossref_primary_10_1016_j_jhazmat_2016_03_080 crossref_primary_10_1007_s11356_021_17334_4 crossref_primary_10_1007_s42773_021_00112_3 crossref_primary_10_31025_2611_4135_2023_18310 crossref_primary_10_1016_j_colsurfa_2021_126381 crossref_primary_10_1016_j_scitotenv_2022_152921 crossref_primary_10_1002_wer_1658 crossref_primary_10_1088_1757_899X_178_1_012022 crossref_primary_10_1016_j_matlet_2016_03_025 crossref_primary_10_1016_j_geoderma_2018_02_001 crossref_primary_10_1016_j_scitotenv_2024_175640 crossref_primary_10_1016_j_scitotenv_2021_145159 crossref_primary_10_1007_s13399_019_00399_0 crossref_primary_10_1021_acs_est_7b06487 crossref_primary_10_1002_app_50137 crossref_primary_10_1016_j_jenvman_2021_112898 crossref_primary_10_1021_acssuschemeng_8b05364 crossref_primary_10_1038_s41598_018_26396_3 crossref_primary_10_1016_j_indcrop_2021_113690 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_1016_j_seppur_2024_128546 crossref_primary_10_1021_acssuschemeng_0c09051 crossref_primary_10_1016_j_envpol_2018_04_003 crossref_primary_10_1080_01496395_2018_1553981 crossref_primary_10_1038_s41598_024_81246_9 crossref_primary_10_1038_srep33630 crossref_primary_10_1016_j_chemosphere_2022_137729 crossref_primary_10_1016_j_jclepro_2017_01_125 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1016_j_scitotenv_2023_162048 crossref_primary_10_3390_agriculture14071068 crossref_primary_10_1016_j_envpol_2022_120731 crossref_primary_10_1016_j_jclepro_2024_144506 crossref_primary_10_1016_j_scitotenv_2021_150881 crossref_primary_10_3389_fpls_2022_989504 crossref_primary_10_1002_sia_6575 crossref_primary_10_1016_j_desal_2024_118086 crossref_primary_10_1016_j_eti_2022_102948 crossref_primary_10_1016_j_jclepro_2018_12_094 crossref_primary_10_1039_C7RA13151H crossref_primary_10_1016_j_biortech_2021_125794 crossref_primary_10_1016_j_jclepro_2018_12_093 crossref_primary_10_1016_j_ecoenv_2020_111756 crossref_primary_10_1016_j_scienta_2022_111052 crossref_primary_10_1016_j_jhazmat_2020_124909 crossref_primary_10_1016_j_gexplo_2019_106399 crossref_primary_10_11648_j_ajac_20241206_13 crossref_primary_10_1016_j_biortech_2020_123096 crossref_primary_10_1016_j_scitotenv_2023_166870 crossref_primary_10_1007_s11814_018_0054_4 crossref_primary_10_1016_j_envpol_2017_04_067 crossref_primary_10_1007_s11368_014_0969_2 crossref_primary_10_1016_j_cej_2019_122916 crossref_primary_10_1016_j_scitotenv_2019_134193 crossref_primary_10_1016_j_rser_2017_05_115 crossref_primary_10_1007_s11104_022_05350_3 crossref_primary_10_1093_femsec_fiaa034 crossref_primary_10_1007_s11356_017_9605_1 crossref_primary_10_1016_j_rser_2021_112056 crossref_primary_10_1155_2018_2684962 crossref_primary_10_3389_fenvs_2023_1294791 crossref_primary_10_1002_er_7441 crossref_primary_10_1016_j_scitotenv_2020_137021 crossref_primary_10_2166_wst_2021_473 crossref_primary_10_1016_j_jece_2022_107237 crossref_primary_10_1021_acs_est_8b06597 crossref_primary_10_1016_j_chemosphere_2019_125182 crossref_primary_10_1038_s41598_018_35414_3 crossref_primary_10_1007_s11368_022_03152_9 crossref_primary_10_1007_s10653_019_00458_5 crossref_primary_10_1021_acsestwater_1c00344 crossref_primary_10_1007_s11356_024_32580_y crossref_primary_10_1016_j_jhazmat_2022_129668 crossref_primary_10_1021_acs_est_1c04440 crossref_primary_10_1016_j_biortech_2016_01_065 crossref_primary_10_1016_j_scitotenv_2020_140853 crossref_primary_10_1111_gcbb_12635 crossref_primary_10_1016_j_envexpbot_2015_07_001 crossref_primary_10_1021_acs_energyfuels_6b01103 crossref_primary_10_1016_j_scitotenv_2022_155021 crossref_primary_10_1080_01904167_2024_2369080 crossref_primary_10_1016_j_jcis_2020_06_031 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_jece_2021_105057 crossref_primary_10_1002_bbb_2597 crossref_primary_10_32604_phyton_2022_016492 crossref_primary_10_1016_j_envpol_2017_04_032 crossref_primary_10_1016_j_jhazmat_2022_128584 crossref_primary_10_1016_j_geoderma_2020_114308 crossref_primary_10_1016_j_scitotenv_2021_150941 crossref_primary_10_1021_acssuschemeng_1c02322 crossref_primary_10_1016_j_jhazmat_2022_129526 crossref_primary_10_1016_j_cej_2023_141368 crossref_primary_10_1016_j_hazadv_2022_100171 crossref_primary_10_1007_s13738_023_02860_4 crossref_primary_10_1016_j_micres_2024_127696 crossref_primary_10_1016_j_eti_2022_102622 crossref_primary_10_1002_bbb_2361 crossref_primary_10_1016_j_jclepro_2018_04_056 crossref_primary_10_1016_j_envpol_2022_119881 crossref_primary_10_1016_j_scp_2023_101097 crossref_primary_10_1016_j_crsust_2023_100226 crossref_primary_10_1016_j_chemosphere_2022_137513 crossref_primary_10_1080_00103624_2021_1953062 crossref_primary_10_1016_j_ijhydene_2021_02_131 crossref_primary_10_1007_s11356_023_27832_2 crossref_primary_10_1016_j_jaap_2024_106846 crossref_primary_10_1039_D4GC06034B crossref_primary_10_1002_saj2_20146 crossref_primary_10_1016_j_jaap_2021_105132 crossref_primary_10_1016_j_jece_2023_110794 crossref_primary_10_3390_su151914585 crossref_primary_10_1016_j_electacta_2022_141583 crossref_primary_10_1016_j_envres_2022_112891 crossref_primary_10_1021_acsestengg_1c00478 crossref_primary_10_1016_j_biombioe_2025_107705 crossref_primary_10_1007_s10163_018_0768_8 crossref_primary_10_1016_j_jhazmat_2024_136720 crossref_primary_10_3390_su14106323 crossref_primary_10_1007_s10163_017_0666_5 crossref_primary_10_1007_s12517_018_4215_x crossref_primary_10_1007_s42729_023_01582_z crossref_primary_10_1016_j_envpol_2019_02_072 crossref_primary_10_3390_app12157417 crossref_primary_10_1007_s11356_023_25817_9 crossref_primary_10_1016_j_envpol_2017_12_013 crossref_primary_10_1016_j_still_2018_11_007 crossref_primary_10_1016_j_jclepro_2021_126645 crossref_primary_10_1016_j_indcrop_2022_115766 crossref_primary_10_1016_j_chemosphere_2023_139578 crossref_primary_10_1016_j_scitotenv_2023_162680 crossref_primary_10_1007_s11356_020_09715_y crossref_primary_10_1016_j_jhazmat_2021_127150 crossref_primary_10_1007_s11783_022_1579_7 crossref_primary_10_1007_s11270_020_04791_9 crossref_primary_10_1016_j_chemosphere_2019_124805 crossref_primary_10_1016_j_scitotenv_2020_140714 crossref_primary_10_1007_s12155_025_10816_0 crossref_primary_10_1016_j_carbon_2015_09_106 crossref_primary_10_1016_j_chemosphere_2022_133981 crossref_primary_10_1021_acsami_9b00291 crossref_primary_10_3390_pr11123423 crossref_primary_10_3390_land12081580 crossref_primary_10_1016_j_geoderma_2020_114835 crossref_primary_10_1016_j_scitotenv_2023_162792 crossref_primary_10_1016_j_jaap_2021_105105 crossref_primary_10_1016_j_jhazmat_2018_01_023 crossref_primary_10_1007_s11356_022_19869_6 crossref_primary_10_1016_j_jenvman_2019_03_051 crossref_primary_10_1371_journal_pone_0311430 crossref_primary_10_1016_j_scitotenv_2022_158818 crossref_primary_10_3390_ijerph17051602 crossref_primary_10_1021_acssuschemeng_8b04906 crossref_primary_10_1021_acs_est_6b06300 crossref_primary_10_1186_s40643_021_00491_2 crossref_primary_10_1007_s12633_020_00680_2 crossref_primary_10_1016_j_earscirev_2022_104215 crossref_primary_10_1016_j_scitotenv_2021_145469 crossref_primary_10_1016_j_psep_2019_03_035 crossref_primary_10_1016_j_envpol_2021_117094 crossref_primary_10_1007_s11356_020_09330_x crossref_primary_10_1016_j_envres_2022_113951 crossref_primary_10_1021_es405647e crossref_primary_10_1016_j_scitotenv_2019_134919 crossref_primary_10_1007_s11783_020_1220_6 crossref_primary_10_1016_j_chemosphere_2023_140491 crossref_primary_10_1021_acs_est_7b02528 crossref_primary_10_1080_00103624_2023_2211105 crossref_primary_10_1021_acssuschemeng_6b01867 crossref_primary_10_1016_j_scitotenv_2015_12_085 crossref_primary_10_1016_j_biortech_2017_03_103 crossref_primary_10_1007_s44246_022_00015_3 crossref_primary_10_1021_acs_est_6b06594 crossref_primary_10_1016_j_scitotenv_2020_142086 crossref_primary_10_1016_j_jaap_2025_107004 crossref_primary_10_1016_j_jaap_2025_107006 crossref_primary_10_1016_j_envpol_2020_114772 crossref_primary_10_1016_j_jclepro_2024_141842 crossref_primary_10_1016_j_envpol_2024_125030 crossref_primary_10_1007_s11270_023_06172_4 crossref_primary_10_1016_j_chemosphere_2016_11_126 crossref_primary_10_3390_ijerph19052818 crossref_primary_10_3390_en13082070 crossref_primary_10_1021_acssuschemeng_2c05691 crossref_primary_10_1016_j_biortech_2021_124732 crossref_primary_10_1016_j_envres_2020_109609 crossref_primary_10_1088_1757_899X_788_1_012075 crossref_primary_10_1016_j_scitotenv_2019_135943 crossref_primary_10_1007_s42773_019_00031_4 crossref_primary_10_1016_j_resconrec_2023_107081 crossref_primary_10_1039_C8RA09061K crossref_primary_10_3390_f15020366 crossref_primary_10_1016_j_marpolbul_2021_113186 crossref_primary_10_1038_srep29346 crossref_primary_10_1016_j_jes_2021_05_027 crossref_primary_10_1021_acssuschemeng_9b03784 crossref_primary_10_1016_j_biortech_2023_129754 crossref_primary_10_1021_acs_energyfuels_7b02910 crossref_primary_10_1080_00380768_2019_1579042 crossref_primary_10_1007_s11356_022_22357_6 crossref_primary_10_1016_j_scitotenv_2023_164656 crossref_primary_10_1080_00380768_2023_2288034 crossref_primary_10_1016_j_eti_2022_102593 crossref_primary_10_1016_j_eti_2021_102196 crossref_primary_10_1016_j_fuel_2024_131941 crossref_primary_10_1016_j_jhazmat_2019_03_076 crossref_primary_10_1016_j_indcrop_2023_117180 crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1016_j_biortech_2024_130913 crossref_primary_10_1021_acs_est_6b03077 crossref_primary_10_1007_s11356_021_13057_8 crossref_primary_10_1016_j_watres_2021_117264 crossref_primary_10_1016_j_chemosphere_2022_134526 crossref_primary_10_1016_j_jece_2021_105354 crossref_primary_10_1016_j_scitotenv_2020_136894 crossref_primary_10_1061_JGGEFK_GTENG_11158 crossref_primary_10_1016_j_eti_2020_100816 crossref_primary_10_1016_j_jece_2021_105353 crossref_primary_10_1007_s12649_017_9928_7 crossref_primary_10_1007_s42729_021_00429_9 crossref_primary_10_1016_j_seppur_2023_124336 crossref_primary_10_3390_molecules25184319 crossref_primary_10_1016_j_diamond_2024_111794 crossref_primary_10_1016_j_jenvman_2024_123955 crossref_primary_10_1016_j_carbon_2024_119125 crossref_primary_10_1016_j_jhazmat_2020_122277 crossref_primary_10_1021_acs_est_7b04983 crossref_primary_10_1016_j_jhazmat_2015_06_050 crossref_primary_10_1016_j_eti_2024_103698 crossref_primary_10_1016_j_compositesb_2019_107151 crossref_primary_10_3390_ijerph19148420 crossref_primary_10_1016_j_resconrec_2020_105036 crossref_primary_10_1016_j_psep_2024_06_069 crossref_primary_10_1142_S1793984424300097 crossref_primary_10_1016_j_scitotenv_2019_134893 crossref_primary_10_1016_j_scp_2024_101735 crossref_primary_10_1021_acs_est_9b03607 crossref_primary_10_1016_j_jtice_2017_12_031 crossref_primary_10_1007_s10705_020_10084_8 crossref_primary_10_1039_D2RA04263K crossref_primary_10_1021_acs_energyfuels_5b00512 crossref_primary_10_1088_1757_899X_729_1_012076 crossref_primary_10_1016_j_chemosphere_2023_140719 crossref_primary_10_1080_09593330_2023_2283090 crossref_primary_10_1016_j_biombioe_2018_09_032 crossref_primary_10_1007_s12649_016_9534_0 crossref_primary_10_1016_j_jhazmat_2021_127542 crossref_primary_10_1016_j_jhazmat_2021_127663 crossref_primary_10_3390_molecules29194757 crossref_primary_10_1016_j_colsurfa_2019_123937 crossref_primary_10_2139_ssrn_4121314 crossref_primary_10_1007_s11356_023_29413_9 crossref_primary_10_3390_agronomy9100637 crossref_primary_10_1016_j_colsurfb_2024_114475 crossref_primary_10_5194_bg_11_6613_2014 crossref_primary_10_1088_1755_1315_393_1_012087 crossref_primary_10_3390_toxics10090534 crossref_primary_10_1007_s10333_020_00815_6 crossref_primary_10_1007_s44246_024_00186_1 crossref_primary_10_1080_26395940_2024_2323689 crossref_primary_10_1186_s40643_022_00618_z crossref_primary_10_1016_j_cropro_2019_01_013 crossref_primary_10_1021_acs_est_5b04536 crossref_primary_10_5004_dwt_2020_25143 crossref_primary_10_1007_s42773_020_00041_7 crossref_primary_10_1021_acs_est_4c10638 crossref_primary_10_3390_w8040141 crossref_primary_10_1016_j_chemosphere_2020_129183 crossref_primary_10_1007_s11356_017_9753_3 crossref_primary_10_1016_j_cep_2022_109027 crossref_primary_10_1007_s41742_018_0156_1 crossref_primary_10_1021_acs_jafc_6b00246 crossref_primary_10_1080_26395940_2019_1578185 crossref_primary_10_1007_s11368_023_03684_8 crossref_primary_10_1038_s43017_022_00306_8 crossref_primary_10_1016_j_chemosphere_2021_132113 crossref_primary_10_1016_j_eti_2019_100492 crossref_primary_10_1016_j_eng_2024_01_009 crossref_primary_10_1007_s13399_023_04567_1 crossref_primary_10_1021_acssuschemeng_1c08537 crossref_primary_10_1039_D1EM00247C crossref_primary_10_1007_s11783_019_1106_7 crossref_primary_10_2134_jeq2015_06_0320 crossref_primary_10_1007_s11104_019_04013_0 crossref_primary_10_1007_s11368_022_03323_8 crossref_primary_10_1016_j_proenv_2016_02_012 crossref_primary_10_1007_s13399_022_02479_0 crossref_primary_10_1016_j_jhazmat_2020_123067 crossref_primary_10_1016_j_scitotenv_2018_06_115 crossref_primary_10_1016_j_jece_2023_110572 crossref_primary_10_1371_journal_pone_0301986 crossref_primary_10_1007_s11270_023_06856_x crossref_primary_10_1016_j_apsusc_2019_07_268 crossref_primary_10_1155_2024_6697604 crossref_primary_10_4028_p_UqJ3In crossref_primary_10_1016_j_colsuc_2023_100021 crossref_primary_10_1016_j_chemosphere_2021_132691 crossref_primary_10_1016_j_cej_2019_01_053 crossref_primary_10_1016_j_colsurfa_2016_09_060 crossref_primary_10_1016_j_jaap_2022_105706 crossref_primary_10_1016_j_chemosphere_2023_138356 crossref_primary_10_1016_j_envpol_2020_114037 crossref_primary_10_1007_s42729_025_02265_7 crossref_primary_10_1016_j_scitotenv_2017_11_014 crossref_primary_10_1007_s11356_018_1460_1 crossref_primary_10_1016_j_jwpe_2025_107479 crossref_primary_10_1016_j_mcat_2023_113136 crossref_primary_10_1016_j_jenvman_2021_114294 crossref_primary_10_1016_j_scitotenv_2020_144428 crossref_primary_10_1016_j_jes_2022_09_005 crossref_primary_10_1016_j_jenvman_2022_115559 crossref_primary_10_1016_j_scitotenv_2022_159037 crossref_primary_10_1016_j_wasman_2023_01_022 crossref_primary_10_1016_j_jaap_2018_01_028 crossref_primary_10_1021_acsomega_1c04030 crossref_primary_10_1007_s00128_018_2392_7 crossref_primary_10_1007_s10343_023_00952_y |
Cites_doi | 10.1038/447143a 10.1016/j.fuel.2006.12.013 10.1016/j.biombioe.2012.12.024 10.2134/agronj2007.0161 10.1016/j.jenvman.2013.01.001 10.1021/es035034w 10.1016/j.orggeochem.2009.09.007 10.1016/S0377-8401(99)00045-0 10.1016/j.chemosphere.2011.12.007 10.1111/gcbb.12037 10.1080/00103629709369870 10.2134/jeq2009.0138 10.1016/j.jenvman.2012.04.047 10.1021/es302545b 10.1016/j.chemosphere.2009.02.004 10.1016/j.biortech.2012.01.072 10.1021/es202186j 10.1071/SR9670247 10.1021/es2040398 10.1021/es9031419 10.1080/00380768.1962.10430980 10.1016/j.biortech.2013.07.086 10.1016/j.pedobi.2011.07.005 10.1016/j.orggeochem.2006.06.022 10.1002/esp.1712 10.1021/es202487h 10.1021/es203984k 10.1007/s11368-011-0376-x 10.1021/es8002684 10.1038/nature03299 10.1016/j.soilbio.2008.10.016 10.1007/s00374-002-0466-4 10.1021/es3047872 10.1016/S0166-5162(98)00025-1 10.1021/es303351e 10.1111/j.1747-0765.2008.00352.x 10.1038/442624a 10.2134/jeq2010.0204 10.1021/es302345e 10.1016/S0022-3093(02)01637-X 10.1021/es903016y 10.1007/s11104-010-0464-5 10.1016/B978-0-08-009351-2.50013-1 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Mar 18, 2014 |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Mar 18, 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G 7S9 L.6 |
DOI | 10.1021/es405676h |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Biotechnology Research Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 3419 |
ExternalDocumentID | 3258898231 24601595 28417620 10_1021_es405676h c792052201 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADMHC ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-a505t-894b7eb2b1fb954e2952ee7d94e6968e3aca4ac56693664fbca58d09f29989303 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 16:48:09 EDT 2025 Fri Jul 11 00:29:09 EDT 2025 Thu Jul 10 23:16:23 EDT 2025 Mon Jun 30 06:57:19 EDT 2025 Mon Jul 21 06:01:46 EDT 2025 Wed Apr 02 07:26:57 EDT 2025 Tue Jul 01 04:28:45 EDT 2025 Thu Apr 24 22:51:16 EDT 2025 Thu Aug 27 13:42:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Organic waste Combustion residue Temperature effect Slow release form Silicon compound Soil pollution Biochar Carbon sequestration Vegetal waste Waste management Decontamination Upgrading Crop residues Waste reuse Agricultural waste Resource management Charcoal Thermal degradation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a505t-894b7eb2b1fb954e2952ee7d94e6968e3aca4ac56693664fbca58d09f29989303 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24601595 |
PQID | 1510788762 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000301257 proquest_miscellaneous_1516754446 proquest_miscellaneous_1508681836 proquest_journals_1510788762 pubmed_primary_24601595 pascalfrancis_primary_28417620 crossref_primary_10_1021_es405676h crossref_citationtrail_10_1021_es405676h acs_journals_10_1021_es405676h |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-18 |
PublicationDateYYYYMMDD | 2014-03-18 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Marris E. (ref4/cit4) 2006; 442 Glenn R. C. (ref34/cit34) 1960 Glaser B. (ref6/cit6) 2002; 35 Chun Y. (ref25/cit25) 2004; 38 Zang H. (ref39/cit39) 1982; 19 Makabe S. (ref31/cit31) 2009; 55 Shen H. S. (ref43/cit43) 1999; 80 Lehmann J. A (ref1/cit1) 2007; 447 Tweneboah C. K. (ref33/cit33) 1967; 5 Regmi P. (ref16/cit16) 2012; 109 Cao G. (ref32/cit32) 2006; 28 Clough T. J. (ref45/cit45) 2010; 39 Bustin R. M. (ref35/cit35) 1999; 38 Derry L. A. (ref49/cit49) 2005; 433 Keiluweit M. (ref19/cit19) 2010; 44 Cheng C.-H. (ref23/cit23) 2006; 37 Qian L. (ref29/cit29) 2013; 47 Liang B. (ref11/cit11) 2010; 41 Singh B. P. (ref22/cit22) 2012; 46 Street-Perrott F. A. (ref50/cit50) 2008; 33 Lin Y. (ref20/cit20) 2012; 87 Kuzyakov Y. (ref21/cit21) 2009; 41 Chen Z. (ref26/cit26) 2012; 46 Han Y. (ref18/cit18) 2013; 118 Inyang M. (ref17/cit17) 2012; 110 Savant N. K. (ref30/cit30) 1997; 28 Yoshida S. (ref42/cit42) 1962; 8 Laird D. A. (ref7/cit7) 2008; 100 Biederman L. A. (ref47/cit47) 2013; 5 Innocenzi P. (ref40/cit40) 2003; 316 Liu H. (ref27/cit27) 2013; 49 Teixido M. (ref15/cit15) 2011; 45 Singh B. P. (ref10/cit10) 2010; 39 Yang H. (ref37/cit37) 2007; 86 Hale S. E. (ref13/cit13) 2012; 46 Nguyen B. T. (ref24/cit24) 2010; 44 Atkinson C. J. (ref44/cit44) 2010; 337 Dai G. (ref38/cit38) 2004; 18 Keith A. (ref12/cit12) 2011; 45 Chen Z. (ref14/cit14) 2012; 46 Xu Y. (ref36/cit36) 2013; 146 Ma J. (ref41/cit41) 2002 Chen B. (ref3/cit3) 2008; 42 Chen B. (ref5/cit5) 2009; 76 Harvey O. R. (ref2/cit2) 2012; 46 Lehmann J. (ref8/cit8) 2009 Anderson C. R. (ref46/cit46) 2011; 54 Qian L. (ref28/cit28) 2013; 47 Liu Y. (ref9/cit9) 2011; 11 Ma C. (ref48/cit48) 2009; 48 |
References_xml | – volume: 447 start-page: 143 issue: 7141 year: 2007 ident: ref1/cit1 publication-title: Nature doi: 10.1038/447143a – volume: 86 start-page: 1781 issue: 12 year: 2007 ident: ref37/cit37 publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – volume: 49 start-page: 22 year: 2013 ident: ref27/cit27 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.12.024 – volume: 100 start-page: 178 issue: 1 year: 2008 ident: ref7/cit7 publication-title: Agron. J. doi: 10.2134/agronj2007.0161 – volume: 118 start-page: 196 year: 2013 ident: ref18/cit18 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2013.01.001 – volume: 38 start-page: 4649 issue: 17 year: 2004 ident: ref25/cit25 publication-title: Environ. Sci. Technol. doi: 10.1021/es035034w – volume: 41 start-page: 206 issue: 2 year: 2010 ident: ref11/cit11 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.09.007 – volume: 80 start-page: 151 issue: 2 year: 1999 ident: ref43/cit43 publication-title: Anim. Feed Sci. Technol. doi: 10.1016/S0377-8401(99)00045-0 – volume: 47 start-page: 8759 issue: 15 year: 2013 ident: ref29/cit29 publication-title: Environ. Sci. Technol. – volume: 87 start-page: 151 issue: 2 year: 2012 ident: ref20/cit20 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.12.007 – volume: 5 start-page: 202 issue: 2 year: 2013 ident: ref47/cit47 publication-title: Global Change Biol. Bioenergy doi: 10.1111/gcbb.12037 – volume: 28 start-page: 1245 issue: 13 year: 1997 ident: ref30/cit30 publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629709369870 – volume: 39 start-page: 1224 issue: 4 year: 2010 ident: ref10/cit10 publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0138 – volume: 109 start-page: 61 year: 2012 ident: ref16/cit16 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2012.04.047 – volume: 46 start-page: 11770 issue: 21 year: 2012 ident: ref22/cit22 publication-title: Environ. Sci. Technol. doi: 10.1021/es302545b – volume: 76 start-page: 127 issue: 1 year: 2009 ident: ref5/cit5 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.02.004 – volume: 18 start-page: 51 issue: 5 year: 2004 ident: ref38/cit38 publication-title: J. Soil Water Conserv. (in Chinese) – volume-title: Soil, Fertilizer, and Plant Silicon Research in Japan year: 2002 ident: ref41/cit41 – volume: 110 start-page: 50 year: 2012 ident: ref17/cit17 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.072 – volume: 45 start-page: 9611 issue: 22 year: 2011 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es202186j – volume: 5 start-page: 247 issue: 2 year: 1967 ident: ref33/cit33 publication-title: Aust. J. Soil Res. doi: 10.1071/SR9670247 – volume: 46 start-page: 1415 issue: 3 year: 2012 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es2040398 – volume: 44 start-page: 1247 issue: 4 year: 2010 ident: ref19/cit19 publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume-title: Biochar for Environmental Management: Science and Technology year: 2009 ident: ref8/cit8 – volume: 8 start-page: 36 issue: 1 year: 1962 ident: ref42/cit42 publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1962.10430980 – volume: 146 start-page: 485 year: 2013 ident: ref36/cit36 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.086 – volume: 54 start-page: 309 issue: 5 year: 2011 ident: ref46/cit46 publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.005 – volume: 37 start-page: 1477 issue: 11 year: 2006 ident: ref23/cit23 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2006.06.022 – volume: 33 start-page: 1436 issue: 9 year: 2008 ident: ref50/cit50 publication-title: Earth Surf. Processes Landforms doi: 10.1002/esp.1712 – volume: 45 start-page: 10020 issue: 23 year: 2011 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es202487h – volume: 46 start-page: 2830 issue: 5 year: 2012 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es203984k – volume: 11 start-page: 930 issue: 6 year: 2011 ident: ref9/cit9 publication-title: J. Soils Sediments doi: 10.1007/s11368-011-0376-x – volume: 42 start-page: 5137 issue: 14 year: 2008 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 433 start-page: 728 issue: 7027 year: 2005 ident: ref49/cit49 publication-title: Nature doi: 10.1038/nature03299 – volume: 41 start-page: 210 issue: 2 year: 2009 ident: ref21/cit21 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.016 – volume: 35 start-page: 219 issue: 4 year: 2002 ident: ref6/cit6 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-002-0466-4 – volume: 19 start-page: 131 issue: 2 year: 1982 ident: ref39/cit39 publication-title: Acta Pedol. Sin. – volume: 47 start-page: 2737 issue: 6 year: 2013 ident: ref28/cit28 publication-title: Environ. Sci. Technol. doi: 10.1021/es3047872 – volume: 38 start-page: 237 issue: 3 year: 1999 ident: ref35/cit35 publication-title: Int. J. Coal. Geol. doi: 10.1016/S0166-5162(98)00025-1 – volume: 46 start-page: 12476 issue: 22 year: 2012 ident: ref14/cit14 publication-title: Environ. Sci. Technol. doi: 10.1021/es303351e – volume: 55 start-page: 300 issue: 2 year: 2009 ident: ref31/cit31 publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2008.00352.x – volume: 48 start-page: 987 issue: 4 year: 2009 ident: ref48/cit48 publication-title: Hubei Agric. Sci. (in Chinese) – volume: 28 start-page: 9 issue: 1 year: 2006 ident: ref32/cit32 publication-title: Resour. Sci. (in Chinese) – volume: 442 start-page: 624 issue: 7103 year: 2006 ident: ref4/cit4 publication-title: Nature doi: 10.1038/442624a – volume: 39 start-page: 1218 issue: 4 year: 2010 ident: ref45/cit45 publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0204 – volume: 46 start-page: 11104 issue: 20 year: 2012 ident: ref26/cit26 publication-title: Environ. Sci. Technol. doi: 10.1021/es302345e – volume: 316 start-page: 309 issue: 2 year: 2003 ident: ref40/cit40 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(02)01637-X – volume: 44 start-page: 3324 issue: 9 year: 2010 ident: ref24/cit24 publication-title: Environ. Sci. Technol. doi: 10.1021/es903016y – volume: 337 start-page: 1 issue: 1 year: 2010 ident: ref44/cit44 publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – start-page: 63 year: 1960 ident: ref34/cit34 publication-title: Eighth national conference of clays and clay minerals doi: 10.1016/B978-0-08-009351-2.50013-1 |
SSID | ssj0002308 |
Score | 2.6114306 |
Snippet | Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3411 |
SubjectTerms | agricultural soils Applied sciences biochar Biomass Bioremediation Carbon Carbon - chemistry Charcoal Charcoal - chemistry crystallization Decontamination. Miscellaneous Earth sciences Earth, ocean, space energy-dispersive X-ray analysis Engineering and environment geology. Geothermics Environmental science Exact sciences and technology Fourier transform infrared spectroscopy Hot Temperature Morphology organic matter Oryza - chemistry Oryza sativa Pollution Pollution, environment geology polymerization pyrolysis remediation rice straw scanning electron microscopy silicic acid Silicon Silicon - chemistry Soil - chemistry Soil and sediments pollution Soil permeability soil pollution Solubility temperature washing X-ray diffraction |
Title | Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures |
URI | http://dx.doi.org/10.1021/es405676h https://www.ncbi.nlm.nih.gov/pubmed/24601595 https://www.proquest.com/docview/1510788762 https://www.proquest.com/docview/1508681836 https://www.proquest.com/docview/1516754446 https://www.proquest.com/docview/2000301257 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEhCoVCaFmZx4FDU_KwnfjY7raqkIoQ3Up7W9mOLVaskmqTBZU_wN_uOK9uRbvcImWSOPZ45hvb8w3AR7SGPImN8jNurU-lor4SxvhGIToNAmnTzC0NnH3lpxf0y4RNNuDDPTv4UfjZlIgpeMJ_PICHEU8TF2EdDs97c4sYOu3KFIiYTzr6oNVHnevR5S3X8-RSltgLtilfcT--rP3MyRaMumyd5njJz4NlpQ70n3_JG9f9wjN42uJMctgoxnPYMPk2PF5hH9yGneObJDcUbWd5-QL-jlfQbJHvk7MCR6Nef98nMs_IaNarLCksOZ_NUZ_y-tZQLhReznLyHU0QceS3v_0RfvGXycjRrHBZXiVxmWsLfE1TnKUi364WxfwKm0rGBnF8w_NcvoSLk-Px8NRvCzb4EoFU5aeCqgRDdRVaJRg1kWCRMUkmqHEcPCaWWlKpEUHiQHFqlZYszQJh0ScibgriHdjMi9y8BsIyKzESkiHXinLLJWOpTsPQMCO0ENKDAY7otJ1w5bTeS4_Cad_VHnzqBnuqW7pzV3Vjfpfo-170suH4uEtocEtjekn07yF6lMCDvU6FVpqFJs-d1-SRB-_62ziD3baMzE2xdDIYViJuivk6mZA7qkK6RiZq4lu0wR68alT4ppEUA28m2Jv_ddsuPEJISN0puzDdg81qsTRvEXZValBPu2vWAyjb |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VcgCE-CkUDG1YEEgc6mI76433wKFNWqW0qRBNpdzMrr0rIiK7ih2q8AK8A6_CyzHrv6SolFMlbpY8WY9md2a-yc5-C_AaoyHrtJW0Y6a1TYWktuRK2UoiOnUcoYPY_DUwOGb9U_ph5I9W4Gd9FgaVyHCkrNjEX7ALuO9UhtCCddiXqoHyUM3PsTzL3h_0cC7feN7-3rDbt6sbBGyBmT23A05lB2tH6WrJfao87ntKdWJOlSGFUW0RCSoihDS8zRjVMhJ-EDtcY5DGRO60cdwbcBNBj2cKu53uSRPlEboH9e0I-ONRzVq0rKrJeFF2IePdPRMZGl-Xt2b8HdYW6W3_PvxqDFN0tXzdnuVyO_r-B2fk_2m5B3CvQtVkp3SDh7CikjW4s8S1uAbre4sjfShaxbTsEfwYLmH3NNkigxTXXrHbsEVEEpPeuHFQkmpyMp6g9yTFq66YSnwcJ-QTBlxiqH7P7R5-8ZuKye44NWfaMmLO6U1xmPIqmpx8nE_TyRxVJUOFVUvJap09htNrMdE6rCZpop4C8WMtsO4TLoskZZoJ3w-iwHWVr3jEubCghTMbVuElC4vOAc8Nm6m14G29xsKoInc3d4xMLhN91YielYwmlwm1LizURhLRjIv507Fgo165S2phgDfdqcyz4GXzGuOV2YQSiUpnRgaLaESJbXaVjMsMMSO9QsYrq3nMOBY8KT1noSRliHK5_-xfZnsBt_rDwVF4dHB8-BxuIximpr_QDTZgNZ_O1CYCzly2Cs8n8Pm6HeY3rbSLEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VIiEQ4qdQMJSwIJA41MU_6433wKEkjVpKq4qmUm5m194VEZEdxQ5VeAHeglfh1Zj1X1NUyqkSN0uerEe7OzPfZGe_AXiF3pB1fSXthGltUyGpLblStpKITh1H6DAxfw0cHLLdE_phFIxW4GdzFwaVyHGkvDzEN1Y9TXTNMOC-VTnCC9ZlX-oiyn21OMUULX-318f1fO15g51hb9euuwjYAqN7YYecyi7mj9LVkgdUeTzwlOomnCpDDKN8EQsqYoQ13GeMahmLIEwcrtFRYzB3fBz3Glw3x4MmudvuHbeeHuF72HRIwB-PGuaiZVVN1Ivzc1Hv9lTkuAC66pzxd2hbhrjBXfjVTk5Z2fJ1a17Irfj7H7yR_-_s3YM7Nbom25U53IcVla7BrSXOxTVY3zm72oeitW_LH8CP4RKGz9JNcpDhHixPHTaJSBPSH7eGSjJNjscTtKK0fNUTM4mP45R8QsdLDOXvqd3HL35TCXk_zszdtpyY-3ozHKZqSVOQo8UsmyxQVTJUmL1U7Nb5Qzi5kilah9U0S9VjIEGiBeZ_wmWxpEwzEQRhHLquChSPORcWdHB1o9rN5FFZQeC5Ubu0Frxp9lkU1yTvptfI5CLRl63otGI2uUioc26ztpKIalyMo44FG83uXVILHb2pUmWeBS_a1-i3zGGUSFU2NzKYTCNa9NllMi4zBI30Ehmvyuox8ljwqLKeMyUpQ7TLgyf_mrbncOOoP4g-7h3uP4WbiImpKTN0ww1YLWZz9QxxZyE7pfET-HzV9vIbim2NlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation%2C+Morphology%2C+and+Dissolution+of+Silicon+and+Carbon+in+Rice+Straw-Derived+Biochars+under+Different+Pyrolytic+Temperatures&rft.jtitle=Environmental+science+%26+technology&rft.au=Xiao%2C+Xin&rft.au=Chen%2C+Baoliang&rft.au=Zhu%2C+Lizhong&rft.date=2014-03-18&rft.issn=1520-5851&rft.volume=48&rft.issue=6+p.3411-3419&rft.spage=3411&rft.epage=3419&rft_id=info:doi/10.1021%2Fes405676h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |