Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures

Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silic...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 6; pp. 3411 - 3419
Main Authors Xiao, Xin, Chen, Baoliang, Zhu, Lizhong
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 18.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150–700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250–350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500–700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils.
AbstractList Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150–700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250–350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500–700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils.
Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 ...C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 ...C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 ...C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 ...C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils. (ProQuest: ... denotes formulae/symbols omitted.)
Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils.Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils.
Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 degree C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 degree C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 degree C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 degree C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils.
Author Xiao, Xin
Zhu, Lizhong
Chen, Baoliang
AuthorAffiliation Department of Environmental Science
Zhejiang University
AuthorAffiliation_xml – name: Department of Environmental Science
– name: Zhejiang University
Author_xml – sequence: 1
  givenname: Xin
  surname: Xiao
  fullname: Xiao, Xin
– sequence: 2
  givenname: Baoliang
  surname: Chen
  fullname: Chen, Baoliang
  email: blchen@zju.edu.cn
– sequence: 3
  givenname: Lizhong
  surname: Zhu
  fullname: Zhu, Lizhong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28417620$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24601595$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb64BeQgAgKHZtkkkzyqFv_QUWxK_g2ZDJ33JSZZJvMtOwn8GubsWuVKuhTLtxfDjk55wDt-eABoYeUPKeE0WNInAhZyfUdtKCCkUIoQffQghBaFrqUX_bRQUrnhBBWEnUP7TMuCRVaLNC3VTQ-dSEOZnTBH-H3IW7WoQ9ft0fY-BafuJRCP81LHDp85npn8zivliY2eXQef3IW8NkYzVVxAtFdQotfumDXJiY8-RZiluk6iOBH_HEbQ78dncUrGDYQzThFSPfR3c70CR7szkP0-fWr1fJtcfrhzbvli9PCCCLGQmneVNCwhnaNFhyYFgygajUHqaWC0ljDjRVSZtuSd401QrVEd0xrpUtSHqKn17qbGC4mSGM9uGSh742HMKWa5U8qCWWi-idKBZWV4JzL_0CJkoqqckYf30LPwxR99jwLkkqpSrJMPdpRUzNAW2-iG0zc1j-Dy8CTHWCSNX2XU7Qu_eIUp1ln9vvsmrMxpBShu0Eoqefy1DflyezxLda68UctcrKu_-uN3SuMTb_5-IP7Dqix0Sk
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_jhazmat_2020_125024
crossref_primary_10_1016_j_jes_2020_08_017
crossref_primary_10_1016_j_scitotenv_2021_150102
crossref_primary_10_1016_j_biortech_2020_123708
crossref_primary_10_3390_ma17123030
crossref_primary_10_1007_s11104_024_06684_w
crossref_primary_10_1016_j_jaap_2023_106343
crossref_primary_10_1021_acssuschemeng_0c06853
crossref_primary_10_1016_j_envres_2025_121405
crossref_primary_10_1016_j_jclepro_2021_127188
crossref_primary_10_1007_s42773_024_00330_5
crossref_primary_10_1016_j_cej_2021_132195
crossref_primary_10_1016_j_eti_2024_103611
crossref_primary_10_1016_j_jwpe_2025_107026
crossref_primary_10_1016_j_envpol_2021_117562
crossref_primary_10_1021_acsomega_1c02126
crossref_primary_10_1061__ASCE_EE_1943_7870_0001420
crossref_primary_10_1080_00103624_2018_1563096
crossref_primary_10_1016_j_scitotenv_2023_166496
crossref_primary_10_1016_j_cej_2022_141194
crossref_primary_10_3389_fpls_2023_1146416
crossref_primary_10_1007_s10163_018_0805_7
crossref_primary_10_1088_1755_1315_1201_1_012095
crossref_primary_10_1016_j_scitotenv_2023_168545
crossref_primary_10_1016_j_jclepro_2020_120162
crossref_primary_10_2139_ssrn_4100204
crossref_primary_10_1021_es5043468
crossref_primary_10_1007_s11356_024_31935_9
crossref_primary_10_1016_j_cej_2025_159205
crossref_primary_10_1016_j_fuel_2023_129910
crossref_primary_10_1007_s11270_021_05100_8
crossref_primary_10_1111_ejss_13316
crossref_primary_10_1007_s10311_023_01582_6
crossref_primary_10_1016_j_ecoenv_2024_115961
crossref_primary_10_1016_j_pedsph_2022_06_046
crossref_primary_10_1007_s12517_020_05399_3
crossref_primary_10_1016_j_rinma_2024_100545
crossref_primary_10_1007_s13399_021_01346_8
crossref_primary_10_1016_j_ecoenv_2020_111121
crossref_primary_10_1111_gcbb_12931
crossref_primary_10_1021_ie501843y
crossref_primary_10_1007_s13762_024_05593_w
crossref_primary_10_1016_j_envpol_2021_116455
crossref_primary_10_1021_acs_est_3c08044
crossref_primary_10_1007_s10653_017_9947_0
crossref_primary_10_1016_j_jece_2023_111194
crossref_primary_10_1007_s11356_017_1047_2
crossref_primary_10_1016_j_fuel_2018_10_064
crossref_primary_10_1016_j_jhazmat_2021_125513
crossref_primary_10_1007_s11368_015_1073_y
crossref_primary_10_1016_j_chemosphere_2024_143239
crossref_primary_10_1080_15320383_2022_2105811
crossref_primary_10_1016_j_fuel_2023_127631
crossref_primary_10_1016_j_jhazmat_2021_127817
crossref_primary_10_1038_s41598_021_92889_3
crossref_primary_10_3390_ma17133180
crossref_primary_10_1016_j_chemosphere_2020_128490
crossref_primary_10_1016_j_electacta_2021_138694
crossref_primary_10_1016_j_jaap_2017_11_020
crossref_primary_10_1016_j_scitotenv_2018_12_381
crossref_primary_10_1007_s40726_023_00260_z
crossref_primary_10_1016_j_scitotenv_2023_166344
crossref_primary_10_1016_j_scitotenv_2016_07_140
crossref_primary_10_1016_j_rhisph_2023_100749
crossref_primary_10_1016_j_chemosphere_2021_132747
crossref_primary_10_1016_j_jece_2025_116179
crossref_primary_10_1016_j_biortech_2018_03_075
crossref_primary_10_1016_j_jssc_2018_02_010
crossref_primary_10_1016_j_eti_2024_103932
crossref_primary_10_1016_j_stress_2024_100473
crossref_primary_10_1080_15226514_2024_2357644
crossref_primary_10_1016_j_biortech_2021_126465
crossref_primary_10_1016_j_scitotenv_2019_136101
crossref_primary_10_1002_jemt_23873
crossref_primary_10_1016_j_apgeochem_2021_104907
crossref_primary_10_1016_j_scitotenv_2020_141545
crossref_primary_10_1016_j_scitotenv_2023_161714
crossref_primary_10_1016_j_fuel_2015_04_019
crossref_primary_10_1007_s11356_020_09250_w
crossref_primary_10_1016_j_chemosphere_2023_138859
crossref_primary_10_1016_j_seppur_2023_125077
crossref_primary_10_1016_j_envres_2020_110034
crossref_primary_10_1038_srep22644
crossref_primary_10_1016_j_jclepro_2019_117855
crossref_primary_10_1039_D3EM00117B
crossref_primary_10_3390_ma17174306
crossref_primary_10_1016_j_cscee_2024_100938
crossref_primary_10_1016_j_fuel_2024_132224
crossref_primary_10_1016_j_jclepro_2024_143468
crossref_primary_10_1088_1742_6596_2256_1_012005
crossref_primary_10_1016_j_chemosphere_2024_143259
crossref_primary_10_3390_agronomy13071676
crossref_primary_10_3390_ma13245841
crossref_primary_10_1016_j_catena_2021_105284
crossref_primary_10_1016_j_chemosphere_2019_125481
crossref_primary_10_1016_j_jtice_2023_104815
crossref_primary_10_1016_j_envpol_2019_113253
crossref_primary_10_15243_jdmlm_2024_121_6949
crossref_primary_10_1016_j_chemosphere_2018_11_090
crossref_primary_10_1016_j_envpol_2019_113015
crossref_primary_10_1007_s11356_017_9168_1
crossref_primary_10_1016_j_envpol_2019_113017
crossref_primary_10_1016_j_chemosphere_2018_11_177
crossref_primary_10_1016_j_biortech_2019_122141
crossref_primary_10_1016_j_jhazmat_2019_121548
crossref_primary_10_1002_jpln_201800031
crossref_primary_10_1016_j_envpol_2023_123025
crossref_primary_10_1007_s42729_022_00998_3
crossref_primary_10_1021_acs_jafc_7b02266
crossref_primary_10_1007_s11356_021_13742_8
crossref_primary_10_1016_j_plaphy_2022_07_009
crossref_primary_10_3390_agronomy12081923
crossref_primary_10_1007_s11356_020_11572_8
crossref_primary_10_1021_acs_est_1c00392
crossref_primary_10_1007_s10533_022_00938_4
crossref_primary_10_1002_saj2_20773
crossref_primary_10_3390_horticulturae8100893
crossref_primary_10_1016_j_geoderma_2016_08_019
crossref_primary_10_1016_j_scitotenv_2018_12_059
crossref_primary_10_1016_j_jhydrol_2021_126839
crossref_primary_10_1007_s12649_024_02513_4
crossref_primary_10_1007_s11356_018_2976_0
crossref_primary_10_1016_j_jhazmat_2016_03_080
crossref_primary_10_1007_s11356_021_17334_4
crossref_primary_10_1007_s42773_021_00112_3
crossref_primary_10_31025_2611_4135_2023_18310
crossref_primary_10_1016_j_colsurfa_2021_126381
crossref_primary_10_1016_j_scitotenv_2022_152921
crossref_primary_10_1002_wer_1658
crossref_primary_10_1088_1757_899X_178_1_012022
crossref_primary_10_1016_j_matlet_2016_03_025
crossref_primary_10_1016_j_geoderma_2018_02_001
crossref_primary_10_1016_j_scitotenv_2024_175640
crossref_primary_10_1016_j_scitotenv_2021_145159
crossref_primary_10_1007_s13399_019_00399_0
crossref_primary_10_1021_acs_est_7b06487
crossref_primary_10_1002_app_50137
crossref_primary_10_1016_j_jenvman_2021_112898
crossref_primary_10_1021_acssuschemeng_8b05364
crossref_primary_10_1038_s41598_018_26396_3
crossref_primary_10_1016_j_indcrop_2021_113690
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_1016_j_seppur_2024_128546
crossref_primary_10_1021_acssuschemeng_0c09051
crossref_primary_10_1016_j_envpol_2018_04_003
crossref_primary_10_1080_01496395_2018_1553981
crossref_primary_10_1038_s41598_024_81246_9
crossref_primary_10_1038_srep33630
crossref_primary_10_1016_j_chemosphere_2022_137729
crossref_primary_10_1016_j_jclepro_2017_01_125
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1016_j_scitotenv_2023_162048
crossref_primary_10_3390_agriculture14071068
crossref_primary_10_1016_j_envpol_2022_120731
crossref_primary_10_1016_j_jclepro_2024_144506
crossref_primary_10_1016_j_scitotenv_2021_150881
crossref_primary_10_3389_fpls_2022_989504
crossref_primary_10_1002_sia_6575
crossref_primary_10_1016_j_desal_2024_118086
crossref_primary_10_1016_j_eti_2022_102948
crossref_primary_10_1016_j_jclepro_2018_12_094
crossref_primary_10_1039_C7RA13151H
crossref_primary_10_1016_j_biortech_2021_125794
crossref_primary_10_1016_j_jclepro_2018_12_093
crossref_primary_10_1016_j_ecoenv_2020_111756
crossref_primary_10_1016_j_scienta_2022_111052
crossref_primary_10_1016_j_jhazmat_2020_124909
crossref_primary_10_1016_j_gexplo_2019_106399
crossref_primary_10_11648_j_ajac_20241206_13
crossref_primary_10_1016_j_biortech_2020_123096
crossref_primary_10_1016_j_scitotenv_2023_166870
crossref_primary_10_1007_s11814_018_0054_4
crossref_primary_10_1016_j_envpol_2017_04_067
crossref_primary_10_1007_s11368_014_0969_2
crossref_primary_10_1016_j_cej_2019_122916
crossref_primary_10_1016_j_scitotenv_2019_134193
crossref_primary_10_1016_j_rser_2017_05_115
crossref_primary_10_1007_s11104_022_05350_3
crossref_primary_10_1093_femsec_fiaa034
crossref_primary_10_1007_s11356_017_9605_1
crossref_primary_10_1016_j_rser_2021_112056
crossref_primary_10_1155_2018_2684962
crossref_primary_10_3389_fenvs_2023_1294791
crossref_primary_10_1002_er_7441
crossref_primary_10_1016_j_scitotenv_2020_137021
crossref_primary_10_2166_wst_2021_473
crossref_primary_10_1016_j_jece_2022_107237
crossref_primary_10_1021_acs_est_8b06597
crossref_primary_10_1016_j_chemosphere_2019_125182
crossref_primary_10_1038_s41598_018_35414_3
crossref_primary_10_1007_s11368_022_03152_9
crossref_primary_10_1007_s10653_019_00458_5
crossref_primary_10_1021_acsestwater_1c00344
crossref_primary_10_1007_s11356_024_32580_y
crossref_primary_10_1016_j_jhazmat_2022_129668
crossref_primary_10_1021_acs_est_1c04440
crossref_primary_10_1016_j_biortech_2016_01_065
crossref_primary_10_1016_j_scitotenv_2020_140853
crossref_primary_10_1111_gcbb_12635
crossref_primary_10_1016_j_envexpbot_2015_07_001
crossref_primary_10_1021_acs_energyfuels_6b01103
crossref_primary_10_1016_j_scitotenv_2022_155021
crossref_primary_10_1080_01904167_2024_2369080
crossref_primary_10_1016_j_jcis_2020_06_031
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1016_j_jece_2021_105057
crossref_primary_10_1002_bbb_2597
crossref_primary_10_32604_phyton_2022_016492
crossref_primary_10_1016_j_envpol_2017_04_032
crossref_primary_10_1016_j_jhazmat_2022_128584
crossref_primary_10_1016_j_geoderma_2020_114308
crossref_primary_10_1016_j_scitotenv_2021_150941
crossref_primary_10_1021_acssuschemeng_1c02322
crossref_primary_10_1016_j_jhazmat_2022_129526
crossref_primary_10_1016_j_cej_2023_141368
crossref_primary_10_1016_j_hazadv_2022_100171
crossref_primary_10_1007_s13738_023_02860_4
crossref_primary_10_1016_j_micres_2024_127696
crossref_primary_10_1016_j_eti_2022_102622
crossref_primary_10_1002_bbb_2361
crossref_primary_10_1016_j_jclepro_2018_04_056
crossref_primary_10_1016_j_envpol_2022_119881
crossref_primary_10_1016_j_scp_2023_101097
crossref_primary_10_1016_j_crsust_2023_100226
crossref_primary_10_1016_j_chemosphere_2022_137513
crossref_primary_10_1080_00103624_2021_1953062
crossref_primary_10_1016_j_ijhydene_2021_02_131
crossref_primary_10_1007_s11356_023_27832_2
crossref_primary_10_1016_j_jaap_2024_106846
crossref_primary_10_1039_D4GC06034B
crossref_primary_10_1002_saj2_20146
crossref_primary_10_1016_j_jaap_2021_105132
crossref_primary_10_1016_j_jece_2023_110794
crossref_primary_10_3390_su151914585
crossref_primary_10_1016_j_electacta_2022_141583
crossref_primary_10_1016_j_envres_2022_112891
crossref_primary_10_1021_acsestengg_1c00478
crossref_primary_10_1016_j_biombioe_2025_107705
crossref_primary_10_1007_s10163_018_0768_8
crossref_primary_10_1016_j_jhazmat_2024_136720
crossref_primary_10_3390_su14106323
crossref_primary_10_1007_s10163_017_0666_5
crossref_primary_10_1007_s12517_018_4215_x
crossref_primary_10_1007_s42729_023_01582_z
crossref_primary_10_1016_j_envpol_2019_02_072
crossref_primary_10_3390_app12157417
crossref_primary_10_1007_s11356_023_25817_9
crossref_primary_10_1016_j_envpol_2017_12_013
crossref_primary_10_1016_j_still_2018_11_007
crossref_primary_10_1016_j_jclepro_2021_126645
crossref_primary_10_1016_j_indcrop_2022_115766
crossref_primary_10_1016_j_chemosphere_2023_139578
crossref_primary_10_1016_j_scitotenv_2023_162680
crossref_primary_10_1007_s11356_020_09715_y
crossref_primary_10_1016_j_jhazmat_2021_127150
crossref_primary_10_1007_s11783_022_1579_7
crossref_primary_10_1007_s11270_020_04791_9
crossref_primary_10_1016_j_chemosphere_2019_124805
crossref_primary_10_1016_j_scitotenv_2020_140714
crossref_primary_10_1007_s12155_025_10816_0
crossref_primary_10_1016_j_carbon_2015_09_106
crossref_primary_10_1016_j_chemosphere_2022_133981
crossref_primary_10_1021_acsami_9b00291
crossref_primary_10_3390_pr11123423
crossref_primary_10_3390_land12081580
crossref_primary_10_1016_j_geoderma_2020_114835
crossref_primary_10_1016_j_scitotenv_2023_162792
crossref_primary_10_1016_j_jaap_2021_105105
crossref_primary_10_1016_j_jhazmat_2018_01_023
crossref_primary_10_1007_s11356_022_19869_6
crossref_primary_10_1016_j_jenvman_2019_03_051
crossref_primary_10_1371_journal_pone_0311430
crossref_primary_10_1016_j_scitotenv_2022_158818
crossref_primary_10_3390_ijerph17051602
crossref_primary_10_1021_acssuschemeng_8b04906
crossref_primary_10_1021_acs_est_6b06300
crossref_primary_10_1186_s40643_021_00491_2
crossref_primary_10_1007_s12633_020_00680_2
crossref_primary_10_1016_j_earscirev_2022_104215
crossref_primary_10_1016_j_scitotenv_2021_145469
crossref_primary_10_1016_j_psep_2019_03_035
crossref_primary_10_1016_j_envpol_2021_117094
crossref_primary_10_1007_s11356_020_09330_x
crossref_primary_10_1016_j_envres_2022_113951
crossref_primary_10_1021_es405647e
crossref_primary_10_1016_j_scitotenv_2019_134919
crossref_primary_10_1007_s11783_020_1220_6
crossref_primary_10_1016_j_chemosphere_2023_140491
crossref_primary_10_1021_acs_est_7b02528
crossref_primary_10_1080_00103624_2023_2211105
crossref_primary_10_1021_acssuschemeng_6b01867
crossref_primary_10_1016_j_scitotenv_2015_12_085
crossref_primary_10_1016_j_biortech_2017_03_103
crossref_primary_10_1007_s44246_022_00015_3
crossref_primary_10_1021_acs_est_6b06594
crossref_primary_10_1016_j_scitotenv_2020_142086
crossref_primary_10_1016_j_jaap_2025_107004
crossref_primary_10_1016_j_jaap_2025_107006
crossref_primary_10_1016_j_envpol_2020_114772
crossref_primary_10_1016_j_jclepro_2024_141842
crossref_primary_10_1016_j_envpol_2024_125030
crossref_primary_10_1007_s11270_023_06172_4
crossref_primary_10_1016_j_chemosphere_2016_11_126
crossref_primary_10_3390_ijerph19052818
crossref_primary_10_3390_en13082070
crossref_primary_10_1021_acssuschemeng_2c05691
crossref_primary_10_1016_j_biortech_2021_124732
crossref_primary_10_1016_j_envres_2020_109609
crossref_primary_10_1088_1757_899X_788_1_012075
crossref_primary_10_1016_j_scitotenv_2019_135943
crossref_primary_10_1007_s42773_019_00031_4
crossref_primary_10_1016_j_resconrec_2023_107081
crossref_primary_10_1039_C8RA09061K
crossref_primary_10_3390_f15020366
crossref_primary_10_1016_j_marpolbul_2021_113186
crossref_primary_10_1038_srep29346
crossref_primary_10_1016_j_jes_2021_05_027
crossref_primary_10_1021_acssuschemeng_9b03784
crossref_primary_10_1016_j_biortech_2023_129754
crossref_primary_10_1021_acs_energyfuels_7b02910
crossref_primary_10_1080_00380768_2019_1579042
crossref_primary_10_1007_s11356_022_22357_6
crossref_primary_10_1016_j_scitotenv_2023_164656
crossref_primary_10_1080_00380768_2023_2288034
crossref_primary_10_1016_j_eti_2022_102593
crossref_primary_10_1016_j_eti_2021_102196
crossref_primary_10_1016_j_fuel_2024_131941
crossref_primary_10_1016_j_jhazmat_2019_03_076
crossref_primary_10_1016_j_indcrop_2023_117180
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1016_j_biortech_2024_130913
crossref_primary_10_1021_acs_est_6b03077
crossref_primary_10_1007_s11356_021_13057_8
crossref_primary_10_1016_j_watres_2021_117264
crossref_primary_10_1016_j_chemosphere_2022_134526
crossref_primary_10_1016_j_jece_2021_105354
crossref_primary_10_1016_j_scitotenv_2020_136894
crossref_primary_10_1061_JGGEFK_GTENG_11158
crossref_primary_10_1016_j_eti_2020_100816
crossref_primary_10_1016_j_jece_2021_105353
crossref_primary_10_1007_s12649_017_9928_7
crossref_primary_10_1007_s42729_021_00429_9
crossref_primary_10_1016_j_seppur_2023_124336
crossref_primary_10_3390_molecules25184319
crossref_primary_10_1016_j_diamond_2024_111794
crossref_primary_10_1016_j_jenvman_2024_123955
crossref_primary_10_1016_j_carbon_2024_119125
crossref_primary_10_1016_j_jhazmat_2020_122277
crossref_primary_10_1021_acs_est_7b04983
crossref_primary_10_1016_j_jhazmat_2015_06_050
crossref_primary_10_1016_j_eti_2024_103698
crossref_primary_10_1016_j_compositesb_2019_107151
crossref_primary_10_3390_ijerph19148420
crossref_primary_10_1016_j_resconrec_2020_105036
crossref_primary_10_1016_j_psep_2024_06_069
crossref_primary_10_1142_S1793984424300097
crossref_primary_10_1016_j_scitotenv_2019_134893
crossref_primary_10_1016_j_scp_2024_101735
crossref_primary_10_1021_acs_est_9b03607
crossref_primary_10_1016_j_jtice_2017_12_031
crossref_primary_10_1007_s10705_020_10084_8
crossref_primary_10_1039_D2RA04263K
crossref_primary_10_1021_acs_energyfuels_5b00512
crossref_primary_10_1088_1757_899X_729_1_012076
crossref_primary_10_1016_j_chemosphere_2023_140719
crossref_primary_10_1080_09593330_2023_2283090
crossref_primary_10_1016_j_biombioe_2018_09_032
crossref_primary_10_1007_s12649_016_9534_0
crossref_primary_10_1016_j_jhazmat_2021_127542
crossref_primary_10_1016_j_jhazmat_2021_127663
crossref_primary_10_3390_molecules29194757
crossref_primary_10_1016_j_colsurfa_2019_123937
crossref_primary_10_2139_ssrn_4121314
crossref_primary_10_1007_s11356_023_29413_9
crossref_primary_10_3390_agronomy9100637
crossref_primary_10_1016_j_colsurfb_2024_114475
crossref_primary_10_5194_bg_11_6613_2014
crossref_primary_10_1088_1755_1315_393_1_012087
crossref_primary_10_3390_toxics10090534
crossref_primary_10_1007_s10333_020_00815_6
crossref_primary_10_1007_s44246_024_00186_1
crossref_primary_10_1080_26395940_2024_2323689
crossref_primary_10_1186_s40643_022_00618_z
crossref_primary_10_1016_j_cropro_2019_01_013
crossref_primary_10_1021_acs_est_5b04536
crossref_primary_10_5004_dwt_2020_25143
crossref_primary_10_1007_s42773_020_00041_7
crossref_primary_10_1021_acs_est_4c10638
crossref_primary_10_3390_w8040141
crossref_primary_10_1016_j_chemosphere_2020_129183
crossref_primary_10_1007_s11356_017_9753_3
crossref_primary_10_1016_j_cep_2022_109027
crossref_primary_10_1007_s41742_018_0156_1
crossref_primary_10_1021_acs_jafc_6b00246
crossref_primary_10_1080_26395940_2019_1578185
crossref_primary_10_1007_s11368_023_03684_8
crossref_primary_10_1038_s43017_022_00306_8
crossref_primary_10_1016_j_chemosphere_2021_132113
crossref_primary_10_1016_j_eti_2019_100492
crossref_primary_10_1016_j_eng_2024_01_009
crossref_primary_10_1007_s13399_023_04567_1
crossref_primary_10_1021_acssuschemeng_1c08537
crossref_primary_10_1039_D1EM00247C
crossref_primary_10_1007_s11783_019_1106_7
crossref_primary_10_2134_jeq2015_06_0320
crossref_primary_10_1007_s11104_019_04013_0
crossref_primary_10_1007_s11368_022_03323_8
crossref_primary_10_1016_j_proenv_2016_02_012
crossref_primary_10_1007_s13399_022_02479_0
crossref_primary_10_1016_j_jhazmat_2020_123067
crossref_primary_10_1016_j_scitotenv_2018_06_115
crossref_primary_10_1016_j_jece_2023_110572
crossref_primary_10_1371_journal_pone_0301986
crossref_primary_10_1007_s11270_023_06856_x
crossref_primary_10_1016_j_apsusc_2019_07_268
crossref_primary_10_1155_2024_6697604
crossref_primary_10_4028_p_UqJ3In
crossref_primary_10_1016_j_colsuc_2023_100021
crossref_primary_10_1016_j_chemosphere_2021_132691
crossref_primary_10_1016_j_cej_2019_01_053
crossref_primary_10_1016_j_colsurfa_2016_09_060
crossref_primary_10_1016_j_jaap_2022_105706
crossref_primary_10_1016_j_chemosphere_2023_138356
crossref_primary_10_1016_j_envpol_2020_114037
crossref_primary_10_1007_s42729_025_02265_7
crossref_primary_10_1016_j_scitotenv_2017_11_014
crossref_primary_10_1007_s11356_018_1460_1
crossref_primary_10_1016_j_jwpe_2025_107479
crossref_primary_10_1016_j_mcat_2023_113136
crossref_primary_10_1016_j_jenvman_2021_114294
crossref_primary_10_1016_j_scitotenv_2020_144428
crossref_primary_10_1016_j_jes_2022_09_005
crossref_primary_10_1016_j_jenvman_2022_115559
crossref_primary_10_1016_j_scitotenv_2022_159037
crossref_primary_10_1016_j_wasman_2023_01_022
crossref_primary_10_1016_j_jaap_2018_01_028
crossref_primary_10_1021_acsomega_1c04030
crossref_primary_10_1007_s00128_018_2392_7
crossref_primary_10_1007_s10343_023_00952_y
Cites_doi 10.1038/447143a
10.1016/j.fuel.2006.12.013
10.1016/j.biombioe.2012.12.024
10.2134/agronj2007.0161
10.1016/j.jenvman.2013.01.001
10.1021/es035034w
10.1016/j.orggeochem.2009.09.007
10.1016/S0377-8401(99)00045-0
10.1016/j.chemosphere.2011.12.007
10.1111/gcbb.12037
10.1080/00103629709369870
10.2134/jeq2009.0138
10.1016/j.jenvman.2012.04.047
10.1021/es302545b
10.1016/j.chemosphere.2009.02.004
10.1016/j.biortech.2012.01.072
10.1021/es202186j
10.1071/SR9670247
10.1021/es2040398
10.1021/es9031419
10.1080/00380768.1962.10430980
10.1016/j.biortech.2013.07.086
10.1016/j.pedobi.2011.07.005
10.1016/j.orggeochem.2006.06.022
10.1002/esp.1712
10.1021/es202487h
10.1021/es203984k
10.1007/s11368-011-0376-x
10.1021/es8002684
10.1038/nature03299
10.1016/j.soilbio.2008.10.016
10.1007/s00374-002-0466-4
10.1021/es3047872
10.1016/S0166-5162(98)00025-1
10.1021/es303351e
10.1111/j.1747-0765.2008.00352.x
10.1038/442624a
10.2134/jeq2010.0204
10.1021/es302345e
10.1016/S0022-3093(02)01637-X
10.1021/es903016y
10.1007/s11104-010-0464-5
10.1016/B978-0-08-009351-2.50013-1
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Mar 18, 2014
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Mar 18, 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
7S9
L.6
DOI 10.1021/es405676h
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Biotechnology Research Abstracts
MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 3419
ExternalDocumentID 3258898231
24601595
28417620
10_1021_es405676h
c792052201
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADMHC
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-a505t-894b7eb2b1fb954e2952ee7d94e6968e3aca4ac56693664fbca58d09f29989303
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 16:48:09 EDT 2025
Fri Jul 11 00:29:09 EDT 2025
Thu Jul 10 23:16:23 EDT 2025
Mon Jun 30 06:57:19 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Wed Apr 02 07:26:57 EDT 2025
Tue Jul 01 04:28:45 EDT 2025
Thu Apr 24 22:51:16 EDT 2025
Thu Aug 27 13:42:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Organic waste
Combustion residue
Temperature effect
Slow release form
Silicon compound
Soil pollution
Biochar
Carbon sequestration
Vegetal waste
Waste management
Decontamination
Upgrading
Crop residues
Waste reuse
Agricultural waste
Resource management
Charcoal
Thermal degradation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a505t-894b7eb2b1fb954e2952ee7d94e6968e3aca4ac56693664fbca58d09f29989303
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24601595
PQID 1510788762
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_2000301257
proquest_miscellaneous_1516754446
proquest_miscellaneous_1508681836
proquest_journals_1510788762
pubmed_primary_24601595
pascalfrancis_primary_28417620
crossref_primary_10_1021_es405676h
crossref_citationtrail_10_1021_es405676h
acs_journals_10_1021_es405676h
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-18
PublicationDateYYYYMMDD 2014-03-18
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-18
  day: 18
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Marris E. (ref4/cit4) 2006; 442
Glenn R. C. (ref34/cit34) 1960
Glaser B. (ref6/cit6) 2002; 35
Chun Y. (ref25/cit25) 2004; 38
Zang H. (ref39/cit39) 1982; 19
Makabe S. (ref31/cit31) 2009; 55
Shen H. S. (ref43/cit43) 1999; 80
Lehmann J. A (ref1/cit1) 2007; 447
Tweneboah C. K. (ref33/cit33) 1967; 5
Regmi P. (ref16/cit16) 2012; 109
Cao G. (ref32/cit32) 2006; 28
Clough T. J. (ref45/cit45) 2010; 39
Bustin R. M. (ref35/cit35) 1999; 38
Derry L. A. (ref49/cit49) 2005; 433
Keiluweit M. (ref19/cit19) 2010; 44
Cheng C.-H. (ref23/cit23) 2006; 37
Qian L. (ref29/cit29) 2013; 47
Liang B. (ref11/cit11) 2010; 41
Singh B. P. (ref22/cit22) 2012; 46
Street-Perrott F. A. (ref50/cit50) 2008; 33
Lin Y. (ref20/cit20) 2012; 87
Kuzyakov Y. (ref21/cit21) 2009; 41
Chen Z. (ref26/cit26) 2012; 46
Han Y. (ref18/cit18) 2013; 118
Inyang M. (ref17/cit17) 2012; 110
Savant N. K. (ref30/cit30) 1997; 28
Yoshida S. (ref42/cit42) 1962; 8
Laird D. A. (ref7/cit7) 2008; 100
Biederman L. A. (ref47/cit47) 2013; 5
Innocenzi P. (ref40/cit40) 2003; 316
Liu H. (ref27/cit27) 2013; 49
Teixido M. (ref15/cit15) 2011; 45
Singh B. P. (ref10/cit10) 2010; 39
Yang H. (ref37/cit37) 2007; 86
Hale S. E. (ref13/cit13) 2012; 46
Nguyen B. T. (ref24/cit24) 2010; 44
Atkinson C. J. (ref44/cit44) 2010; 337
Dai G. (ref38/cit38) 2004; 18
Keith A. (ref12/cit12) 2011; 45
Chen Z. (ref14/cit14) 2012; 46
Xu Y. (ref36/cit36) 2013; 146
Ma J. (ref41/cit41) 2002
Chen B. (ref3/cit3) 2008; 42
Chen B. (ref5/cit5) 2009; 76
Harvey O. R. (ref2/cit2) 2012; 46
Lehmann J. (ref8/cit8) 2009
Anderson C. R. (ref46/cit46) 2011; 54
Qian L. (ref28/cit28) 2013; 47
Liu Y. (ref9/cit9) 2011; 11
Ma C. (ref48/cit48) 2009; 48
References_xml – volume: 447
  start-page: 143
  issue: 7141
  year: 2007
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 86
  start-page: 1781
  issue: 12
  year: 2007
  ident: ref37/cit37
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– volume: 49
  start-page: 22
  year: 2013
  ident: ref27/cit27
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.12.024
– volume: 100
  start-page: 178
  issue: 1
  year: 2008
  ident: ref7/cit7
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0161
– volume: 118
  start-page: 196
  year: 2013
  ident: ref18/cit18
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2013.01.001
– volume: 38
  start-page: 4649
  issue: 17
  year: 2004
  ident: ref25/cit25
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035034w
– volume: 41
  start-page: 206
  issue: 2
  year: 2010
  ident: ref11/cit11
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.09.007
– volume: 80
  start-page: 151
  issue: 2
  year: 1999
  ident: ref43/cit43
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/S0377-8401(99)00045-0
– volume: 47
  start-page: 8759
  issue: 15
  year: 2013
  ident: ref29/cit29
  publication-title: Environ. Sci. Technol.
– volume: 87
  start-page: 151
  issue: 2
  year: 2012
  ident: ref20/cit20
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.12.007
– volume: 5
  start-page: 202
  issue: 2
  year: 2013
  ident: ref47/cit47
  publication-title: Global Change Biol. Bioenergy
  doi: 10.1111/gcbb.12037
– volume: 28
  start-page: 1245
  issue: 13
  year: 1997
  ident: ref30/cit30
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629709369870
– volume: 39
  start-page: 1224
  issue: 4
  year: 2010
  ident: ref10/cit10
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0138
– volume: 109
  start-page: 61
  year: 2012
  ident: ref16/cit16
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.04.047
– volume: 46
  start-page: 11770
  issue: 21
  year: 2012
  ident: ref22/cit22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302545b
– volume: 76
  start-page: 127
  issue: 1
  year: 2009
  ident: ref5/cit5
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.02.004
– volume: 18
  start-page: 51
  issue: 5
  year: 2004
  ident: ref38/cit38
  publication-title: J. Soil Water Conserv. (in Chinese)
– volume-title: Soil, Fertilizer, and Plant Silicon Research in Japan
  year: 2002
  ident: ref41/cit41
– volume: 110
  start-page: 50
  year: 2012
  ident: ref17/cit17
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.072
– volume: 45
  start-page: 9611
  issue: 22
  year: 2011
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202186j
– volume: 5
  start-page: 247
  issue: 2
  year: 1967
  ident: ref33/cit33
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9670247
– volume: 46
  start-page: 1415
  issue: 3
  year: 2012
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2040398
– volume: 44
  start-page: 1247
  issue: 4
  year: 2010
  ident: ref19/cit19
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume-title: Biochar for Environmental Management: Science and Technology
  year: 2009
  ident: ref8/cit8
– volume: 8
  start-page: 36
  issue: 1
  year: 1962
  ident: ref42/cit42
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1962.10430980
– volume: 146
  start-page: 485
  year: 2013
  ident: ref36/cit36
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.086
– volume: 54
  start-page: 309
  issue: 5
  year: 2011
  ident: ref46/cit46
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.07.005
– volume: 37
  start-page: 1477
  issue: 11
  year: 2006
  ident: ref23/cit23
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2006.06.022
– volume: 33
  start-page: 1436
  issue: 9
  year: 2008
  ident: ref50/cit50
  publication-title: Earth Surf. Processes Landforms
  doi: 10.1002/esp.1712
– volume: 45
  start-page: 10020
  issue: 23
  year: 2011
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202487h
– volume: 46
  start-page: 2830
  issue: 5
  year: 2012
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203984k
– volume: 11
  start-page: 930
  issue: 6
  year: 2011
  ident: ref9/cit9
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-011-0376-x
– volume: 42
  start-page: 5137
  issue: 14
  year: 2008
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 433
  start-page: 728
  issue: 7027
  year: 2005
  ident: ref49/cit49
  publication-title: Nature
  doi: 10.1038/nature03299
– volume: 41
  start-page: 210
  issue: 2
  year: 2009
  ident: ref21/cit21
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.016
– volume: 35
  start-page: 219
  issue: 4
  year: 2002
  ident: ref6/cit6
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 19
  start-page: 131
  issue: 2
  year: 1982
  ident: ref39/cit39
  publication-title: Acta Pedol. Sin.
– volume: 47
  start-page: 2737
  issue: 6
  year: 2013
  ident: ref28/cit28
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3047872
– volume: 38
  start-page: 237
  issue: 3
  year: 1999
  ident: ref35/cit35
  publication-title: Int. J. Coal. Geol.
  doi: 10.1016/S0166-5162(98)00025-1
– volume: 46
  start-page: 12476
  issue: 22
  year: 2012
  ident: ref14/cit14
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303351e
– volume: 55
  start-page: 300
  issue: 2
  year: 2009
  ident: ref31/cit31
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2008.00352.x
– volume: 48
  start-page: 987
  issue: 4
  year: 2009
  ident: ref48/cit48
  publication-title: Hubei Agric. Sci. (in Chinese)
– volume: 28
  start-page: 9
  issue: 1
  year: 2006
  ident: ref32/cit32
  publication-title: Resour. Sci. (in Chinese)
– volume: 442
  start-page: 624
  issue: 7103
  year: 2006
  ident: ref4/cit4
  publication-title: Nature
  doi: 10.1038/442624a
– volume: 39
  start-page: 1218
  issue: 4
  year: 2010
  ident: ref45/cit45
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2010.0204
– volume: 46
  start-page: 11104
  issue: 20
  year: 2012
  ident: ref26/cit26
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302345e
– volume: 316
  start-page: 309
  issue: 2
  year: 2003
  ident: ref40/cit40
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(02)01637-X
– volume: 44
  start-page: 3324
  issue: 9
  year: 2010
  ident: ref24/cit24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903016y
– volume: 337
  start-page: 1
  issue: 1
  year: 2010
  ident: ref44/cit44
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– start-page: 63
  year: 1960
  ident: ref34/cit34
  publication-title: Eighth national conference of clays and clay minerals
  doi: 10.1016/B978-0-08-009351-2.50013-1
SSID ssj0002308
Score 2.6114306
Snippet Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3411
SubjectTerms agricultural soils
Applied sciences
biochar
Biomass
Bioremediation
Carbon
Carbon - chemistry
Charcoal
Charcoal - chemistry
crystallization
Decontamination. Miscellaneous
Earth sciences
Earth, ocean, space
energy-dispersive X-ray analysis
Engineering and environment geology. Geothermics
Environmental science
Exact sciences and technology
Fourier transform infrared spectroscopy
Hot Temperature
Morphology
organic matter
Oryza - chemistry
Oryza sativa
Pollution
Pollution, environment geology
polymerization
pyrolysis
remediation
rice straw
scanning electron microscopy
silicic acid
Silicon
Silicon - chemistry
Soil - chemistry
Soil and sediments pollution
Soil permeability
soil pollution
Solubility
temperature
washing
X-ray diffraction
Title Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures
URI http://dx.doi.org/10.1021/es405676h
https://www.ncbi.nlm.nih.gov/pubmed/24601595
https://www.proquest.com/docview/1510788762
https://www.proquest.com/docview/1508681836
https://www.proquest.com/docview/1516754446
https://www.proquest.com/docview/2000301257
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEhCoVCaFmZx4FDU_KwnfjY7raqkIoQ3Up7W9mOLVaskmqTBZU_wN_uOK9uRbvcImWSOPZ45hvb8w3AR7SGPImN8jNurU-lor4SxvhGIToNAmnTzC0NnH3lpxf0y4RNNuDDPTv4UfjZlIgpeMJ_PICHEU8TF2EdDs97c4sYOu3KFIiYTzr6oNVHnevR5S3X8-RSltgLtilfcT--rP3MyRaMumyd5njJz4NlpQ70n3_JG9f9wjN42uJMctgoxnPYMPk2PF5hH9yGneObJDcUbWd5-QL-jlfQbJHvk7MCR6Nef98nMs_IaNarLCksOZ_NUZ_y-tZQLhReznLyHU0QceS3v_0RfvGXycjRrHBZXiVxmWsLfE1TnKUi364WxfwKm0rGBnF8w_NcvoSLk-Px8NRvCzb4EoFU5aeCqgRDdRVaJRg1kWCRMUkmqHEcPCaWWlKpEUHiQHFqlZYszQJh0ScibgriHdjMi9y8BsIyKzESkiHXinLLJWOpTsPQMCO0ENKDAY7otJ1w5bTeS4_Cad_VHnzqBnuqW7pzV3Vjfpfo-170suH4uEtocEtjekn07yF6lMCDvU6FVpqFJs-d1-SRB-_62ziD3baMzE2xdDIYViJuivk6mZA7qkK6RiZq4lu0wR68alT4ppEUA28m2Jv_ddsuPEJISN0puzDdg81qsTRvEXZValBPu2vWAyjb
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VcgCE-CkUDG1YEEgc6mI76433wKFNWqW0qRBNpdzMrr0rIiK7ih2q8AK8A6_CyzHrv6SolFMlbpY8WY9md2a-yc5-C_AaoyHrtJW0Y6a1TYWktuRK2UoiOnUcoYPY_DUwOGb9U_ph5I9W4Gd9FgaVyHCkrNjEX7ALuO9UhtCCddiXqoHyUM3PsTzL3h_0cC7feN7-3rDbt6sbBGyBmT23A05lB2tH6WrJfao87ntKdWJOlSGFUW0RCSoihDS8zRjVMhJ-EDtcY5DGRO60cdwbcBNBj2cKu53uSRPlEboH9e0I-ONRzVq0rKrJeFF2IePdPRMZGl-Xt2b8HdYW6W3_PvxqDFN0tXzdnuVyO_r-B2fk_2m5B3CvQtVkp3SDh7CikjW4s8S1uAbre4sjfShaxbTsEfwYLmH3NNkigxTXXrHbsEVEEpPeuHFQkmpyMp6g9yTFq66YSnwcJ-QTBlxiqH7P7R5-8ZuKye44NWfaMmLO6U1xmPIqmpx8nE_TyRxVJUOFVUvJap09htNrMdE6rCZpop4C8WMtsO4TLoskZZoJ3w-iwHWVr3jEubCghTMbVuElC4vOAc8Nm6m14G29xsKoInc3d4xMLhN91YielYwmlwm1LizURhLRjIv507Fgo165S2phgDfdqcyz4GXzGuOV2YQSiUpnRgaLaESJbXaVjMsMMSO9QsYrq3nMOBY8KT1noSRliHK5_-xfZnsBt_rDwVF4dHB8-BxuIximpr_QDTZgNZ_O1CYCzly2Cs8n8Pm6HeY3rbSLEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VIiEQ4qdQMJSwIJA41MU_6433wKEkjVpKq4qmUm5m194VEZEdxQ5VeAHeglfh1Zj1X1NUyqkSN0uerEe7OzPfZGe_AXiF3pB1fSXthGltUyGpLblStpKITh1H6DAxfw0cHLLdE_phFIxW4GdzFwaVyHGkvDzEN1Y9TXTNMOC-VTnCC9ZlX-oiyn21OMUULX-318f1fO15g51hb9euuwjYAqN7YYecyi7mj9LVkgdUeTzwlOomnCpDDKN8EQsqYoQ13GeMahmLIEwcrtFRYzB3fBz3Glw3x4MmudvuHbeeHuF72HRIwB-PGuaiZVVN1Ivzc1Hv9lTkuAC66pzxd2hbhrjBXfjVTk5Z2fJ1a17Irfj7H7yR_-_s3YM7Nbom25U53IcVla7BrSXOxTVY3zm72oeitW_LH8CP4RKGz9JNcpDhHixPHTaJSBPSH7eGSjJNjscTtKK0fNUTM4mP45R8QsdLDOXvqd3HL35TCXk_zszdtpyY-3ozHKZqSVOQo8UsmyxQVTJUmL1U7Nb5Qzi5kilah9U0S9VjIEGiBeZ_wmWxpEwzEQRhHLquChSPORcWdHB1o9rN5FFZQeC5Ubu0Frxp9lkU1yTvptfI5CLRl63otGI2uUioc26ztpKIalyMo44FG83uXVILHb2pUmWeBS_a1-i3zGGUSFU2NzKYTCNa9NllMi4zBI30Ehmvyuox8ljwqLKeMyUpQ7TLgyf_mrbncOOoP4g-7h3uP4WbiImpKTN0ww1YLWZz9QxxZyE7pfET-HzV9vIbim2NlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation%2C+Morphology%2C+and+Dissolution+of+Silicon+and+Carbon+in+Rice+Straw-Derived+Biochars+under+Different+Pyrolytic+Temperatures&rft.jtitle=Environmental+science+%26+technology&rft.au=Xiao%2C+Xin&rft.au=Chen%2C+Baoliang&rft.au=Zhu%2C+Lizhong&rft.date=2014-03-18&rft.issn=1520-5851&rft.volume=48&rft.issue=6+p.3411-3419&rft.spage=3411&rft.epage=3419&rft_id=info:doi/10.1021%2Fes405676h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon