Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter

In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m3. Tri(chloropropyl) phospha...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 1; pp. 63 - 70
Main Authors Yang, Fangxing, Ding, Jinjian, Huang, Wei, Xie, Wei, Liu, Weiping
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 07.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m3. Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7–5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.
AbstractList In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.
In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m3. Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7–5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.
In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.
In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m³. Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7–5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.
In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m... Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 ...m. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles ( less than or equal to 1 ...m), while TnPP, TBEP, and EHDPP mainly on fine particles ( less than or equal to 2.5 ...m). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. (ProQuest: ... denotes formulae/symbols omitted.)
In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m... Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 ...m. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 ...m), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 ...m). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. (ProQuest: ... denotes formulae/symbols omitted.)
Author Xie, Wei
Yang, Fangxing
Liu, Weiping
Ding, Jinjian
Huang, Wei
AuthorAffiliation Research Center for Air Pollution and Health
Zhejiang University
MOE Key Laboratory of Environmental Remediation and Ecosystem Health
College of Environmental and Resource Sciences
AuthorAffiliation_xml – name: Research Center for Air Pollution and Health
– name: College of Environmental and Resource Sciences
– name: Zhejiang University
– name: MOE Key Laboratory of Environmental Remediation and Ecosystem Health
Author_xml – sequence: 1
  givenname: Fangxing
  surname: Yang
  fullname: Yang, Fangxing
– sequence: 2
  givenname: Jinjian
  surname: Ding
  fullname: Ding, Jinjian
– sequence: 3
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
– sequence: 4
  givenname: Wei
  surname: Xie
  fullname: Xie, Wei
– sequence: 5
  givenname: Weiping
  surname: Liu
  fullname: Liu, Weiping
  email: wliu@zju.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28268789$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24308350$$D View this record in MEDLINE/PubMed
BookMark eNqN0l9r1TAUAPAgE3c3ffALSEAEfahLmqZNH8fcVJjc4RR8K6fpqcvoTWtOCroP4Wc25d6pTEGfAuF3TnL-HLA9P3pk7LEUL6XI5RFSIZQ05c09tpI6F5k2Wu6xlRBSZbUqP-2zA6JrIUSuhHnA9vMinUqLFft-ASE6OyC_dDeYXU5oXe8sf-UoBtfO0Y2eOPiOXwQc3MZ5CN_46ddppDkgPyZCog36SHzs-Tp8Bj9OVyNNVxCRnw2wQf4eI4QOFuM8X_cpf4p0gW_fnoeFvoMYMTxk93sYCB_tzkP28ez0w8mb7Hz9-u3J8XkGWuiYVb2ubQvYikJ1Gix2fV1AutGguhx6q-oCC1m2lWhRdbKwaDEHVeqyLqsK1SF7vs07hfHLjBSbjSOLwwAex5maPPVK1iY35T-pLOrSmLJIvf0PKqpCGr1kfXqHXo9z8KnmpKoqrytZLerJTs3tBrtmCm6T-t_czi-BZzsAZGHoA3jr6JczeWkqUyd3tHU2jEQB-8a6CMtwYwA3NFI0yyY1PzcpRby4E3Gb9G929wuw9Fsdf7gfPHfWBg
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_aquatox_2015_01_014
crossref_primary_10_1016_j_chemosphere_2020_127633
crossref_primary_10_1016_j_envpol_2019_01_036
crossref_primary_10_1093_toxsci_kfx238
crossref_primary_10_1016_j_envint_2015_11_008
crossref_primary_10_1016_j_envint_2023_108254
crossref_primary_10_1016_j_jhazmat_2025_137491
crossref_primary_10_1155_2021_8878247
crossref_primary_10_1016_j_chemosphere_2017_02_070
crossref_primary_10_1016_j_buildenv_2018_03_028
crossref_primary_10_1016_j_envpol_2019_06_010
crossref_primary_10_1016_j_jiec_2019_09_004
crossref_primary_10_1016_j_chemosphere_2015_12_111
crossref_primary_10_1007_s11356_021_13370_2
crossref_primary_10_1016_j_scitotenv_2015_08_101
crossref_primary_10_1021_acsestwater_0c00217
crossref_primary_10_1039_C6AY02837C
crossref_primary_10_3934_environsci_2018_4_294
crossref_primary_10_1007_s11356_018_2047_6
crossref_primary_10_1016_j_watres_2019_01_035
crossref_primary_10_1016_j_envpol_2021_117208
crossref_primary_10_1007_s11356_017_9745_3
crossref_primary_10_1016_j_envint_2018_11_006
crossref_primary_10_1007_s11356_022_20752_7
crossref_primary_10_1007_s11270_016_2913_0
crossref_primary_10_1002_jat_4158
crossref_primary_10_1016_j_envpol_2017_12_017
crossref_primary_10_1016_j_envpol_2020_115305
crossref_primary_10_1016_j_chemosphere_2024_141555
crossref_primary_10_1016_j_envint_2022_107557
crossref_primary_10_1016_j_envpol_2017_12_092
crossref_primary_10_1002_etc_3981
crossref_primary_10_1007_s10661_019_7239_0
crossref_primary_10_1021_jasms_2c00334
crossref_primary_10_1016_j_envint_2019_01_018
crossref_primary_10_1016_j_envpol_2023_122463
crossref_primary_10_1021_acsami_1c16850
crossref_primary_10_1016_j_scitotenv_2021_148837
crossref_primary_10_1007_s40572_019_00258_0
crossref_primary_10_1016_j_jhazmat_2018_12_041
crossref_primary_10_1021_acs_est_8b02492
crossref_primary_10_1016_j_scitotenv_2016_04_173
crossref_primary_10_1039_D3GC03428C
crossref_primary_10_1016_j_scitotenv_2019_134810
crossref_primary_10_1021_acsanm_3c01139
crossref_primary_10_1016_j_scitotenv_2020_144571
crossref_primary_10_1021_acs_est_1c04817
crossref_primary_10_1016_j_talanta_2015_09_034
crossref_primary_10_1016_j_jhazmat_2015_09_014
crossref_primary_10_1016_j_ecoenv_2019_109386
crossref_primary_10_1016_j_envint_2016_10_021
crossref_primary_10_1016_j_jhazmat_2018_07_082
crossref_primary_10_1016_j_jhazmat_2020_123667
crossref_primary_10_1016_j_emcon_2019_05_003
crossref_primary_10_1021_acs_est_8b07053
crossref_primary_10_1016_j_ijheh_2020_113630
crossref_primary_10_1007_s44169_022_00021_x
crossref_primary_10_1016_j_ecoenv_2020_110827
crossref_primary_10_1002_clen_201500807
crossref_primary_10_1002_etc_3996
crossref_primary_10_1007_s11356_018_3156_y
crossref_primary_10_1016_j_envint_2021_106413
crossref_primary_10_1016_j_chemosphere_2017_09_112
crossref_primary_10_1016_j_jes_2015_01_022
crossref_primary_10_1016_j_reprotox_2020_04_001
crossref_primary_10_7717_peerj_7489
crossref_primary_10_1016_j_atmosenv_2016_06_019
crossref_primary_10_1016_j_scitotenv_2020_140048
crossref_primary_10_1016_j_envpol_2021_117262
crossref_primary_10_1016_j_scitotenv_2019_134502
crossref_primary_10_1093_annweh_wxz012
crossref_primary_10_1016_j_chemosphere_2023_139649
crossref_primary_10_1016_j_scitotenv_2019_133894
crossref_primary_10_1016_j_microc_2022_108327
crossref_primary_10_1016_j_envpol_2019_113882
crossref_primary_10_1016_j_scitotenv_2022_157724
crossref_primary_10_1016_j_envpol_2015_11_051
crossref_primary_10_1016_j_envres_2020_109493
crossref_primary_10_1016_j_scitotenv_2021_151206
crossref_primary_10_1016_j_envpol_2014_09_012
crossref_primary_10_1016_j_ecoenv_2024_116784
crossref_primary_10_1016_j_chemosphere_2016_03_003
crossref_primary_10_1016_j_apcatb_2019_118097
crossref_primary_10_12677_AAC_2019_92011
crossref_primary_10_1016_j_scitotenv_2021_148695
crossref_primary_10_1016_j_chemosphere_2019_03_108
crossref_primary_10_1016_j_scitotenv_2015_11_094
crossref_primary_10_1111_ina_12776
crossref_primary_10_1007_s00244_020_00747_6
crossref_primary_10_1016_j_scitotenv_2022_158021
crossref_primary_10_1016_j_envint_2020_105946
crossref_primary_10_1021_acs_est_0c02823
crossref_primary_10_1016_j_envpol_2024_125529
crossref_primary_10_1016_j_jenvman_2022_116601
crossref_primary_10_1016_j_wasman_2023_07_030
crossref_primary_10_1007_s11356_016_6902_z
crossref_primary_10_1016_j_chemosphere_2018_11_150
crossref_primary_10_1021_acs_est_7b00347
crossref_primary_10_1016_j_envint_2018_10_004
crossref_primary_10_1016_j_envpol_2018_05_092
crossref_primary_10_1080_10643389_2020_1859307
crossref_primary_10_1021_acs_est_0c06095
crossref_primary_10_1016_j_envint_2019_105321
crossref_primary_10_1016_j_scitotenv_2024_172212
crossref_primary_10_3389_fenrg_2021_794438
crossref_primary_10_1038_s41598_019_47828_8
crossref_primary_10_1016_j_fct_2016_12_029
crossref_primary_10_1016_j_scitotenv_2020_139071
crossref_primary_10_1021_es501224b
crossref_primary_10_1111_ina_12549
crossref_primary_10_3390_toxics12030195
crossref_primary_10_1016_j_scitotenv_2016_06_093
crossref_primary_10_1016_j_aquatox_2017_09_003
crossref_primary_10_1016_j_ntt_2015_09_002
crossref_primary_10_1002_jssc_201500213
crossref_primary_10_3390_ijerph14050507
crossref_primary_10_1016_j_ecoenv_2020_110212
crossref_primary_10_1016_j_scitotenv_2019_02_076
crossref_primary_10_1021_acs_est_5b01930
crossref_primary_10_1016_j_chemosphere_2017_11_080
crossref_primary_10_1007_s00244_019_00602_3
crossref_primary_10_1016_j_jhazmat_2018_10_082
crossref_primary_10_1039_C8EM00014J
crossref_primary_10_1016_j_scitotenv_2020_138307
crossref_primary_10_1016_j_jhazmat_2024_135717
crossref_primary_10_1016_j_envint_2020_106261
crossref_primary_10_1016_j_chemosphere_2024_141874
crossref_primary_10_1016_j_ecoenv_2023_115696
crossref_primary_10_1016_j_envint_2019_105178
crossref_primary_10_1111_ina_12397
crossref_primary_10_1177_0960327118783529
crossref_primary_10_1016_j_envint_2019_105056
crossref_primary_10_3390_ijms20122874
crossref_primary_10_1016_j_envpol_2017_09_091
crossref_primary_10_1016_j_fct_2016_12_011
crossref_primary_10_1016_j_ijheh_2022_114089
crossref_primary_10_1021_acs_est_7b06395
crossref_primary_10_1039_C5RA03504J
crossref_primary_10_1016_j_ecoenv_2020_111399
crossref_primary_10_1016_j_envint_2019_105054
crossref_primary_10_1016_j_atmosenv_2017_11_007
crossref_primary_10_1016_j_chroma_2014_09_028
crossref_primary_10_1007_s12273_022_0962_4
crossref_primary_10_1155_2016_9416054
crossref_primary_10_1186_s12940_023_01017_3
crossref_primary_10_1007_s11356_017_9336_3
crossref_primary_10_1016_j_buildenv_2016_06_022
crossref_primary_10_1016_j_envpol_2017_09_092
crossref_primary_10_1016_j_envpol_2025_125886
crossref_primary_10_1016_j_envpol_2024_124593
crossref_primary_10_1016_j_ecoenv_2019_03_029
crossref_primary_10_1016_j_envint_2018_01_020
crossref_primary_10_1016_j_envint_2019_105387
crossref_primary_10_1016_j_envint_2021_106691
crossref_primary_10_1002_jat_4066
crossref_primary_10_1016_j_ecoenv_2019_109502
crossref_primary_10_1016_j_envint_2023_108313
crossref_primary_10_1007_s00244_023_01023_z
crossref_primary_10_1016_j_chemosphere_2017_05_108
crossref_primary_10_1016_j_chemosphere_2017_12_132
crossref_primary_10_1021_acs_est_0c02237
crossref_primary_10_1016_j_aquatox_2014_11_001
crossref_primary_10_1016_j_envpol_2020_114311
crossref_primary_10_1021_envhealth_4c00229
crossref_primary_10_1016_j_chemosphere_2020_127807
crossref_primary_10_1016_j_chemosphere_2015_11_084
crossref_primary_10_1016_j_scitotenv_2024_176507
crossref_primary_10_1016_j_envpol_2017_06_089
crossref_primary_10_1016_j_scitotenv_2019_03_335
crossref_primary_10_1021_acs_est_6b00246
crossref_primary_10_3390_ijerph18042125
crossref_primary_10_1016_j_emcon_2020_08_004
crossref_primary_10_1016_j_jhazmat_2019_121811
crossref_primary_10_1016_j_envpol_2017_09_036
crossref_primary_10_1016_j_envpol_2015_11_008
crossref_primary_10_1016_j_neuro_2016_10_018
crossref_primary_10_1002_jat_4056
crossref_primary_10_1016_j_scitotenv_2016_02_171
crossref_primary_10_1016_j_chemosphere_2019_124971
crossref_primary_10_1016_j_scitotenv_2022_160658
crossref_primary_10_1016_j_chroma_2016_04_021
crossref_primary_10_1021_acs_est_8b03043
crossref_primary_10_1007_s11356_019_07204_5
crossref_primary_10_1016_j_buildenv_2022_109156
crossref_primary_10_1016_j_chemosphere_2021_133414
crossref_primary_10_1021_acs_est_8b03965
crossref_primary_10_1080_10643389_2022_2087428
crossref_primary_10_1210_endocr_bqaa168
Cites_doi 10.1080/10473289.2000.10464154
10.1016/j.scitotenv.2007.08.005
10.1111/j.1600-0668.2006.00442.x
10.1016/j.trac.2008.07.002
10.1016/j.envpol.2008.12.010
10.1016/j.chemosphere.2012.03.100
10.1021/es900033u
10.1021/es802593t
10.1016/j.atmosenv.2008.09.048
10.1016/j.envpol.2010.12.007
10.1016/j.chemosphere.2012.03.067
10.1016/j.scitotenv.2011.01.032
10.1039/b506631j
10.1039/b921910b
10.1016/j.scitotenv.2012.05.059
10.1016/S0045-6535(03)00666-0
10.1021/es303471d
10.1016/j.atmosenv.2010.01.010
10.1016/j.envpol.2011.07.020
10.1007/s10661-009-0952-3
10.1016/j.scitotenv.2004.03.015
10.1016/j.trac.2012.12.004
10.1021/es00053a006
10.1021/es702549g
10.1021/es001477d
10.1016/j.atmosenv.2006.10.045
10.1111/j.1600-0668.2010.00684.x
10.1289/ehp.0901332
10.1039/c1em10538h
10.1177/1420326X05060190
10.1016/j.scitotenv.2004.10.028
10.1016/j.envint.2010.11.010
10.1007/s00216-009-3139-4
10.1021/es0263893
10.1016/j.scitotenv.2013.04.003
10.1016/j.chemosphere.2004.08.051
10.1080/02786820117903
10.1007/s00216-009-3064-6
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Jan 7, 2014
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Jan 7, 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7U1
7S9
L.6
DOI 10.1021/es403186z
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Risk Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Risk Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Risk Abstracts
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 70
ExternalDocumentID 3180996901
24308350
28268789
10_1021_es403186z
a627815324
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADMHC
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7U1
7S9
L.6
ID FETCH-LOGICAL-a505t-7f59cbaeb043d5acedf94acba5a3d2afc394e416b70be3d14cece2a36569677e3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 09:47:42 EDT 2025
Fri Jul 11 09:04:38 EDT 2025
Fri Jul 11 00:31:46 EDT 2025
Mon Jun 30 05:02:10 EDT 2025
Mon Jul 21 06:05:48 EDT 2025
Wed Apr 02 07:08:16 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
Tue Jul 01 04:28:42 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Office building
Work place
Flame retardant
Ultrafine particle
Occupational exposure
Phosphorus Organic compounds
Inhalation
Coarse particle
Particle size distribution
Health and environment
Fine particle
Aerosols
Organic phosphate
Indoor pollution
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a505t-7f59cbaeb043d5acedf94acba5a3d2afc394e416b70be3d14cece2a36569677e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24308350
PQID 1477297176
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_2000198286
proquest_miscellaneous_1496886402
proquest_miscellaneous_1490741856
proquest_journals_1477297176
pubmed_primary_24308350
pascalfrancis_primary_28268789
crossref_citationtrail_10_1021_es403186z
crossref_primary_10_1021_es403186z
acs_journals_10_1021_es403186z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-07
PublicationDateYYYYMMDD 2014-01-07
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-07
  day: 07
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Zhao H. (ref25/cit25) 2005; 14
Ni H.-G. (ref39/cit39) 2013; 458
Chung H. W. (ref11/cit11) 2009; 395
Mäkinen M. S. E. (ref8/cit8) 2009; 43
ref2/cit2
Ali N. (ref47/cit47) 2012; 88
Meeker J. D. (ref21/cit21) 2010; 118
Sundkvist A. M. (ref13/cit13) 2010; 12
Ni H. (ref43/cit43) 2011; 159
Reemtsma T. (ref16/cit16) 2011; 409
Saito I. (ref7/cit7) 2007; 17
Staaf T. (ref33/cit33) 2005; 7
Van den Edde N. (ref6/cit6) 2011; 37
Saito I. (ref35/cit35) 2001; 16
Fries E. (ref12/cit12) 2011; 13
ref49/cit49
Zhang K. (ref24/cit24) 2012; 431
Stapleton H. M. (ref18/cit18) 2012; 46
(ref20/cit20) 1998
ref38/cit38
Marklund A. (ref4/cit4) 2003; 53
Hartmann P. C. (ref34/cit34) 2004; 57
Reemtsma T. (ref50/cit50) 2008; 27
Wensing M. (ref5/cit5) 2005; 339
Wang X. (ref36/cit36) 2010; 22
Hien T. T. (ref41/cit41) 2007; 41
Long C. M. (ref28/cit28) 2000; 50
Brandsma S. H. (ref3/cit3) 2013; 43
Ferro A. R. (ref29/cit29) 2004; 38
Ou Y. (ref37/cit37) 2011; 30
LeBel G. L. (ref45/cit45) 1981; 64
Gadkari N. M. (ref26/cit26) 2010; 165
Van der Veen I. (ref17/cit17) 2012; 88
Mandalakis M. (ref40/cit40) 2009; 157
Martínez-Carballo E. (ref9/cit9) 2007; 388
Bacaloni A. (ref10/cit10) 2008; 42
Bergh C. (ref32/cit32) 2011; 21
Venkataraman C. (ref44/cit44) 1994; 28
Vette A. F. (ref31/cit31) 2001; 34
Kawanaka Y. (ref48/cit48) 2009; 43
Schindler B. K. (ref15/cit15) 2009; 395
ref22/cit22
Kim J. W. (ref14/cit14) 2011; 159
(ref23/cit23) 1994; 24
Long C. M. (ref30/cit30) 2001; 35
(ref19/cit19) 1991
Chrysikou L. P. (ref42/cit42) 2009; 43
ref1/cit1
Horemans B. (ref27/cit27) 2010; 44
Stackelberg P. E. (ref46/cit46) 2004; 329
References_xml – volume: 50
  start-page: 1236
  year: 2000
  ident: ref28/cit28
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2000.10464154
– volume: 388
  start-page: 290
  year: 2007
  ident: ref9/cit9
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.08.005
– volume: 17
  start-page: 28
  year: 2007
  ident: ref7/cit7
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2006.00442.x
– volume: 27
  start-page: 727
  year: 2008
  ident: ref50/cit50
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2008.07.002
– volume: 157
  start-page: 1227
  year: 2009
  ident: ref40/cit40
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.12.010
– volume: 88
  start-page: 1276
  year: 2012
  ident: ref47/cit47
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.03.100
– volume: 16
  start-page: 209
  year: 2001
  ident: ref35/cit35
  publication-title: J. Aerosol Res. Japan
– volume: 43
  start-page: 6851
  year: 2009
  ident: ref48/cit48
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900033u
– volume: 43
  start-page: 941
  year: 2009
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802593t
– volume: 43
  start-page: 290
  year: 2009
  ident: ref42/cit42
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.09.048
– ident: ref22/cit22
– volume: 159
  start-page: 1957
  year: 2011
  ident: ref43/cit43
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.12.007
– volume: 88
  start-page: 1119
  year: 2012
  ident: ref17/cit17
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.03.067
– volume: 409
  start-page: 1990
  year: 2011
  ident: ref16/cit16
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.01.032
– volume: 7
  start-page: 883
  year: 2005
  ident: ref33/cit33
  publication-title: J. Environ. Monit.
  doi: 10.1039/b506631j
– volume: 12
  start-page: 943
  year: 2010
  ident: ref13/cit13
  publication-title: J. Environ. Monit.
  doi: 10.1039/b921910b
– volume-title: Flame Retardants
  year: 1998
  ident: ref20/cit20
– volume: 24
  volume-title: Human Respiratory Tract Model for Radiological Protection Annals of the ICRP
  year: 1994
  ident: ref23/cit23
– volume: 431
  start-page: 245
  year: 2012
  ident: ref24/cit24
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.05.059
– volume: 53
  start-page: 1137
  year: 2003
  ident: ref4/cit4
  publication-title: Chemoshpere
  doi: 10.1016/S0045-6535(03)00666-0
– ident: ref49/cit49
– volume: 46
  start-page: 13432
  year: 2012
  ident: ref18/cit18
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303471d
– volume: 44
  start-page: 1497
  year: 2010
  ident: ref27/cit27
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.01.010
– ident: ref38/cit38
– volume: 159
  start-page: 3653
  year: 2011
  ident: ref14/cit14
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.020
– volume: 165
  start-page: 365
  year: 2010
  ident: ref26/cit26
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-009-0952-3
– volume: 30
  start-page: 210
  year: 2011
  ident: ref37/cit37
  publication-title: Chem. Ind. Eng. Prog.
– volume: 329
  start-page: 99
  year: 2004
  ident: ref46/cit46
  publication-title: Sci, Total Environ
  doi: 10.1016/j.scitotenv.2004.03.015
– ident: ref2/cit2
– volume: 43
  start-page: 217
  year: 2013
  ident: ref3/cit3
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2012.12.004
– volume: 28
  start-page: 563
  year: 1994
  ident: ref44/cit44
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00053a006
– volume: 42
  start-page: 1898
  year: 2008
  ident: ref10/cit10
  publication-title: Sci. Total Environ.
  doi: 10.1021/es702549g
– volume: 35
  start-page: 2089
  year: 2001
  ident: ref30/cit30
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001477d
– volume: 41
  start-page: 1575
  year: 2007
  ident: ref41/cit41
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.10.045
– volume: 21
  start-page: 67
  year: 2011
  ident: ref32/cit32
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2010.00684.x
– volume: 64
  start-page: 991
  year: 1981
  ident: ref45/cit45
  publication-title: J. Assoc. Off. Anal. Chem.
– ident: ref1/cit1
– volume: 118
  start-page: 318
  year: 2010
  ident: ref21/cit21
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0901332
– volume-title: Tri-n-butyl Phosphate
  year: 1991
  ident: ref19/cit19
– volume: 13
  start-page: 2692
  year: 2011
  ident: ref12/cit12
  publication-title: J. Environ. Monit.
  doi: 10.1039/c1em10538h
– volume: 14
  start-page: 513
  year: 2005
  ident: ref25/cit25
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X05060190
– volume: 339
  start-page: 19
  year: 2005
  ident: ref5/cit5
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.10.028
– volume: 37
  start-page: 454
  year: 2011
  ident: ref6/cit6
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2010.11.010
– volume: 395
  start-page: 2325
  year: 2009
  ident: ref11/cit11
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-009-3139-4
– volume: 38
  start-page: 1759
  year: 2004
  ident: ref29/cit29
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263893
– volume: 22
  start-page: 1983
  year: 2010
  ident: ref36/cit36
  publication-title: Prog. Chem.
– volume: 458
  start-page: 15
  year: 2013
  ident: ref39/cit39
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.04.003
– volume: 57
  start-page: 781
  year: 2004
  ident: ref34/cit34
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.08.051
– volume: 34
  start-page: 118
  year: 2001
  ident: ref31/cit31
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820117903
– volume: 395
  start-page: 1167
  year: 2009
  ident: ref15/cit15
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-009-3064-6
SSID ssj0002308
Score 2.5352812
Snippet In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Adult
air
Air Pollutants - analysis
Air Pollution, Indoor - analysis
Airborne particulates
Applied sciences
Atmospheric pollution
Biological and medical sciences
biphenyl
Chemical compounds
Chemical compounds (mineral, organic)
Chemical, physic and infectious diseases
correlation
Environmental Exposure - analysis
Exact sciences and technology
Flame retardants
Flame Retardants - analysis
Human exposure
Humans
Indoor air quality
Indoor pollution and occupational exposure
Medical sciences
Occupational medicine
Offices
Organophosphates - analysis
Particle Size
Particulate Matter - analysis
particulates
people
phosphates
Pollution
Public health. Hygiene-occupational medicine
respiratory system
risk
Risk Assessment
Work environment
Workplace
Title Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter
URI http://dx.doi.org/10.1021/es403186z
https://www.ncbi.nlm.nih.gov/pubmed/24308350
https://www.proquest.com/docview/1477297176
https://www.proquest.com/docview/1490741856
https://www.proquest.com/docview/1496886402
https://www.proquest.com/docview/2000198286
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1db9MwFL0a4wWE-BgMAqMyHw-8ZLSJYyeP1dZqQhpMjEl9q2znWquYkqhJJeiP4Ddzna91Yh2vyU3i2MfxuXZ8DsBHRC5jrlM_sYL7PFXaT4yNfG0od46lCq10u5FPv4qTC_5lFs124MOWFfxg9BlL7oAn1vfgfiBi6TKs8dF5_7klDh13NgVJKGadfNDmpW7oMeWNoedRoUqqBdvYV2znl_U4M30Cx91uneb3kp-Hq0ofmvW_4o13vcJTeNzyTDZugPEMdjDbg4cb6oN7sD-53uRGoW0vL5_Dn7MWT-x8sUa_tqi3C8OOnchu649VMpWl7GyJV7Ut2PI3m_wqcjfdyMa92GfJcsvq3Z55cZmXxSURWzYlDCL7jhVh0_2EwxYZ--aELOjKxZI1z3amYshOa_HPF3Axnfw4OvFb3wZfEZ-qfGmjxGiFesjDNFIGU5twRUciFaaBsiZMOBIR1HKoMUxH3KCzJQuJWiZCSgz3YTfLM3wFLBqi4tzqYYoBp1slWlsRSEzRxDYI0IMBNey87XflvF5SD0bzvsY9-NS1-dy0qufOfOPqttD3fWjRSH3cFjS4AZw-klJXAmeceHDQIWmjWNwlMZQ5Cw_e9aepI7vVGZVhvnIxbp6C6NPdMSKOBeX822OCmrY7dQAPXjZIvi4kDx3lHr7-X7W9gQfEDHk91yQPYLdarvAtsa9KD-re9xfU9i6V
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwELfGeACE-DMYFEYxCCReMtLEiZMHHqqtVcfWMdFN6luwk7NWMSVR3QrWD8EH4Kvw5Ti7adqhDZ4m8ZpcHOvsO__OPv-OkDcAjEdMZk6sQuawTEgnTlXgyBRj54gLX3FzG7l_GPZO2MdhMFwjPxd3YbATGlvS9hB_yS7Qeg-amfkXzqoEyn04_4bhmf6wt4tj-dbzup3jnZ5TVRBwBK7sE4erIE6lAOkyPwtECpmKmcAngfAzT6jUjxkgJJHcleBnLZaCKZDlI8iJQ87Bx3ZvkJsIejwT2LV3BrWXR-geLaojxH44XLAWrXbVrHipvrDi3S2FRuWredWMq2GtXd6698mvWjE2q-Xr9nQit9PZH5yR_6fmHpB7Faqm7bkZPCRrkG-QOytcixtks7O80oeilU_Tj8iPo8p66GA0A2dQgk1TpLuGUriqBqapyDN6NIYzWwRtfE4738vCbK7Sdk1tqmmhqL3bWpSnhS5PEcbTLloc0M8wQUs0KUd0lNNPhrYDvxyN6fzfpoQa0L6lOn1MTq5FU5tkPS9yeEpo4IJgTEk3A49hU7GUKvQ4ZJBGyvOgQZo4wEnlZXRiEwi8VlKPcIO8W0y1JK043k2pkbPLRF_XouWc2OQyoeaF-VpLYqAeRjyKG2RrMYFXusVMyMZbPGyQV_VrdFvmLErkUEyNjNmVQbD4d5kwikLmelfLeDZIMVwIDfJkbkDLTjLfBBjus3-p7SW51TvuHyQHe4f7z8ltxMTM7rLxLbI-GU_hBeLOiWxaB0DJl-u2m98yTZUz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-NISEQ4s9gUBjFIJB4yUgTJ04eeKjWVhtjo6JM6luxk7NWMSVR0wrWD8FH4Kvw1Ti7adahDZ4m8ZpcHOvsO__OPv8O4BUiFxFXqRPrkDs8lcqJEx04KqHYORLS18LcRj44DHeP-PthMFyDn8u7MNSJkloq7SG-seoi1RXDQOstltzMwXBeJVHu4-k3CtHKd3sdGs_Xntfrft7ZdaoqAo6k1X3qCB3EiZKoXO6ngUww1TGX9CSQfupJnfgxR4IlSrgK_bTFEzRFsnwCOnEoBPrU7jW4bo4HTXDX3hnUnp7ge7SskBD74XDJXLTaVbPqJeW5Ve92IUsaAL2onHE5tLVLXO8u_KqVYzNbvm7Ppmo7mf_BG_n_au8e3KnQNWsvzOE-rGG2AbdWOBc3YLN7drWPRCvfVj6AH_3KithgPEdnUKBNV2QdQy1cVQUrmcxS1p_giS2GNjll3e9FbjZZWbumOC1Zrpm945oXx3lZHBOcZz2yPGSfcEoWaVKP2DhjHw19B305nrDFv00pNWQHlvL0IRxdiaY2YT3LM3wMLHBRcq6Vm6LHqalYKR16AlNMIu152IAmDfKo8jblyCYSeK1RPcINeLOcbqOk4no3JUdOLhJ9WYsWC4KTi4Sa5-ZsLUkBexiJKG7A1nISr3SLm9BNtETYgBf1a3Jf5kxKZpjPjIzZnSHQ-HeZMIpC7nqXy3g2WDGcCA14tDCis05y3wQa7pN_qe053Oh3eqMPe4f7T-EmQWNuN9vEFqxPJzN8RvBzqprWBzD4ctVm8xshKZe2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Size-Specific+Distributions+and+Preliminary+Exposure+Assessments+of+Organophosphate+Flame+Retardants+in+Office+Air+Particulate+Matter&rft.jtitle=Environmental+science+%26+technology&rft.au=Yang%2C+Fangxing&rft.au=Ding%2C+Jinjian&rft.au=Huang%2C+Wei&rft.au=Xie%2C+Wei&rft.date=2014-01-07&rft.issn=0013-936X&rft.volume=48&rft.issue=1&rft.spage=63&rft.epage=63&rft_id=info:doi/10.1021%2Fes403186z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon