Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter
In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m3. Tri(chloropropyl) phospha...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 1; pp. 63 - 70 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
07.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m3. Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7–5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. |
---|---|
AbstractList | In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m3. Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7–5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00–147.77 ng/m³. Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7–5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m... Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 ...m. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles ( less than or equal to 1 ...m), while TnPP, TBEP, and EHDPP mainly on fine particles ( less than or equal to 2.5 ...m). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. (ProQuest: ... denotes formulae/symbols omitted.) In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m... Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 ...m. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 ...m), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 ...m). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Xie, Wei Yang, Fangxing Liu, Weiping Ding, Jinjian Huang, Wei |
AuthorAffiliation | Research Center for Air Pollution and Health Zhejiang University MOE Key Laboratory of Environmental Remediation and Ecosystem Health College of Environmental and Resource Sciences |
AuthorAffiliation_xml | – name: Research Center for Air Pollution and Health – name: College of Environmental and Resource Sciences – name: Zhejiang University – name: MOE Key Laboratory of Environmental Remediation and Ecosystem Health |
Author_xml | – sequence: 1 givenname: Fangxing surname: Yang fullname: Yang, Fangxing – sequence: 2 givenname: Jinjian surname: Ding fullname: Ding, Jinjian – sequence: 3 givenname: Wei surname: Huang fullname: Huang, Wei – sequence: 4 givenname: Wei surname: Xie fullname: Xie, Wei – sequence: 5 givenname: Weiping surname: Liu fullname: Liu, Weiping email: wliu@zju.edu.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28268789$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24308350$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0l9r1TAUAPAgE3c3ffALSEAEfahLmqZNH8fcVJjc4RR8K6fpqcvoTWtOCroP4Wc25d6pTEGfAuF3TnL-HLA9P3pk7LEUL6XI5RFSIZQ05c09tpI6F5k2Wu6xlRBSZbUqP-2zA6JrIUSuhHnA9vMinUqLFft-ASE6OyC_dDeYXU5oXe8sf-UoBtfO0Y2eOPiOXwQc3MZ5CN_46ddppDkgPyZCog36SHzs-Tp8Bj9OVyNNVxCRnw2wQf4eI4QOFuM8X_cpf4p0gW_fnoeFvoMYMTxk93sYCB_tzkP28ez0w8mb7Hz9-u3J8XkGWuiYVb2ubQvYikJ1Gix2fV1AutGguhx6q-oCC1m2lWhRdbKwaDEHVeqyLqsK1SF7vs07hfHLjBSbjSOLwwAex5maPPVK1iY35T-pLOrSmLJIvf0PKqpCGr1kfXqHXo9z8KnmpKoqrytZLerJTs3tBrtmCm6T-t_czi-BZzsAZGHoA3jr6JczeWkqUyd3tHU2jEQB-8a6CMtwYwA3NFI0yyY1PzcpRby4E3Gb9G929wuw9Fsdf7gfPHfWBg |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_aquatox_2015_01_014 crossref_primary_10_1016_j_chemosphere_2020_127633 crossref_primary_10_1016_j_envpol_2019_01_036 crossref_primary_10_1093_toxsci_kfx238 crossref_primary_10_1016_j_envint_2015_11_008 crossref_primary_10_1016_j_envint_2023_108254 crossref_primary_10_1016_j_jhazmat_2025_137491 crossref_primary_10_1155_2021_8878247 crossref_primary_10_1016_j_chemosphere_2017_02_070 crossref_primary_10_1016_j_buildenv_2018_03_028 crossref_primary_10_1016_j_envpol_2019_06_010 crossref_primary_10_1016_j_jiec_2019_09_004 crossref_primary_10_1016_j_chemosphere_2015_12_111 crossref_primary_10_1007_s11356_021_13370_2 crossref_primary_10_1016_j_scitotenv_2015_08_101 crossref_primary_10_1021_acsestwater_0c00217 crossref_primary_10_1039_C6AY02837C crossref_primary_10_3934_environsci_2018_4_294 crossref_primary_10_1007_s11356_018_2047_6 crossref_primary_10_1016_j_watres_2019_01_035 crossref_primary_10_1016_j_envpol_2021_117208 crossref_primary_10_1007_s11356_017_9745_3 crossref_primary_10_1016_j_envint_2018_11_006 crossref_primary_10_1007_s11356_022_20752_7 crossref_primary_10_1007_s11270_016_2913_0 crossref_primary_10_1002_jat_4158 crossref_primary_10_1016_j_envpol_2017_12_017 crossref_primary_10_1016_j_envpol_2020_115305 crossref_primary_10_1016_j_chemosphere_2024_141555 crossref_primary_10_1016_j_envint_2022_107557 crossref_primary_10_1016_j_envpol_2017_12_092 crossref_primary_10_1002_etc_3981 crossref_primary_10_1007_s10661_019_7239_0 crossref_primary_10_1021_jasms_2c00334 crossref_primary_10_1016_j_envint_2019_01_018 crossref_primary_10_1016_j_envpol_2023_122463 crossref_primary_10_1021_acsami_1c16850 crossref_primary_10_1016_j_scitotenv_2021_148837 crossref_primary_10_1007_s40572_019_00258_0 crossref_primary_10_1016_j_jhazmat_2018_12_041 crossref_primary_10_1021_acs_est_8b02492 crossref_primary_10_1016_j_scitotenv_2016_04_173 crossref_primary_10_1039_D3GC03428C crossref_primary_10_1016_j_scitotenv_2019_134810 crossref_primary_10_1021_acsanm_3c01139 crossref_primary_10_1016_j_scitotenv_2020_144571 crossref_primary_10_1021_acs_est_1c04817 crossref_primary_10_1016_j_talanta_2015_09_034 crossref_primary_10_1016_j_jhazmat_2015_09_014 crossref_primary_10_1016_j_ecoenv_2019_109386 crossref_primary_10_1016_j_envint_2016_10_021 crossref_primary_10_1016_j_jhazmat_2018_07_082 crossref_primary_10_1016_j_jhazmat_2020_123667 crossref_primary_10_1016_j_emcon_2019_05_003 crossref_primary_10_1021_acs_est_8b07053 crossref_primary_10_1016_j_ijheh_2020_113630 crossref_primary_10_1007_s44169_022_00021_x crossref_primary_10_1016_j_ecoenv_2020_110827 crossref_primary_10_1002_clen_201500807 crossref_primary_10_1002_etc_3996 crossref_primary_10_1007_s11356_018_3156_y crossref_primary_10_1016_j_envint_2021_106413 crossref_primary_10_1016_j_chemosphere_2017_09_112 crossref_primary_10_1016_j_jes_2015_01_022 crossref_primary_10_1016_j_reprotox_2020_04_001 crossref_primary_10_7717_peerj_7489 crossref_primary_10_1016_j_atmosenv_2016_06_019 crossref_primary_10_1016_j_scitotenv_2020_140048 crossref_primary_10_1016_j_envpol_2021_117262 crossref_primary_10_1016_j_scitotenv_2019_134502 crossref_primary_10_1093_annweh_wxz012 crossref_primary_10_1016_j_chemosphere_2023_139649 crossref_primary_10_1016_j_scitotenv_2019_133894 crossref_primary_10_1016_j_microc_2022_108327 crossref_primary_10_1016_j_envpol_2019_113882 crossref_primary_10_1016_j_scitotenv_2022_157724 crossref_primary_10_1016_j_envpol_2015_11_051 crossref_primary_10_1016_j_envres_2020_109493 crossref_primary_10_1016_j_scitotenv_2021_151206 crossref_primary_10_1016_j_envpol_2014_09_012 crossref_primary_10_1016_j_ecoenv_2024_116784 crossref_primary_10_1016_j_chemosphere_2016_03_003 crossref_primary_10_1016_j_apcatb_2019_118097 crossref_primary_10_12677_AAC_2019_92011 crossref_primary_10_1016_j_scitotenv_2021_148695 crossref_primary_10_1016_j_chemosphere_2019_03_108 crossref_primary_10_1016_j_scitotenv_2015_11_094 crossref_primary_10_1111_ina_12776 crossref_primary_10_1007_s00244_020_00747_6 crossref_primary_10_1016_j_scitotenv_2022_158021 crossref_primary_10_1016_j_envint_2020_105946 crossref_primary_10_1021_acs_est_0c02823 crossref_primary_10_1016_j_envpol_2024_125529 crossref_primary_10_1016_j_jenvman_2022_116601 crossref_primary_10_1016_j_wasman_2023_07_030 crossref_primary_10_1007_s11356_016_6902_z crossref_primary_10_1016_j_chemosphere_2018_11_150 crossref_primary_10_1021_acs_est_7b00347 crossref_primary_10_1016_j_envint_2018_10_004 crossref_primary_10_1016_j_envpol_2018_05_092 crossref_primary_10_1080_10643389_2020_1859307 crossref_primary_10_1021_acs_est_0c06095 crossref_primary_10_1016_j_envint_2019_105321 crossref_primary_10_1016_j_scitotenv_2024_172212 crossref_primary_10_3389_fenrg_2021_794438 crossref_primary_10_1038_s41598_019_47828_8 crossref_primary_10_1016_j_fct_2016_12_029 crossref_primary_10_1016_j_scitotenv_2020_139071 crossref_primary_10_1021_es501224b crossref_primary_10_1111_ina_12549 crossref_primary_10_3390_toxics12030195 crossref_primary_10_1016_j_scitotenv_2016_06_093 crossref_primary_10_1016_j_aquatox_2017_09_003 crossref_primary_10_1016_j_ntt_2015_09_002 crossref_primary_10_1002_jssc_201500213 crossref_primary_10_3390_ijerph14050507 crossref_primary_10_1016_j_ecoenv_2020_110212 crossref_primary_10_1016_j_scitotenv_2019_02_076 crossref_primary_10_1021_acs_est_5b01930 crossref_primary_10_1016_j_chemosphere_2017_11_080 crossref_primary_10_1007_s00244_019_00602_3 crossref_primary_10_1016_j_jhazmat_2018_10_082 crossref_primary_10_1039_C8EM00014J crossref_primary_10_1016_j_scitotenv_2020_138307 crossref_primary_10_1016_j_jhazmat_2024_135717 crossref_primary_10_1016_j_envint_2020_106261 crossref_primary_10_1016_j_chemosphere_2024_141874 crossref_primary_10_1016_j_ecoenv_2023_115696 crossref_primary_10_1016_j_envint_2019_105178 crossref_primary_10_1111_ina_12397 crossref_primary_10_1177_0960327118783529 crossref_primary_10_1016_j_envint_2019_105056 crossref_primary_10_3390_ijms20122874 crossref_primary_10_1016_j_envpol_2017_09_091 crossref_primary_10_1016_j_fct_2016_12_011 crossref_primary_10_1016_j_ijheh_2022_114089 crossref_primary_10_1021_acs_est_7b06395 crossref_primary_10_1039_C5RA03504J crossref_primary_10_1016_j_ecoenv_2020_111399 crossref_primary_10_1016_j_envint_2019_105054 crossref_primary_10_1016_j_atmosenv_2017_11_007 crossref_primary_10_1016_j_chroma_2014_09_028 crossref_primary_10_1007_s12273_022_0962_4 crossref_primary_10_1155_2016_9416054 crossref_primary_10_1186_s12940_023_01017_3 crossref_primary_10_1007_s11356_017_9336_3 crossref_primary_10_1016_j_buildenv_2016_06_022 crossref_primary_10_1016_j_envpol_2017_09_092 crossref_primary_10_1016_j_envpol_2025_125886 crossref_primary_10_1016_j_envpol_2024_124593 crossref_primary_10_1016_j_ecoenv_2019_03_029 crossref_primary_10_1016_j_envint_2018_01_020 crossref_primary_10_1016_j_envint_2019_105387 crossref_primary_10_1016_j_envint_2021_106691 crossref_primary_10_1002_jat_4066 crossref_primary_10_1016_j_ecoenv_2019_109502 crossref_primary_10_1016_j_envint_2023_108313 crossref_primary_10_1007_s00244_023_01023_z crossref_primary_10_1016_j_chemosphere_2017_05_108 crossref_primary_10_1016_j_chemosphere_2017_12_132 crossref_primary_10_1021_acs_est_0c02237 crossref_primary_10_1016_j_aquatox_2014_11_001 crossref_primary_10_1016_j_envpol_2020_114311 crossref_primary_10_1021_envhealth_4c00229 crossref_primary_10_1016_j_chemosphere_2020_127807 crossref_primary_10_1016_j_chemosphere_2015_11_084 crossref_primary_10_1016_j_scitotenv_2024_176507 crossref_primary_10_1016_j_envpol_2017_06_089 crossref_primary_10_1016_j_scitotenv_2019_03_335 crossref_primary_10_1021_acs_est_6b00246 crossref_primary_10_3390_ijerph18042125 crossref_primary_10_1016_j_emcon_2020_08_004 crossref_primary_10_1016_j_jhazmat_2019_121811 crossref_primary_10_1016_j_envpol_2017_09_036 crossref_primary_10_1016_j_envpol_2015_11_008 crossref_primary_10_1016_j_neuro_2016_10_018 crossref_primary_10_1002_jat_4056 crossref_primary_10_1016_j_scitotenv_2016_02_171 crossref_primary_10_1016_j_chemosphere_2019_124971 crossref_primary_10_1016_j_scitotenv_2022_160658 crossref_primary_10_1016_j_chroma_2016_04_021 crossref_primary_10_1021_acs_est_8b03043 crossref_primary_10_1007_s11356_019_07204_5 crossref_primary_10_1016_j_buildenv_2022_109156 crossref_primary_10_1016_j_chemosphere_2021_133414 crossref_primary_10_1021_acs_est_8b03965 crossref_primary_10_1080_10643389_2022_2087428 crossref_primary_10_1210_endocr_bqaa168 |
Cites_doi | 10.1080/10473289.2000.10464154 10.1016/j.scitotenv.2007.08.005 10.1111/j.1600-0668.2006.00442.x 10.1016/j.trac.2008.07.002 10.1016/j.envpol.2008.12.010 10.1016/j.chemosphere.2012.03.100 10.1021/es900033u 10.1021/es802593t 10.1016/j.atmosenv.2008.09.048 10.1016/j.envpol.2010.12.007 10.1016/j.chemosphere.2012.03.067 10.1016/j.scitotenv.2011.01.032 10.1039/b506631j 10.1039/b921910b 10.1016/j.scitotenv.2012.05.059 10.1016/S0045-6535(03)00666-0 10.1021/es303471d 10.1016/j.atmosenv.2010.01.010 10.1016/j.envpol.2011.07.020 10.1007/s10661-009-0952-3 10.1016/j.scitotenv.2004.03.015 10.1016/j.trac.2012.12.004 10.1021/es00053a006 10.1021/es702549g 10.1021/es001477d 10.1016/j.atmosenv.2006.10.045 10.1111/j.1600-0668.2010.00684.x 10.1289/ehp.0901332 10.1039/c1em10538h 10.1177/1420326X05060190 10.1016/j.scitotenv.2004.10.028 10.1016/j.envint.2010.11.010 10.1007/s00216-009-3139-4 10.1021/es0263893 10.1016/j.scitotenv.2013.04.003 10.1016/j.chemosphere.2004.08.051 10.1080/02786820117903 10.1007/s00216-009-3064-6 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society 2015 INIST-CNRS Copyright American Chemical Society Jan 7, 2014 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Jan 7, 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7U1 7S9 L.6 |
DOI | 10.1021/es403186z |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Risk Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Risk Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Risk Abstracts Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 70 |
ExternalDocumentID | 3180996901 24308350 28268789 10_1021_es403186z a627815324 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADMHC ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ AGQPQ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7U1 7S9 L.6 |
ID | FETCH-LOGICAL-a505t-7f59cbaeb043d5acedf94acba5a3d2afc394e416b70be3d14cece2a36569677e3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 09:47:42 EDT 2025 Fri Jul 11 09:04:38 EDT 2025 Fri Jul 11 00:31:46 EDT 2025 Mon Jun 30 05:02:10 EDT 2025 Mon Jul 21 06:05:48 EDT 2025 Wed Apr 02 07:08:16 EDT 2025 Thu Apr 24 22:57:43 EDT 2025 Tue Jul 01 04:28:42 EDT 2025 Thu Aug 27 13:42:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Office building Work place Flame retardant Ultrafine particle Occupational exposure Phosphorus Organic compounds Inhalation Coarse particle Particle size distribution Health and environment Fine particle Aerosols Organic phosphate Indoor pollution Organic compounds |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a505t-7f59cbaeb043d5acedf94acba5a3d2afc394e416b70be3d14cece2a36569677e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24308350 |
PQID | 1477297176 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000198286 proquest_miscellaneous_1496886402 proquest_miscellaneous_1490741856 proquest_journals_1477297176 pubmed_primary_24308350 pascalfrancis_primary_28268789 crossref_citationtrail_10_1021_es403186z crossref_primary_10_1021_es403186z acs_journals_10_1021_es403186z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-07 |
PublicationDateYYYYMMDD | 2014-01-07 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Zhao H. (ref25/cit25) 2005; 14 Ni H.-G. (ref39/cit39) 2013; 458 Chung H. W. (ref11/cit11) 2009; 395 Mäkinen M. S. E. (ref8/cit8) 2009; 43 ref2/cit2 Ali N. (ref47/cit47) 2012; 88 Meeker J. D. (ref21/cit21) 2010; 118 Sundkvist A. M. (ref13/cit13) 2010; 12 Ni H. (ref43/cit43) 2011; 159 Reemtsma T. (ref16/cit16) 2011; 409 Saito I. (ref7/cit7) 2007; 17 Staaf T. (ref33/cit33) 2005; 7 Van den Edde N. (ref6/cit6) 2011; 37 Saito I. (ref35/cit35) 2001; 16 Fries E. (ref12/cit12) 2011; 13 ref49/cit49 Zhang K. (ref24/cit24) 2012; 431 Stapleton H. M. (ref18/cit18) 2012; 46 (ref20/cit20) 1998 ref38/cit38 Marklund A. (ref4/cit4) 2003; 53 Hartmann P. C. (ref34/cit34) 2004; 57 Reemtsma T. (ref50/cit50) 2008; 27 Wensing M. (ref5/cit5) 2005; 339 Wang X. (ref36/cit36) 2010; 22 Hien T. T. (ref41/cit41) 2007; 41 Long C. M. (ref28/cit28) 2000; 50 Brandsma S. H. (ref3/cit3) 2013; 43 Ferro A. R. (ref29/cit29) 2004; 38 Ou Y. (ref37/cit37) 2011; 30 LeBel G. L. (ref45/cit45) 1981; 64 Gadkari N. M. (ref26/cit26) 2010; 165 Van der Veen I. (ref17/cit17) 2012; 88 Mandalakis M. (ref40/cit40) 2009; 157 Martínez-Carballo E. (ref9/cit9) 2007; 388 Bacaloni A. (ref10/cit10) 2008; 42 Bergh C. (ref32/cit32) 2011; 21 Venkataraman C. (ref44/cit44) 1994; 28 Vette A. F. (ref31/cit31) 2001; 34 Kawanaka Y. (ref48/cit48) 2009; 43 Schindler B. K. (ref15/cit15) 2009; 395 ref22/cit22 Kim J. W. (ref14/cit14) 2011; 159 (ref23/cit23) 1994; 24 Long C. M. (ref30/cit30) 2001; 35 (ref19/cit19) 1991 Chrysikou L. P. (ref42/cit42) 2009; 43 ref1/cit1 Horemans B. (ref27/cit27) 2010; 44 Stackelberg P. E. (ref46/cit46) 2004; 329 |
References_xml | – volume: 50 start-page: 1236 year: 2000 ident: ref28/cit28 publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10473289.2000.10464154 – volume: 388 start-page: 290 year: 2007 ident: ref9/cit9 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.08.005 – volume: 17 start-page: 28 year: 2007 ident: ref7/cit7 publication-title: Indoor Air doi: 10.1111/j.1600-0668.2006.00442.x – volume: 27 start-page: 727 year: 2008 ident: ref50/cit50 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2008.07.002 – volume: 157 start-page: 1227 year: 2009 ident: ref40/cit40 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.12.010 – volume: 88 start-page: 1276 year: 2012 ident: ref47/cit47 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.03.100 – volume: 16 start-page: 209 year: 2001 ident: ref35/cit35 publication-title: J. Aerosol Res. Japan – volume: 43 start-page: 6851 year: 2009 ident: ref48/cit48 publication-title: Environ. Sci. Technol. doi: 10.1021/es900033u – volume: 43 start-page: 941 year: 2009 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es802593t – volume: 43 start-page: 290 year: 2009 ident: ref42/cit42 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.09.048 – ident: ref22/cit22 – volume: 159 start-page: 1957 year: 2011 ident: ref43/cit43 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.12.007 – volume: 88 start-page: 1119 year: 2012 ident: ref17/cit17 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.03.067 – volume: 409 start-page: 1990 year: 2011 ident: ref16/cit16 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.01.032 – volume: 7 start-page: 883 year: 2005 ident: ref33/cit33 publication-title: J. Environ. Monit. doi: 10.1039/b506631j – volume: 12 start-page: 943 year: 2010 ident: ref13/cit13 publication-title: J. Environ. Monit. doi: 10.1039/b921910b – volume-title: Flame Retardants year: 1998 ident: ref20/cit20 – volume: 24 volume-title: Human Respiratory Tract Model for Radiological Protection Annals of the ICRP year: 1994 ident: ref23/cit23 – volume: 431 start-page: 245 year: 2012 ident: ref24/cit24 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.05.059 – volume: 53 start-page: 1137 year: 2003 ident: ref4/cit4 publication-title: Chemoshpere doi: 10.1016/S0045-6535(03)00666-0 – ident: ref49/cit49 – volume: 46 start-page: 13432 year: 2012 ident: ref18/cit18 publication-title: Environ. Sci. Technol. doi: 10.1021/es303471d – volume: 44 start-page: 1497 year: 2010 ident: ref27/cit27 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.01.010 – ident: ref38/cit38 – volume: 159 start-page: 3653 year: 2011 ident: ref14/cit14 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.020 – volume: 165 start-page: 365 year: 2010 ident: ref26/cit26 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-009-0952-3 – volume: 30 start-page: 210 year: 2011 ident: ref37/cit37 publication-title: Chem. Ind. Eng. Prog. – volume: 329 start-page: 99 year: 2004 ident: ref46/cit46 publication-title: Sci, Total Environ doi: 10.1016/j.scitotenv.2004.03.015 – ident: ref2/cit2 – volume: 43 start-page: 217 year: 2013 ident: ref3/cit3 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2012.12.004 – volume: 28 start-page: 563 year: 1994 ident: ref44/cit44 publication-title: Environ. Sci. Technol. doi: 10.1021/es00053a006 – volume: 42 start-page: 1898 year: 2008 ident: ref10/cit10 publication-title: Sci. Total Environ. doi: 10.1021/es702549g – volume: 35 start-page: 2089 year: 2001 ident: ref30/cit30 publication-title: Environ. Sci. Technol. doi: 10.1021/es001477d – volume: 41 start-page: 1575 year: 2007 ident: ref41/cit41 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.10.045 – volume: 21 start-page: 67 year: 2011 ident: ref32/cit32 publication-title: Indoor Air doi: 10.1111/j.1600-0668.2010.00684.x – volume: 64 start-page: 991 year: 1981 ident: ref45/cit45 publication-title: J. Assoc. Off. Anal. Chem. – ident: ref1/cit1 – volume: 118 start-page: 318 year: 2010 ident: ref21/cit21 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0901332 – volume-title: Tri-n-butyl Phosphate year: 1991 ident: ref19/cit19 – volume: 13 start-page: 2692 year: 2011 ident: ref12/cit12 publication-title: J. Environ. Monit. doi: 10.1039/c1em10538h – volume: 14 start-page: 513 year: 2005 ident: ref25/cit25 publication-title: Indoor Built Environ. doi: 10.1177/1420326X05060190 – volume: 339 start-page: 19 year: 2005 ident: ref5/cit5 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.10.028 – volume: 37 start-page: 454 year: 2011 ident: ref6/cit6 publication-title: Environ. Int. doi: 10.1016/j.envint.2010.11.010 – volume: 395 start-page: 2325 year: 2009 ident: ref11/cit11 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-009-3139-4 – volume: 38 start-page: 1759 year: 2004 ident: ref29/cit29 publication-title: Environ. Sci. Technol. doi: 10.1021/es0263893 – volume: 22 start-page: 1983 year: 2010 ident: ref36/cit36 publication-title: Prog. Chem. – volume: 458 start-page: 15 year: 2013 ident: ref39/cit39 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.04.003 – volume: 57 start-page: 781 year: 2004 ident: ref34/cit34 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.08.051 – volume: 34 start-page: 118 year: 2001 ident: ref31/cit31 publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820117903 – volume: 395 start-page: 1167 year: 2009 ident: ref15/cit15 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-009-3064-6 |
SSID | ssj0002308 |
Score | 2.5352812 |
Snippet | In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | Adult air Air Pollutants - analysis Air Pollution, Indoor - analysis Airborne particulates Applied sciences Atmospheric pollution Biological and medical sciences biphenyl Chemical compounds Chemical compounds (mineral, organic) Chemical, physic and infectious diseases correlation Environmental Exposure - analysis Exact sciences and technology Flame retardants Flame Retardants - analysis Human exposure Humans Indoor air quality Indoor pollution and occupational exposure Medical sciences Occupational medicine Offices Organophosphates - analysis Particle Size Particulate Matter - analysis particulates people phosphates Pollution Public health. Hygiene-occupational medicine respiratory system risk Risk Assessment Work environment Workplace |
Title | Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter |
URI | http://dx.doi.org/10.1021/es403186z https://www.ncbi.nlm.nih.gov/pubmed/24308350 https://www.proquest.com/docview/1477297176 https://www.proquest.com/docview/1490741856 https://www.proquest.com/docview/1496886402 https://www.proquest.com/docview/2000198286 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1db9MwFL0a4wWE-BgMAqMyHw-8ZLSJYyeP1dZqQhpMjEl9q2znWquYkqhJJeiP4Ddzna91Yh2vyU3i2MfxuXZ8DsBHRC5jrlM_sYL7PFXaT4yNfG0od46lCq10u5FPv4qTC_5lFs124MOWFfxg9BlL7oAn1vfgfiBi6TKs8dF5_7klDh13NgVJKGadfNDmpW7oMeWNoedRoUqqBdvYV2znl_U4M30Cx91uneb3kp-Hq0ofmvW_4o13vcJTeNzyTDZugPEMdjDbg4cb6oN7sD-53uRGoW0vL5_Dn7MWT-x8sUa_tqi3C8OOnchu649VMpWl7GyJV7Ut2PI3m_wqcjfdyMa92GfJcsvq3Z55cZmXxSURWzYlDCL7jhVh0_2EwxYZ--aELOjKxZI1z3amYshOa_HPF3Axnfw4OvFb3wZfEZ-qfGmjxGiFesjDNFIGU5twRUciFaaBsiZMOBIR1HKoMUxH3KCzJQuJWiZCSgz3YTfLM3wFLBqi4tzqYYoBp1slWlsRSEzRxDYI0IMBNey87XflvF5SD0bzvsY9-NS1-dy0qufOfOPqttD3fWjRSH3cFjS4AZw-klJXAmeceHDQIWmjWNwlMZQ5Cw_e9aepI7vVGZVhvnIxbp6C6NPdMSKOBeX822OCmrY7dQAPXjZIvi4kDx3lHr7-X7W9gQfEDHk91yQPYLdarvAtsa9KD-re9xfU9i6V |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwELfGeACE-DMYFEYxCCReMtLEiZMHHqqtVcfWMdFN6luwk7NWMSVR3QrWD8EH4Kvw5Ti7adqhDZ4m8ZpcHOvsO__OPv-OkDcAjEdMZk6sQuawTEgnTlXgyBRj54gLX3FzG7l_GPZO2MdhMFwjPxd3YbATGlvS9hB_yS7Qeg-amfkXzqoEyn04_4bhmf6wt4tj-dbzup3jnZ5TVRBwBK7sE4erIE6lAOkyPwtECpmKmcAngfAzT6jUjxkgJJHcleBnLZaCKZDlI8iJQ87Bx3ZvkJsIejwT2LV3BrWXR-geLaojxH44XLAWrXbVrHipvrDi3S2FRuWredWMq2GtXd6698mvWjE2q-Xr9nQit9PZH5yR_6fmHpB7Faqm7bkZPCRrkG-QOytcixtks7O80oeilU_Tj8iPo8p66GA0A2dQgk1TpLuGUriqBqapyDN6NIYzWwRtfE4738vCbK7Sdk1tqmmhqL3bWpSnhS5PEcbTLloc0M8wQUs0KUd0lNNPhrYDvxyN6fzfpoQa0L6lOn1MTq5FU5tkPS9yeEpo4IJgTEk3A49hU7GUKvQ4ZJBGyvOgQZo4wEnlZXRiEwi8VlKPcIO8W0y1JK043k2pkbPLRF_XouWc2OQyoeaF-VpLYqAeRjyKG2RrMYFXusVMyMZbPGyQV_VrdFvmLErkUEyNjNmVQbD4d5kwikLmelfLeDZIMVwIDfJkbkDLTjLfBBjus3-p7SW51TvuHyQHe4f7z8ltxMTM7rLxLbI-GU_hBeLOiWxaB0DJl-u2m98yTZUz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-NISEQ4s9gUBjFIJB4yUgTJ04eeKjWVhtjo6JM6luxk7NWMSVR0wrWD8FH4Kvw1Ti7adahDZ4m8ZpcHOvsO__OPv8O4BUiFxFXqRPrkDs8lcqJEx04KqHYORLS18LcRj44DHeP-PthMFyDn8u7MNSJkloq7SG-seoi1RXDQOstltzMwXBeJVHu4-k3CtHKd3sdGs_Xntfrft7ZdaoqAo6k1X3qCB3EiZKoXO6ngUww1TGX9CSQfupJnfgxR4IlSrgK_bTFEzRFsnwCOnEoBPrU7jW4bo4HTXDX3hnUnp7ge7SskBD74XDJXLTaVbPqJeW5Ve92IUsaAL2onHE5tLVLXO8u_KqVYzNbvm7Ppmo7mf_BG_n_au8e3KnQNWsvzOE-rGG2AbdWOBc3YLN7drWPRCvfVj6AH_3KithgPEdnUKBNV2QdQy1cVQUrmcxS1p_giS2GNjll3e9FbjZZWbumOC1Zrpm945oXx3lZHBOcZz2yPGSfcEoWaVKP2DhjHw19B305nrDFv00pNWQHlvL0IRxdiaY2YT3LM3wMLHBRcq6Vm6LHqalYKR16AlNMIu152IAmDfKo8jblyCYSeK1RPcINeLOcbqOk4no3JUdOLhJ9WYsWC4KTi4Sa5-ZsLUkBexiJKG7A1nISr3SLm9BNtETYgBf1a3Jf5kxKZpjPjIzZnSHQ-HeZMIpC7nqXy3g2WDGcCA14tDCis05y3wQa7pN_qe053Oh3eqMPe4f7T-EmQWNuN9vEFqxPJzN8RvBzqprWBzD4ctVm8xshKZe2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Size-Specific+Distributions+and+Preliminary+Exposure+Assessments+of+Organophosphate+Flame+Retardants+in+Office+Air+Particulate+Matter&rft.jtitle=Environmental+science+%26+technology&rft.au=Yang%2C+Fangxing&rft.au=Ding%2C+Jinjian&rft.au=Huang%2C+Wei&rft.au=Xie%2C+Wei&rft.date=2014-01-07&rft.issn=0013-936X&rft.volume=48&rft.issue=1&rft.spage=63&rft.epage=63&rft_id=info:doi/10.1021%2Fes403186z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |