Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths
We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s c...
Saved in:
Published in | The journal of physical chemistry. B Vol. 122; no. 19; pp. 5075 - 5086 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-6106 1520-5207 1520-5207 |
DOI | 10.1021/acs.jpcb.7b12532 |
Cover
Loading…
Abstract | We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution. |
---|---|
AbstractList | We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution. We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution. We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution. |
Author | Andersen, Amity Zhang, Yu Southworth, Stephen H Marcus, Matthew A Schoenlein, Robert W Lee, Jae-Hyuk Mukamel, Shaul March, Anne Marie Doumy, Gilles Khalil, Munira Ross, Matthew Fox, Zachary W Hong, Kiryong Cordones, Amy Govind, Niranjan |
AuthorAffiliation | Department of Chemistry Advanced Light Source Department of Chemistry, Physics and Astronomy Chemical Sciences and Engineering Division University of Washington Environmental Molecular Sciences Laboratory University of California Ultrafast X-ray Science Laboratory, Chemical Sciences Division |
AuthorAffiliation_xml | – name: Department of Chemistry, Physics and Astronomy – name: University of California – name: Department of Chemistry – name: Ultrafast X-ray Science Laboratory, Chemical Sciences Division – name: Advanced Light Source – name: University of Washington – name: Environmental Molecular Sciences Laboratory – name: Chemical Sciences and Engineering Division |
Author_xml | – sequence: 1 givenname: Matthew orcidid: 0000-0002-0434-544X surname: Ross fullname: Ross, Matthew organization: University of Washington – sequence: 2 givenname: Amity surname: Andersen fullname: Andersen, Amity organization: Environmental Molecular Sciences Laboratory – sequence: 3 givenname: Zachary W surname: Fox fullname: Fox, Zachary W organization: University of Washington – sequence: 4 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: University of California – sequence: 5 givenname: Kiryong surname: Hong fullname: Hong, Kiryong – sequence: 6 givenname: Jae-Hyuk surname: Lee fullname: Lee, Jae-Hyuk – sequence: 7 givenname: Amy surname: Cordones fullname: Cordones, Amy – sequence: 8 givenname: Anne Marie surname: March fullname: March, Anne Marie organization: Chemical Sciences and Engineering Division – sequence: 9 givenname: Gilles surname: Doumy fullname: Doumy, Gilles organization: Chemical Sciences and Engineering Division – sequence: 10 givenname: Stephen H surname: Southworth fullname: Southworth, Stephen H organization: Chemical Sciences and Engineering Division – sequence: 11 givenname: Matthew A surname: Marcus fullname: Marcus, Matthew A – sequence: 12 givenname: Robert W surname: Schoenlein fullname: Schoenlein, Robert W – sequence: 13 givenname: Shaul orcidid: 0000-0002-6015-3135 surname: Mukamel fullname: Mukamel, Shaul organization: University of California – sequence: 14 givenname: Niranjan orcidid: 0000-0003-3625-366X surname: Govind fullname: Govind, Niranjan email: niri.govind@pnnl.gov organization: Environmental Molecular Sciences Laboratory – sequence: 15 givenname: Munira orcidid: 0000-0002-6508-4124 surname: Khalil fullname: Khalil, Munira email: mkhalil@uw.edu organization: University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29613798$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1461346$$D View this record in Osti.gov |
BookMark | eNqFkbtuFDEUhi0URC7QUyGLiiK7-DLj2aFDq4REikQREHTWGc8xO9GMPdieaLfjBSjyijwJ3gsUSEBh2Trn-y2d852SI-cdEvKcszlngr8GE-d3o2nmVcNFKcUjcsJLwWb5VEeHt-JMHZPTGO8YE6VYqCfkWNSKy6penJDvSz-MAVfoYneP9GI9YugGdAl6Cq6l2_aUIHXe5crtiCYFH40fO0Nv09RuqLf0CtdgNuC8xRAg4S7V4xoj7Rz9lCvhDb0MfqDXzgYI2NLk6ecf3x4CbHL_Hnt0X9IqPiWPLfQRnx3uM_Lx8uLD8mp28_7d9fLtzQxKVqSZRSYaJWpbCLRqAcAlw6ZUtuEghLWSlaKp20aCLFBIxlqLIFvWMl6ICqU8Iy_3__qYOh1Nl9CsjHcuj6d5kZdTqAy92kNj8F8njEkPXTTY9-DQT1ELztWiZoUS_0ezrEoKtqgz-uKATs2ArR7zuiFs9C8lGWB7wORFx4D2N8KZ3lrX2breWtcH6zmi_ojkiXbOUoCu_1fwfB_cdfwUsuT4d_wn8ujFUw |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_8b01429 crossref_primary_10_1063_5_0047381 crossref_primary_10_1038_s41598_021_02355_3 crossref_primary_10_1107_S1600577519012268 crossref_primary_10_1021_acsaem_8b01983 crossref_primary_10_1021_acs_jpclett_8b02752 crossref_primary_10_1016_j_cej_2023_143901 crossref_primary_10_1038_s41467_023_39165_2 crossref_primary_10_1016_j_ccr_2020_213517 crossref_primary_10_1021_acs_jctc_3c01084 crossref_primary_10_1021_acsami_2c18006 crossref_primary_10_1038_s41557_020_00629_3 crossref_primary_10_1063_1_5139441 crossref_primary_10_1016_j_jelechem_2022_116485 crossref_primary_10_1063_1_5117318 crossref_primary_10_1002_xrs_3254 crossref_primary_10_1089_ast_2020_2422 crossref_primary_10_1002_anie_202401888 crossref_primary_10_1021_acs_jpca_0c04195 crossref_primary_10_1021_acs_jpclett_2c01532 crossref_primary_10_1038_s41598_021_91419_5 crossref_primary_10_1021_acs_chemmater_8b03944 crossref_primary_10_1039_D2CP04084K crossref_primary_10_1002_ange_202401888 crossref_primary_10_1021_acs_jctc_3c00855 crossref_primary_10_1021_acs_jpclett_3c00611 crossref_primary_10_1002_advs_202402732 crossref_primary_10_1146_annurev_physchem_082820_020236 crossref_primary_10_3390_ijms222413463 crossref_primary_10_1039_D1SC01774H crossref_primary_10_1021_acsomega_9b03887 crossref_primary_10_1039_D2CP01132H crossref_primary_10_3390_molecules29102323 crossref_primary_10_1021_acs_jpcc_1c08461 crossref_primary_10_1038_s41467_023_37922_x crossref_primary_10_1038_s41598_023_43924_y crossref_primary_10_1149_2_0331910jes crossref_primary_10_3390_molecules27134111 crossref_primary_10_1021_acs_jpcb_0c00638 crossref_primary_10_1021_acs_jpclett_1c03613 crossref_primary_10_1039_D0CP01003K crossref_primary_10_1021_acsami_9b10312 crossref_primary_10_1039_D4DT02916J crossref_primary_10_3390_molecules29235611 crossref_primary_10_1021_acs_jpcc_0c10492 crossref_primary_10_1021_acs_jctc_1c00144 |
Cites_doi | 10.1016/0263-7855(96)00018-5 10.1142/9789812830586_0005 10.1021/ja045561v 10.1021/ja01018a013 10.1107/s0909049505012719 10.1063/1.478522 10.1063/1.1731909 10.1021/ct3005613 10.1021/ja101281e 10.1021/ja504182n 10.1021/acs.jpcc.5b04609 10.1364/ol.41.002895 10.1016/j.ica.2007.05.046 10.1107/s0909049504005837 10.1016/s0009-2614(03)00543-8 10.1021/jp5055588 10.1021/acs.inorgchem.5b01701 10.1007/s00214-014-1463-z 10.1063/1.4932983 10.1107/s0909049597019298 10.1063/1.438955 10.1002/jcc.20035 10.1021/jacs.7b02769 10.1063/1.452288 10.1021/jp8001614 10.1080/00268979300103121 10.1021/j100308a038 10.1063/1.4766356 10.1021/ja964352a 10.1021/jp203997p 10.1039/c7cp03337k 10.1126/sciadv.aao6283 10.1021/jp803174m 10.1039/c4cp00904e 10.1016/j.ccr.2004.02.014 10.1007/978-3-662-02853-7 10.1039/c4cp00889h 10.1021/jp511391b 10.1016/s0009-2614(00)01046-0 10.1021/acs.jctc.5b00763 10.1016/j.cpc.2010.04.018 10.1021/jp410614f 10.1063/1.4952871 10.1016/0021-9991(77)90098-5 10.1021/acs.jpcb.6b04751 10.1021/jp411782y 10.1063/1.1852455 10.1063/1.438980 10.1063/1.4871751 10.1063/1.4975608 10.1021/jp511838q 10.1021/ja207306t 10.1021/jp065160x 10.1007/s00214-012-1124-z 10.1016/s0009-2614(99)00137-2 10.1007/978-3-642-50031-2 10.1021/ct200485x 10.1103/physrevb.58.7565 10.1021/ja501361v 10.1021/ja00902a014 10.1021/jp0363287 10.1021/jp401020j 10.1021/ja00793a006 10.1021/jp511602n 10.1016/j.elspec.2004.02.165 10.1063/1.459993 10.1103/physrevb.26.6502 10.1039/c7cp01288h 10.1063/1.1767072 10.1021/ic50008a027 10.1021/j100124a012 |
ContentType | Journal Article |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OIOZB OTOTI |
DOI | 10.1021/acs.jpcb.7b12532 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 5086 |
ExternalDocumentID | 1461346 29613798 10_1021_acs_jpcb_7b12532 i70335421 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 7S9 L.6 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a504t-fe02b629f42ef68aa130eb56fb1a22ff3052b9db3a34e2300dfea3d0d01427e33 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Wed Nov 29 06:10:36 EST 2023 Fri Jul 11 09:44:46 EDT 2025 Thu Jul 10 18:55:05 EDT 2025 Thu Apr 03 07:05:26 EDT 2025 Thu Apr 24 23:06:57 EDT 2025 Tue Jul 01 01:00:21 EDT 2025 Thu Aug 27 13:42:32 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a504t-fe02b629f42ef68aa130eb56fb1a22ff3052b9db3a34e2300dfea3d0d01427e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) AC02-06CH11357; AC02-05CH11231 |
ORCID | 0000-0002-6508-4124 0000-0002-6015-3135 0000-0003-3625-366X 0000-0002-0434-544X 0000000260153135 0000000265084124 000000020434544X 000000033625366X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1461346 |
PMID | 29613798 |
PQID | 2021732089 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1461346 proquest_miscellaneous_2116890462 proquest_miscellaneous_2021732089 pubmed_primary_29613798 crossref_primary_10_1021_acs_jpcb_7b12532 crossref_citationtrail_10_1021_acs_jpcb_7b12532 acs_journals_10_1021_acs_jpcb_7b12532 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-17 |
PublicationDateYYYYMMDD | 2018-05-17 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 Koningsberger D. C. (ref63/cit63) 1988; 92 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 Stöhr J. (ref64/cit64) 1992; 25 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1016/0263-7855(96)00018-5 – ident: ref39/cit39 doi: 10.1142/9789812830586_0005 – ident: ref9/cit9 doi: 10.1021/ja045561v – ident: ref61/cit61 doi: 10.1021/ja01018a013 – ident: ref25/cit25 doi: 10.1107/s0909049505012719 – ident: ref38/cit38 doi: 10.1063/1.478522 – ident: ref60/cit60 doi: 10.1063/1.1731909 – ident: ref45/cit45 doi: 10.1021/ct3005613 – ident: ref70/cit70 doi: 10.1021/ja101281e – ident: ref69/cit69 doi: 10.1021/ja504182n – ident: ref4/cit4 doi: 10.1021/acs.jpcc.5b04609 – ident: ref15/cit15 doi: 10.1364/ol.41.002895 – ident: ref43/cit43 doi: 10.1016/j.ica.2007.05.046 – ident: ref24/cit24 doi: 10.1107/s0909049504005837 – ident: ref41/cit41 doi: 10.1016/s0009-2614(03)00543-8 – volume: 92 volume-title: X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES year: 1988 ident: ref63/cit63 – ident: ref7/cit7 doi: 10.1021/jp5055588 – ident: ref14/cit14 doi: 10.1021/acs.inorgchem.5b01701 – ident: ref52/cit52 doi: 10.1007/s00214-014-1463-z – ident: ref16/cit16 doi: 10.1063/1.4932983 – ident: ref28/cit28 doi: 10.1107/s0909049597019298 – ident: ref32/cit32 doi: 10.1063/1.438955 – ident: ref35/cit35 doi: 10.1002/jcc.20035 – ident: ref20/cit20 doi: 10.1021/jacs.7b02769 – ident: ref34/cit34 doi: 10.1063/1.452288 – ident: ref31/cit31 doi: 10.1021/jp8001614 – ident: ref56/cit56 doi: 10.1080/00268979300103121 – ident: ref30/cit30 doi: 10.1021/j100308a038 – ident: ref48/cit48 doi: 10.1063/1.4766356 – ident: ref67/cit67 doi: 10.1021/ja964352a – ident: ref8/cit8 doi: 10.1021/jp203997p – ident: ref17/cit17 doi: 10.1039/c7cp03337k – ident: ref54/cit54 doi: 10.1126/sciadv.aao6283 – ident: ref66/cit66 doi: 10.1021/jp803174m – ident: ref68/cit68 doi: 10.1039/c4cp00904e – ident: ref65/cit65 doi: 10.1016/j.ccr.2004.02.014 – volume: 25 volume-title: NEXAFS Spectroscopy year: 1992 ident: ref64/cit64 doi: 10.1007/978-3-662-02853-7 – ident: ref49/cit49 doi: 10.1039/c4cp00889h – ident: ref3/cit3 doi: 10.1021/jp511391b – ident: ref19/cit19 doi: 10.1016/s0009-2614(00)01046-0 – ident: ref46/cit46 doi: 10.1021/acs.jctc.5b00763 – ident: ref29/cit29 doi: 10.1016/j.cpc.2010.04.018 – ident: ref2/cit2 doi: 10.1021/jp410614f – ident: ref23/cit23 doi: 10.1063/1.4952871 – ident: ref37/cit37 doi: 10.1016/0021-9991(77)90098-5 – ident: ref10/cit10 doi: 10.1021/acs.jpcb.6b04751 – ident: ref5/cit5 doi: 10.1021/jp411782y – ident: ref11/cit11 doi: 10.1063/1.1852455 – ident: ref33/cit33 doi: 10.1063/1.438980 – ident: ref21/cit21 doi: 10.1063/1.4871751 – ident: ref53/cit53 doi: 10.1063/1.4975608 – ident: ref13/cit13 doi: 10.1021/jp511838q – ident: ref18/cit18 doi: 10.1021/ja207306t – ident: ref42/cit42 doi: 10.1021/jp065160x – ident: ref55/cit55 doi: 10.1007/s00214-012-1124-z – ident: ref40/cit40 doi: 10.1016/s0009-2614(99)00137-2 – ident: ref26/cit26 doi: 10.1007/978-3-642-50031-2 – ident: ref44/cit44 doi: 10.1021/ct200485x – ident: ref27/cit27 doi: 10.1103/physrevb.58.7565 – ident: ref50/cit50 doi: 10.1021/ja501361v – ident: ref62/cit62 doi: 10.1021/ja00902a014 – ident: ref36/cit36 doi: 10.1021/jp0363287 – ident: ref47/cit47 doi: 10.1021/jp401020j – ident: ref72/cit72 doi: 10.1021/ja00793a006 – ident: ref51/cit51 doi: 10.1021/jp511602n – ident: ref12/cit12 doi: 10.1016/j.elspec.2004.02.165 – ident: ref57/cit57 doi: 10.1063/1.459993 – ident: ref71/cit71 doi: 10.1103/physrevb.26.6502 – ident: ref22/cit22 doi: 10.1039/c7cp01288h – ident: ref6/cit6 doi: 10.1063/1.1767072 – ident: ref59/cit59 doi: 10.1021/ic50008a027 – ident: ref58/cit58 doi: 10.1021/j100124a012 |
SSID | ssj0025286 |
Score | 2.46414 |
Snippet | We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5075 |
SubjectTerms | cyanides energy infrared spectroscopy INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY iron ligands molecular dynamics photochemistry quantum mechanics simulation models spectral analysis ultraviolet-visible spectroscopy wavelengths X-ray absorption spectroscopy |
Title | Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths |
URI | http://dx.doi.org/10.1021/acs.jpcb.7b12532 https://www.ncbi.nlm.nih.gov/pubmed/29613798 https://www.proquest.com/docview/2021732089 https://www.proquest.com/docview/2116890462 https://www.osti.gov/servlets/purl/1461346 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcoAL70dZQEaCA4d0YzvNgxuqtipIcIEVvUVjZ8wuLEmVpNKWE3-AA3-RX8JMkpZ3tVfHdpLx2DOTmXyfEI8RssJw6h9VmgWRdhBYDXHgVIw2SW0IHVzTq9fx_Ch6uZgsfsLk_JnB1-oAXDP-sHR2nFgyxoaO24s6pj3MbtD0zTa4muiO1ZHMEYdD4SYl-a8Z2BC55jdDtFfRhvq_k9kZm9nVnrWo6TAKucbk43jV2rH7_DeC4zne45q4Mvic8nmvJNfFBSxviEvTDdXbTfGVT4Uaj_tidnn4C-q_hLKQPfXD8NlQMmV9yyCY1fLESS5EXMvKyzmegVtDWXmsGX-iG3WKZ9jIk1K-o5b6mZzV1Sf5ovQ1173LtpKL71--1bCm68yAUb5vj5tb4mh2-HY6DwaehgAmYdQGHkNtY535SKOPUwCyi2gnsbcKtPaejhRts8IaMBFSyBMWHsEUYUHhmU7QmNtir6xKvCukMQCYgNIuLiKaFpKEVjTKGKgPC1-MxBOSYz7ssybvUuha5V0jCTcfhDsSB5vFzd0Ads6cG6c7Rjzdjlj2QB87-u6zvuTkpDDSruOSJNdyFKVMFI_Eo40a5bSOnICBEqtVk2sOAI0O02xHH6XiNONfhkfiTq-D2-fRGd0gydJ755TCvrhM_l3KxQ4quS_22nqFD8iHau3DbvP8AM4MGe8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq5VAuvB_b8jASHDhkG9vZPLhVq6620PYArdhbZDvjttAmqyQrdTnxBzjwF_klzCTZ5SFYwdWxHccee2Yy4-9j7DnoJFMU-gcRJ14grfaM1KFnRQgmio2vG7imw6NwchK8ng6nG0ws78LgICrsqWqC-D_QBcQOlX2YWTOIDOpkhafuNbRFJAn17ujdyscayobcEbUSeUX-MjL5px5IH9nqF33UK3Bf_d3WbHTO-CZ7uxptk2rycTCvzcB--g3I8b8-5xa70VmgfLcVmdtsA_I7bHO0JH67y77QGVHCWZvazvd-4gDgOs94SwTR_UTkRGBfEyRmMTu3nNISF7xwfAJX2i50XjgoCY2iaXUBV1Dx85y_x5LyFR-XxSXfz11JWfC8Lvj02-evpV7gc-LDyE_rs-oeOxnvHY8mXsfa4OmhH9SeA1-aUCYukODCWGvUkmCGoTNCS-kcHjDSJJlRWgWADpCfOdAq8zN01mQESt1nvbzI4SHjSmkNkRbShlmA3eoowoUNEoLtg8xlffYC5zHtdl2VNgF1KdKmECc37Sa3z3aWa5zaDvqcGDgu1rR4uWoxa2E_1tTdJrFJ0WQh3F1LCUq2Jp9KqCDss2dLaUpxHSkco3Mo5lUqyR1U0o-TNXWECOOELhD32YNWFFfjkQm-IErirX-chadsc3J8eJAe7B-92WbX0fKLKQ1CRI9Yry7n8Bitq9o8afbTd23BIlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZWRQIuvFnK8jASHDikG9t5cluVrbo8Vkiw0FtkO2N2YUmqJJW2nPgDHPiL_BJmkrQCBBVcHdtxxjOemcz4G8Yegk5zRaF_EEnqBdJqz0gdeVZEYOLE-LqFa3p5GE2PgmezcLbFwtVdGFxEjTPVbRCfpHqeux5hQOxS-4e5NaPYoF5WePKeo6gdMfbe-PXazwplW-ARNRN5Rv4qOvmnGUgn2foXnTQoUbb-bm-2emdymb1dr7hNN_k4WjRmZD__Bub43590hV3qLVG-17HOVbYFxTV2YbwqAHedfaWzooLjLsWd7_9UC4DrIuddQYj-ZyKnQvYNQWOW8xPLKT1xyUvHp3Cm7VIXpYOKUCnaUadwBjU_Kfg7bKme8ElVfuIHhasoG543JZ99__Kt0kt8TnUxivfNcX2DHU3234ynXl-9wdOhHzSeA1-aSKYukOCiRGvUlmDCyBmhpXQODxpp0tworQJAR8jPHWiV-zk6bTIGpW6yQVEWcItxpbSGWAtpozzAaXUc4-YGKcH3Qe7yIXuEdMx66auzNrAuRdY2InGznrhDtrva58z2EOhUieN0w4jH6xHzDv5jQ98dYp0MTRfC37WUqGQb8q2ECqIhe7DiqAz3kcIyuoByUWeS3EIl_STd0EeIKEnpIvGQbXfsuF6PTPEFcZrc_kcq3GfnXz2dZC8ODp_vsItoACaUDSHiO2zQVAu4i0ZWY-61IvUDohsk0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Experimental+and+Computational+Spectroscopic+Study+of+Hexacyanoferrate+Complexes+in+Water%3A+From+Infrared+to+X-ray+Wavelengths&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Ross%2C+Matthew&rft.au=Andersen%2C+Amity&rft.au=Fox%2C+Zachary+W.&rft.au=Zhang%2C+Yu&rft.date=2018-05-17&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=122&rft.issue=19&rft.spage=5075&rft.epage=5086&rft_id=info:doi/10.1021%2Facs.jpcb.7b12532&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcb_7b12532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |