Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths

We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s c...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 122; no. 19; pp. 5075 - 5086
Main Authors Ross, Matthew, Andersen, Amity, Fox, Zachary W, Zhang, Yu, Hong, Kiryong, Lee, Jae-Hyuk, Cordones, Amy, March, Anne Marie, Doumy, Gilles, Southworth, Stephen H, Marcus, Matthew A, Schoenlein, Robert W, Mukamel, Shaul, Govind, Niranjan, Khalil, Munira
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.05.2018
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/acs.jpcb.7b12532

Cover

Loading…
Abstract We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe­(II) and Fe­(III) complexes in solution.
AbstractList We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.
We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.
We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe­(II) and Fe­(III) complexes in solution.
Author Andersen, Amity
Zhang, Yu
Southworth, Stephen H
Marcus, Matthew A
Schoenlein, Robert W
Lee, Jae-Hyuk
Mukamel, Shaul
March, Anne Marie
Doumy, Gilles
Khalil, Munira
Ross, Matthew
Fox, Zachary W
Hong, Kiryong
Cordones, Amy
Govind, Niranjan
AuthorAffiliation Department of Chemistry
Advanced Light Source
Department of Chemistry, Physics and Astronomy
Chemical Sciences and Engineering Division
University of Washington
Environmental Molecular Sciences Laboratory
University of California
Ultrafast X-ray Science Laboratory, Chemical Sciences Division
AuthorAffiliation_xml – name: Department of Chemistry, Physics and Astronomy
– name: University of California
– name: Department of Chemistry
– name: Ultrafast X-ray Science Laboratory, Chemical Sciences Division
– name: Advanced Light Source
– name: University of Washington
– name: Environmental Molecular Sciences Laboratory
– name: Chemical Sciences and Engineering Division
Author_xml – sequence: 1
  givenname: Matthew
  orcidid: 0000-0002-0434-544X
  surname: Ross
  fullname: Ross, Matthew
  organization: University of Washington
– sequence: 2
  givenname: Amity
  surname: Andersen
  fullname: Andersen, Amity
  organization: Environmental Molecular Sciences Laboratory
– sequence: 3
  givenname: Zachary W
  surname: Fox
  fullname: Fox, Zachary W
  organization: University of Washington
– sequence: 4
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: University of California
– sequence: 5
  givenname: Kiryong
  surname: Hong
  fullname: Hong, Kiryong
– sequence: 6
  givenname: Jae-Hyuk
  surname: Lee
  fullname: Lee, Jae-Hyuk
– sequence: 7
  givenname: Amy
  surname: Cordones
  fullname: Cordones, Amy
– sequence: 8
  givenname: Anne Marie
  surname: March
  fullname: March, Anne Marie
  organization: Chemical Sciences and Engineering Division
– sequence: 9
  givenname: Gilles
  surname: Doumy
  fullname: Doumy, Gilles
  organization: Chemical Sciences and Engineering Division
– sequence: 10
  givenname: Stephen H
  surname: Southworth
  fullname: Southworth, Stephen H
  organization: Chemical Sciences and Engineering Division
– sequence: 11
  givenname: Matthew A
  surname: Marcus
  fullname: Marcus, Matthew A
– sequence: 12
  givenname: Robert W
  surname: Schoenlein
  fullname: Schoenlein, Robert W
– sequence: 13
  givenname: Shaul
  orcidid: 0000-0002-6015-3135
  surname: Mukamel
  fullname: Mukamel, Shaul
  organization: University of California
– sequence: 14
  givenname: Niranjan
  orcidid: 0000-0003-3625-366X
  surname: Govind
  fullname: Govind, Niranjan
  email: niri.govind@pnnl.gov
  organization: Environmental Molecular Sciences Laboratory
– sequence: 15
  givenname: Munira
  orcidid: 0000-0002-6508-4124
  surname: Khalil
  fullname: Khalil, Munira
  email: mkhalil@uw.edu
  organization: University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29613798$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1461346$$D View this record in Osti.gov
BookMark eNqFkbtuFDEUhi0URC7QUyGLiiK7-DLj2aFDq4REikQREHTWGc8xO9GMPdieaLfjBSjyijwJ3gsUSEBh2Trn-y2d852SI-cdEvKcszlngr8GE-d3o2nmVcNFKcUjcsJLwWb5VEeHt-JMHZPTGO8YE6VYqCfkWNSKy6penJDvSz-MAVfoYneP9GI9YugGdAl6Cq6l2_aUIHXe5crtiCYFH40fO0Nv09RuqLf0CtdgNuC8xRAg4S7V4xoj7Rz9lCvhDb0MfqDXzgYI2NLk6ecf3x4CbHL_Hnt0X9IqPiWPLfQRnx3uM_Lx8uLD8mp28_7d9fLtzQxKVqSZRSYaJWpbCLRqAcAlw6ZUtuEghLWSlaKp20aCLFBIxlqLIFvWMl6ICqU8Iy_3__qYOh1Nl9CsjHcuj6d5kZdTqAy92kNj8F8njEkPXTTY9-DQT1ELztWiZoUS_0ezrEoKtqgz-uKATs2ArR7zuiFs9C8lGWB7wORFx4D2N8KZ3lrX2breWtcH6zmi_ojkiXbOUoCu_1fwfB_cdfwUsuT4d_wn8ujFUw
CitedBy_id crossref_primary_10_1021_acs_jpclett_8b01429
crossref_primary_10_1063_5_0047381
crossref_primary_10_1038_s41598_021_02355_3
crossref_primary_10_1107_S1600577519012268
crossref_primary_10_1021_acsaem_8b01983
crossref_primary_10_1021_acs_jpclett_8b02752
crossref_primary_10_1016_j_cej_2023_143901
crossref_primary_10_1038_s41467_023_39165_2
crossref_primary_10_1016_j_ccr_2020_213517
crossref_primary_10_1021_acs_jctc_3c01084
crossref_primary_10_1021_acsami_2c18006
crossref_primary_10_1038_s41557_020_00629_3
crossref_primary_10_1063_1_5139441
crossref_primary_10_1016_j_jelechem_2022_116485
crossref_primary_10_1063_1_5117318
crossref_primary_10_1002_xrs_3254
crossref_primary_10_1089_ast_2020_2422
crossref_primary_10_1002_anie_202401888
crossref_primary_10_1021_acs_jpca_0c04195
crossref_primary_10_1021_acs_jpclett_2c01532
crossref_primary_10_1038_s41598_021_91419_5
crossref_primary_10_1021_acs_chemmater_8b03944
crossref_primary_10_1039_D2CP04084K
crossref_primary_10_1002_ange_202401888
crossref_primary_10_1021_acs_jctc_3c00855
crossref_primary_10_1021_acs_jpclett_3c00611
crossref_primary_10_1002_advs_202402732
crossref_primary_10_1146_annurev_physchem_082820_020236
crossref_primary_10_3390_ijms222413463
crossref_primary_10_1039_D1SC01774H
crossref_primary_10_1021_acsomega_9b03887
crossref_primary_10_1039_D2CP01132H
crossref_primary_10_3390_molecules29102323
crossref_primary_10_1021_acs_jpcc_1c08461
crossref_primary_10_1038_s41467_023_37922_x
crossref_primary_10_1038_s41598_023_43924_y
crossref_primary_10_1149_2_0331910jes
crossref_primary_10_3390_molecules27134111
crossref_primary_10_1021_acs_jpcb_0c00638
crossref_primary_10_1021_acs_jpclett_1c03613
crossref_primary_10_1039_D0CP01003K
crossref_primary_10_1021_acsami_9b10312
crossref_primary_10_1039_D4DT02916J
crossref_primary_10_3390_molecules29235611
crossref_primary_10_1021_acs_jpcc_0c10492
crossref_primary_10_1021_acs_jctc_1c00144
Cites_doi 10.1016/0263-7855(96)00018-5
10.1142/9789812830586_0005
10.1021/ja045561v
10.1021/ja01018a013
10.1107/s0909049505012719
10.1063/1.478522
10.1063/1.1731909
10.1021/ct3005613
10.1021/ja101281e
10.1021/ja504182n
10.1021/acs.jpcc.5b04609
10.1364/ol.41.002895
10.1016/j.ica.2007.05.046
10.1107/s0909049504005837
10.1016/s0009-2614(03)00543-8
10.1021/jp5055588
10.1021/acs.inorgchem.5b01701
10.1007/s00214-014-1463-z
10.1063/1.4932983
10.1107/s0909049597019298
10.1063/1.438955
10.1002/jcc.20035
10.1021/jacs.7b02769
10.1063/1.452288
10.1021/jp8001614
10.1080/00268979300103121
10.1021/j100308a038
10.1063/1.4766356
10.1021/ja964352a
10.1021/jp203997p
10.1039/c7cp03337k
10.1126/sciadv.aao6283
10.1021/jp803174m
10.1039/c4cp00904e
10.1016/j.ccr.2004.02.014
10.1007/978-3-662-02853-7
10.1039/c4cp00889h
10.1021/jp511391b
10.1016/s0009-2614(00)01046-0
10.1021/acs.jctc.5b00763
10.1016/j.cpc.2010.04.018
10.1021/jp410614f
10.1063/1.4952871
10.1016/0021-9991(77)90098-5
10.1021/acs.jpcb.6b04751
10.1021/jp411782y
10.1063/1.1852455
10.1063/1.438980
10.1063/1.4871751
10.1063/1.4975608
10.1021/jp511838q
10.1021/ja207306t
10.1021/jp065160x
10.1007/s00214-012-1124-z
10.1016/s0009-2614(99)00137-2
10.1007/978-3-642-50031-2
10.1021/ct200485x
10.1103/physrevb.58.7565
10.1021/ja501361v
10.1021/ja00902a014
10.1021/jp0363287
10.1021/jp401020j
10.1021/ja00793a006
10.1021/jp511602n
10.1016/j.elspec.2004.02.165
10.1063/1.459993
10.1103/physrevb.26.6502
10.1039/c7cp01288h
10.1063/1.1767072
10.1021/ic50008a027
10.1021/j100124a012
ContentType Journal Article
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/acs.jpcb.7b12532
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 5086
ExternalDocumentID 1461346
29613798
10_1021_acs_jpcb_7b12532
i70335421
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
7S9
L.6
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a504t-fe02b629f42ef68aa130eb56fb1a22ff3052b9db3a34e2300dfea3d0d01427e33
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Wed Nov 29 06:10:36 EST 2023
Fri Jul 11 09:44:46 EDT 2025
Thu Jul 10 18:55:05 EDT 2025
Thu Apr 03 07:05:26 EDT 2025
Thu Apr 24 23:06:57 EDT 2025
Tue Jul 01 01:00:21 EDT 2025
Thu Aug 27 13:42:32 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a504t-fe02b629f42ef68aa130eb56fb1a22ff3052b9db3a34e2300dfea3d0d01427e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-06CH11357; AC02-05CH11231
ORCID 0000-0002-6508-4124
0000-0002-6015-3135
0000-0003-3625-366X
0000-0002-0434-544X
0000000260153135
0000000265084124
000000020434544X
000000033625366X
OpenAccessLink https://www.osti.gov/servlets/purl/1461346
PMID 29613798
PQID 2021732089
PQPubID 23479
PageCount 12
ParticipantIDs osti_scitechconnect_1461346
proquest_miscellaneous_2116890462
proquest_miscellaneous_2021732089
pubmed_primary_29613798
crossref_primary_10_1021_acs_jpcb_7b12532
crossref_citationtrail_10_1021_acs_jpcb_7b12532
acs_journals_10_1021_acs_jpcb_7b12532
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-17
PublicationDateYYYYMMDD 2018-05-17
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
Koningsberger D. C. (ref63/cit63) 1988; 92
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
Stöhr J. (ref64/cit64) 1992; 25
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref39/cit39
  doi: 10.1142/9789812830586_0005
– ident: ref9/cit9
  doi: 10.1021/ja045561v
– ident: ref61/cit61
  doi: 10.1021/ja01018a013
– ident: ref25/cit25
  doi: 10.1107/s0909049505012719
– ident: ref38/cit38
  doi: 10.1063/1.478522
– ident: ref60/cit60
  doi: 10.1063/1.1731909
– ident: ref45/cit45
  doi: 10.1021/ct3005613
– ident: ref70/cit70
  doi: 10.1021/ja101281e
– ident: ref69/cit69
  doi: 10.1021/ja504182n
– ident: ref4/cit4
  doi: 10.1021/acs.jpcc.5b04609
– ident: ref15/cit15
  doi: 10.1364/ol.41.002895
– ident: ref43/cit43
  doi: 10.1016/j.ica.2007.05.046
– ident: ref24/cit24
  doi: 10.1107/s0909049504005837
– ident: ref41/cit41
  doi: 10.1016/s0009-2614(03)00543-8
– volume: 92
  volume-title: X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES
  year: 1988
  ident: ref63/cit63
– ident: ref7/cit7
  doi: 10.1021/jp5055588
– ident: ref14/cit14
  doi: 10.1021/acs.inorgchem.5b01701
– ident: ref52/cit52
  doi: 10.1007/s00214-014-1463-z
– ident: ref16/cit16
  doi: 10.1063/1.4932983
– ident: ref28/cit28
  doi: 10.1107/s0909049597019298
– ident: ref32/cit32
  doi: 10.1063/1.438955
– ident: ref35/cit35
  doi: 10.1002/jcc.20035
– ident: ref20/cit20
  doi: 10.1021/jacs.7b02769
– ident: ref34/cit34
  doi: 10.1063/1.452288
– ident: ref31/cit31
  doi: 10.1021/jp8001614
– ident: ref56/cit56
  doi: 10.1080/00268979300103121
– ident: ref30/cit30
  doi: 10.1021/j100308a038
– ident: ref48/cit48
  doi: 10.1063/1.4766356
– ident: ref67/cit67
  doi: 10.1021/ja964352a
– ident: ref8/cit8
  doi: 10.1021/jp203997p
– ident: ref17/cit17
  doi: 10.1039/c7cp03337k
– ident: ref54/cit54
  doi: 10.1126/sciadv.aao6283
– ident: ref66/cit66
  doi: 10.1021/jp803174m
– ident: ref68/cit68
  doi: 10.1039/c4cp00904e
– ident: ref65/cit65
  doi: 10.1016/j.ccr.2004.02.014
– volume: 25
  volume-title: NEXAFS Spectroscopy
  year: 1992
  ident: ref64/cit64
  doi: 10.1007/978-3-662-02853-7
– ident: ref49/cit49
  doi: 10.1039/c4cp00889h
– ident: ref3/cit3
  doi: 10.1021/jp511391b
– ident: ref19/cit19
  doi: 10.1016/s0009-2614(00)01046-0
– ident: ref46/cit46
  doi: 10.1021/acs.jctc.5b00763
– ident: ref29/cit29
  doi: 10.1016/j.cpc.2010.04.018
– ident: ref2/cit2
  doi: 10.1021/jp410614f
– ident: ref23/cit23
  doi: 10.1063/1.4952871
– ident: ref37/cit37
  doi: 10.1016/0021-9991(77)90098-5
– ident: ref10/cit10
  doi: 10.1021/acs.jpcb.6b04751
– ident: ref5/cit5
  doi: 10.1021/jp411782y
– ident: ref11/cit11
  doi: 10.1063/1.1852455
– ident: ref33/cit33
  doi: 10.1063/1.438980
– ident: ref21/cit21
  doi: 10.1063/1.4871751
– ident: ref53/cit53
  doi: 10.1063/1.4975608
– ident: ref13/cit13
  doi: 10.1021/jp511838q
– ident: ref18/cit18
  doi: 10.1021/ja207306t
– ident: ref42/cit42
  doi: 10.1021/jp065160x
– ident: ref55/cit55
  doi: 10.1007/s00214-012-1124-z
– ident: ref40/cit40
  doi: 10.1016/s0009-2614(99)00137-2
– ident: ref26/cit26
  doi: 10.1007/978-3-642-50031-2
– ident: ref44/cit44
  doi: 10.1021/ct200485x
– ident: ref27/cit27
  doi: 10.1103/physrevb.58.7565
– ident: ref50/cit50
  doi: 10.1021/ja501361v
– ident: ref62/cit62
  doi: 10.1021/ja00902a014
– ident: ref36/cit36
  doi: 10.1021/jp0363287
– ident: ref47/cit47
  doi: 10.1021/jp401020j
– ident: ref72/cit72
  doi: 10.1021/ja00793a006
– ident: ref51/cit51
  doi: 10.1021/jp511602n
– ident: ref12/cit12
  doi: 10.1016/j.elspec.2004.02.165
– ident: ref57/cit57
  doi: 10.1063/1.459993
– ident: ref71/cit71
  doi: 10.1103/physrevb.26.6502
– ident: ref22/cit22
  doi: 10.1039/c7cp01288h
– ident: ref6/cit6
  doi: 10.1063/1.1767072
– ident: ref59/cit59
  doi: 10.1021/ic50008a027
– ident: ref58/cit58
  doi: 10.1021/j100124a012
SSID ssj0025286
Score 2.46414
Snippet We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5075
SubjectTerms cyanides
energy
infrared spectroscopy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
iron
ligands
molecular dynamics
photochemistry
quantum mechanics
simulation models
spectral analysis
ultraviolet-visible spectroscopy
wavelengths
X-ray absorption spectroscopy
Title Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths
URI http://dx.doi.org/10.1021/acs.jpcb.7b12532
https://www.ncbi.nlm.nih.gov/pubmed/29613798
https://www.proquest.com/docview/2021732089
https://www.proquest.com/docview/2116890462
https://www.osti.gov/servlets/purl/1461346
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcoAL70dZQEaCA4d0YzvNgxuqtipIcIEVvUVjZ8wuLEmVpNKWE3-AA3-RX8JMkpZ3tVfHdpLx2DOTmXyfEI8RssJw6h9VmgWRdhBYDXHgVIw2SW0IHVzTq9fx_Ch6uZgsfsLk_JnB1-oAXDP-sHR2nFgyxoaO24s6pj3MbtD0zTa4muiO1ZHMEYdD4SYl-a8Z2BC55jdDtFfRhvq_k9kZm9nVnrWo6TAKucbk43jV2rH7_DeC4zne45q4Mvic8nmvJNfFBSxviEvTDdXbTfGVT4Uaj_tidnn4C-q_hLKQPfXD8NlQMmV9yyCY1fLESS5EXMvKyzmegVtDWXmsGX-iG3WKZ9jIk1K-o5b6mZzV1Sf5ovQ1173LtpKL71--1bCm68yAUb5vj5tb4mh2-HY6DwaehgAmYdQGHkNtY535SKOPUwCyi2gnsbcKtPaejhRts8IaMBFSyBMWHsEUYUHhmU7QmNtir6xKvCukMQCYgNIuLiKaFpKEVjTKGKgPC1-MxBOSYz7ssybvUuha5V0jCTcfhDsSB5vFzd0Ads6cG6c7Rjzdjlj2QB87-u6zvuTkpDDSruOSJNdyFKVMFI_Eo40a5bSOnICBEqtVk2sOAI0O02xHH6XiNONfhkfiTq-D2-fRGd0gydJ755TCvrhM_l3KxQ4quS_22nqFD8iHau3DbvP8AM4MGe8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq5VAuvB_b8jASHDhkG9vZPLhVq6620PYArdhbZDvjttAmqyQrdTnxBzjwF_klzCTZ5SFYwdWxHccee2Yy4-9j7DnoJFMU-gcRJ14grfaM1KFnRQgmio2vG7imw6NwchK8ng6nG0ws78LgICrsqWqC-D_QBcQOlX2YWTOIDOpkhafuNbRFJAn17ujdyscayobcEbUSeUX-MjL5px5IH9nqF33UK3Bf_d3WbHTO-CZ7uxptk2rycTCvzcB--g3I8b8-5xa70VmgfLcVmdtsA_I7bHO0JH67y77QGVHCWZvazvd-4gDgOs94SwTR_UTkRGBfEyRmMTu3nNISF7xwfAJX2i50XjgoCY2iaXUBV1Dx85y_x5LyFR-XxSXfz11JWfC8Lvj02-evpV7gc-LDyE_rs-oeOxnvHY8mXsfa4OmhH9SeA1-aUCYukODCWGvUkmCGoTNCS-kcHjDSJJlRWgWADpCfOdAq8zN01mQESt1nvbzI4SHjSmkNkRbShlmA3eoowoUNEoLtg8xlffYC5zHtdl2VNgF1KdKmECc37Sa3z3aWa5zaDvqcGDgu1rR4uWoxa2E_1tTdJrFJ0WQh3F1LCUq2Jp9KqCDss2dLaUpxHSkco3Mo5lUqyR1U0o-TNXWECOOELhD32YNWFFfjkQm-IErirX-chadsc3J8eJAe7B-92WbX0fKLKQ1CRI9Yry7n8Bitq9o8afbTd23BIlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZWRQIuvFnK8jASHDikG9t5cluVrbo8Vkiw0FtkO2N2YUmqJJW2nPgDHPiL_BJmkrQCBBVcHdtxxjOemcz4G8Yegk5zRaF_EEnqBdJqz0gdeVZEYOLE-LqFa3p5GE2PgmezcLbFwtVdGFxEjTPVbRCfpHqeux5hQOxS-4e5NaPYoF5WePKeo6gdMfbe-PXazwplW-ARNRN5Rv4qOvmnGUgn2foXnTQoUbb-bm-2emdymb1dr7hNN_k4WjRmZD__Bub43590hV3qLVG-17HOVbYFxTV2YbwqAHedfaWzooLjLsWd7_9UC4DrIuddQYj-ZyKnQvYNQWOW8xPLKT1xyUvHp3Cm7VIXpYOKUCnaUadwBjU_Kfg7bKme8ElVfuIHhasoG543JZ99__Kt0kt8TnUxivfNcX2DHU3234ynXl-9wdOhHzSeA1-aSKYukOCiRGvUlmDCyBmhpXQODxpp0tworQJAR8jPHWiV-zk6bTIGpW6yQVEWcItxpbSGWAtpozzAaXUc4-YGKcH3Qe7yIXuEdMx66auzNrAuRdY2InGznrhDtrva58z2EOhUieN0w4jH6xHzDv5jQ98dYp0MTRfC37WUqGQb8q2ECqIhe7DiqAz3kcIyuoByUWeS3EIl_STd0EeIKEnpIvGQbXfsuF6PTPEFcZrc_kcq3GfnXz2dZC8ODp_vsItoACaUDSHiO2zQVAu4i0ZWY-61IvUDohsk0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Experimental+and+Computational+Spectroscopic+Study+of+Hexacyanoferrate+Complexes+in+Water%3A+From+Infrared+to+X-ray+Wavelengths&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Ross%2C+Matthew&rft.au=Andersen%2C+Amity&rft.au=Fox%2C+Zachary+W.&rft.au=Zhang%2C+Yu&rft.date=2018-05-17&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=122&rft.issue=19&rft.spage=5075&rft.epage=5086&rft_id=info:doi/10.1021%2Facs.jpcb.7b12532&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcb_7b12532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon