Network Properties of Local Fungal Communities Reveal the Anthropogenic Disturbance Consequences of Farming Practices in Vineyard Soils
Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspec...
Saved in:
Published in | mSystems Vol. 6; no. 3 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
04.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it.
Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems.
IMPORTANCE
Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements.
Author Video
: An
author video summary
of this article is available. |
---|---|
AbstractList | Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems.IMPORTANCE Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements.Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems.IMPORTANCE Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements. Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems. IMPORTANCE Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements. Author Video : An author video summary of this article is available. Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems. Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements. Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems. IMPORTANCE Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements. Author Video: An author video summary of this article is available. Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems. IMPORTANCE Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements. Author Video : An author video summary of this article is available. |
Author | Acedo, Alberto Ortiz-Álvarez, Rüdiger Belda, Ignacio Ontiveros, Vicente J. Ravarani, Charles Ortega-Arranz, Héctor de Celis, Miguel |
Author_xml | – sequence: 1 givenname: Rüdiger orcidid: 0000-0002-8553-5420 surname: Ortiz-Álvarez fullname: Ortiz-Álvarez, Rüdiger organization: Biome Makers Inc., West Sacramento, California, USA – sequence: 2 givenname: Héctor surname: Ortega-Arranz fullname: Ortega-Arranz, Héctor organization: Biome Makers Inc., West Sacramento, California, USA – sequence: 3 givenname: Vicente J. surname: Ontiveros fullname: Ontiveros, Vicente J. organization: Theoretical and Computational Ecology, Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain – sequence: 4 givenname: Miguel surname: de Celis fullname: de Celis, Miguel organization: Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain – sequence: 5 givenname: Charles surname: Ravarani fullname: Ravarani, Charles organization: Biome Makers Inc., West Sacramento, California, USA – sequence: 6 givenname: Alberto orcidid: 0000-0001-9860-239X surname: Acedo fullname: Acedo, Alberto organization: Biome Makers Inc., West Sacramento, California, USA – sequence: 7 givenname: Ignacio orcidid: 0000-0002-2607-5049 surname: Belda fullname: Belda, Ignacio organization: Biome Makers Inc., West Sacramento, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33947807$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9uEzEQxleoiJbSB-CC9sglwX_XuxekqhCoFAGiwNWadWYTh107tb1FeQJeGydpq5ZDT2PNfN_P4_G8LI6cd1gUrymZUsrqd8PVNiYc4pQQLsSE0WfFCeOqmUii1NGD83FxFuOaEEIrrihrXhTHnDdC1USdFH-_YPrjw-_yW_AbDMliLH1Xzr2BvpyNbpnDhR-G0dl97TveYE6lFZbnLq2yyS_RWVN-sDGNoQVnMBtcxOsR83lPm0EYrFvmO8Aku0taV_6yDrcQFuWVt318VTzvoI94dhtPi5-zjz8uPk_mXz9dXpzPJyCJSBMmOkVaibISEmrWUmWAVY0gDUVTQS2E6BYcqhxRSEGh5VyYlhEmW2hbxk-LywN34WGtN8EOELbag9X7hA9LDXkKpkfNTdMR2jVMVUxwTmDRSV4LKkCgkVJl1vsDazO2Ay4MuhSgfwR9XHF2pZf-Rte5ZcZkBry9BQSfxxWTHmw02Pfg0I9RM8kYb3h-X5ZOD1KIA9NrPwaXx6Qp0btl0HfLoPfLoBnNhjcPm7vv6u7rs4AeBCb4GAN295KnoOo_j7EJkvW799n-Cec_R0jZXA |
CitedBy_id | crossref_primary_10_1111_1462_2920_16513 crossref_primary_10_3389_fpls_2024_1332840 crossref_primary_10_1016_j_agee_2025_109506 crossref_primary_10_1016_j_postharvbio_2024_113251 crossref_primary_10_1002_ppp3_10575 crossref_primary_10_1016_j_ijfoodmicro_2021_109475 crossref_primary_10_1017_S1742170524000218 crossref_primary_10_1038_s41598_023_39184_5 crossref_primary_10_1016_j_apsoil_2024_105526 crossref_primary_10_1016_j_soilbio_2022_108856 crossref_primary_10_1038_s42003_022_03202_5 crossref_primary_10_3390_agriculture13020344 crossref_primary_10_1038_s41522_022_00291_2 crossref_primary_10_3390_agronomy14010131 crossref_primary_10_1016_j_agee_2022_108118 crossref_primary_10_1038_s41522_024_00581_x crossref_primary_10_1128_spectrum_02069_23 crossref_primary_10_3390_ijms232314726 crossref_primary_10_1038_s43705_023_00232_w crossref_primary_10_1093_ismeco_ycae021 crossref_primary_10_1128_mSphere_00130_21 crossref_primary_10_3390_microorganisms12030595 |
Cites_doi | 10.1016/j.tim.2016.06.011 10.1186/s40168-017-0389-9 10.1038/s41396-018-0086-0 10.1038/35102054 10.1186/s40168-019-0758-7 10.1126/science.aap9516 10.1038/nature24621 10.1038/s41396-018-0076-2 10.1038/s41564-018-0201-z 10.1073/pnas.122653799 10.1111/j.0030-1299.2008.16215.x 10.1038/ismej.2011.119 10.1139/b95-386 10.1017/CBO9780511815478 10.1016/j.agee.2017.04.005 10.1038/s41559-018-0757-2 10.1038/s41477-018-0139-4 10.20870/oeno-one.2019.53.4.2470 10.1093/nar/gky1022 10.1016/j.agee.2017.05.022 10.1073/pnas.1317377110 10.1093/nar/gkq118 10.3390/fermentation5030078 10.1890/07-0986.1 10.1098/rspb.2001.1767 10.1093/femsyr/fox092 10.3389/fmicb.2016.00649 10.1038/nclimate1368 10.1111/j.1466-8238.2012.00789.x 10.15698/mic2018.05.628 10.1038/s41467-018-05516-7 10.1007/978-3-319-24277-4 10.1098/rstb.2007.2178 10.1111/1365-2435.12677 10.1111/j.1365-2486.2007.01535.x 10.1086/283370 10.1111/1755-0998.13079 10.1111/j.1461-0248.2006.00963.x 10.1038/s41579-019-0222-5 10.1038/30918 10.1002/ecy.2142 10.1007/11569596_31 10.1038/s41396-019-0459-z 10.1016/j.geoderma.2008.08.007 10.1016/j.ijfoodmicro.2014.02.002 10.1093/femsre/fuy030 10.1038/s41586-018-0386-6 10.1093/bioinformatics/bts342 10.1038/s41396-019-0582-x 10.1016/j.tree.2005.04.004 10.1111/ele.12002 10.1038/35012234 10.1126/science.aat1168 10.3389/fmicb.2018.00707 10.1038/nature04742 10.1016/j.ejsobi.2012.01.009 10.1038/ismej.2009.88 10.1126/science.7268409 10.7717/peerj.2584 10.1007/s00374-017-1248-3 10.1111/j.1574-6941.2007.00375.x 10.1111/oik.04428 10.1111/j.1365-2486.2010.02300.x 10.1038/s41559-017-0109 10.1371/journal.pone.0085622 10.1371/journal.pcbi.1002606 10.1111/j.1365-294X.2011.05383.x 10.1016/j.agee.2004.02.002 10.1016/j.ecolind.2017.11.030 10.1111/ele.13525 10.1038/s41396-019-0383-2 10.1126/science.1256688 10.12688/f1000research.9050.2 10.1128/AEM.03660-14 10.1126/science.1133258 10.1016/j.funeco.2015.06.006 10.1609/icwsm.v3i1.13937 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Ortiz-Álvarez et al. Copyright © 2021 Ortiz-Álvarez et al. 2021 Ortiz-Álvarez et al. |
Copyright_xml | – notice: Copyright © 2021 Ortiz-Álvarez et al. – notice: Copyright © 2021 Ortiz-Álvarez et al. 2021 Ortiz-Álvarez et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1128/mSystems.00344-21 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2379-5077 |
Editor | Mackelprang, Rachel |
Editor_xml | – sequence: 1 givenname: Rachel surname: Mackelprang fullname: Mackelprang, Rachel |
ExternalDocumentID | oai_doaj_org_article_3c9f01f927624330adf538414a4ec557 PMC8269225 mSystems00344-21 33947807 10_1128_mSystems_00344_21 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Centre for Industrial Technological Development (CDTI) grantid: IDI-20180120 funderid: https://doi.org/10.13039/501100001872 – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO) grantid: PTQ-16-08253 funderid: https://doi.org/10.13039/501100010198 – fundername: ; grantid: IDI-20180120 – fundername: ; grantid: PTQ-16-08253 |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ACPRK ADBBV AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBS FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RHI RPM RSF UKHRP 3V. NPM 0R ADACO BBAFP BXI PQEST PQUKI PRINS 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-a504t-24f70b5e5645a82b17ca2694091ec6a8444fd3a6444e4541ab334cb2025babb23 |
IEDL.DBID | M48 |
ISSN | 2379-5077 |
IngestDate | Wed Aug 27 01:23:02 EDT 2025 Thu Aug 21 18:15:47 EDT 2025 Fri Jul 11 03:24:36 EDT 2025 Tue Dec 28 13:59:00 EST 2021 Thu Jan 02 22:57:27 EST 2025 Tue Jul 01 02:58:56 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | local networks agroecosystems emergent properties fungal communities |
Language | English |
License | Copyright © 2021 Ortiz-Álvarez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a504t-24f70b5e5645a82b17ca2694091ec6a8444fd3a6444e4541ab334cb2025babb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Ignacio Belda, Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain. Citation Ortiz-Álvarez R, Ortega-Arranz H, Ontiveros VJ, de Celis M, Ravarani C, Acedo A, Belda I. 2021. Network properties of local fungal communities reveal the anthropogenic disturbance consequences of farming practices in vineyard soils. mSystems 6:e00344-21. https://doi.org/10.1128/mSystems.00344-21. |
ORCID | 0000-0002-8553-5420 0000-0002-2607-5049 0000-0001-9860-239X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mSystems.00344-21 |
PMID | 33947807 |
PQID | 2522393694 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3c9f01f927624330adf538414a4ec557 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8269225 proquest_miscellaneous_2522393694 asm2_journals_10_1128_mSystems_00344_21 pubmed_primary_33947807 crossref_primary_10_1128_mSystems_00344_21 crossref_citationtrail_10_1128_mSystems_00344_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210504 |
PublicationDateYYYYMMDD | 2021-05-04 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210504 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mSystems |
PublicationTitleAbbrev | mSystems |
PublicationTitleAlternate | mSystems |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 B64 Havlicek, E (B7) 2012; 49 Milici, M, Deng, ZL, Tomasch, J, Decelle, J, Wos-Oxley, ML, Wang, H, Jáuregui, R, Plumeier, I, Giebel, HA, Badewien, TH, Wurst, M, Pieper, DH, Simon, M, Wagner-Döbler, I (B17) 2016; 7 Goldford, JE, Lu, N, Bajić, D, Estrela, S, Tikhonov, M, Sanchez-Gorostiaga, A, Segrè, D, Mehta, P, Sanchez, A (B46) 2018; 361 Wickham, H (B80) 2016 Proulx, SR, Promislow, DEL, Phillips, PC (B74) 2005; 20 García-Callejas, D, Molowny-Horas, R, Araújo, MB (B18) 2018; 127 De Vries, FT, Liiri, ME, Bjørnlund, L, Bowker, MA, Christensen, S, Setälä, HM, Bardgett, RD (B24) 2012; 2 Thompson, LR, Sanders, JG, McDonald, D, Amir, A, Ladau, J, Locey, KJ, Prill, RJ, Tripathi, A, Gibbons, SM, Ackermann, G, Navas-Molina, JA, Janssen, S, Kopylova, E, Vázquez-Baeza, Y, González, A, Morton, JT, Mirarab, S, Xu, ZZ, Jiang, L, Haroon, MF, Kanbar, J, Zhu, Q, Song, SJ, Kosciolek, T, Bokulich, NA, Lefler, J, Brislawn, CJ, Humphrey, G, Owens, SM, Hampton-Marcell, J, Berg-Lyons, D, McKenzie, V, Fierer, N, Fuhrman, JA, Clauset, A, Stevens, RL, Shade, A, Pollard, KS, Goodwin, KD, Jansson, JK, Gilbert, JA, Knight, R (B40) 2017; 551 Nuccio, EE, Starr, E, Karaoz, U, Brodie, EL, Zhou, J, Tringe, SG, Malmstrom, RR, Woyke, T, Banfield, JF, Firestone, MK, Pett-Ridge, J (B21) 2020; 14 Watts, DJ, Strogatz, SH (B42) 1998; 393 Carr, A, Diener, C, Baliga, NS, Gibbons, SM (B70) 2019; 13 Banerjee, S, Walder, F, Büchi, L, Meyer, M, Held, AY, Gattinger, A, Keller, T, Charles, R, van der Heijden, MGA (B53) 2019; 13 Pons, P, Latapy, M, Yolum, P, Güngör, T, Gürgen, F, Özturan, C (B72) 2005; 3733 Delgado-Baquerizo, M, Oliverio, AM, Brewer, TE, Benavent-González, A, Eldridge, DJ, Bardgett, RD, Maestre, FT, Singh, BK, Fierer, N (B15) 2018; 359 Parisi, V, Menta, C, Gardi, C, Jacomini, C, Mozzanica, E (B5) 2005; 105 Fredrickson, AG, Stephanopoulos, G (B51) 1981; 213 Meissner, G, Athmann, ME, Fritz, J, Kauer, R, Stoll, M, Schultz, HR (B26) 2019; 53 Puig-Montserrat, X, Stefanescu, C, Torre, I, Palet, J, Fabregas, E, Dantart, J, Arrizabalaga, A, Flaquer, C (B29) 2017; 243 Peura, S, Bertilsson, S, Jones, RI, Eiler, A (B43) 2015; 81 B71 Faust, K, Sathirapongsasuti, JF, Izard, J, Segata, N, Gevers, D, Raes, J, Huttenhower, C (B38) 2012; 8 B75 B76 Yuste, JC, Peñuelas, J, Estiarte, M, Garcia-Mas, J, Mattana, S, Ogaya, R, Pujol, M, Sardans, J (B25) 2011; 17 B78 Morrison-Whittle, P, Lee, SA, Goddard, MR (B34) 2017; 246 B37 Bauer, MA, Kainz, K, Carmona-Gutierrez, D, Madeo, F (B50) 2018; 5 Grangeteau, C, David, V, Hervé, A, Guilloux-Benatier, M, Rousseaux, S (B33) 2017; 17 Salt, GW (B12) 1979; 113 Konopka, A (B13) 2009; 3 Veech, JA (B68) 2013; 22 Balvanera, P, Pfisterer, AB, Buchmann, N, He, JS, Nakashizuka, T, Raffaelli, D, Schmid, B (B56) 2006; 9 Schloter, M, Nannipieri, P, Sørensen, SJ, van Elsas, JD (B9) 2018; 54 Faust, K, Raes, J (B69) 2016; 5 Menta, C, Conti, FD, Pinto, S, Bodini, A (B8) 2018; 85 Ramette, A (B2) 2007; 62 Chen, J, Bittinger, K, Charlson, ES, Hoffmann, C, Lewis, J, Wu, GD, Collman, RG, Bushman, FD, Li, H (B79) 2012; 28 Blanchet, FG, Cazelles, K, Gravel, D (B14) 2020; 23 Coller, E, Cestaro, A, Zanzotti, R, Bertoldi, D, Pindo, M, Larger, S, Albanese, D, Mescalchin, E, Donati, C (B27) 2019; 7 Bastida, F, Zsolnay, A, Hernández, T, García, C (B6) 2008; 147 de Vries, FT, Griffiths, RI, Bailey, M, Craig, H, Girlanda, M, Gweon, HS, Hallin, S, Kaisermann, A, Keith, AM, Kretzschmar, M, Lemanceau, P, Lumini, E, Mason, KE, Oliver, A, Ostle, N, Prosser, JI, Thion, C, Thomson, B, Bardgett, RD (B54) 2018; 9 Rognes, T, Flouri, T, Nichols, B, Quince, C, Mahé, F (B65) 2016; 4 Smith, GR, Steidinger, BS, Bruns, TD, Peay, KG (B52) 2018; 12 Bokulich, NA, Thorngate, JH, Richardson, PM, Mills, DA (B30) 2014; 111 Fraç, M, Hannula, SE, Belka, M, Jȩdryczka, M (B1) 2018; 9 Freilich, S, Kreimer, A, Meilijson, I, Gophna, U, Sharan, R, Ruppin, E (B16) 2010; 38 Röttjers, L, Faust, K (B67) 2018; 42 Hawkes, CV, Hartley, IP, Ineson, P, Fitter, AH (B39) 2008; 14 Ghoul, M, Mitri, S (B47) 2016; 24 Barberán, A, Fernández-Guerra, A, Bohannan, BJM, Casamayor, EO (B10) 2012; 21 Alonso, A, de Celis, M, Ruiz, J, Vicente, J, Navascués, E, Acedo, A, Ortiz-Álvarez, R, Belda, I, Santos, A, Gómez-Flechoso, MÁ, Marquina, D (B28) 2019; 5 Friedman, J, Higgins, LM, Gore, J (B48) 2017; 1 Barberán, A, Bates, ST, Casamayor, EO, Fierer, N (B81) 2012; 6 Ma, A, Lu, X, Gray, C, Raybould, A, Tamaddoni-Nezhad, A, Woodward, G, Bohan, DA (B59) 2019; 3 Ortiz-Álvarez, R, Fierer, N, de los Ríos, A, Casamayor, EO, Barberán, A (B11) 2018; 12 Bahram, M, Hildebrand, F, Forslund, SK, Anderson, JL, Soudzilovskaia, NA, Bodegom, PM, Bengtsson-Palme, J, Anslan, S, Coelho, LP, Harend, H, Huerta-Cepas, J, Medema, MH, Maltz, MR, Mundra, S, Olsson, PA, Pent, M, Põlme, S, Sunagawa, S, Ryberg, M, Tedersoo, L, Bork, P (B22) 2018; 560 McCann, KS (B55) 2000; 405 Wasserman, S, Faust, K (B73) 1994 Ives, AR, Carpenter, SR (B58) 2007; 317 Nilsson, RH, Larsson, KH, Taylor, AFS, Bengtsson-Palme, J, Jeppesen, TS, Schigel, D, Kennedy, P, Picard, K, Glöckner, FO, Tedersoo, L, Saar, I, Kõljalg, U, Abarenkov, K (B66) 2019; 47 Pinto, C, Pinho, D, Sousa, S, Pinheiro, M, Egas, C, Gomes, AC (B31) 2014; 9 Warren, MS, Hill, JK, Thomas, JA, Asher, J, Fox, R, Huntley, B, Roy, DB, Telfer, MG, Jeffcoate, S, Harding, P, Jeffcoate, G, Willis, SG, Greatorex-Davies, JN, Moss, D, Thomas, CD (B60) 2001; 414 Blanchet, FG, Legendre, P, Borcard, D (B77) 2008; 89 Kibblewhite, MG, Ritz, K, Swift, MJ (B84) 2008; 363 Poisot, T, Canard, E, Mouillot, D, Mouquet, N, Gravel, D (B82) 2012; 15 Toju, H, Peay, KG, Yamamichi, M, Narisawa, K, Hiruma, K, Naito, K, Fukuda, S, Ushio, M, Nakaoka, S, Onoda, Y, Yoshida, K, Schlaeppi, K, Bai, Y, Sugiura, R, Ichihashi, Y, Minamisawa, K, Kiers, ET (B4) 2018; 4 Bödeker, ITM, Lindahl, BD, Olson, Å, Clemmensen, KE (B45) 2016; 30 Freilich, MA, Wieters, E, Broitman, BR, Marquet, PA, Navarrete, SA (B20) 2018; 99 Hartman, K, van der Heijden, MGA, Wittwer, RA, Banerjee, S, Walser, JC, Schlaeppi, K (B36) 2018; 6 Nguyen, NH, Song, Z, Bates, ST, Branco, S, Tedersoo, L, Menke, J, Schilling, JS, Kennedy, PG (B44) 2016; 20 Shearer, CA (B49) 1995; 73 Hall, EK, Bernhardt, ES, Bier, RL, Bradford, MA, Boot, CM, Cotner, JB, del Giorgio, PA, Evans, SE, Graham, EB, Jones, SE, Lennon, JT, Locey, KJ, Nemergut, D, Osborne, BB, Rocca, JD, Schimel, JP, Waldrop, MP, Wallenstein, MD (B3) 2018; 3 Tilman, D, Reich, PB, Knops, JMH (B57) 2006; 441 Cavicchioli, R, Ripple, WJ, Timmis, KN, Azam, F, Bakken, LR, Baylis, M, Behrenfeld, MJ, Boetius, A, Boyd, PW, Classen, AT, Crowther, TW, Danovaro, R, Foreman, CM, Huisman, J, Hutchins, DA, Jansson, JK, Karl, DM, Koskella, B, Mark Welch, DB, Martiny, JBH, Moran, MA, Orphan, VJ, Reay, DS, Remais, JV, Rich, VI, Singh, BK, Stein, LY, Stewart, FJ, Sullivan, MB, van Oppen, MJH, Weaver, SC, Webb, EA, Webster, NS (B83) 2019; 17 Martins, G, Vallance, J, Mercier, A, Albertin, W, Stamatopoulos, P, Rey, P, Lonvaud, A, Masneuf-Pomarède, I (B32) 2014; 177 Tedersoo, L, Bahram, M, Põlme, S, Kõljalg, U, Yorou, NS, Wijesundera, R, Ruiz, LV, Vasco-Palacios, AM, Thu, PQ, Suija, A, Smith, ME, Sharp, C, Saluveer, E, Saitta, A, Rosas, M, Riit, T, Ratkowsky, D, Pritsch, K, Põldmaa, K, Piepenbring, M, Phosri, C, Peterson, M, Parts, K, Pärtel, K, Otsing, E, Nouhra, E, Njouonkou, AL, Nilsson, RH, Morgado, LN, Mayor, J, May, TW, Majuakim, L, Lodge, DJ, Lee, S, Larsson, KH, Kohout, P, Hosaka, K, Hiiesalu, I, Henkel, TW, Harend, H, Guo, LD, Greslebin, A, Grelet, G, Geml, J, Gates, G, Dunstan, W, Dunk, C, Drenkhan, R, Dearnaley, J, De Kesel, A, Dang, T (B35) 2014; 346 Goberna, M, Montesinos-Navarro, A, Valiente-Banuet, A, Colin, Y, Gómez-Fernández, A, Donat, S, Navarro-Cano, JA, Verdú, M (B19) 2019; 19 Girvan, M, Newman, MEJ (B41) 2002; 99 Devictor, V, Julliard, R, Jiguet, F (B61) 2008; 117 B62 Solé, RV, Montoya, JM (B23) 2001; 268 B63 |
References_xml | – ident: e_1_3_2_48_2 doi: 10.1016/j.tim.2016.06.011 – ident: e_1_3_2_37_2 doi: 10.1186/s40168-017-0389-9 – ident: e_1_3_2_53_2 doi: 10.1038/s41396-018-0086-0 – ident: e_1_3_2_65_2 – ident: e_1_3_2_61_2 doi: 10.1038/35102054 – ident: e_1_3_2_28_2 doi: 10.1186/s40168-019-0758-7 – ident: e_1_3_2_16_2 doi: 10.1126/science.aap9516 – ident: e_1_3_2_41_2 doi: 10.1038/nature24621 – ident: e_1_3_2_12_2 doi: 10.1038/s41396-018-0076-2 – ident: e_1_3_2_4_2 doi: 10.1038/s41564-018-0201-z – ident: e_1_3_2_42_2 doi: 10.1073/pnas.122653799 – ident: e_1_3_2_62_2 doi: 10.1111/j.0030-1299.2008.16215.x – ident: e_1_3_2_82_2 doi: 10.1038/ismej.2011.119 – ident: e_1_3_2_50_2 doi: 10.1139/b95-386 – ident: e_1_3_2_74_2 doi: 10.1017/CBO9780511815478 – ident: e_1_3_2_30_2 doi: 10.1016/j.agee.2017.04.005 – ident: e_1_3_2_60_2 doi: 10.1038/s41559-018-0757-2 – ident: e_1_3_2_5_2 doi: 10.1038/s41477-018-0139-4 – ident: e_1_3_2_79_2 – ident: e_1_3_2_27_2 doi: 10.20870/oeno-one.2019.53.4.2470 – ident: e_1_3_2_67_2 doi: 10.1093/nar/gky1022 – ident: e_1_3_2_35_2 doi: 10.1016/j.agee.2017.05.022 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.1317377110 – ident: e_1_3_2_17_2 doi: 10.1093/nar/gkq118 – ident: e_1_3_2_29_2 doi: 10.3390/fermentation5030078 – ident: e_1_3_2_78_2 doi: 10.1890/07-0986.1 – ident: e_1_3_2_24_2 doi: 10.1098/rspb.2001.1767 – ident: e_1_3_2_34_2 doi: 10.1093/femsyr/fox092 – ident: e_1_3_2_18_2 doi: 10.3389/fmicb.2016.00649 – ident: e_1_3_2_25_2 doi: 10.1038/nclimate1368 – ident: e_1_3_2_69_2 doi: 10.1111/j.1466-8238.2012.00789.x – ident: e_1_3_2_51_2 doi: 10.15698/mic2018.05.628 – ident: e_1_3_2_55_2 doi: 10.1038/s41467-018-05516-7 – ident: e_1_3_2_81_2 doi: 10.1007/978-3-319-24277-4 – ident: e_1_3_2_63_2 – ident: e_1_3_2_85_2 doi: 10.1098/rstb.2007.2178 – ident: e_1_3_2_46_2 doi: 10.1111/1365-2435.12677 – ident: e_1_3_2_40_2 doi: 10.1111/j.1365-2486.2007.01535.x – ident: e_1_3_2_13_2 doi: 10.1086/283370 – ident: e_1_3_2_20_2 doi: 10.1111/1755-0998.13079 – ident: e_1_3_2_57_2 doi: 10.1111/j.1461-0248.2006.00963.x – ident: e_1_3_2_84_2 doi: 10.1038/s41579-019-0222-5 – ident: e_1_3_2_43_2 doi: 10.1038/30918 – ident: e_1_3_2_21_2 doi: 10.1002/ecy.2142 – ident: e_1_3_2_73_2 doi: 10.1007/11569596_31 – ident: e_1_3_2_71_2 doi: 10.1038/s41396-019-0459-z – ident: e_1_3_2_7_2 doi: 10.1016/j.geoderma.2008.08.007 – ident: e_1_3_2_38_2 – ident: e_1_3_2_33_2 doi: 10.1016/j.ijfoodmicro.2014.02.002 – ident: e_1_3_2_68_2 doi: 10.1093/femsre/fuy030 – ident: e_1_3_2_23_2 doi: 10.1038/s41586-018-0386-6 – ident: e_1_3_2_80_2 doi: 10.1093/bioinformatics/bts342 – ident: e_1_3_2_22_2 doi: 10.1038/s41396-019-0582-x – ident: e_1_3_2_75_2 doi: 10.1016/j.tree.2005.04.004 – ident: e_1_3_2_83_2 doi: 10.1111/ele.12002 – ident: e_1_3_2_56_2 doi: 10.1038/35012234 – ident: e_1_3_2_47_2 doi: 10.1126/science.aat1168 – ident: e_1_3_2_76_2 – ident: e_1_3_2_2_2 doi: 10.3389/fmicb.2018.00707 – ident: e_1_3_2_58_2 doi: 10.1038/nature04742 – ident: e_1_3_2_8_2 doi: 10.1016/j.ejsobi.2012.01.009 – ident: e_1_3_2_14_2 doi: 10.1038/ismej.2009.88 – ident: e_1_3_2_52_2 doi: 10.1126/science.7268409 – ident: e_1_3_2_66_2 doi: 10.7717/peerj.2584 – ident: e_1_3_2_10_2 doi: 10.1007/s00374-017-1248-3 – ident: e_1_3_2_3_2 doi: 10.1111/j.1574-6941.2007.00375.x – ident: e_1_3_2_64_2 – ident: e_1_3_2_72_2 – ident: e_1_3_2_19_2 doi: 10.1111/oik.04428 – ident: e_1_3_2_26_2 doi: 10.1111/j.1365-2486.2010.02300.x – ident: e_1_3_2_49_2 doi: 10.1038/s41559-017-0109 – ident: e_1_3_2_32_2 doi: 10.1371/journal.pone.0085622 – ident: e_1_3_2_39_2 doi: 10.1371/journal.pcbi.1002606 – ident: e_1_3_2_11_2 doi: 10.1111/j.1365-294X.2011.05383.x – ident: e_1_3_2_6_2 doi: 10.1016/j.agee.2004.02.002 – ident: e_1_3_2_9_2 doi: 10.1016/j.ecolind.2017.11.030 – ident: e_1_3_2_15_2 doi: 10.1111/ele.13525 – ident: e_1_3_2_54_2 doi: 10.1038/s41396-019-0383-2 – ident: e_1_3_2_36_2 doi: 10.1126/science.1256688 – ident: e_1_3_2_70_2 doi: 10.12688/f1000research.9050.2 – ident: e_1_3_2_44_2 doi: 10.1128/AEM.03660-14 – ident: e_1_3_2_59_2 doi: 10.1126/science.1133258 – ident: e_1_3_2_45_2 doi: 10.1016/j.funeco.2015.06.006 – ident: e_1_3_2_77_2 doi: 10.1609/icwsm.v3i1.13937 – volume: 3733 start-page: 284 year: 2005 end-page: 293 ident: B72 article-title: Computing communities in large networks using random walks publication-title: Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science ;Springer ;Berlin, Germany – volume: 441 start-page: 629 year: 2006 end-page: 632 ident: B57 article-title: Biodiversity and ecosystem stability in a decade-long grassland experiment publication-title: Nature doi: 10.1038/nature04742 – ident: B37 article-title: Willer H , Lernoud J . 2019 . The World of Organic Agriculture: statistics and emerging trends 2019. Research Institute of Organic Agriculture (FiBL), Brussels, Belgium. https://www.organic-world.net/yearbook/yearbook-2019.html . – volume: 268 start-page: 2039 year: 2001 end-page: 2045 ident: B23 article-title: Complexity and fragility in ecological networks publication-title: Proc Biol Sci doi: 10.1098/rspb.2001.1767 – volume: 105 start-page: 323 year: 2005 end-page: 333 ident: B5 article-title: Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2004.02.002 – volume: 346 start-page: 1256688 year: 2014 ident: B35 article-title: Global diversity and geography of soil fungi publication-title: Science doi: 10.1126/science.1256688 – volume: 38 start-page: 3857 year: 2010 end-page: 3868 ident: B16 article-title: The large-scale organization of the bacterial network of ecological co-occurrence interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq118 – volume: 13 start-page: 1722 year: 2019 end-page: 1736 ident: B53 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: ISME J doi: 10.1038/s41396-019-0383-2 – ident: B71 article-title: Csardi G . 2008 . Large-scale network analysis. Physics (College Park, Md). https://vdocuments.mx/large-scale-network-analysis-large-scale-network-analysis-g-abor-cs-ardi-csardirmkikfkihu.html . – volume: 14 start-page: 999 year: 2020 end-page: 1014 ident: B21 article-title: Niche differentiation is spatially and temporally regulated in the rhizosphere publication-title: ISME J doi: 10.1038/s41396-019-0582-x – volume: 54 start-page: 1 year: 2018 end-page: 10 ident: B9 article-title: Microbial indicators for soil quality publication-title: Biol Fertil Soils doi: 10.1007/s00374-017-1248-3 – volume: 359 start-page: 320 year: 2018 end-page: 325 ident: B15 article-title: A global atlas of the dominant bacteria found in soil publication-title: Science doi: 10.1126/science.aap9516 – volume: 317 start-page: 58 year: 2007 end-page: 62 ident: B58 article-title: Stability and diversity of ecosystems publication-title: Science doi: 10.1126/science.1133258 – volume: 89 start-page: 2623 year: 2008 end-page: 2632 ident: B77 article-title: Forward selection of explanatory variables publication-title: Ecology doi: 10.1890/07-0986.1 – volume: 6 start-page: 343 year: 2012 end-page: 351 ident: B81 article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities publication-title: ISME J doi: 10.1038/ismej.2011.119 – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: B42 article-title: Collective dynamics of “small-world” networks publication-title: Nature doi: 10.1038/30918 – volume: 3 start-page: 977 year: 2018 end-page: 982 ident: B3 article-title: Understanding how microbiomes influence the systems they inhabit publication-title: Nat Microbiol doi: 10.1038/s41564-018-0201-z – volume: 7 start-page: 140 year: 2019 ident: B27 article-title: Microbiome of vineyard soils is shaped by geography and management publication-title: Microbiome doi: 10.1186/s40168-019-0758-7 – volume: 15 start-page: 1353 year: 2012 end-page: 1361 ident: B82 article-title: The dissimilarity of species interaction networks publication-title: Ecol Lett doi: 10.1111/ele.12002 – volume: 363 start-page: 685 year: 2008 end-page: 701 ident: B84 article-title: Soil health in agricultural systems publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2007.2178 – volume: 111 start-page: e139 year: 2014 end-page: e148 ident: B30 article-title: Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1317377110 – volume: 414 start-page: 65 year: 2001 end-page: 69 ident: B60 article-title: Rapid responses of British butterflies to opposing forces of climate and habitat change publication-title: Nature doi: 10.1038/35102054 – volume: 17 start-page: 569 year: 2019 end-page: 586 ident: B83 article-title: Scientists’ warning to humanity: microorganisms and climate change publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0222-5 – volume: 20 start-page: 241 year: 2016 end-page: 248 ident: B44 article-title: FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol doi: 10.1016/j.funeco.2015.06.006 – volume: 405 start-page: 228 year: 2000 end-page: 233 ident: B55 article-title: The diversity–stability debate publication-title: Nature doi: 10.1038/35012234 – ident: B75 article-title: Biome Makers, Inc . 2020 . Methods and systems for evaluating ecological disturbance of an agricultural microbiome based upon network properties of organism communities. International Application Number, patent PCT/US20/64668. International filing date, 11-12-2020. – volume: 551 start-page: 457 year: 2017 end-page: 463 ident: B40 article-title: A communal catalogue reveals Earth’s multiscale microbial diversity publication-title: Nature doi: 10.1038/nature24621 – volume: 47 start-page: D259 year: 2019 end-page: D264 ident: B66 article-title: The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1022 – year: 1994 ident: B73 publication-title: Social network analysis: methods and applications. ;Cambridge University Press ;New York, NY – volume: 17 start-page: fox092 year: 2017 ident: B33 article-title: The sensitivity of yeasts and yeasts-like fungi to copper and sulfur could explain lower yeast biodiversity in organic vineyards publication-title: FEMS Yeast Res doi: 10.1093/femsyr/fox092 – volume: 81 start-page: 2090 year: 2015 end-page: 2097 ident: B43 article-title: Resistant microbial cooccurrence patterns inferred by network topology publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03660-14 – ident: B64 article-title: Becares AA , Fernandez AF . 2016 . Microbiome based identification, monitoring and enhancement of fermentation processes and products. International Application Number, patent PCT/US2016/064984. International filing date, 05-12-2016. – volume: 14 start-page: 1181 year: 2008 end-page: 1190 ident: B39 article-title: Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2007.01535.x – volume: 147 start-page: 159 year: 2008 end-page: 171 ident: B6 article-title: Past, present and future of soil quality indices: a biological perspective publication-title: Geoderma doi: 10.1016/j.geoderma.2008.08.007 – volume: 8 year: 2012 ident: B38 article-title: Microbial co-occurrence relationships in the human microbiome publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002606 – volume: 99 start-page: 7821 year: 2002 end-page: 7826 ident: B41 article-title: Community structure in social and biological networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.122653799 – volume: 21 start-page: 1909 year: 2012 end-page: 1917 ident: B10 article-title: Exploration of community traits as ecological markers in microbial metagenomes publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2011.05383.x – volume: 42 start-page: 761 year: 2018 end-page: 780 ident: B67 article-title: From hairballs to hypotheses–biological insights from microbial networks publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuy030 – volume: 19 start-page: 1552 year: 2019 end-page: 1564 ident: B19 article-title: Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13079 – ident: B63 article-title: European Commission . 2008 . Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02008R0889-20210101 . – volume: 4 year: 2016 ident: B65 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 3 start-page: 1223 year: 2009 end-page: 1230 ident: B13 article-title: What is microbial community ecology? publication-title: ISME J doi: 10.1038/ismej.2009.88 – volume: 361 start-page: 469 year: 2018 end-page: 474 ident: B46 article-title: Emergent simplicity in microbial community assembly publication-title: Science doi: 10.1126/science.aat1168 – volume: 5 start-page: 215 year: 2018 end-page: 219 ident: B50 article-title: Microbial wars: competition in ecological niches and within the microbiome publication-title: Microb Cell doi: 10.15698/mic2018.05.628 – year: 2016 ident: B80 publication-title: ggplot 2: elegant graphics for data analysis ;2nd ed ;Springer ;Cham, Switzerland – volume: 62 start-page: 142 year: 2007 end-page: 160 ident: B2 article-title: Multivariate analyses in microbial ecology publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00375.x – volume: 4 start-page: 247 year: 2018 end-page: 257 ident: B4 article-title: Core microbiomes for sustainable agroecosystems publication-title: Nat Plants doi: 10.1038/s41477-018-0139-4 – volume: 246 start-page: 306 year: 2017 end-page: 313 ident: B34 article-title: Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.05.022 – volume: 177 start-page: 21 year: 2014 end-page: 28 ident: B32 article-title: Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2014.02.002 – volume: 5 start-page: 1519 year: 2016 ident: B69 article-title: CoNet app: inference of biological association networks using Cytoscape publication-title: F1000Res doi: 10.12688/f1000research.9050.2 – volume: 20 start-page: 345 year: 2005 end-page: 353 ident: B74 article-title: Network thinking in ecology and evolution publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2005.04.004 – volume: 12 start-page: 1658 year: 2018 end-page: 1667 ident: B11 article-title: Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession publication-title: ISME J doi: 10.1038/s41396-018-0076-2 – ident: B76 article-title: Bastian M , Heymann S , Jacomy M . 2009 . Gephi: an open source software for exploring and manipulating networks, p 361–362. Proceedings of the Third International ICWSM Conference. https://gephi.org/publications/gephi-bastian-feb09.pdf . – volume: 9 start-page: 707 year: 2018 ident: B1 article-title: Fungal biodiversity and their role in soil health publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00707 – ident: B78 article-title: Oksanen J , Blanchet FG , Friendly M , Kindt R , Legendre P , McGlinn D , Minchin PR , O’Hara RB , Simpson GL , Solymos P , Stevens MHH , Szoecs E , Wagner H . 2017 . vegan: community ecology package. R package version 24-5. – volume: 127 start-page: 5 year: 2018 end-page: 22 ident: B18 article-title: Multiple interactions networks: towards more realistic descriptions of the web of life publication-title: Oikos doi: 10.1111/oik.04428 – volume: 9 start-page: 1146 year: 2006 end-page: 1156 ident: B56 article-title: Quantifying the evidence for biodiversity effects on ecosystem functioning and services publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2006.00963.x – volume: 12 start-page: 1758 year: 2018 end-page: 1767 ident: B52 article-title: Competition-colonization tradeoffs structure fungal diversity publication-title: ISME J doi: 10.1038/s41396-018-0086-0 – volume: 28 start-page: 2106 year: 2012 end-page: 2113 ident: B79 article-title: Associating microbiome composition with environmental covariates using generalized UniFrac distances publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts342 – volume: 560 start-page: 233 year: 2018 end-page: 237 ident: B22 article-title: Structure and function of the global topsoil microbiome publication-title: Nature doi: 10.1038/s41586-018-0386-6 – volume: 113 start-page: 145 year: 1979 end-page: 148 ident: B12 article-title: A comment on the use of the term emergent properties publication-title: Am Nat doi: 10.1086/283370 – volume: 9 start-page: 3033 year: 2018 ident: B54 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nat Commun doi: 10.1038/s41467-018-05516-7 – volume: 1 year: 2017 ident: B48 article-title: Community structure follows simple assembly rules in microbial microcosms publication-title: Nat Ecol Evol doi: 10.1038/s41559-017-0109 – volume: 17 start-page: 1475 year: 2011 end-page: 1486 ident: B25 article-title: Drought-resistant fungi control soil organic matter decomposition and its response to temperature publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2010.02300.x – ident: B62 article-title: USDA. 2016 . Organic production and handling standards. US Department of Agriculture, Washington, DC. https://www.ams.usda.gov/sites/default/files/media/OrganicProductionandHandlingStandards.pdf . – volume: 23 start-page: 1050 year: 2020 end-page: 1063 ident: B14 article-title: Co-occurrence is not evidence of ecological interactions publication-title: Ecol Lett doi: 10.1111/ele.13525 – volume: 85 start-page: 773 year: 2018 end-page: 780 ident: B8 article-title: Soil Biological Quality index (QBS-ar): 15 years of application at global scale publication-title: Ecol Indic doi: 10.1016/j.ecolind.2017.11.030 – volume: 7 start-page: 649 year: 2016 ident: B17 article-title: Co-occurrence analysis of microbial taxa in the Atlantic Ocean reveals high connectivity in the free-living bacterioplankton publication-title: Front Microbiol doi: 10.3389/fmicb.2016.00649 – volume: 73 start-page: 1259 year: 1995 end-page: 1264 ident: B49 article-title: Fungal competition publication-title: Can J Bot doi: 10.1139/b95-386 – volume: 53 start-page: 4 year: 2019 ident: B26 article-title: Conversion to organic and biodynamic viticultural practices: impact on soil, grapevine development and grape quality publication-title: OENO One doi: 10.20870/oeno-one.2019.53.4.2470 – volume: 22 start-page: 252 year: 2013 end-page: 260 ident: B68 article-title: A probabilistic model for analysing species co-occurrence publication-title: Glob Ecol Biogeogr doi: 10.1111/j.1466-8238.2012.00789.x – volume: 13 start-page: 2647 year: 2019 end-page: 2655 ident: B70 article-title: Use and abuse of correlation analyses in microbial ecology publication-title: ISME J doi: 10.1038/s41396-019-0459-z – volume: 6 start-page: 14 year: 2018 ident: B36 article-title: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming publication-title: Microbiome doi: 10.1186/s40168-017-0389-9 – volume: 24 start-page: 833 year: 2016 end-page: 845 ident: B47 article-title: The ecology and evolution of microbial competition publication-title: Trends Microbiol doi: 10.1016/j.tim.2016.06.011 – volume: 213 start-page: 972 year: 1981 end-page: 979 ident: B51 article-title: Microbial competition publication-title: Science doi: 10.1126/science.7268409 – volume: 2 start-page: 276 year: 2012 end-page: 280 ident: B24 article-title: Land use alters the resistance and resilience of soil food webs to drought publication-title: Nat Clim Chang doi: 10.1038/nclimate1368 – volume: 9 year: 2014 ident: B31 article-title: Unravelling the diversity of grapevine microbiome publication-title: PLoS One doi: 10.1371/journal.pone.0085622 – volume: 5 start-page: 78 year: 2019 ident: B28 article-title: Looking at the origin: some insights into the general and fermentative microbiota of vineyard soils publication-title: Fermentation doi: 10.3390/fermentation5030078 – volume: 243 start-page: 19 year: 2017 end-page: 26 ident: B29 article-title: Effects of organic and conventional crop management on vineyard biodiversity publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.04.005 – volume: 99 start-page: 690 year: 2018 end-page: 699 ident: B20 article-title: Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? publication-title: Ecology doi: 10.1002/ecy.2142 – volume: 30 start-page: 1967 year: 2016 end-page: 1978 ident: B45 article-title: Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently publication-title: Funct Ecol doi: 10.1111/1365-2435.12677 – volume: 49 start-page: 80 year: 2012 end-page: 84 ident: B7 article-title: Soil biodiversity and bioindication: from complex thinking to simple acting publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2012.01.009 – volume: 3 start-page: 260 year: 2019 end-page: 264 ident: B59 article-title: Ecological networks reveal resilience of agro-ecosystems to changes in farming management publication-title: Nat Ecol Evol doi: 10.1038/s41559-018-0757-2 – volume: 117 start-page: 507 year: 2008 end-page: 514 ident: B61 article-title: Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation publication-title: Oikos doi: 10.1111/j.0030-1299.2008.16215.x |
SSID | ssj0001637129 |
Score | 2.2952237 |
Snippet | Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes... Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Research Article |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA7HHoJfxHfXU4kgCELPNpm0zcf1dDl8OQ915b6FJE114a57bHeF-wX-bWfadL2V4_BToUmakpnJPG1mnmHsBXqU2svgk6ogUu3KuaSs0fAqW6rcW585TdnIn47ywxm8P1EnOywfcmHiCrb7tj3rDvI3li3K12eRxXu_I6pLKH98VwkN6YjtTiazzx_-_l3JZYGeLB5jXjkW92CcQ2z5o462_yqs-W_I5CUfNL3NbkXwyCe9tO-wndDcZTf6cpIX99jvoz6mmx_TH_YlUaXyRc0_krviU7RqvMSEkK7tS_iFMJEjBORDvQRUp7nnb1H266UjheAHl8Kt6WlTS9EzP_hxTK9q-bzh3xGrXqCu8a-L-Wl7n82m774dHCax0EJiVQqrREBdpE4FYpaxpXBZ4S1luCKWCD63JQDUlbQInSCAgsw6KcE7gXjJWeeEfMBGzaIJjxgHr4tU19IhEgCo6JzWpqr0zkmbBa3H7CWtuhnkbLqPEFGaQT6mk48R2Zilg2CMj3zlVDbj9LohrzZDznuyjus6vyFpbzoSz3Z3A7XORLM10us6zWot0GeAlKmtavQQkIGF4JUqxuz5oCsG7ZIOW2wTFuvWCAS2kqolwpg97HVnM5WUGooyxdHFllZtvct2SzP_2XF_49egxi348X8v4x67KSgMh2I04QkbrZbr8BRx1Mo9i0bzB6HaHn4 priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RaxQxEA7lQOiLWK16WiWFgiCs3U1mbzePWj1KaUtRK30LSTapB-2e3N4J_QX-bWeyueNOpL74dHC7uQuZb3a-bGa-YewAI0pw0rusqUhUu7E2qwM6XmPqcuSMK6yiauSz89HxJZxclVdrrb4oJ6yXB-4X7lA6FfIiKIFeC7j5Nk1AH4UCDHhXlrGOHGPe2mYqvl0ZyQojWTrGxGfw4W1SAH8XRe4y0gYdmO5WbMSjKNv_N675Z8rkWgwaP2IPE3nk7_tJ77At3z5mD_p2kndP2K_zPqebX9Ab9hlJpfJp4KcUrvgYvRo_UkFIvPbZ_0SayJEC8mW_BITTxPGPaPvFzBIg-NFaujX92thQ9sw1v0jlVR2ftPwbctU7xBr_Mp3cdLvscvzp69FxlhotZKbMYZ4JCFVuS0_KMqYWtqicoQpXXFfvRqYGgNBIg9QJPJRQGCslOCuQL1ljrZBP2aCdtv454-BUlasgLTIBgIbOaU1e1s5aaQqv1JC9oVXXyVM6HTchotZL--hoHy2KIcuXhtEu6ZVT24yb-4a8XQ350Yt13HfzB7L26kbS2Y5fIPp0Qp_-F_qGbH-JFY1-SYctpvXTRacFEltJ3RJhyJ712Fn9lZQKqjrH0dUGqjbmsnmlnXyP2t-4G1T4CH7xPyb_km0LytCh9E3YY4P5bOFfIcWa29fRm34DwPcmHg priority: 102 providerName: Directory of Open Access Journals |
Title | Network Properties of Local Fungal Communities Reveal the Anthropogenic Disturbance Consequences of Farming Practices in Vineyard Soils |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33947807 https://journals.asm.org/doi/10.1128/mSystems.00344-21 https://www.proquest.com/docview/2522393694 https://pubmed.ncbi.nlm.nih.gov/PMC8269225 https://doaj.org/article/3c9f01f927624330adf538414a4ec557 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXGJiReEN-Uj8pISEhIGYnt1PEDQt1YNQEr1aCob5HtOKNSl0DSIvoL-Nvc6yTViqqJp0iJnUTxubnH9r3nEvISPEpuubNBJlFUOzMmSHIwvEwn8cBqGxmF2chn48HpVHyYxbM90pW3aj9gvXNqh_WkptXi8PfP9Tsw-LdNAkzy5rIV9z70-nUBppUfgGOSaKdnLdv3Sy4DLiNft4xxqQJgQrLd59x5F_hJ6_qSbTksr-u_i4z-G1N5xUmN7pDbLbukwwYOd8meK-6Rm029yfV98mfcBH3TCS7BV6ilSsucfkJ_Rkdg9nBoM0b8tXP3C3gkBY5Iu4IKgLe5pe8BHKvKIGLo8ZV4bLzbSGN4zQWdtPlXNZ0X9BuQ2TWAkX4p54v6AZmOTr4enwZtJYZAx6FYBkzkMjSxQ-kZnTATSasxBRbIhrMDnQgh8oxr4FbCiVhE2nAurGFAqIw2hvGHZL8oC_eYUGGVDFXODVAFITLcyNVhnFhjuI6cUj3yCr962iEh9bMUlqTd-KR-fFIW9UjYDUxqW0FzrKuxuK7L602XH42ax3WNj3C0Nw1RiNufKKuLtLXrlFuVh1GuGDgVwXmosxxciIiEFs7GseyRFx1WUjBc3I3RhStXdcqA-XIspyh65FGDnc2jOFdCJiH0lluo2nqX7SvF_LsXB4fpooJ_9JP_eO5TcothhA6Gb4pnZH9ZrdxzoFhL0yc35Ez2ycFwOP38EY5HJ-PJed8vWPS9Uf0F-FcsHg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQJgQviPFrBQZGQkJCykjsS5M8dhtVYV2ZYEV7s2zHhqIuRU2LtL-Af5u7xC0rmiaeIiVxEvnufF98d98x9ho9irfS2ajMiFS7NCbKPRpeqfO0a7VNTEHVyCej7mAMH8_T85BVSbUwP6gv77Te1_VFE8cnw6aN6NCPMH93EZi89xuyuohqyLcpdojavd3rjT8d_91h6coMvVkIZV47FtdhfJHY8EkNdf91ePPftMkrfqh_n90LAJL3WonvsFuuesButy0lLx-y36M2r5uf0i77nOhS-czzIbks3kfLxkMoCmmufXa_ECpyhIF81TMBVWpi-RHKfzk3pBT88ErKNT2trymD5hs_DSVWNZ9U_Cvi1UvUN_5lNpnWj9i4__7scBCFZguRTmNYRAJ8FpvUEbuMzoVJMqupyhXxhLNdnQOAL6VG-AQOUki0kRKsEYiZjDZGyMdsq5pVbpdxsEUWF14aRAMAJcVqdZzm1hipE1cUHfaGZl0Fa6lV8yMicrWSj2rko0TSYfFKMMoGznJqnTG9acjb9ZCfLWHHTTcfkLTXNxLXdnMCVU8F01XSFj5OfCHQb4CUsS49eglIQIOzaZp12KuVrii0TQq46MrNlrUSCG4ldUyEDnvS6s76VVIWkOUxjs42tGrjWzavVJPvDf83_hEWuAw__e9pfMnuDM5Ohmr4YXT8jN0VlJZDOZvwnG0t5ku3h7hqYV4EA_oDmSIi4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELbQJhBfEO9048VISEhIGYl9aZKPZSMabJQKKNo3y3ZsqLSlU9Mi7Rfwt7lLnLKiaeJTpMROIt-d70nu7jnGXqFH8VY6G1UZkWpXxkS5R8OrdJ4OrbaJKaga-dN4eDiFjyfpSciqpFqYsILNnm7O2kA-WfZ55UM_wvztWWDy3mvJ6iKqId-mYBXq-PZoNP189PcPy1Bm6M1CKPPKubgP43PEhk9qqfuvwpv_pk1e8kPlXXYnAEg-6iR-j91w9X12s2spefGA_R53ed18Qn_ZF0SXyueeH5PL4iVaNh5CUUh77Yv7hVCRIwzkfc8EVKmZ5Qco_9XCkFLw_Usp13S3UlMGzQ8-CSVWDZ_V_Dvi1QvUN_51PjttHrJp-f7b_mEUmi1EOo1hGQnwWWxSR-wyOhcmyaymKlfEE84OdQ4AvpIa4RM4SCHRRkqwRiBmMtoYIR-xrXpeuyeMgy2yuPDSIBoAqChWq-M0t8ZInbiiGLDXtOqql7VqP0RErnr5qFY-SiQDFveCUTZwllPrjNPrprxZTznvCDuuG_yOpL0eSFzb7QnUPBVMV0lb-DjxhUC_AVLGuvLoJSABDc6maTZgL3tdUWibFHDRtZuvGiUQ3ErqmAgD9rjTnfWjpCwgy2OcnW1o1ca7bF6pZz9b_m_8IixwG97572V8wW5NDkp1_GF8tMtuC8rKoZRNeMq2louVe4awammeB_v5A1eIIn0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Properties+of+Local+Fungal+Communities+Reveal+the+Anthropogenic+Disturbance+Consequences+of+Farming+Practices+in+Vineyard+Soils&rft.jtitle=mSystems&rft.au=Ortiz-%C3%81lvarez%2C+R%C3%BCdiger&rft.au=Ortega-Arranz%2C+H%C3%A9ctor&rft.au=Ontiveros%2C+Vicente+J&rft.au=de+Celis%2C+Miguel&rft.date=2021-05-04&rft.issn=2379-5077&rft.eissn=2379-5077&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1128%2FmSystems.00344-21&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon |