Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects
This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be app...
Saved in:
Published in | Microbiology spectrum Vol. 10; no. 1; p. e0216921 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
23.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study is the primary initiative to identify
Bacillus velezensis
HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and bio fungicide inoculum to improve agriculture productivity.
Bacillus velezensis
HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a
Bacillus velezensis
strain by core genome analysis between HNA3 and 74 previously defined
Bacillus
strains in the evolutionary tree. A comparative genomic analysis among
Bacillus velezensis
HNA3,
Bacillus velezensis
FZB42,
Bacillus amyloliquefaciens
DSM7, and
Bacillus subtilis
168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture.
IMPORTANCE
This study is the primary initiative to identify
Bacillus velezensis
HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species
B. velezensis
FZB42,
B. amyloliquefaciens
DSM7, and
B. subtilis
168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the
Bacillus
genus, which allows developing more effective eco-friendly resources for agriculture and separation of
Bacillus velezensis
as distinct species in the phylogenetic tree. |
---|---|
AbstractList | This study is the primary initiative to identify
Bacillus velezensis
HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and bio fungicide inoculum to improve agriculture productivity.
Bacillus velezensis
HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a
Bacillus velezensis
strain by core genome analysis between HNA3 and 74 previously defined
Bacillus
strains in the evolutionary tree. A comparative genomic analysis among
Bacillus velezensis
HNA3,
Bacillus velezensis
FZB42,
Bacillus amyloliquefaciens
DSM7, and
Bacillus subtilis
168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture.
IMPORTANCE
This study is the primary initiative to identify
Bacillus velezensis
HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species
B. velezensis
FZB42,
B. amyloliquefaciens
DSM7, and
B. subtilis
168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the
Bacillus
genus, which allows developing more effective eco-friendly resources for agriculture and separation of
Bacillus velezensis
as distinct species in the phylogenetic tree. ABSTRACT Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree. Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree. Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree. Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree. Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree. |
Author | Zaid, Doaa S. Hu, Chang Li, Ziqi Cai, Shuyun Li, Youguo |
Author_xml | – sequence: 1 givenname: Doaa S. surname: Zaid fullname: Zaid, Doaa S. organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China, Desert Research Center, Arab, Republic of Egypt – sequence: 2 givenname: Shuyun surname: Cai fullname: Cai, Shuyun organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China – sequence: 3 givenname: Chang surname: Hu fullname: Hu, Chang organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China – sequence: 4 givenname: Ziqi surname: Li fullname: Li, Ziqi organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China – sequence: 5 givenname: Youguo orcidid: 0000-0003-3123-4873 surname: Li fullname: Li, Youguo organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35107331$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vEzEQXaEiWkp_ABfkI5cEf-yudy9IaVTSSBVECM6W4x0njrx2sL1B4d_wT3GStmo59OTR-L2nN2_mbXHmvIOieE_wmBDafIpbUCkM_RhTUrcjSl4VF7mqRrhs-dmT-ry4inGDMSYEV7Sib4pzVhHMGSMXxd-p77cyyGR2gGbgfA9o4qTdRxPRd9iBtBEt1nvrV-AgGYXmHbhk0h55ja6lMtYOEe3Awh9wB9Lt1wlD0nUntQMht1frFJFxyaN5LhZWuoRmwf9Oa7QIvvfJeHckXRuvvEvBW3SjdZ4wvite62wCru7fy-Lnl5sf09vR3bfZfDq5G8kKl2lEcS2XjQSCVVNrVbNOkUpDy9sSqGo4o0y3smOUgsakbjhQQiWnJWt1o2XDLov5SbfzciO2wfQy7IWXRhwbPqyEDDkACyLn2GhGGFdVW0rKW9LIEsiSk5qRssZZ6_NJazsse-hUTixI-0z0-Y8za7HyO9E0uGXlQeDjvUDwvwaISfQmKrA5OPBDFLSmZVsxxmmGjk9QGXsqNn4IeX0xexSHMxEPZyKOZyIoyYQPT809uno4igwgJ4AKPsYA-hHykij_j6NMkoe15vmMfYH5D3EK4lA |
CitedBy_id | crossref_primary_10_3390_microorganisms11061523 crossref_primary_10_1016_j_pmpp_2024_102317 crossref_primary_10_3390_agronomy13030840 crossref_primary_10_3389_fcimb_2023_1175446 crossref_primary_10_4014_jmb_2310_10005 crossref_primary_10_1128_spectrum_03264_23 crossref_primary_10_1038_s41598_022_19515_8 crossref_primary_10_3390_ijms26010336 crossref_primary_10_5423_RPD_2023_29_4_390 crossref_primary_10_3390_microorganisms12050921 crossref_primary_10_1155_2024_8846747 crossref_primary_10_1186_s12866_024_03282_9 crossref_primary_10_3389_fpls_2025_1517157 crossref_primary_10_3389_fmicb_2024_1361961 crossref_primary_10_1007_s42729_024_01707_y crossref_primary_10_1016_j_apsoil_2024_105772 crossref_primary_10_3390_metabo12050397 crossref_primary_10_1016_j_cpb_2023_100318 crossref_primary_10_1007_s00253_023_12651_9 crossref_primary_10_1016_j_jksus_2023_102954 crossref_primary_10_1007_s11274_024_03903_5 crossref_primary_10_1038_s41598_024_63756_8 crossref_primary_10_1021_acs_jafc_4c04726 crossref_primary_10_12688_f1000research_160546_1 crossref_primary_10_1016_j_pestbp_2024_106094 crossref_primary_10_1128_mra_00551_22 crossref_primary_10_1093_femsec_fiad054 crossref_primary_10_1186_s12870_024_05538_y crossref_primary_10_1007_s00253_024_13255_7 crossref_primary_10_1016_j_clet_2024_100845 crossref_primary_10_3389_fmicb_2022_1035748 crossref_primary_10_1016_j_biotechadv_2023_108303 crossref_primary_10_3390_fishes9010007 crossref_primary_10_1080_01140671_2022_2118320 crossref_primary_10_1128_spectrum_05007_22 crossref_primary_10_1016_j_microb_2024_100109 crossref_primary_10_3390_agronomy14061135 crossref_primary_10_1186_s13568_023_01514_1 crossref_primary_10_1016_j_hpj_2024_09_009 crossref_primary_10_1007_s12602_024_10329_w crossref_primary_10_3390_pathogens11101195 crossref_primary_10_1016_j_pmpp_2024_102427 crossref_primary_10_3390_genes15121588 crossref_primary_10_3389_fmicb_2023_1146331 crossref_primary_10_3390_microorganisms12081533 crossref_primary_10_1128_spectrum_00607_23 crossref_primary_10_1128_spectrum_00519_23 crossref_primary_10_1016_j_biocontrol_2023_105180 crossref_primary_10_3389_fpls_2023_1141538 |
Cites_doi | 10.1021/acschembio.7b00874 10.3389/fmicb.2019.02610 10.1038/s41467-018-07641-9 10.3389/fmicb.2019.02889 10.3389/fpls.2020.01028 10.1016/j.fm.2018.09.001 10.1186/1471-2229-14-51 10.1002/mbo3.794 10.1007/s10482-017-0874-y 10.1371/journal.pone.0164656 10.1099/00207713-30-1-225 10.1111/tpj.14781 10.1128/MMBR.66.3.506-577.2002 10.1016/j.biocontrol.2016.03.010 10.2298/HEMIND190214014S 10.3934/bioeng.2015.3.183 10.1038/286885a0 10.1016/j.nbt.2015.01.006 10.1016/j.ijbiomac.2017.12.090 10.1074/jbc.RA120.014555 10.1016/S2095-3119(14)60980-1 10.1099/ijsem.0.000858 10.1093/nar/gky066 10.1186/1471-2164-14-271 10.1073/pnas.0610503104 10.1111/1462-2920.12222 10.1099/ijs.0.023267-0 10.3390/ijms20061386 10.1590/s1415-47572012000600020 10.1099/ijs.0.000226 10.1007/s13205-020-2165-y 10.1007/s12010-018-2874-4 10.1016/j.btre.2019.e00406 10.1002/jobm.201600588 10.1186/s12866-019-1536-1 10.1016/j.tim.2020.03.016 10.1128/jb.172.1.389-396.1990 10.1093/bioinformatics/bti553 10.1111/j.1365-2672.2009.04438.x 10.1046/j.1444-2906.2002.00443.x 10.1094/MPMI.2000.13.11.1228 10.3389/fmicb.2020.00752 10.4014/jmb.1901.01040 10.7164/antibiotics.39.888 10.1093/nar/gkm160 10.1007/s11104-015-2743-7 10.3389/fmicb.2020.574550 10.1007/s11104-013-1956-x 10.1074/jbc.M405464200 10.1016/j.micres.2020.126439 10.3389/fpls.2018.01473 10.1186/s12864-015-1825-5 10.1128/JB.184.1.290-301.2002 10.1094/MPMI-20-6-0619 10.1099/ijs.0.009126-0 10.1186/1471-2148-10-61 10.1038/srep34768 10.35118/apjmbb.2020.028.2.02 10.1093/bib/bbw019 10.1128/jb.177.1.200-205.1995 10.1128/genomeA.01312-17 10.1007/s13205-018-1270-7 10.1093/nar/gkv1103 10.1038/s41598-018-22782-z 10.1094/MPMI-01-14-0010-R 10.1093/nar/gkz310 10.1094/MPMI-03-15-0066-R 10.3390/molecules24061046 10.4014/jmb.1611.11057 10.1073/pnas.95.16.9687 10.1111/j.1462-2920.2011.02542.x 10.1023/A:1020561122764 10.1073/pnas.1414272112 10.1094/MPMI-18-0742 10.1007/s12275-021-1161-1 10.3923/pjbs.2020.1113.1121 10.1016/j.scitotenv.2020.140682 10.1007/s11104-009-9991-3 10.1007/s00394-017-1445-8 10.1186/s13068-020-1671-9 10.1371/journal.pone.0035784 10.1080/23311932.2015.1127500 10.1186/s13568-020-01101-8 10.1093/jxb/eri205 10.1007/s11274-015-1985-0 10.1016/0003-9861(60)90169-7 10.1093/nar/gks406 10.1099/13500872-142-8-2041 10.1007/s00248-019-01455-y 10.1073/pnas.1304235110 10.1021/bi00841a016 10.1094/PHYTO.2004.94.11.1245 10.1046/j.1365-313x.2000.00883.x 10.1128/JB.01474-14 10.3390/microorganisms9091924 10.1038/srep24856 10.1093/nar/gkn663 10.1099/00221287-26-3-521 10.1099/00221287-137-10-2339 10.1387/ijdb.082820mg 10.3390/microorganisms8050678 10.1128/JB.00052-06 10.1186/gb-2000-1-5-research0009 10.1186/1471-2164-12-402 10.3389/fsufs.2020.618230 10.1016/j.micres.2016.12.007 10.1016/j.procbio.2011.07.001 10.1038/nrmicro2259 10.1099/00221287-148-3-815 10.1128/genomeA.00654-16 10.1128/AEM.71.8.4577-4584.2005 10.1073/pnas.1321152111 10.1093/molbev/msu300 10.1002/9781119246329.ch4 10.1016/j.cbpa.2005.08.001 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Zaid et al. Copyright © 2022 Zaid et al. 2022 Zaid et al. |
Copyright_xml | – notice: Copyright © 2022 Zaid et al. – notice: Copyright © 2022 Zaid et al. 2022 Zaid et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/spectrum.02169-21 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2165-0497 |
Editor | Gralnick, Jeffrey A |
Editor_xml | – sequence: 1 givenname: Jeffrey A surname: Gralnick fullname: Gralnick, Jeffrey A |
ExternalDocumentID | oai_doaj_org_article_1058f3137c594a27918a4e1b71631460 PMC8809340 02169-21 35107331 10_1128_spectrum_02169_21 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: MOST | National Key Research and Development Program of China (NKRDPC) grantid: 2018YFD0201006 funderid: https://doi.org/10.13039/501100012166 – fundername: ; grantid: 2018YFD0201006 |
GroupedDBID | 53G AAGFI AAUOK AAYXX ADBBV AGVNZ ALMA_UNASSIGNED_HOLDINGS CITATION EJD FF~ FRP GROUPED_DOAJ H13 M~E OK1 RPM RSF CGR CUY CVF ECM EIF NPM UCJ BXI EBS FF 7X8 5PM |
ID | FETCH-LOGICAL-a504t-206ab8ae10c86fc63dc15fe9794e2c87323f9ad322ef01687e212a72439f8fa83 |
IEDL.DBID | DOA |
ISSN | 2165-0497 |
IngestDate | Wed Aug 27 01:23:03 EDT 2025 Thu Aug 21 18:29:37 EDT 2025 Fri Jul 11 06:33:25 EDT 2025 Thu Feb 24 01:46:19 EST 2022 Thu Jan 02 22:55:33 EST 2025 Tue Jul 01 00:42:32 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | comparative analysis genome sequencing Bacillus velezensis HNA3 gene cluster carbohydrate active enzymes plant growth-promoting rhizobacteria |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a504t-206ab8ae10c86fc63dc15fe9794e2c87323f9ad322ef01687e212a72439f8fa83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0003-3123-4873 |
OpenAccessLink | https://doaj.org/article/1058f3137c594a27918a4e1b71631460 |
PMID | 35107331 |
PQID | 2624953372 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1058f3137c594a27918a4e1b71631460 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8809340 proquest_miscellaneous_2624953372 asm2_journals_10_1128_spectrum_02169_21 pubmed_primary_35107331 crossref_primary_10_1128_spectrum_02169_21 crossref_citationtrail_10_1128_spectrum_02169_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-23 |
PublicationDateYYYYMMDD | 2022-02-23 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology spectrum |
PublicationTitleAbbrev | Microbiol Spectr |
PublicationTitleAlternate | Microbiol Spectr |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_96_2 e_1_3_3_50_2 e_1_3_3_77_2 e_1_3_3_117_2 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_58_2 Xu L (e_1_3_3_28_2) 2013; 32 e_1_3_3_92_2 e_1_3_3_113_2 e_1_3_3_54_2 e_1_3_3_31_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_88_2 Chen L (e_1_3_3_49_2) 2018; 8 e_1_3_3_5_2 e_1_3_3_105_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_109_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_120_2 e_1_3_3_46_2 e_1_3_3_80_2 Manners DJ (e_1_3_3_30_2) 1963; 17 e_1_3_3_65_2 e_1_3_3_124_2 e_1_3_3_42_2 e_1_3_3_84_2 e_1_3_3_101_2 e_1_3_3_99_2 Xu W (e_1_3_3_20_2) 2020; 0 e_1_3_3_116_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_11_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_95_2 e_1_3_3_112_2 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_8_2 e_1_3_3_104_2 e_1_3_3_108_2 e_1_3_3_26_2 e_1_3_3_68_2 FAO (e_1_3_3_35_2) 2017 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 e_1_3_3_100_2 e_1_3_3_123_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_98_2 e_1_3_3_79_2 e_1_3_3_115_2 e_1_3_3_119_2 e_1_3_3_18_2 e_1_3_3_37_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_94_2 e_1_3_3_111_2 e_1_3_3_10_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_86_2 e_1_3_3_107_2 e_1_3_3_7_2 e_1_3_3_126_2 e_1_3_3_29_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_82_2 e_1_3_3_103_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_63_2 e_1_3_3_122_2 e_1_3_3_51_2 e_1_3_3_74_2 Gordon RE (e_1_3_3_45_2) 1973 e_1_3_3_97_2 e_1_3_3_70_2 e_1_3_3_78_2 Ekıncı M (e_1_3_3_76_2) 2019; 29 e_1_3_3_118_2 e_1_3_3_17_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_110_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_93_2 e_1_3_3_114_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_106_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_121_2 e_1_3_3_2_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_102_2 e_1_3_3_125_2 Muñoz, JA, Coronado, C, Pérez-Hormaeche, J, Kondorosi, A, Ratet, P, Palomares, AJ (B82) 1998; 95 Xu, J, Wang, XY, Guo, WZ (B108) 2015; 14 Wei, W, Gao, F, Du, MZ, Hua, HL, Wang, J, Guo, FB (B98) 2017; 18 Gingras, MC, Kharitidi, D, Chénard, V, Uetani, N, Bouchard, M, Tremblay, ML, Pause, A (B120) 2009; 53 Carver, TJ, Rutherford, KM, Berriman, M, Rajandream, MA, Barrell, BG, Parkhill, J (B96) 2005; 21 Leclère, V, Béchet, M, Adam, A, Guez, J-S, Wathelet, B, Ongena, M, Thonart, P, Gancel, F, Chollet-Imbert, M, Jacques, P (B58) 2005; 71 Chen, XH, Vater, J, Piel, J, Franke, P, Scholz, R, Schneider, K, Koumoutsi, A, Hitzeroth, G, Grammel, N, Strittmatter, AW, Gottschalk, G, Süssmuth, RD, Borriss, R (B61) 2006; 188 Fukushima, T, Allred, BE, Sia, AK, Nichiporuk, R, Andersen, UN, Raymond, KN (B33) 2013; 110 Nicholson, WL, Fajardo-Cavazos, P, Rebeil, R, Slieman, TA, Riesenman, PJ, Law, JF, Xue, Y (B86) 2002; 81 Natale, DA, Shankavaram, UT, Galperin, MY, Wolf, YI, Aravind, L, Koonin, EV (B94) 2000; 1 Rooney, AP, Price, NPJ, Ehrhardt, C, Swezey, JL, Bannan, JD (B24) 2009; 59 Lazarevic, V, Abellan, F-X, Möller, SB, Karamata, D, Mauël, C (B117) 2002; 148 Shen, X, Hu, H, Peng, H, Wang, W, Zhang, X (B35) 2013; 14 Alikhan, NF, Petty, NK, Ben Zakour, NL, Beatson, SA (B95) 2011; 12 Jackson, DW, Suzuki, K, Oakford, L, Simecka, JW, Hart, ME, Romeo, T (B80) 2002; 184 Zhang, H, Liu, Y, Wang, G (B123) 2019; 187 Duarte, JM, Wall, PK, Edger, PP, Landherr, LL, Ma, H, Pires, PK, Leebens-Mack, J, Depamphilis, CW (B90) 2010; 10 Ye, M, Tang, X, Yang, R, Zhang, H, Li, F, Tao, F, Li, F, Wang, Z (B7) 2018; 13 Wenzel, SC, Müller, R (B10) 2005; 9 Balderas-Ruíz, KA, Bustos, P, Santamaria, RI, González, V, Cristiano-Fajardo, SA, Barrera-Ortíz, S, Mezo-Villalobos, M, Aranda-Ocampo, S, Guevara-García, ÁA, Galindo, E, Serrano-Carreón, L (B112) 2020; 10 Zeng, Q, Wu, X, Wang, J, Ding, X (B125) 2017; 27 Idris, ESE, Iglesias, DJ, Talon, M, Borriss, R (B70) 2007; 20 Cai, XC, Liu, CH, Wang, BT, Xue, YR (B22) 2017; 196 Cao, Y, Pi, H, Chandrangsu, P, Li, Y, Wang, Y, Zhou, H, Xiong, H, Helmann, JD, Cai, Y (B9) 2018; 8 Nascimento, FX, Hernández, AG, Glick, BR, Rossi, MJ (B74) 2020; 25 Hwangbo, K, Um, Y, Kim, KY, Madhaiyan, M, Sa, TM, Lee, Y (B122) 2016; 4 Manners, DJ (B29) 1963; 17 Bashan, Y, de-Bashan, LE, Prabhu, SR, Hernandez, JP (B66) 2014; 378 Grover, M, Bodhankar, S, Sharma, A, Sharma, P, Singh, J, Nain, L (B16) 2021; 4 Reva, ON, Swanevelder, DZH, Mwita, LA, Mwakilili, AD, Muzondiwa, D, Joubert, M, Chan, WY, Lutz, S, Ahrens, CH, Avdeeva, LV, Kharkhota, MA, Tibuhwa, D, Lyantagaye, S, Vater, J, Borriss, R, Meijer, J (B41) 2019; 10 Xu, T, Zhu, T, Li, S (B68) 2016; 32 Wan, W, Qin, Y, Wu, H, Zuo, W, He, H, Tan, J, Wang, Y, He, D (B13) 2020; 11 Silva, UC, Cuadros-Orellana, S, Silva, DRC, Freitas-Júnior, LF, Fernandes, AC, Leite, LR, Oliveira, CA, Dos Santos, VL (B81) 2021; 11 de Faria, AF, Teodoro-Martinez, DS, de Oliveira Barbosa, GN, Gontijo Vaz, B, Serrano Silva, Í, Garcia, JS, Tótola, MR, Eberlin, MN, Grossman, M, Alves, OL, Regina Durrant, L (B105) 2011; 46 Xu, L, Wang, L, Chen, L, Xie, F, Li, Y (B27) 2013; 32 Backer, R, Rokem, JS, Ilangumaran, G, Lamont, J, Praslickova, D, Ricci, E, Subramanian, S, Smith, DL (B12) 2018; 9 Ngalimat, MS, Sabri, S (B37) 2020; 28 Butcher, RA, Schroeder, FC, Fischbach, MA, Straight, PD, Kolter, R, Walsh, CT, Clardy, J (B55) 2007; 104 Oleńska, E, Małek, W, Wójcik, M, Swiecicka, I, Thijs, S, Vangronsveld, J (B20) 2020; 743 Depinto, J, Campbell, L (B30) 1968; 7 Ouyang, J, Shao, X, Li, J (B106) 2000; 24 Joly, P, Calteau, A, Wauquier, A, Dumas, R, Beuvin, M, Vallenet, D, Crovadore, J, Cochard, B, Lefort, F, Berthon, Y (B52) 2021; 9 Haro, D, Marrero, PF, Relat, J (B42) 2019; 20 García-Fraile, P, Menéndez, E, Rivas, R (B14) 2015; 2 Lynd, LR, Weimer, PJ, Van Zyl, WH, Pretorius, IS (B49) 2002; 66 Talboys, PJ, Owen, DW, Healey, JR, Withers, PJA, Jones, DL (B73) 2014; 14 Dunlap, CA, Kim, SJ, Kwon, SW, Rooney, AP (B23) 2015; 65 Orozco-Mosqueda M del, C, Glick, BR, Santoyo, G (B4) 2020; 235 Xu, W, Zhang, L, Goodwin, PH, Xia, M, Zhang, J, Wang, Q, Liang, J, Sun, R, Wu, C, Yang, L (B19) 2020; 0 Chen, L, Gu, W, Xu, HY, Yang, GL, Shan, XF, Chen, G, Kang, YH, Wang, CF, Qian, AD (B17) 2018; 8 B104 Xu, S, Peng, Z, Cui, B, Wang, T, Song, Y, Zhang, L, Wei, G, Wang, Y, Shen, X (B115) 2014; 16 Polonca, S (B43) 2020; 79 Stojanović, SS, Karabegović, I, Beškoski, V, Nikolić, N, Lazić, M (B21) 2019; 73 Friedman, S (B28) 1960; 87 Saier, MH, Reddy, VS, Tsu, BV, Ahmed, MS, Li, C, Moreno-Hagelsieb, G (B101) 2016; 44 Hibbing, ME, Fuqua, C, Parsek, MR, Peterson, SB (B50) 2010; 8 Wen, Y, Wu, X, Teng, Y, Qian, C, Zhan, Z, Zhao, Y, Li, O (B65) 2011; 13 Collavino, M, Riccillo, PM, Grasso, DH, Crespi, M, Aguilar, OM (B84) 2005; 18 Bharti, N, Pandey, SS, Barnawal, D, Patel, VK, Kalra, A (B11) 2016; 6 Lagesen, K, Hallin, P, Rødland, EA, Staerfeldt, H-H, Rognes, T, Ussery, DW (B100) 2007; 35 Khalid, F, Khalid, A, Fu, Y, Hu, Q, Zheng, Y, Khan, S, Wang, Z (B40) 2021; 59 Cantarel, BL, Coutinho, PM, Rancurel, C, Bernard, T, Lombard, V, Henrissat, B (B103) 2009; 37 Meng, Q, Jiang, H, Hao, JJ (B109) 2016; 98 Zhang, N, Yang, D, Wang, D, Miao, Y, Shao, J, Zhou, X, Xu, Z, Li, Q, Feng, H, Li, S, Shen, Q, Zhang, R (B77) 2015; 16 Totten, PA, Lara, JC, Lory, S (B114) 1990; 172 Altaf, MM, Ahmad, I, Khan, MSA, Grohmann, E, Ahmad, I, Husain, FM (B79) 2017 Arrebola, E, Jacobs, R, Korsten, L (B64) 2010; 108 Gordon, RE (B44) 1973 Akhter, S, Aziz, RK, Edwards, RA (B99) 2012; 40 Chowdhury, SP, Uhl, J, Grosch, R, Alquéres, S, Pittroff, S, Dietel, K, Schmitt-Kopplin, P, Borriss, R, Hartmann, A (B8) 2015; 28 Vanittanakom, N, Loeffler, W, Koch, U, Jung, G (B56) 1986; 39 Faulds, C, Williamson, G (B31) 1991; 137 Hertlein, G, Seiffert, M, Gensel, S, Garcia-Gonzalez, E, Ebeling, J, Skobalj, R, Kuthning, A, Süssmuth, RD, Genersch, E (B59) 2016; 11 Chen, L, Gu, W, Xu, H, Yang, G-L, Shan, X-F, Chen, G, Wang, C-F, Qian, A-D (B48) 2018; 8 Math, RK, Jin, HM, Kim, JM, Hahn, Y, Park, W, Madsen, EL, Jeon, CO (B47) 2012; 7 Ljunggren, H, Fahraeus, G (B83) 1961; 26 Ardui, S, Ameur, A, Vermeesch, JR, Hestand, MS (B89) 2018; 46 Raza, W, Ling, N, Yang, L, Huang, Q, Shen, Q (B110) 2016; 6 Delumeau, O, Dutta, S, Brigulla, M, Kuhnke, G, Hardwick, SW, Völker, U, Yudkin, MD, Lewis, RJ (B119) 2004; 279 Blin, K, Shaw, S, Steinke, K, Villebro, R, Ziemert, N, Lee, SY, Medema, MH, Weber, T (B102) 2019; 47 Morgan, JAW, Bending, GD, White, PJ (B121) 2005; 56 Wang, C, Zhao, D, Qi, G, Mao, Z, Hu, X, Du, B, Liu, K, Ding, Y (B67) 2019; 10 Karygianni, L, Ren, Z, Koo, H, Thurnheer, T (B78) 2020; 28 Marmont, LS, Whitfield, GB, Pfoh, R, Williams, RJ, Randall, TE, Ostaszewski, A, Razvi, E, Groves, RA, Robinson, H, Nitz, M, Parsek, MR, Lewis, IA, Whitney, JC, Harrison, JJ, Howell, PL (B116) 2020; 295 Ekıncı, M, Yildirim, E, Dursun, A, Mohamedsrajaden, NS (B75) 2019; 29 Kitamura, E, Myouga, H, Kamei, Y (B69) 2002; 68 Wang, J, Xing, J, Lu, J, Sun, Y, Zhao, J, Miao, S, Xiong, Q, Zhang, Y, Zhang, G (B53) 2019; 29 Zhou, D, Hu, F, Lin, J, Wang, W, Li, S (B111) 2019; 8 Dunlap, CA, Kim, SJ, Kwon, SW, Rooney, AP (B25) 2016; 66 Chun, BH, Kim, KH, Jeong, SE, Jeon, CO (B45) 2019; 77 (B34) 2017 Skerman, VBD, McGowan, V, Sneath, PHA (B39) 1980; 30 Beneduzi, A, Ambrosini, A, Passaglia, LMP (B6) 2012; 35 Fritze, D (B38) 2004; 94 Borriss, R, Chen, XH, Rueckert, C, Blom, J, Becker, A, Baumgarth, B, Fan, B, Pukall, R, Schumann, P, Spröer, C, Junge, H, Vater, J, Pühler, A, Klenk, HP (B36) 2011; 61 Li, Y, Lei, L, Zheng, L, Xiao, X, Tang, H, Luo, C (B18) 2020; 13 Igiehon, NO, Babalola, OO, Aremu, BR (B87) 2019; 19 Yano, R, Nagai, H, Shiba, K, Yura, T, Chang, S, Ng, D, Baird, L, Georgopoulos, C (B124) 1995; 177 Sibponkrung, S, Kondo, T, Tanaka, K, Tittabutr, P, Boonkerd, N, Teaumroong, N, Yoshida, KI (B71) 2017; 5 Goswami, D, Thakker, JN, Dhandhukia, PC (B15) 2016; 2 Jain, C, Rodriguez-R, LM, Phillippy, AM, Konstantinidis, KT, Aluru, S (B92) 2018; 9 Wen, R, Wang, K, Liu, X, Li, X, Mi, J, Meng, Q (B88) 2018; 117 Xu, S, Xie, X, Zhao, Y, Shi, Y, Chai, A, Li, L, Li, B (B107) 2020; 10 Rahma, AA, Suryanti Somowiyarjo, S, Joko, T (B54) 2020; 23 Rabbee, MF, Ali, MS, Choi, J, Hwang, BS, Jeong, SC, Baek, K-H (B60) 2019; 24 Kloepper, JW, Leong, J, Teintze, M, Schroth, MN (B32) 1980; 286 B93 Bleich, R, Watrous, JD, Dorrestein, PC, Bowers, AA, Shank, EA (B113) 2015; 112 B97 Eder, S, Shi, L, Jensen, K, Yamane, K, Hulett, FM (B118) 1996; 142 Šmarda, P, Bureš, P, Horová, L, Leitch, IJ, Mucina, L, Pacini, E, Tichý, L, Grulich, V, Rotreklová, O (B46) 2014; 111 Gao, L, Han, J, Liu, H, Qu, X, Lu, Z, Bie, X (B57) 2017; 110 López-Lozano, NE, Echeverría Molinar, A, Ortiz Durán, EA, Hernández Rosales, M, Souza, V (B26) 2020; 11 Özcengiz, G, Öğülür, I (B63) 2015; 32 Sibponkrung, S, Kondo, T, Tanaka, K, Tittabutr, P, Boonkerd, N, Yoshida, KI, Teaumroong, N (B72) 2020; 8 Nguyen, LT, Schmidt, HA, Von Haeseler, A, Minh, BQ (B91) 2015; 32 Kalam, S, Das, SN, Basu, A, Podile, AR (B2) 2017; 57 Buée, M, de Boer, W, Martin, F, Van Overbeek, L, Jurkevitch, E (B3) 2009; 321 Rowland, I, Gibson, G, Heinken, A, Scott, K, Swann, J, Thiele, I, Tuohy, K (B51) 2018; 57 De la Fuente Cantó, C, Simonin, M, King, E, Moulin, L, Bennett, MJ, Castrillo, G, Laplaze, L (B1) 2020; 103 Zhou, D, Huang, XF, Chaparro, JM, Badri, DV, Manter, DK, Vivanco, JM, Guo, J (B5) 2016; 401 Xie, SS, Wu, HJ, Zang, HY, Wu, LM, Zhu, QQ, Gao, XW (B76) 2014; 27 Riccillo, PM, Collavino, MM, Grasso, DH, England, R, De Bruijn, FJ, Aguilar, OM (B85) 2000; 13 Scholz, R, Vater, J, Budiharjo, A, Wang, Z, He, Y, Dietel, K, Schwecke, T, Herfort, S, Lasch, P, Borriss, R (B62) 2014; 196 |
References_xml | – ident: e_1_3_3_8_2 doi: 10.1021/acschembio.7b00874 – ident: e_1_3_3_42_2 doi: 10.3389/fmicb.2019.02610 – ident: e_1_3_3_93_2 doi: 10.1038/s41467-018-07641-9 – ident: e_1_3_3_68_2 doi: 10.3389/fmicb.2019.02889 – ident: e_1_3_3_27_2 doi: 10.3389/fpls.2020.01028 – ident: e_1_3_3_46_2 doi: 10.1016/j.fm.2018.09.001 – ident: e_1_3_3_74_2 doi: 10.1186/1471-2229-14-51 – ident: e_1_3_3_112_2 doi: 10.1002/mbo3.794 – ident: e_1_3_3_58_2 doi: 10.1007/s10482-017-0874-y – volume: 29 start-page: 290 year: 2019 ident: e_1_3_3_76_2 article-title: Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling publication-title: Yuzuncu Yil University J Agricultural Sciences – ident: e_1_3_3_60_2 doi: 10.1371/journal.pone.0164656 – ident: e_1_3_3_40_2 doi: 10.1099/00207713-30-1-225 – ident: e_1_3_3_2_2 doi: 10.1111/tpj.14781 – volume: 17 start-page: 371 year: 1963 ident: e_1_3_3_30_2 article-title: Enzymic synthesis and degradation of starch and glycogen publication-title: Advances in Carbohydrate Chemistry – ident: e_1_3_3_50_2 doi: 10.1128/MMBR.66.3.506-577.2002 – ident: e_1_3_3_110_2 doi: 10.1016/j.biocontrol.2016.03.010 – ident: e_1_3_3_22_2 doi: 10.2298/HEMIND190214014S – ident: e_1_3_3_15_2 doi: 10.3934/bioeng.2015.3.183 – ident: e_1_3_3_94_2 – ident: e_1_3_3_33_2 doi: 10.1038/286885a0 – ident: e_1_3_3_64_2 doi: 10.1016/j.nbt.2015.01.006 – ident: e_1_3_3_89_2 doi: 10.1016/j.ijbiomac.2017.12.090 – ident: e_1_3_3_117_2 doi: 10.1074/jbc.RA120.014555 – ident: e_1_3_3_109_2 doi: 10.1016/S2095-3119(14)60980-1 – ident: e_1_3_3_26_2 doi: 10.1099/ijsem.0.000858 – ident: e_1_3_3_90_2 doi: 10.1093/nar/gky066 – ident: e_1_3_3_36_2 doi: 10.1186/1471-2164-14-271 – ident: e_1_3_3_56_2 doi: 10.1073/pnas.0610503104 – ident: e_1_3_3_116_2 doi: 10.1111/1462-2920.12222 – ident: e_1_3_3_37_2 doi: 10.1099/ijs.0.023267-0 – ident: e_1_3_3_43_2 doi: 10.3390/ijms20061386 – volume: 32 start-page: 21 year: 2013 ident: e_1_3_3_28_2 article-title: Strain of Bacillus HNA3 antagonizing phytopathogenic fungi Identification and analysis of its active ingredients publication-title: J Huazhong Agricultural University – ident: e_1_3_3_7_2 doi: 10.1590/s1415-47572012000600020 – ident: e_1_3_3_24_2 doi: 10.1099/ijs.0.000226 – ident: e_1_3_3_108_2 doi: 10.1007/s13205-020-2165-y – ident: e_1_3_3_124_2 doi: 10.1007/s12010-018-2874-4 – ident: e_1_3_3_75_2 doi: 10.1016/j.btre.2019.e00406 – ident: e_1_3_3_3_2 doi: 10.1002/jobm.201600588 – ident: e_1_3_3_88_2 doi: 10.1186/s12866-019-1536-1 – ident: e_1_3_3_79_2 doi: 10.1016/j.tim.2020.03.016 – ident: e_1_3_3_115_2 doi: 10.1128/jb.172.1.389-396.1990 – ident: e_1_3_3_97_2 doi: 10.1093/bioinformatics/bti553 – ident: e_1_3_3_65_2 doi: 10.1111/j.1365-2672.2009.04438.x – ident: e_1_3_3_70_2 doi: 10.1046/j.1444-2906.2002.00443.x – ident: e_1_3_3_86_2 doi: 10.1094/MPMI.2000.13.11.1228 – ident: e_1_3_3_14_2 doi: 10.3389/fmicb.2020.00752 – ident: e_1_3_3_54_2 doi: 10.4014/jmb.1901.01040 – ident: e_1_3_3_57_2 doi: 10.7164/antibiotics.39.888 – ident: e_1_3_3_101_2 doi: 10.1093/nar/gkm160 – ident: e_1_3_3_6_2 doi: 10.1007/s11104-015-2743-7 – ident: e_1_3_3_82_2 doi: 10.3389/fmicb.2020.574550 – ident: e_1_3_3_67_2 doi: 10.1007/s11104-013-1956-x – ident: e_1_3_3_120_2 doi: 10.1074/jbc.M405464200 – ident: e_1_3_3_5_2 doi: 10.1016/j.micres.2020.126439 – ident: e_1_3_3_13_2 doi: 10.3389/fpls.2018.01473 – ident: e_1_3_3_78_2 doi: 10.1186/s12864-015-1825-5 – ident: e_1_3_3_81_2 doi: 10.1128/JB.184.1.290-301.2002 – ident: e_1_3_3_71_2 doi: 10.1094/MPMI-20-6-0619 – ident: e_1_3_3_25_2 doi: 10.1099/ijs.0.009126-0 – ident: e_1_3_3_91_2 doi: 10.1186/1471-2148-10-61 – ident: e_1_3_3_12_2 doi: 10.1038/srep34768 – ident: e_1_3_3_38_2 doi: 10.35118/apjmbb.2020.028.2.02 – ident: e_1_3_3_99_2 doi: 10.1093/bib/bbw019 – ident: e_1_3_3_125_2 doi: 10.1128/jb.177.1.200-205.1995 – ident: e_1_3_3_72_2 doi: 10.1128/genomeA.01312-17 – ident: e_1_3_3_18_2 doi: 10.1007/s13205-018-1270-7 – ident: e_1_3_3_98_2 – ident: e_1_3_3_102_2 doi: 10.1093/nar/gkv1103 – ident: e_1_3_3_10_2 doi: 10.1038/s41598-018-22782-z – ident: e_1_3_3_77_2 doi: 10.1094/MPMI-01-14-0010-R – ident: e_1_3_3_103_2 doi: 10.1093/nar/gkz310 – ident: e_1_3_3_9_2 doi: 10.1094/MPMI-03-15-0066-R – ident: e_1_3_3_61_2 doi: 10.3390/molecules24061046 – ident: e_1_3_3_126_2 doi: 10.4014/jmb.1611.11057 – ident: e_1_3_3_83_2 doi: 10.1073/pnas.95.16.9687 – ident: e_1_3_3_66_2 doi: 10.1111/j.1462-2920.2011.02542.x – ident: e_1_3_3_87_2 doi: 10.1023/A:1020561122764 – ident: e_1_3_3_114_2 doi: 10.1073/pnas.1414272112 – ident: e_1_3_3_85_2 doi: 10.1094/MPMI-18-0742 – ident: e_1_3_3_41_2 doi: 10.1007/s12275-021-1161-1 – ident: e_1_3_3_55_2 doi: 10.3923/pjbs.2020.1113.1121 – ident: e_1_3_3_21_2 doi: 10.1016/j.scitotenv.2020.140682 – ident: e_1_3_3_4_2 doi: 10.1007/s11104-009-9991-3 – ident: e_1_3_3_52_2 doi: 10.1007/s00394-017-1445-8 – ident: e_1_3_3_19_2 doi: 10.1186/s13068-020-1671-9 – ident: e_1_3_3_48_2 doi: 10.1371/journal.pone.0035784 – ident: e_1_3_3_16_2 doi: 10.1080/23311932.2015.1127500 – ident: e_1_3_3_113_2 doi: 10.1186/s13568-020-01101-8 – ident: e_1_3_3_122_2 doi: 10.1093/jxb/eri205 – ident: e_1_3_3_69_2 doi: 10.1007/s11274-015-1985-0 – ident: e_1_3_3_29_2 doi: 10.1016/0003-9861(60)90169-7 – ident: e_1_3_3_100_2 doi: 10.1093/nar/gks406 – ident: e_1_3_3_119_2 doi: 10.1099/13500872-142-8-2041 – ident: e_1_3_3_44_2 doi: 10.1007/s00248-019-01455-y – volume: 0 start-page: 3151 year: 2020 ident: e_1_3_3_20_2 article-title: Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis yb-130, potential biocontrol agent against Fusarium graminearum publication-title: Front Microbiol – ident: e_1_3_3_34_2 doi: 10.1073/pnas.1304235110 – ident: e_1_3_3_31_2 doi: 10.1021/bi00841a016 – ident: e_1_3_3_39_2 doi: 10.1094/PHYTO.2004.94.11.1245 – ident: e_1_3_3_107_2 doi: 10.1046/j.1365-313x.2000.00883.x – ident: e_1_3_3_63_2 doi: 10.1128/JB.01474-14 – ident: e_1_3_3_53_2 doi: 10.3390/microorganisms9091924 – ident: e_1_3_3_111_2 doi: 10.1038/srep24856 – ident: e_1_3_3_104_2 doi: 10.1093/nar/gkn663 – ident: e_1_3_3_84_2 doi: 10.1099/00221287-26-3-521 – ident: e_1_3_3_32_2 doi: 10.1099/00221287-137-10-2339 – ident: e_1_3_3_105_2 – ident: e_1_3_3_121_2 doi: 10.1387/ijdb.082820mg – ident: e_1_3_3_73_2 doi: 10.3390/microorganisms8050678 – volume-title: The genus Bacillus. Agriculture Handbook 427. year: 1973 ident: e_1_3_3_45_2 – ident: e_1_3_3_62_2 doi: 10.1128/JB.00052-06 – ident: e_1_3_3_95_2 doi: 10.1186/gb-2000-1-5-research0009 – ident: e_1_3_3_96_2 doi: 10.1186/1471-2164-12-402 – ident: e_1_3_3_17_2 doi: 10.3389/fsufs.2020.618230 – ident: e_1_3_3_23_2 doi: 10.1016/j.micres.2016.12.007 – ident: e_1_3_3_106_2 doi: 10.1016/j.procbio.2011.07.001 – ident: e_1_3_3_51_2 doi: 10.1038/nrmicro2259 – ident: e_1_3_3_118_2 doi: 10.1099/00221287-148-3-815 – ident: e_1_3_3_123_2 doi: 10.1128/genomeA.00654-16 – volume: 8 start-page: 114 year: 2018 ident: e_1_3_3_49_2 article-title: Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF publication-title: 3Biotech – ident: e_1_3_3_59_2 doi: 10.1128/AEM.71.8.4577-4584.2005 – volume-title: The future of food and agriculture: trends and challenges. year: 2017 ident: e_1_3_3_35_2 – ident: e_1_3_3_47_2 doi: 10.1073/pnas.1321152111 – ident: e_1_3_3_92_2 doi: 10.1093/molbev/msu300 – ident: e_1_3_3_80_2 doi: 10.1002/9781119246329.ch4 – ident: e_1_3_3_11_2 doi: 10.1016/j.cbpa.2005.08.001 – volume: 28 start-page: 668 year: 2020 end-page: 681 ident: B78 article-title: Biofilm matrixome: extracellular components in structured microbial communities publication-title: Trends Microbiol doi: 10.1016/j.tim.2020.03.016 – volume: 46 start-page: 2159 year: 2018 end-page: 2168 ident: B89 article-title: Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics publication-title: Nucleic Acids Res Oxford University Press doi: 10.1093/nar/gky066 – volume: 401 start-page: 259 year: 2016 end-page: 272 ident: B5 article-title: Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects publication-title: Plant Soil doi: 10.1007/s11104-015-2743-7 – volume: 8 start-page: 114 year: 2018 ident: B48 article-title: Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF publication-title: 3Biotech – ident: B97 article-title: Husnik F . 2018 . GitHub - filip-husnik/pseudo-finder: detection of pseudogene candidates in bacterial and archaeal genomes . GitHub . https://github.com/filip-husnik/pseudo-finder . Retrieved May 11, 2020 . – volume: 98 start-page: 18 year: 2016 end-page: 26 ident: B109 article-title: Effects of Bacillus velezensis strain BAC03 in promoting plant growth publication-title: Biological Control doi: 10.1016/j.biocontrol.2016.03.010 – volume: 59 start-page: 2429 year: 2009 end-page: 2436 ident: B24 article-title: Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.009126-0 – volume: 188 start-page: 4024 year: 2006 end-page: 4036 ident: B61 article-title: Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42 publication-title: J Bacteriol doi: 10.1128/JB.00052-06 – volume: 29 start-page: 290 year: 2019 end-page: 299 ident: B75 article-title: Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling publication-title: Yuzuncu Yil University J Agricultural Sciences – volume: 18 start-page: 742 year: 2005 end-page: 750 ident: B84 article-title: GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-alfalfa symbiotic interaction publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-18-0742 – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: B9 article-title: Antagonism of two plant-growth promoting Bacillus velezensis Isolates against Ralstonia solanacearum and Fusarium oxysporum publication-title: Sci Rep doi: 10.1038/s41598-018-22782-z – volume: 8 start-page: 253 year: 2018 ident: B17 article-title: Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass publication-title: 3 Biotech doi: 10.1007/s13205-018-1270-7 – start-page: 55 year: 2017 end-page: 67 ident: B79 article-title: Bacillus biofilms and their role in plant health publication-title: Biofilms in plant and soil health. ;John Wiley & Sons, Ltd – volume: 24 start-page: 327 year: 2000 end-page: 334 ident: B106 article-title: Indole-3-glycerol phosphate, a branch point of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana publication-title: Plant J doi: 10.1046/j.1365-313x.2000.00883.x – volume: 10 start-page: 458 year: 2020 end-page: 572 ident: B107 article-title: Whole-genome analysis of Bacillus Velezensis ZF2, a biocontrol agent that protects Cucumis Sativus against Corynespora leaf spot diseases publication-title: 3 Biotech doi: 10.1007/s13205-020-2165-y – volume: 6 start-page: 34768 year: 2016 end-page: 34776 ident: B11 article-title: Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress publication-title: Sci Rep doi: 10.1038/srep34768 – volume: 13 year: 2020 ident: B18 article-title: Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots publication-title: Biotechnol Biofuels doi: 10.1186/s13068-020-1671-9 – volume: 14 start-page: 1673 year: 2015 end-page: 1686 ident: B108 article-title: The cytochrome P450 superfamily: Key players in plant development and defense publication-title: J Integrative Agriculture doi: 10.1016/S2095-3119(14)60980-1 – volume: 17 start-page: 371 year: 1963 end-page: 430 ident: B29 article-title: Enzymic synthesis and degradation of starch and glycogen publication-title: Advances in Carbohydrate Chemistry – volume: 196 start-page: 89 year: 2017 end-page: 94 ident: B22 article-title: Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease publication-title: Microbiol Res doi: 10.1016/j.micres.2016.12.007 – year: 2017 ident: B34 publication-title: The future of food and agriculture: trends and challenges. ;Food and Agriculture Organization of the United Nations ;Rome, Italy – volume: 10 year: 2019 ident: B41 article-title: Genetic, epigenetic, and phenotypic diversity of four Bacillus velezensis strains used for plant protection or as probiotics publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02610 – volume: 37 start-page: D233 year: 2009 end-page: D238 ident: B103 article-title: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn663 – volume: 32 start-page: 268 year: 2015 end-page: 274 ident: B91 article-title: IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol Biol Evol doi: 10.1093/molbev/msu300 – volume: 8 start-page: 1 year: 2019 end-page: 14 ident: B111 article-title: Genome and transcriptome analysis of Bacillus velezensis BS-37, an efficient surfactin producer from glycerol, in response to d-/l-leucine publication-title: Microbiology Open – volume: 24 start-page: 1046 year: 2019 end-page: 1059 ident: B60 article-title: Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes publication-title: Molecules doi: 10.3390/molecules24061046 – volume: 44 start-page: D372 year: 2016 end-page: D379 ident: B101 article-title: The Transporter Classification Database (TCDB): Recent advances publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1103 – volume: 27 start-page: 844 year: 2017 end-page: 855 ident: B125 article-title: Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1611.11057 – volume: 35 start-page: 3100 year: 2007 end-page: 3108 ident: B100 article-title: RNAmmer: Consistent and rapid annotation of ribosomal RNA genes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm160 – volume: 172 start-page: 389 year: 1990 end-page: 396 ident: B114 article-title: The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene publication-title: J Bacteriol doi: 10.1128/jb.172.1.389-396.1990 – volume: 11 start-page: e0164656 year: 2016 end-page: 1385 ident: B59 article-title: Biological role of paenilarvins, iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen Paenibacillus larvae publication-title: PLoS One doi: 10.1371/journal.pone.0164656 – volume: 2 start-page: 1080 year: 2016 end-page: 1100 ident: B15 article-title: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review publication-title: Cogent Food & Agriculture doi: 10.1080/23311932.2015.1127500 – volume: 148 start-page: 815 year: 2002 end-page: 824 ident: B117 article-title: Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation the EMBL accession numbers for the nucleotide sequences reported in this paper are AJ313428, AJ318465, AJ318466, AJ318467, AJ318468, AJ318469 and AJ318470 publication-title: Microbiology (Reading) doi: 10.1099/00221287-148-3-815 – volume: 94 start-page: 1245 year: 2004 end-page: 1248 ident: B38 article-title: Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria publication-title: Phytopathology doi: 10.1094/PHYTO.2004.94.11.1245 – volume: 7 start-page: e35784 year: 2012 end-page: 1386 ident: B47 article-title: Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: Cold tolerance and aromatic hydrocarbon metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0035784 – volume: 47 start-page: W81 year: 2019 end-page: W87 ident: B102 article-title: AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz310 – volume: 39 start-page: 888 year: 1986 end-page: 901 ident: B56 article-title: Fengycin - A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3 publication-title: J Antibiot (Tokyo) doi: 10.7164/antibiotics.39.888 – volume: 11 start-page: 752 year: 2020 ident: B13 article-title: Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00752 – volume: 10 year: 2020 ident: B112 article-title: Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion publication-title: AMB Expr doi: 10.1186/s13568-020-01101-8 – year: 1973 ident: B44 publication-title: The genus Bacillus. Agriculture Handbook 427. ;U.S. Government Printing Office ;Washington, DC – volume: 61 start-page: 1786 year: 2011 end-page: 1801 ident: B36 article-title: Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7 T and FZB42 T: A proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparison publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.023267-0 – ident: B93 article-title: The Center for Computational Biology at Johns Hopkins University . 2021 . Glimmer . http://ccb.jhu.edu/software/glimmer/index.shtml . Retrieved August 15, 2021 . – volume: 25 start-page: e00406 year: 2020 end-page: 9 ident: B74 article-title: Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest publication-title: Biotechnol Rep (Amst) doi: 10.1016/j.btre.2019.e00406 – volume: 32 start-page: 21 year: 2013 end-page: 27 ident: B27 article-title: Strain of Bacillus HNA3 antagonizing phytopathogenic fungi Identification and analysis of its active ingredients publication-title: J Huazhong Agricultural University – volume: 184 start-page: 290 year: 2002 end-page: 301 ident: B80 article-title: Biofilm formation and dispersal under the influence of the global regulator csrA of Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.184.1.290-301.2002 – volume: 29 start-page: 794 year: 2019 end-page: 808 ident: B53 article-title: Complete genome sequencing of Bacillus velezensis WRN014, and comparison with genome sequences of other Bacillus velezensis strains publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1901.01040 – volume: 20 start-page: 619 year: 2007 end-page: 626 ident: B70 article-title: Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-20-6-0619 – volume: 20 start-page: 1386 year: 2019 ident: B42 article-title: Nutritional regulation of gene expression: carbohydrate-, fat- and amino acid-dependent modulation of transcriptional activity publication-title: Int J Mol Sci doi: 10.3390/ijms20061386 – volume: 13 start-page: 1228 year: 2000 end-page: 1236 ident: B85 article-title: A guaB mutant strain of Rhizobium tropici CIAT899 pleiotropically defective in thermal tolerance and symbiosis publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2000.13.11.1228 – volume: 110 start-page: 1007 year: 2017 end-page: 1018 ident: B57 article-title: Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-017-0874-y – volume: 16 start-page: 1090 year: 2014 end-page: 1104 ident: B115 article-title: FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis publication-title: Environ Microbiol doi: 10.1111/1462-2920.12222 – volume: 142 start-page: 2041 year: 1996 end-page: 2047 ident: B118 article-title: A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a pho regulon gene, phoD publication-title: Microbiology (Reading, Engl) doi: 10.1099/13500872-142-8-2041 – volume: 35 start-page: 1044 year: 2012 end-page: 1051 ident: B6 article-title: Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents publication-title: Genet Mol Biol doi: 10.1590/s1415-47572012000600020 – volume: 68 start-page: 436 year: 2002 end-page: 445 ident: B69 article-title: Polysaccharolytic activities of bacterial enzymes that degrade the cell walls of Pythium porphyrae, a causative fungus of red rot disease in Porphyrayezoensis publication-title: Fisheries Sci doi: 10.1046/j.1444-2906.2002.00443.x – volume: 57 start-page: 376 year: 2017 end-page: 385 ident: B2 article-title: Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere publication-title: J Basic Microbiol doi: 10.1002/jobm.201600588 – volume: 87 start-page: 252 year: 1960 end-page: 258 ident: B28 article-title: The purification and properties of trehalase isolated from Phormiaregina, Meig publication-title: Arch Biochem Biophys doi: 10.1016/0003-9861(60)90169-7 – volume: 7 start-page: 121 year: 1968 end-page: 125 ident: B30 article-title: Purification and properties of the cyclodextrinase of Bacillus macerans publication-title: Biochemistry doi: 10.1021/bi00841a016 – volume: 59 start-page: 627 year: 2021 end-page: 633 ident: B40 article-title: Potential of Bacillus velezensis as a probiotic in animal feed: a review publication-title: J Microbiol doi: 10.1007/s12275-021-1161-1 – volume: 2 start-page: 183 year: 2015 end-page: 205 ident: B14 article-title: Role of bacterial biofertilizers in agriculture and forestry publication-title: AIMS Bioengineering doi: 10.3934/bioeng.2015.3.183 – volume: 77 start-page: 146 year: 2019 end-page: 157 ident: B45 article-title: Genomic and metabolic features of the Bacillus amyloliquefaciens group -B. amyloliquefaciens, B. velezensis, and B. siamensis– revealed by pan-genome analysis publication-title: Food Microbiol doi: 10.1016/j.fm.2018.09.001 – volume: 13 start-page: 500 year: 2018 end-page: 505 ident: B7 article-title: Characteristics and application of a novel species of Bacillus: Bacillus velezensis publication-title: ACS Chem Biol doi: 10.1021/acschembio.7b00874 – volume: 14 start-page: 271 year: 2013 ident: B35 article-title: Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas publication-title: BMC Genomics doi: 10.1186/1471-2164-14-271 – volume: 65 start-page: 2104 year: 2015 end-page: 2109 ident: B23 article-title: Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. Plantarum is a later heterotypic synonym of Bacillus methylotrophicus publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.000226 – volume: 11 year: 2020 ident: B26 article-title: Bacterial diversity and interaction networks of Agave lechuguilla rhizosphere differ significantly from bulk soil in the oligotrophic basin of CuatroCienegas publication-title: Front Plant Sci doi: 10.3389/fpls.2020.01028 – volume: 57 start-page: 1 year: 2018 end-page: 24 ident: B51 article-title: Gut microbiota functions: metabolism of nutrients and other food components publication-title: Eur J Nutr doi: 10.1007/s00394-017-1445-8 – volume: 16 year: 2015 ident: B77 article-title: Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates publication-title: BMC Genomics doi: 10.1186/s12864-015-1825-5 – volume: 26 start-page: 521 year: 1961 end-page: 528 ident: B83 article-title: The role of polygalacturonase in root-hair invasion by nodule bacteria publication-title: J Gen Microbiol doi: 10.1099/00221287-26-3-521 – volume: 4 start-page: 287 year: 2021 ident: B16 article-title: PGPR mediated alterations in root traits: way toward sustainable crop production publication-title: Front Sustain Food Syst doi: 10.3389/fsufs.2020.618230 – volume: 71 start-page: 4577 year: 2005 end-page: 4584 ident: B58 article-title: Mycosubtilin overproduction by Bacillus subtilis BBG100enhances the organism’s antagonistic and biocontrol activities publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.8.4577-4584.2005 – volume: 108 start-page: 386 year: 2010 end-page: 395 ident: B64 article-title: Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2009.04438.x – volume: 32 start-page: 1 year: 2016 end-page: 9 ident: B68 article-title: Β-1,3–1,4-Glucanase gene from Bacillus Velezensis Zj20 exerts antifungal effect on plant pathogenic fungi publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-015-1985-0 – volume: 743 start-page: 140682 year: 2020 ident: B20 article-title: Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.140682 – volume: 9 start-page: 447 year: 2005 end-page: 458 ident: B10 article-title: Formation of novel secondary metabolites by bacterial multi modular assembly lines: Deviations from textbook biosynthetic logic publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2005.08.001 – volume: 10 start-page: 61 year: 2010 ident: B90 article-title: Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels publication-title: BMC Evol Biol doi: 10.1186/1471-2148-10-61 – volume: 1 start-page: research0009.1 year: 2000 ident: B94 article-title: Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs) publication-title: Genome Biol doi: 10.1186/gb-2000-1-5-research0009 – volume: 117 start-page: 1352 year: 2018 end-page: 1360 ident: B88 article-title: Molecular cloning and analysis of the full-length aciniformspidroin gene from Araneus ventricosus publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.12.090 – volume: 6 start-page: 24856 year: 2016 ident: B110 article-title: Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 publication-title: Sci Rep doi: 10.1038/srep24856 – volume: 56 start-page: 1729 year: 2005 end-page: 1739 ident: B121 article-title: Biological costs and benefits to plant-microbe interactions in the rhizosphere publication-title: J Exp Bot doi: 10.1093/jxb/eri205 – volume: 0 start-page: 3151 year: 2020 ident: B19 article-title: Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis yb-130, potential biocontrol agent against Fusarium graminearum publication-title: Front Microbiol – volume: 21 start-page: 3422 year: 2005 end-page: 3423 ident: B96 article-title: ACT: the Artemis comparison tool publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti553 – volume: 53 start-page: 1069 year: 2009 end-page: 1074 ident: B120 article-title: Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP) publication-title: Int J Dev Biol doi: 10.1387/ijdb.082820mg – volume: 137 start-page: 2339 year: 1991 end-page: 2345 ident: B31 article-title: The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes publication-title: J Gen Microbiol doi: 10.1099/00221287-137-10-2339 – ident: B104 article-title: Nielsen H . 2021 . S ignalP-5.0, Signal peptide and cleavage sites in gram+, gram- and eukaryotic amino acid sequences . DTU Health Tech . SignalP - 5.0 . https://services.healthtech.dtu.dk/service.php?SignalP-5.0 . Retrieved 17 July 2021 . – volume: 19 start-page: 159 year: 2019 ident: B87 article-title: Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress publication-title: BMC Microbiol doi: 10.1186/s12866-019-1536-1 – volume: 112 start-page: 3086 year: 2015 end-page: 3091 ident: B113 article-title: Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1414272112 – volume: 196 start-page: 1842 year: 2014 end-page: 1852 ident: B62 article-title: Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42 publication-title: J Bacteriol doi: 10.1128/JB.01474-14 – volume: 81 start-page: 27 year: 2002 end-page: 32 ident: B86 article-title: Bacterial endospores and their significance in stress resistance publication-title: Antonie Van Leeuwenhoek Int J General and Mol Microbiol doi: 10.1023/A:1020561122764 – volume: 73 start-page: 169 year: 2019 end-page: 182 ident: B21 article-title: Bacillus based microbial formulations: Optimization of the production process publication-title: Hem Ind doi: 10.2298/HEMIND190214014S – volume: 110 start-page: 13821 year: 2013 end-page: 13826 ident: B33 article-title: Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereusYxeB publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1304235110 – volume: 104 start-page: 1506 year: 2007 end-page: 1509 ident: B55 article-title: The identification of bacillaene, the product of the PksX mega complex in Bacillus subtilis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0610503104 – volume: 27 start-page: 655 year: 2014 end-page: 663 ident: B76 article-title: Plant growth promotion by spermidine-producing Bacillus subtilis OKB105 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-01-14-0010-R – volume: 28 start-page: 984 year: 2015 end-page: 995 ident: B8 article-title: Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-03-15-0066-R – volume: 286 start-page: 885 year: 1980 end-page: 886 ident: B32 article-title: Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria publication-title: Nature doi: 10.1038/286885a0 – volume: 8 start-page: 15 year: 2010 end-page: 25 ident: B50 article-title: Bacterial competition: Surviving and thriving in the microbial jungle publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2259 – volume: 235 start-page: 126439 year: 2020 ident: B4 article-title: ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops publication-title: Microbiological Res doi: 10.1016/j.micres.2020.126439 – volume: 18 start-page: 357 year: 2017 end-page: 366 ident: B98 article-title: Zisland explorer: Detect genomic islands by combining homogeneity and heterogeneity properties publication-title: Brief Bioinform doi: 10.1093/bib/bbw019 – volume: 13 start-page: 2726 year: 2011 end-page: 2737 ident: B65 article-title: Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2011.02542.x – volume: 187 start-page: 1475 year: 2019 end-page: 1487 ident: B123 article-title: Integrated use of maize bran residue for one-step phosphate bio-fertilizer production publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-018-2874-4 – volume: 10 start-page: 2889 year: 2019 ident: B67 article-title: Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02889 – volume: 66 start-page: 506 year: 2002 end-page: 577 ident: B49 article-title: Microbial cellulose utilization: fundamentals and biotechnology microbial cellulose utilization: fundamentals and biotechnology publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.66.3.506-577.2002 – volume: 9 start-page: 1924 year: 2021 end-page: 1924 ident: B52 article-title: From strain characterization to field authorization: highlights on Bacillus velezensis strain b25 beneficial properties for plants and its activities on phytopathogenic fungi publication-title: Microorganisms doi: 10.3390/microorganisms9091924 – volume: 8 start-page: 678 year: 2020 end-page: 1211 ident: B72 article-title: Co-inoculation of Bacillus velezensis strain S141 and bradyrhizobium strains promotes nodule growth and nitrogen fixation publication-title: Microorganisms doi: 10.3390/microorganisms8050678 – volume: 5 year: 2017 ident: B71 article-title: Genome sequence of Bacillus velezensis S141, a new strain of plant growth promoting rhizobacterium isolated from soybean rhizosphere publication-title: Genome Announc doi: 10.1128/genomeA.01312-17 – volume: 95 start-page: 9687 year: 1998 end-page: 9692 ident: B82 article-title: MsPG3, a medicago sativa polygalacturonase gene expressed during the alfalfa Rhizobium meliloti interaction publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.16.9687 – volume: 66 start-page: 1212 year: 2016 end-page: 1217 ident: B25 article-title: Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. Plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenom publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.000858 – volume: 4 year: 2016 ident: B122 article-title: Complete genome sequence of Bacillus velezensis CBMB205, a phosphate-solubilizing bacterium isolated from the rhizoplane of rice in the Republic of Korea publication-title: Genome Announc doi: 10.1128/genomeA.00654-16 – volume: 279 start-page: 40927 year: 2004 end-page: 40937 ident: B119 article-title: Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C publication-title: J Biol Chem doi: 10.1074/jbc.M405464200 – volume: 111 start-page: E4096 year: 2014 end-page: E4102 ident: B46 article-title: Ecological and evolutionary significance of genomic GC content diversity in monocots publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1321152111 – volume: 103 start-page: 951 year: 2020 end-page: 964 ident: B1 article-title: An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness publication-title: Plant J doi: 10.1111/tpj.14781 – volume: 177 start-page: 200 year: 1995 end-page: 3660 ident: B124 article-title: Inositol monophosphatase activity from the Escherichia coli suhB gene product publication-title: J Bacteriology doi: 10.1128/jb.177.1.200-205.1995 – volume: 9 start-page: 1 year: 2018 end-page: 8 ident: B92 article-title: High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries publication-title: Nat Commun doi: 10.1038/s41467-018-07641-9 – volume: 40 start-page: e126 year: 2012 end-page: e126 ident: B99 article-title: PhiSpy: A novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies publication-title: Nucleic Acids Res doi: 10.1093/nar/gks406 – volume: 378 start-page: 1 year: 2014 end-page: 33 ident: B66 article-title: Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013) publication-title: Plant Soil doi: 10.1007/s11104-013-1956-x – volume: 12 start-page: 402 year: 2011 ident: B95 article-title: BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons publication-title: BMC Genomics doi: 10.1186/1471-2164-12-402 – volume: 321 start-page: 189 year: 2009 end-page: 212 ident: B3 article-title: The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors publication-title: Plant Soil doi: 10.1007/s11104-009-9991-3 – volume: 28 start-page: 19 year: 2020 end-page: 26 ident: B37 article-title: Taxonomic note: Speciation within the operational group Bacillus amyloliquefaciens based on comparative phylogenies of housekeeping genes publication-title: APJMBB doi: 10.35118/apjmbb.2020.028.2.02 – volume: 30 start-page: 225 year: 1980 end-page: 420 ident: B39 article-title: Approved lists of bacterial names publication-title: Int J Systematic Bacteriology doi: 10.1099/00207713-30-1-225 – volume: 9 start-page: 1 year: 2018 end-page: 17 ident: B12 article-title: Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01473 – volume: 32 start-page: 612 year: 2015 end-page: 619 ident: B63 article-title: Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic publication-title: N Biotechnol doi: 10.1016/j.nbt.2015.01.006 – volume: 14 start-page: 51 year: 2014 ident: B73 article-title: Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium publication-title: BMC Plant Biol doi: 10.1186/1471-2229-14-51 – volume: 23 start-page: 1113 year: 2020 end-page: 1121 ident: B54 article-title: Induced disease resistance and promotion of shallot growth by Bacillus velezensis B-27 publication-title: Pakistan J Biological Sciences doi: 10.3923/pjbs.2020.1113.1121 – volume: 11 start-page: 3238 year: 2021 ident: B81 article-title: Genomic and phenotypic insights into the potential of rock phosphate solubilizing bacteria to promote millet growth in vivo publication-title: Front Microbiol doi: 10.3389/fmicb.2020.574550 – volume: 295 start-page: 11949 year: 2020 end-page: 11962 ident: B116 article-title: PelX is a UDP-N-acetylglucosamine C4-epimerase involved in Pel polysaccharide-dependent biofilm formation publication-title: J Biol Chem doi: 10.1074/jbc.RA120.014555 – volume: 79 start-page: 853 year: 2020 end-page: 864 ident: B43 article-title: Environment shapes the intra-species diversity of Bacillus subtilis isolates publication-title: Microb Ecol doi: 10.1007/s00248-019-01455-y – volume: 46 start-page: 1951 year: 2011 end-page: 1957 ident: B105 article-title: Production and structural characterization of surfactin (C 14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry publication-title: Process Biochemistry doi: 10.1016/j.procbio.2011.07.001 |
SSID | ssj0001105252 |
Score | 2.4742892 |
Snippet | This study is the primary initiative to identify
Bacillus velezensis
HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol... Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work.... Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work.... ABSTRACT Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0216921 |
SubjectTerms | Antifungal Agents - metabolism Bacillus - classification Bacillus - genetics Bacillus - metabolism Bacillus velezensis HNA3 Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Control Agents - metabolism carbohydrate active enzymes comparative analysis Environmental Microbiology gene cluster genome sequencing Genome, Bacterial Genomics Multigene Family Phylogeny Plant Growth Regulators - biosynthesis plant growth-promoting rhizobacteria Research Article Secondary Metabolism |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ri9QwMBx3CH4R39YXEQRB6NkkfaQf9w7vVsXzEBfuW0iyKbuwm4rtCue_8Z86k6Z7rhyH30qaSUJnJjPTeRHy2spaa-GKdC7LOkXXWaor5tIsb2DYWGcM5jt_Piuns_zjRXGxR8oxFyZ-we5Qd-vgyN9yNpfvQvLhj836EAQTrIz54wcFr3NgyIPJZPbl09XfFYb92Xh0Y14LC3cw7MF35FEo23-drvlvyORfMujkLrkTlUc6GbB9j-w5f5_cGtpJXj4gv4-vSnnTU-fbtaNj0RH61f0EnbCj5wsw0YFqMHmRxjTdS9o29Ejb5Wq16Si2oviFce0dnZ5NBNV-PqyGADAM1nxHl75v6Qd4wK5HPT0Fa75f0PMhuK_1AQgOFiPh6VAkuXtIZifvvx1P09iCIdVFlvfAQ6U2UjuWWVk2thRzyzA8DbjYcSsrwUVT6zncCq4B5VFWDkShrjioOY1stBSPyL5vvXtCqBQO0C-lMaDBOFNriR5FA9MYPMo8IW8QH2qkABXMEy7ViDkVMKc4S0g2okzZWMkcG2qsbgJ5uwX5PpTxuGnyEdLBdiJW4A4DQI8qMjRAF7IRTFS2qHPNq5pJnTtmwP4UIH2yhLwaqUgBx6IbRnvXbjrFSx6CeiuekMcDVW23EnBFYhfNhFQ79LZzlt03frkIVcHhIq5Fnj3978_4jNzmmMuB-fniOdmHl-4FaFi9eRnZ6Q96nShK priority: 102 providerName: American Society for Microbiology |
Title | Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35107331 https://journals.asm.org/doi/10.1128/spectrum.02169-21 https://www.proquest.com/docview/2624953372 https://pubmed.ncbi.nlm.nih.gov/PMC8809340 https://doaj.org/article/1058f3137c594a27918a4e1b71631460 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIvgifltPjwiCIFSbpB_p497h3ap4HuLCvYUkm7ILu6nY7sH53_ifOpN0112R88W3kibt0JnJzDQzvyHkpZW11sIV6UyWdYpHZ6mumEuzvIFhY50xWO_86aycTPMPF8XFTqsvzAmL8MDxw4FWF7IRTFS2qHPNq5pJnTtmwM8XoOUhWgebtxNMhb8rDPuz8eEYE_bgt6Fw8ft69QaMGlCF2KAj3a34nj0KsP1_8zX_TJncsUEnd8mdwXmk40j0PXLD-fvkVmwnefWA_Dz-DeVNT51vV45uQEfoF3cJPmFHz-cQooPUYPEiHcp0r2jb0CNtF8vluqPYiuIH5rV3dHI2FlT7WXwaLoBhiOY7uvB9S9_DBXY96ukpRPP9nJ7H5L7Wh0VA2JAJTyNIcveQTE_efT2epEMLhlQXWd6DDpXaSO1YZmXZ2FLMLMP0NNBix62sBBdNrWewK7gGnEdZOTCFuuLg5jSy0VI8IiPfeveEUCkcsF9KY8CDcabWEk8UDUxjcCnzhLxCfqhBhzoVwhMu1YZzKnBOcZaQbMMyZQckc2yosbxuyevtkm8RxuO6yUcoB9uJiMAdBkAu1SCX6l9ymZAXGylSoLF4DKO9a9ed4iUPSb0VT8jjKFXbVwnYIrGLZkKqPXnbo2X_jl_MAyo4bMS1yLOn_4P4A3KbY5kHlu6LZ2QEn8c9B-erN4fk5ng8_fzxMOjbL3Y-MCc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqbEHtB3BeuRgIhIWUkdi7OAw_dYGvpVia0Snvz7NShRW2ClpSp_A2vfCXnJE5H0TTxsrfIPcd1e67OuRHyKhWJUtyE7khEiYuhM1fFvnG9IINlnRqtsd75cBB1h8Gnk_Bkjfxua2G-4Vzeabmtylkdx0fBxhfRdh6heFcXIJ7NZ9tgnGB35tuEyr5ZnMN1rXzf-wC0fc3Y3sfj3a5rJwq4KvSCClgiUloo43upiLI04qPUx2wrYErDUhFzxrNEjYDJTQa-kIgNaHYVM7DamciU4LDvDbKBsUq46G10OsPP_Ys3Oj7OhGM2dHrpWUHvww9jKzawHhVwmX_7b5rmX3Zv7w65bR1W2mk47C5ZM_k9crMZYbm4T37tXrQPp_smL2aGto1O6BfzA_zQkh6NFwANWhX2oLY0eEGLjO6odDKdzkuK4y9-Yi59SbuDDqcqHzW7IQIsfx1XJZ3kVUF78ICTliq6f1acV2N61CQUFnmNBAez2fe0acxcPiDDayHSQ7KeF7nZIlRwAywnhNbgNRmdKIFRTA1gPjyKwCFvkB7Sym0p6ysRE7KlnKwpJ5nvEK8lmUxt93Qc4jG9CuXtEuV70zrkKuAd5IMlIHb9rhdACKRVIoAdioz7PE7DJFAsTnyhAuNruPNysHieQ162XCRBS2DoR-WmmJeSRaxOJI6ZQx41XLX8Kg5qGSd3OiRe4beVs6x-kk_GdSdyUP4JD7zH__03viC3useHB_KgN-g_IZsMa0mwPwB_StYB0DwDD6_Sz61oUXJ63dL8B17bZjE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTqC9IL4XPo0EQkLKSOx8OA88dBtdS6FUiEp7y5zEoZXaZFpSpvLf8MpfydlxOoqmiZe9Re6d6-Z-Pp97XwCvUh4JwaRvZzyIbOU6s0XoStvxchxOUpkkKt_58yjoT7yPx_7xFvxuc2HMG6z2RLXQjny1s0-z3PQj5O90AuLZcrGHhxPOTl0TUDmUq3O8rlXvB4co29eU9j58O-jbpqOALXzHqxESgUi4kK6T8iBPA5alroq2QlBKmvKQUZZHIkOQyxxtIR5K1OwipHhq5zwXnOG8N2BbO8c6sN3tTr4ML_7RcVVPOGpcp5euFfU-_i66cQbqVgGX2bf_hmn-de717sBtY7CSboOwu7Ali3tws2lhuboPvw4uyoeTI1mUC0naQifkq_yBdmhFxtMVUqNWxTmISQ1ekTIn-yKdzefLiqj2Fz9VLH1F-qMuI6LImtkUAw5_n9YVmRV1SQb4oDot1eTorDyvp2TcBBSWhWbChZnoe9IUZq4ewORahPQQOkVZyF0gnEmEHOdJglaTTCLBlRczQTIXH7lnwRslj7hFXayvRJTHreRiLbmYuhY4rcji1FRPV0085lexvF2znDalQ64i3lc4WBOqqt96APdAbJQIcvs8Zy4LUz_yBA0jlwtPugneeRmeeI4FL1sUxagllOtHFLJcVjENqA4kDqkFjxpUrb-KoVpWnTstCDfwtrGWzU-K2VRXIkflHzHPefzfr_EF3Bof9uJPg9HwCexQlUqiygOwp9BBOvkMDbw6eW52FoGT697MfwDKSmXN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Genome+Analysis+Reveals+Phylogenetic+Identity+of+Bacillus+velezensis+HNA3+and+Genomic+Insights+into+Its+Plant+Growth+Promotion+and+Biocontrol+Effects&rft.jtitle=Microbiology+spectrum&rft.au=Zaid%2C+Doaa+S.&rft.au=Cai%2C+Shuyun&rft.au=Hu%2C+Chang&rft.au=Li%2C+Ziqi&rft.date=2022-02-23&rft.issn=2165-0497&rft.eissn=2165-0497&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1128%2Fspectrum.02169-21&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_spectrum_02169_21 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon |