Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects

This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be app...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology spectrum Vol. 10; no. 1; p. e0216921
Main Authors Zaid, Doaa S., Cai, Shuyun, Hu, Chang, Li, Ziqi, Li, Youguo
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 23.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and bio fungicide inoculum to improve agriculture productivity. Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
AbstractList This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and bio fungicide inoculum to improve agriculture productivity. Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
ABSTRACT Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Author Zaid, Doaa S.
Hu, Chang
Li, Ziqi
Cai, Shuyun
Li, Youguo
Author_xml – sequence: 1
  givenname: Doaa S.
  surname: Zaid
  fullname: Zaid, Doaa S.
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China, Desert Research Center, Arab, Republic of Egypt
– sequence: 2
  givenname: Shuyun
  surname: Cai
  fullname: Cai, Shuyun
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
– sequence: 3
  givenname: Chang
  surname: Hu
  fullname: Hu, Chang
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
– sequence: 4
  givenname: Ziqi
  surname: Li
  fullname: Li, Ziqi
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
– sequence: 5
  givenname: Youguo
  orcidid: 0000-0003-3123-4873
  surname: Li
  fullname: Li, Youguo
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35107331$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQXaEiWkp_ABfkI5cEf-yudy9IaVTSSBVECM6W4x0njrx2sL1B4d_wT3GStmo59OTR-L2nN2_mbXHmvIOieE_wmBDafIpbUCkM_RhTUrcjSl4VF7mqRrhs-dmT-ry4inGDMSYEV7Sib4pzVhHMGSMXxd-p77cyyGR2gGbgfA9o4qTdRxPRd9iBtBEt1nvrV-AgGYXmHbhk0h55ja6lMtYOEe3Awh9wB9Lt1wlD0nUntQMht1frFJFxyaN5LhZWuoRmwf9Oa7QIvvfJeHckXRuvvEvBW3SjdZ4wvite62wCru7fy-Lnl5sf09vR3bfZfDq5G8kKl2lEcS2XjQSCVVNrVbNOkUpDy9sSqGo4o0y3smOUgsakbjhQQiWnJWt1o2XDLov5SbfzciO2wfQy7IWXRhwbPqyEDDkACyLn2GhGGFdVW0rKW9LIEsiSk5qRssZZ6_NJazsse-hUTixI-0z0-Y8za7HyO9E0uGXlQeDjvUDwvwaISfQmKrA5OPBDFLSmZVsxxmmGjk9QGXsqNn4IeX0xexSHMxEPZyKOZyIoyYQPT809uno4igwgJ4AKPsYA-hHykij_j6NMkoe15vmMfYH5D3EK4lA
CitedBy_id crossref_primary_10_3390_microorganisms11061523
crossref_primary_10_1016_j_pmpp_2024_102317
crossref_primary_10_3390_agronomy13030840
crossref_primary_10_3389_fcimb_2023_1175446
crossref_primary_10_4014_jmb_2310_10005
crossref_primary_10_1128_spectrum_03264_23
crossref_primary_10_1038_s41598_022_19515_8
crossref_primary_10_3390_ijms26010336
crossref_primary_10_5423_RPD_2023_29_4_390
crossref_primary_10_3390_microorganisms12050921
crossref_primary_10_1155_2024_8846747
crossref_primary_10_1186_s12866_024_03282_9
crossref_primary_10_3389_fpls_2025_1517157
crossref_primary_10_3389_fmicb_2024_1361961
crossref_primary_10_1007_s42729_024_01707_y
crossref_primary_10_1016_j_apsoil_2024_105772
crossref_primary_10_3390_metabo12050397
crossref_primary_10_1016_j_cpb_2023_100318
crossref_primary_10_1007_s00253_023_12651_9
crossref_primary_10_1016_j_jksus_2023_102954
crossref_primary_10_1007_s11274_024_03903_5
crossref_primary_10_1038_s41598_024_63756_8
crossref_primary_10_1021_acs_jafc_4c04726
crossref_primary_10_12688_f1000research_160546_1
crossref_primary_10_1016_j_pestbp_2024_106094
crossref_primary_10_1128_mra_00551_22
crossref_primary_10_1093_femsec_fiad054
crossref_primary_10_1186_s12870_024_05538_y
crossref_primary_10_1007_s00253_024_13255_7
crossref_primary_10_1016_j_clet_2024_100845
crossref_primary_10_3389_fmicb_2022_1035748
crossref_primary_10_1016_j_biotechadv_2023_108303
crossref_primary_10_3390_fishes9010007
crossref_primary_10_1080_01140671_2022_2118320
crossref_primary_10_1128_spectrum_05007_22
crossref_primary_10_1016_j_microb_2024_100109
crossref_primary_10_3390_agronomy14061135
crossref_primary_10_1186_s13568_023_01514_1
crossref_primary_10_1016_j_hpj_2024_09_009
crossref_primary_10_1007_s12602_024_10329_w
crossref_primary_10_3390_pathogens11101195
crossref_primary_10_1016_j_pmpp_2024_102427
crossref_primary_10_3390_genes15121588
crossref_primary_10_3389_fmicb_2023_1146331
crossref_primary_10_3390_microorganisms12081533
crossref_primary_10_1128_spectrum_00607_23
crossref_primary_10_1128_spectrum_00519_23
crossref_primary_10_1016_j_biocontrol_2023_105180
crossref_primary_10_3389_fpls_2023_1141538
Cites_doi 10.1021/acschembio.7b00874
10.3389/fmicb.2019.02610
10.1038/s41467-018-07641-9
10.3389/fmicb.2019.02889
10.3389/fpls.2020.01028
10.1016/j.fm.2018.09.001
10.1186/1471-2229-14-51
10.1002/mbo3.794
10.1007/s10482-017-0874-y
10.1371/journal.pone.0164656
10.1099/00207713-30-1-225
10.1111/tpj.14781
10.1128/MMBR.66.3.506-577.2002
10.1016/j.biocontrol.2016.03.010
10.2298/HEMIND190214014S
10.3934/bioeng.2015.3.183
10.1038/286885a0
10.1016/j.nbt.2015.01.006
10.1016/j.ijbiomac.2017.12.090
10.1074/jbc.RA120.014555
10.1016/S2095-3119(14)60980-1
10.1099/ijsem.0.000858
10.1093/nar/gky066
10.1186/1471-2164-14-271
10.1073/pnas.0610503104
10.1111/1462-2920.12222
10.1099/ijs.0.023267-0
10.3390/ijms20061386
10.1590/s1415-47572012000600020
10.1099/ijs.0.000226
10.1007/s13205-020-2165-y
10.1007/s12010-018-2874-4
10.1016/j.btre.2019.e00406
10.1002/jobm.201600588
10.1186/s12866-019-1536-1
10.1016/j.tim.2020.03.016
10.1128/jb.172.1.389-396.1990
10.1093/bioinformatics/bti553
10.1111/j.1365-2672.2009.04438.x
10.1046/j.1444-2906.2002.00443.x
10.1094/MPMI.2000.13.11.1228
10.3389/fmicb.2020.00752
10.4014/jmb.1901.01040
10.7164/antibiotics.39.888
10.1093/nar/gkm160
10.1007/s11104-015-2743-7
10.3389/fmicb.2020.574550
10.1007/s11104-013-1956-x
10.1074/jbc.M405464200
10.1016/j.micres.2020.126439
10.3389/fpls.2018.01473
10.1186/s12864-015-1825-5
10.1128/JB.184.1.290-301.2002
10.1094/MPMI-20-6-0619
10.1099/ijs.0.009126-0
10.1186/1471-2148-10-61
10.1038/srep34768
10.35118/apjmbb.2020.028.2.02
10.1093/bib/bbw019
10.1128/jb.177.1.200-205.1995
10.1128/genomeA.01312-17
10.1007/s13205-018-1270-7
10.1093/nar/gkv1103
10.1038/s41598-018-22782-z
10.1094/MPMI-01-14-0010-R
10.1093/nar/gkz310
10.1094/MPMI-03-15-0066-R
10.3390/molecules24061046
10.4014/jmb.1611.11057
10.1073/pnas.95.16.9687
10.1111/j.1462-2920.2011.02542.x
10.1023/A:1020561122764
10.1073/pnas.1414272112
10.1094/MPMI-18-0742
10.1007/s12275-021-1161-1
10.3923/pjbs.2020.1113.1121
10.1016/j.scitotenv.2020.140682
10.1007/s11104-009-9991-3
10.1007/s00394-017-1445-8
10.1186/s13068-020-1671-9
10.1371/journal.pone.0035784
10.1080/23311932.2015.1127500
10.1186/s13568-020-01101-8
10.1093/jxb/eri205
10.1007/s11274-015-1985-0
10.1016/0003-9861(60)90169-7
10.1093/nar/gks406
10.1099/13500872-142-8-2041
10.1007/s00248-019-01455-y
10.1073/pnas.1304235110
10.1021/bi00841a016
10.1094/PHYTO.2004.94.11.1245
10.1046/j.1365-313x.2000.00883.x
10.1128/JB.01474-14
10.3390/microorganisms9091924
10.1038/srep24856
10.1093/nar/gkn663
10.1099/00221287-26-3-521
10.1099/00221287-137-10-2339
10.1387/ijdb.082820mg
10.3390/microorganisms8050678
10.1128/JB.00052-06
10.1186/gb-2000-1-5-research0009
10.1186/1471-2164-12-402
10.3389/fsufs.2020.618230
10.1016/j.micres.2016.12.007
10.1016/j.procbio.2011.07.001
10.1038/nrmicro2259
10.1099/00221287-148-3-815
10.1128/genomeA.00654-16
10.1128/AEM.71.8.4577-4584.2005
10.1073/pnas.1321152111
10.1093/molbev/msu300
10.1002/9781119246329.ch4
10.1016/j.cbpa.2005.08.001
ContentType Journal Article
Copyright Copyright © 2022 Zaid et al.
Copyright © 2022 Zaid et al. 2022 Zaid et al.
Copyright_xml – notice: Copyright © 2022 Zaid et al.
– notice: Copyright © 2022 Zaid et al. 2022 Zaid et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/spectrum.02169-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2165-0497
Editor Gralnick, Jeffrey A
Editor_xml – sequence: 1
  givenname: Jeffrey A
  surname: Gralnick
  fullname: Gralnick, Jeffrey A
ExternalDocumentID oai_doaj_org_article_1058f3137c594a27918a4e1b71631460
PMC8809340
02169-21
35107331
10_1128_spectrum_02169_21
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: MOST | National Key Research and Development Program of China (NKRDPC)
  grantid: 2018YFD0201006
  funderid: https://doi.org/10.13039/501100012166
– fundername: ;
  grantid: 2018YFD0201006
GroupedDBID 53G
AAGFI
AAUOK
AAYXX
ADBBV
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
CITATION
EJD
FF~
FRP
GROUPED_DOAJ
H13
M~E
OK1
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
UCJ
BXI
EBS
FF
7X8
5PM
ID FETCH-LOGICAL-a504t-206ab8ae10c86fc63dc15fe9794e2c87323f9ad322ef01687e212a72439f8fa83
IEDL.DBID DOA
ISSN 2165-0497
IngestDate Wed Aug 27 01:23:03 EDT 2025
Thu Aug 21 18:29:37 EDT 2025
Fri Jul 11 06:33:25 EDT 2025
Thu Feb 24 01:46:19 EST 2022
Thu Jan 02 22:55:33 EST 2025
Tue Jul 01 00:42:32 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords comparative analysis
genome sequencing
Bacillus velezensis HNA3
gene cluster
carbohydrate active enzymes
plant growth-promoting rhizobacteria
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a504t-206ab8ae10c86fc63dc15fe9794e2c87323f9ad322ef01687e212a72439f8fa83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0003-3123-4873
OpenAccessLink https://doaj.org/article/1058f3137c594a27918a4e1b71631460
PMID 35107331
PQID 2624953372
PQPubID 23479
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_1058f3137c594a27918a4e1b71631460
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8809340
proquest_miscellaneous_2624953372
asm2_journals_10_1128_spectrum_02169_21
pubmed_primary_35107331
crossref_primary_10_1128_spectrum_02169_21
crossref_citationtrail_10_1128_spectrum_02169_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-23
PublicationDateYYYYMMDD 2022-02-23
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Microbiology spectrum
PublicationTitleAbbrev Microbiol Spectr
PublicationTitleAlternate Microbiol Spectr
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_96_2
e_1_3_3_50_2
e_1_3_3_77_2
e_1_3_3_117_2
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_58_2
Xu L (e_1_3_3_28_2) 2013; 32
e_1_3_3_92_2
e_1_3_3_113_2
e_1_3_3_54_2
e_1_3_3_31_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_88_2
Chen L (e_1_3_3_49_2) 2018; 8
e_1_3_3_5_2
e_1_3_3_105_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_109_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_120_2
e_1_3_3_46_2
e_1_3_3_80_2
Manners DJ (e_1_3_3_30_2) 1963; 17
e_1_3_3_65_2
e_1_3_3_124_2
e_1_3_3_42_2
e_1_3_3_84_2
e_1_3_3_101_2
e_1_3_3_99_2
Xu W (e_1_3_3_20_2) 2020; 0
e_1_3_3_116_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_11_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_95_2
e_1_3_3_112_2
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_8_2
e_1_3_3_104_2
e_1_3_3_108_2
e_1_3_3_26_2
e_1_3_3_68_2
FAO (e_1_3_3_35_2) 2017
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
e_1_3_3_100_2
e_1_3_3_123_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_98_2
e_1_3_3_79_2
e_1_3_3_115_2
e_1_3_3_119_2
e_1_3_3_18_2
e_1_3_3_37_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_94_2
e_1_3_3_111_2
e_1_3_3_10_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_86_2
e_1_3_3_107_2
e_1_3_3_7_2
e_1_3_3_126_2
e_1_3_3_29_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_82_2
e_1_3_3_103_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_122_2
e_1_3_3_51_2
e_1_3_3_74_2
Gordon RE (e_1_3_3_45_2) 1973
e_1_3_3_97_2
e_1_3_3_70_2
e_1_3_3_78_2
Ekıncı M (e_1_3_3_76_2) 2019; 29
e_1_3_3_118_2
e_1_3_3_17_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_110_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_93_2
e_1_3_3_114_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_106_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_121_2
e_1_3_3_2_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_102_2
e_1_3_3_125_2
Muñoz, JA, Coronado, C, Pérez-Hormaeche, J, Kondorosi, A, Ratet, P, Palomares, AJ (B82) 1998; 95
Xu, J, Wang, XY, Guo, WZ (B108) 2015; 14
Wei, W, Gao, F, Du, MZ, Hua, HL, Wang, J, Guo, FB (B98) 2017; 18
Gingras, MC, Kharitidi, D, Chénard, V, Uetani, N, Bouchard, M, Tremblay, ML, Pause, A (B120) 2009; 53
Carver, TJ, Rutherford, KM, Berriman, M, Rajandream, MA, Barrell, BG, Parkhill, J (B96) 2005; 21
Leclère, V, Béchet, M, Adam, A, Guez, J-S, Wathelet, B, Ongena, M, Thonart, P, Gancel, F, Chollet-Imbert, M, Jacques, P (B58) 2005; 71
Chen, XH, Vater, J, Piel, J, Franke, P, Scholz, R, Schneider, K, Koumoutsi, A, Hitzeroth, G, Grammel, N, Strittmatter, AW, Gottschalk, G, Süssmuth, RD, Borriss, R (B61) 2006; 188
Fukushima, T, Allred, BE, Sia, AK, Nichiporuk, R, Andersen, UN, Raymond, KN (B33) 2013; 110
Nicholson, WL, Fajardo-Cavazos, P, Rebeil, R, Slieman, TA, Riesenman, PJ, Law, JF, Xue, Y (B86) 2002; 81
Natale, DA, Shankavaram, UT, Galperin, MY, Wolf, YI, Aravind, L, Koonin, EV (B94) 2000; 1
Rooney, AP, Price, NPJ, Ehrhardt, C, Swezey, JL, Bannan, JD (B24) 2009; 59
Lazarevic, V, Abellan, F-X, Möller, SB, Karamata, D, Mauël, C (B117) 2002; 148
Shen, X, Hu, H, Peng, H, Wang, W, Zhang, X (B35) 2013; 14
Alikhan, NF, Petty, NK, Ben Zakour, NL, Beatson, SA (B95) 2011; 12
Jackson, DW, Suzuki, K, Oakford, L, Simecka, JW, Hart, ME, Romeo, T (B80) 2002; 184
Zhang, H, Liu, Y, Wang, G (B123) 2019; 187
Duarte, JM, Wall, PK, Edger, PP, Landherr, LL, Ma, H, Pires, PK, Leebens-Mack, J, Depamphilis, CW (B90) 2010; 10
Ye, M, Tang, X, Yang, R, Zhang, H, Li, F, Tao, F, Li, F, Wang, Z (B7) 2018; 13
Wenzel, SC, Müller, R (B10) 2005; 9
Balderas-Ruíz, KA, Bustos, P, Santamaria, RI, González, V, Cristiano-Fajardo, SA, Barrera-Ortíz, S, Mezo-Villalobos, M, Aranda-Ocampo, S, Guevara-García, ÁA, Galindo, E, Serrano-Carreón, L (B112) 2020; 10
Zeng, Q, Wu, X, Wang, J, Ding, X (B125) 2017; 27
Idris, ESE, Iglesias, DJ, Talon, M, Borriss, R (B70) 2007; 20
Cai, XC, Liu, CH, Wang, BT, Xue, YR (B22) 2017; 196
Cao, Y, Pi, H, Chandrangsu, P, Li, Y, Wang, Y, Zhou, H, Xiong, H, Helmann, JD, Cai, Y (B9) 2018; 8
Nascimento, FX, Hernández, AG, Glick, BR, Rossi, MJ (B74) 2020; 25
Hwangbo, K, Um, Y, Kim, KY, Madhaiyan, M, Sa, TM, Lee, Y (B122) 2016; 4
Manners, DJ (B29) 1963; 17
Bashan, Y, de-Bashan, LE, Prabhu, SR, Hernandez, JP (B66) 2014; 378
Grover, M, Bodhankar, S, Sharma, A, Sharma, P, Singh, J, Nain, L (B16) 2021; 4
Reva, ON, Swanevelder, DZH, Mwita, LA, Mwakilili, AD, Muzondiwa, D, Joubert, M, Chan, WY, Lutz, S, Ahrens, CH, Avdeeva, LV, Kharkhota, MA, Tibuhwa, D, Lyantagaye, S, Vater, J, Borriss, R, Meijer, J (B41) 2019; 10
Xu, T, Zhu, T, Li, S (B68) 2016; 32
Wan, W, Qin, Y, Wu, H, Zuo, W, He, H, Tan, J, Wang, Y, He, D (B13) 2020; 11
Silva, UC, Cuadros-Orellana, S, Silva, DRC, Freitas-Júnior, LF, Fernandes, AC, Leite, LR, Oliveira, CA, Dos Santos, VL (B81) 2021; 11
de Faria, AF, Teodoro-Martinez, DS, de Oliveira Barbosa, GN, Gontijo Vaz, B, Serrano Silva, Í, Garcia, JS, Tótola, MR, Eberlin, MN, Grossman, M, Alves, OL, Regina Durrant, L (B105) 2011; 46
Xu, L, Wang, L, Chen, L, Xie, F, Li, Y (B27) 2013; 32
Backer, R, Rokem, JS, Ilangumaran, G, Lamont, J, Praslickova, D, Ricci, E, Subramanian, S, Smith, DL (B12) 2018; 9
Ngalimat, MS, Sabri, S (B37) 2020; 28
Butcher, RA, Schroeder, FC, Fischbach, MA, Straight, PD, Kolter, R, Walsh, CT, Clardy, J (B55) 2007; 104
Oleńska, E, Małek, W, Wójcik, M, Swiecicka, I, Thijs, S, Vangronsveld, J (B20) 2020; 743
Depinto, J, Campbell, L (B30) 1968; 7
Ouyang, J, Shao, X, Li, J (B106) 2000; 24
Joly, P, Calteau, A, Wauquier, A, Dumas, R, Beuvin, M, Vallenet, D, Crovadore, J, Cochard, B, Lefort, F, Berthon, Y (B52) 2021; 9
Haro, D, Marrero, PF, Relat, J (B42) 2019; 20
García-Fraile, P, Menéndez, E, Rivas, R (B14) 2015; 2
Lynd, LR, Weimer, PJ, Van Zyl, WH, Pretorius, IS (B49) 2002; 66
Talboys, PJ, Owen, DW, Healey, JR, Withers, PJA, Jones, DL (B73) 2014; 14
Dunlap, CA, Kim, SJ, Kwon, SW, Rooney, AP (B23) 2015; 65
Orozco-Mosqueda M del, C, Glick, BR, Santoyo, G (B4) 2020; 235
Xu, W, Zhang, L, Goodwin, PH, Xia, M, Zhang, J, Wang, Q, Liang, J, Sun, R, Wu, C, Yang, L (B19) 2020; 0
Chen, L, Gu, W, Xu, HY, Yang, GL, Shan, XF, Chen, G, Kang, YH, Wang, CF, Qian, AD (B17) 2018; 8
B104
Xu, S, Peng, Z, Cui, B, Wang, T, Song, Y, Zhang, L, Wei, G, Wang, Y, Shen, X (B115) 2014; 16
Polonca, S (B43) 2020; 79
Stojanović, SS, Karabegović, I, Beškoski, V, Nikolić, N, Lazić, M (B21) 2019; 73
Friedman, S (B28) 1960; 87
Saier, MH, Reddy, VS, Tsu, BV, Ahmed, MS, Li, C, Moreno-Hagelsieb, G (B101) 2016; 44
Hibbing, ME, Fuqua, C, Parsek, MR, Peterson, SB (B50) 2010; 8
Wen, Y, Wu, X, Teng, Y, Qian, C, Zhan, Z, Zhao, Y, Li, O (B65) 2011; 13
Collavino, M, Riccillo, PM, Grasso, DH, Crespi, M, Aguilar, OM (B84) 2005; 18
Bharti, N, Pandey, SS, Barnawal, D, Patel, VK, Kalra, A (B11) 2016; 6
Lagesen, K, Hallin, P, Rødland, EA, Staerfeldt, H-H, Rognes, T, Ussery, DW (B100) 2007; 35
Khalid, F, Khalid, A, Fu, Y, Hu, Q, Zheng, Y, Khan, S, Wang, Z (B40) 2021; 59
Cantarel, BL, Coutinho, PM, Rancurel, C, Bernard, T, Lombard, V, Henrissat, B (B103) 2009; 37
Meng, Q, Jiang, H, Hao, JJ (B109) 2016; 98
Zhang, N, Yang, D, Wang, D, Miao, Y, Shao, J, Zhou, X, Xu, Z, Li, Q, Feng, H, Li, S, Shen, Q, Zhang, R (B77) 2015; 16
Totten, PA, Lara, JC, Lory, S (B114) 1990; 172
Altaf, MM, Ahmad, I, Khan, MSA, Grohmann, E, Ahmad, I, Husain, FM (B79) 2017
Arrebola, E, Jacobs, R, Korsten, L (B64) 2010; 108
Gordon, RE (B44) 1973
Akhter, S, Aziz, RK, Edwards, RA (B99) 2012; 40
Chowdhury, SP, Uhl, J, Grosch, R, Alquéres, S, Pittroff, S, Dietel, K, Schmitt-Kopplin, P, Borriss, R, Hartmann, A (B8) 2015; 28
Vanittanakom, N, Loeffler, W, Koch, U, Jung, G (B56) 1986; 39
Faulds, C, Williamson, G (B31) 1991; 137
Hertlein, G, Seiffert, M, Gensel, S, Garcia-Gonzalez, E, Ebeling, J, Skobalj, R, Kuthning, A, Süssmuth, RD, Genersch, E (B59) 2016; 11
Chen, L, Gu, W, Xu, H, Yang, G-L, Shan, X-F, Chen, G, Wang, C-F, Qian, A-D (B48) 2018; 8
Math, RK, Jin, HM, Kim, JM, Hahn, Y, Park, W, Madsen, EL, Jeon, CO (B47) 2012; 7
Ljunggren, H, Fahraeus, G (B83) 1961; 26
Ardui, S, Ameur, A, Vermeesch, JR, Hestand, MS (B89) 2018; 46
Raza, W, Ling, N, Yang, L, Huang, Q, Shen, Q (B110) 2016; 6
Delumeau, O, Dutta, S, Brigulla, M, Kuhnke, G, Hardwick, SW, Völker, U, Yudkin, MD, Lewis, RJ (B119) 2004; 279
Blin, K, Shaw, S, Steinke, K, Villebro, R, Ziemert, N, Lee, SY, Medema, MH, Weber, T (B102) 2019; 47
Morgan, JAW, Bending, GD, White, PJ (B121) 2005; 56
Wang, C, Zhao, D, Qi, G, Mao, Z, Hu, X, Du, B, Liu, K, Ding, Y (B67) 2019; 10
Karygianni, L, Ren, Z, Koo, H, Thurnheer, T (B78) 2020; 28
Marmont, LS, Whitfield, GB, Pfoh, R, Williams, RJ, Randall, TE, Ostaszewski, A, Razvi, E, Groves, RA, Robinson, H, Nitz, M, Parsek, MR, Lewis, IA, Whitney, JC, Harrison, JJ, Howell, PL (B116) 2020; 295
Ekıncı, M, Yildirim, E, Dursun, A, Mohamedsrajaden, NS (B75) 2019; 29
Kitamura, E, Myouga, H, Kamei, Y (B69) 2002; 68
Wang, J, Xing, J, Lu, J, Sun, Y, Zhao, J, Miao, S, Xiong, Q, Zhang, Y, Zhang, G (B53) 2019; 29
Zhou, D, Hu, F, Lin, J, Wang, W, Li, S (B111) 2019; 8
Dunlap, CA, Kim, SJ, Kwon, SW, Rooney, AP (B25) 2016; 66
Chun, BH, Kim, KH, Jeong, SE, Jeon, CO (B45) 2019; 77
(B34) 2017
Skerman, VBD, McGowan, V, Sneath, PHA (B39) 1980; 30
Beneduzi, A, Ambrosini, A, Passaglia, LMP (B6) 2012; 35
Fritze, D (B38) 2004; 94
Borriss, R, Chen, XH, Rueckert, C, Blom, J, Becker, A, Baumgarth, B, Fan, B, Pukall, R, Schumann, P, Spröer, C, Junge, H, Vater, J, Pühler, A, Klenk, HP (B36) 2011; 61
Li, Y, Lei, L, Zheng, L, Xiao, X, Tang, H, Luo, C (B18) 2020; 13
Igiehon, NO, Babalola, OO, Aremu, BR (B87) 2019; 19
Yano, R, Nagai, H, Shiba, K, Yura, T, Chang, S, Ng, D, Baird, L, Georgopoulos, C (B124) 1995; 177
Sibponkrung, S, Kondo, T, Tanaka, K, Tittabutr, P, Boonkerd, N, Teaumroong, N, Yoshida, KI (B71) 2017; 5
Goswami, D, Thakker, JN, Dhandhukia, PC (B15) 2016; 2
Jain, C, Rodriguez-R, LM, Phillippy, AM, Konstantinidis, KT, Aluru, S (B92) 2018; 9
Wen, R, Wang, K, Liu, X, Li, X, Mi, J, Meng, Q (B88) 2018; 117
Xu, S, Xie, X, Zhao, Y, Shi, Y, Chai, A, Li, L, Li, B (B107) 2020; 10
Rahma, AA, Suryanti Somowiyarjo, S, Joko, T (B54) 2020; 23
Rabbee, MF, Ali, MS, Choi, J, Hwang, BS, Jeong, SC, Baek, K-H (B60) 2019; 24
Kloepper, JW, Leong, J, Teintze, M, Schroth, MN (B32) 1980; 286
B93
Bleich, R, Watrous, JD, Dorrestein, PC, Bowers, AA, Shank, EA (B113) 2015; 112
B97
Eder, S, Shi, L, Jensen, K, Yamane, K, Hulett, FM (B118) 1996; 142
Šmarda, P, Bureš, P, Horová, L, Leitch, IJ, Mucina, L, Pacini, E, Tichý, L, Grulich, V, Rotreklová, O (B46) 2014; 111
Gao, L, Han, J, Liu, H, Qu, X, Lu, Z, Bie, X (B57) 2017; 110
López-Lozano, NE, Echeverría Molinar, A, Ortiz Durán, EA, Hernández Rosales, M, Souza, V (B26) 2020; 11
Özcengiz, G, Öğülür, I (B63) 2015; 32
Sibponkrung, S, Kondo, T, Tanaka, K, Tittabutr, P, Boonkerd, N, Yoshida, KI, Teaumroong, N (B72) 2020; 8
Nguyen, LT, Schmidt, HA, Von Haeseler, A, Minh, BQ (B91) 2015; 32
Kalam, S, Das, SN, Basu, A, Podile, AR (B2) 2017; 57
Buée, M, de Boer, W, Martin, F, Van Overbeek, L, Jurkevitch, E (B3) 2009; 321
Rowland, I, Gibson, G, Heinken, A, Scott, K, Swann, J, Thiele, I, Tuohy, K (B51) 2018; 57
De la Fuente Cantó, C, Simonin, M, King, E, Moulin, L, Bennett, MJ, Castrillo, G, Laplaze, L (B1) 2020; 103
Zhou, D, Huang, XF, Chaparro, JM, Badri, DV, Manter, DK, Vivanco, JM, Guo, J (B5) 2016; 401
Xie, SS, Wu, HJ, Zang, HY, Wu, LM, Zhu, QQ, Gao, XW (B76) 2014; 27
Riccillo, PM, Collavino, MM, Grasso, DH, England, R, De Bruijn, FJ, Aguilar, OM (B85) 2000; 13
Scholz, R, Vater, J, Budiharjo, A, Wang, Z, He, Y, Dietel, K, Schwecke, T, Herfort, S, Lasch, P, Borriss, R (B62) 2014; 196
References_xml – ident: e_1_3_3_8_2
  doi: 10.1021/acschembio.7b00874
– ident: e_1_3_3_42_2
  doi: 10.3389/fmicb.2019.02610
– ident: e_1_3_3_93_2
  doi: 10.1038/s41467-018-07641-9
– ident: e_1_3_3_68_2
  doi: 10.3389/fmicb.2019.02889
– ident: e_1_3_3_27_2
  doi: 10.3389/fpls.2020.01028
– ident: e_1_3_3_46_2
  doi: 10.1016/j.fm.2018.09.001
– ident: e_1_3_3_74_2
  doi: 10.1186/1471-2229-14-51
– ident: e_1_3_3_112_2
  doi: 10.1002/mbo3.794
– ident: e_1_3_3_58_2
  doi: 10.1007/s10482-017-0874-y
– volume: 29
  start-page: 290
  year: 2019
  ident: e_1_3_3_76_2
  article-title: Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling
  publication-title: Yuzuncu Yil University J Agricultural Sciences
– ident: e_1_3_3_60_2
  doi: 10.1371/journal.pone.0164656
– ident: e_1_3_3_40_2
  doi: 10.1099/00207713-30-1-225
– ident: e_1_3_3_2_2
  doi: 10.1111/tpj.14781
– volume: 17
  start-page: 371
  year: 1963
  ident: e_1_3_3_30_2
  article-title: Enzymic synthesis and degradation of starch and glycogen
  publication-title: Advances in Carbohydrate Chemistry
– ident: e_1_3_3_50_2
  doi: 10.1128/MMBR.66.3.506-577.2002
– ident: e_1_3_3_110_2
  doi: 10.1016/j.biocontrol.2016.03.010
– ident: e_1_3_3_22_2
  doi: 10.2298/HEMIND190214014S
– ident: e_1_3_3_15_2
  doi: 10.3934/bioeng.2015.3.183
– ident: e_1_3_3_94_2
– ident: e_1_3_3_33_2
  doi: 10.1038/286885a0
– ident: e_1_3_3_64_2
  doi: 10.1016/j.nbt.2015.01.006
– ident: e_1_3_3_89_2
  doi: 10.1016/j.ijbiomac.2017.12.090
– ident: e_1_3_3_117_2
  doi: 10.1074/jbc.RA120.014555
– ident: e_1_3_3_109_2
  doi: 10.1016/S2095-3119(14)60980-1
– ident: e_1_3_3_26_2
  doi: 10.1099/ijsem.0.000858
– ident: e_1_3_3_90_2
  doi: 10.1093/nar/gky066
– ident: e_1_3_3_36_2
  doi: 10.1186/1471-2164-14-271
– ident: e_1_3_3_56_2
  doi: 10.1073/pnas.0610503104
– ident: e_1_3_3_116_2
  doi: 10.1111/1462-2920.12222
– ident: e_1_3_3_37_2
  doi: 10.1099/ijs.0.023267-0
– ident: e_1_3_3_43_2
  doi: 10.3390/ijms20061386
– volume: 32
  start-page: 21
  year: 2013
  ident: e_1_3_3_28_2
  article-title: Strain of Bacillus HNA3 antagonizing phytopathogenic fungi Identification and analysis of its active ingredients
  publication-title: J Huazhong Agricultural University
– ident: e_1_3_3_7_2
  doi: 10.1590/s1415-47572012000600020
– ident: e_1_3_3_24_2
  doi: 10.1099/ijs.0.000226
– ident: e_1_3_3_108_2
  doi: 10.1007/s13205-020-2165-y
– ident: e_1_3_3_124_2
  doi: 10.1007/s12010-018-2874-4
– ident: e_1_3_3_75_2
  doi: 10.1016/j.btre.2019.e00406
– ident: e_1_3_3_3_2
  doi: 10.1002/jobm.201600588
– ident: e_1_3_3_88_2
  doi: 10.1186/s12866-019-1536-1
– ident: e_1_3_3_79_2
  doi: 10.1016/j.tim.2020.03.016
– ident: e_1_3_3_115_2
  doi: 10.1128/jb.172.1.389-396.1990
– ident: e_1_3_3_97_2
  doi: 10.1093/bioinformatics/bti553
– ident: e_1_3_3_65_2
  doi: 10.1111/j.1365-2672.2009.04438.x
– ident: e_1_3_3_70_2
  doi: 10.1046/j.1444-2906.2002.00443.x
– ident: e_1_3_3_86_2
  doi: 10.1094/MPMI.2000.13.11.1228
– ident: e_1_3_3_14_2
  doi: 10.3389/fmicb.2020.00752
– ident: e_1_3_3_54_2
  doi: 10.4014/jmb.1901.01040
– ident: e_1_3_3_57_2
  doi: 10.7164/antibiotics.39.888
– ident: e_1_3_3_101_2
  doi: 10.1093/nar/gkm160
– ident: e_1_3_3_6_2
  doi: 10.1007/s11104-015-2743-7
– ident: e_1_3_3_82_2
  doi: 10.3389/fmicb.2020.574550
– ident: e_1_3_3_67_2
  doi: 10.1007/s11104-013-1956-x
– ident: e_1_3_3_120_2
  doi: 10.1074/jbc.M405464200
– ident: e_1_3_3_5_2
  doi: 10.1016/j.micres.2020.126439
– ident: e_1_3_3_13_2
  doi: 10.3389/fpls.2018.01473
– ident: e_1_3_3_78_2
  doi: 10.1186/s12864-015-1825-5
– ident: e_1_3_3_81_2
  doi: 10.1128/JB.184.1.290-301.2002
– ident: e_1_3_3_71_2
  doi: 10.1094/MPMI-20-6-0619
– ident: e_1_3_3_25_2
  doi: 10.1099/ijs.0.009126-0
– ident: e_1_3_3_91_2
  doi: 10.1186/1471-2148-10-61
– ident: e_1_3_3_12_2
  doi: 10.1038/srep34768
– ident: e_1_3_3_38_2
  doi: 10.35118/apjmbb.2020.028.2.02
– ident: e_1_3_3_99_2
  doi: 10.1093/bib/bbw019
– ident: e_1_3_3_125_2
  doi: 10.1128/jb.177.1.200-205.1995
– ident: e_1_3_3_72_2
  doi: 10.1128/genomeA.01312-17
– ident: e_1_3_3_18_2
  doi: 10.1007/s13205-018-1270-7
– ident: e_1_3_3_98_2
– ident: e_1_3_3_102_2
  doi: 10.1093/nar/gkv1103
– ident: e_1_3_3_10_2
  doi: 10.1038/s41598-018-22782-z
– ident: e_1_3_3_77_2
  doi: 10.1094/MPMI-01-14-0010-R
– ident: e_1_3_3_103_2
  doi: 10.1093/nar/gkz310
– ident: e_1_3_3_9_2
  doi: 10.1094/MPMI-03-15-0066-R
– ident: e_1_3_3_61_2
  doi: 10.3390/molecules24061046
– ident: e_1_3_3_126_2
  doi: 10.4014/jmb.1611.11057
– ident: e_1_3_3_83_2
  doi: 10.1073/pnas.95.16.9687
– ident: e_1_3_3_66_2
  doi: 10.1111/j.1462-2920.2011.02542.x
– ident: e_1_3_3_87_2
  doi: 10.1023/A:1020561122764
– ident: e_1_3_3_114_2
  doi: 10.1073/pnas.1414272112
– ident: e_1_3_3_85_2
  doi: 10.1094/MPMI-18-0742
– ident: e_1_3_3_41_2
  doi: 10.1007/s12275-021-1161-1
– ident: e_1_3_3_55_2
  doi: 10.3923/pjbs.2020.1113.1121
– ident: e_1_3_3_21_2
  doi: 10.1016/j.scitotenv.2020.140682
– ident: e_1_3_3_4_2
  doi: 10.1007/s11104-009-9991-3
– ident: e_1_3_3_52_2
  doi: 10.1007/s00394-017-1445-8
– ident: e_1_3_3_19_2
  doi: 10.1186/s13068-020-1671-9
– ident: e_1_3_3_48_2
  doi: 10.1371/journal.pone.0035784
– ident: e_1_3_3_16_2
  doi: 10.1080/23311932.2015.1127500
– ident: e_1_3_3_113_2
  doi: 10.1186/s13568-020-01101-8
– ident: e_1_3_3_122_2
  doi: 10.1093/jxb/eri205
– ident: e_1_3_3_69_2
  doi: 10.1007/s11274-015-1985-0
– ident: e_1_3_3_29_2
  doi: 10.1016/0003-9861(60)90169-7
– ident: e_1_3_3_100_2
  doi: 10.1093/nar/gks406
– ident: e_1_3_3_119_2
  doi: 10.1099/13500872-142-8-2041
– ident: e_1_3_3_44_2
  doi: 10.1007/s00248-019-01455-y
– volume: 0
  start-page: 3151
  year: 2020
  ident: e_1_3_3_20_2
  article-title: Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis yb-130, potential biocontrol agent against Fusarium graminearum
  publication-title: Front Microbiol
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.1304235110
– ident: e_1_3_3_31_2
  doi: 10.1021/bi00841a016
– ident: e_1_3_3_39_2
  doi: 10.1094/PHYTO.2004.94.11.1245
– ident: e_1_3_3_107_2
  doi: 10.1046/j.1365-313x.2000.00883.x
– ident: e_1_3_3_63_2
  doi: 10.1128/JB.01474-14
– ident: e_1_3_3_53_2
  doi: 10.3390/microorganisms9091924
– ident: e_1_3_3_111_2
  doi: 10.1038/srep24856
– ident: e_1_3_3_104_2
  doi: 10.1093/nar/gkn663
– ident: e_1_3_3_84_2
  doi: 10.1099/00221287-26-3-521
– ident: e_1_3_3_32_2
  doi: 10.1099/00221287-137-10-2339
– ident: e_1_3_3_105_2
– ident: e_1_3_3_121_2
  doi: 10.1387/ijdb.082820mg
– ident: e_1_3_3_73_2
  doi: 10.3390/microorganisms8050678
– volume-title: The genus Bacillus. Agriculture Handbook 427.
  year: 1973
  ident: e_1_3_3_45_2
– ident: e_1_3_3_62_2
  doi: 10.1128/JB.00052-06
– ident: e_1_3_3_95_2
  doi: 10.1186/gb-2000-1-5-research0009
– ident: e_1_3_3_96_2
  doi: 10.1186/1471-2164-12-402
– ident: e_1_3_3_17_2
  doi: 10.3389/fsufs.2020.618230
– ident: e_1_3_3_23_2
  doi: 10.1016/j.micres.2016.12.007
– ident: e_1_3_3_106_2
  doi: 10.1016/j.procbio.2011.07.001
– ident: e_1_3_3_51_2
  doi: 10.1038/nrmicro2259
– ident: e_1_3_3_118_2
  doi: 10.1099/00221287-148-3-815
– ident: e_1_3_3_123_2
  doi: 10.1128/genomeA.00654-16
– volume: 8
  start-page: 114
  year: 2018
  ident: e_1_3_3_49_2
  article-title: Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF
  publication-title: 3Biotech
– ident: e_1_3_3_59_2
  doi: 10.1128/AEM.71.8.4577-4584.2005
– volume-title: The future of food and agriculture: trends and challenges.
  year: 2017
  ident: e_1_3_3_35_2
– ident: e_1_3_3_47_2
  doi: 10.1073/pnas.1321152111
– ident: e_1_3_3_92_2
  doi: 10.1093/molbev/msu300
– ident: e_1_3_3_80_2
  doi: 10.1002/9781119246329.ch4
– ident: e_1_3_3_11_2
  doi: 10.1016/j.cbpa.2005.08.001
– volume: 28
  start-page: 668
  year: 2020
  end-page: 681
  ident: B78
  article-title: Biofilm matrixome: extracellular components in structured microbial communities
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2020.03.016
– volume: 46
  start-page: 2159
  year: 2018
  end-page: 2168
  ident: B89
  article-title: Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics
  publication-title: Nucleic Acids Res Oxford University Press
  doi: 10.1093/nar/gky066
– volume: 401
  start-page: 259
  year: 2016
  end-page: 272
  ident: B5
  article-title: Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2743-7
– volume: 8
  start-page: 114
  year: 2018
  ident: B48
  article-title: Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF
  publication-title: 3Biotech
– ident: B97
  article-title: Husnik F . 2018 . GitHub - filip-husnik/pseudo-finder: detection of pseudogene candidates in bacterial and archaeal genomes . GitHub . https://github.com/filip-husnik/pseudo-finder . Retrieved May 11, 2020 .
– volume: 98
  start-page: 18
  year: 2016
  end-page: 26
  ident: B109
  article-title: Effects of Bacillus velezensis strain BAC03 in promoting plant growth
  publication-title: Biological Control
  doi: 10.1016/j.biocontrol.2016.03.010
– volume: 59
  start-page: 2429
  year: 2009
  end-page: 2436
  ident: B24
  article-title: Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.009126-0
– volume: 188
  start-page: 4024
  year: 2006
  end-page: 4036
  ident: B61
  article-title: Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42
  publication-title: J Bacteriol
  doi: 10.1128/JB.00052-06
– volume: 29
  start-page: 290
  year: 2019
  end-page: 299
  ident: B75
  article-title: Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling
  publication-title: Yuzuncu Yil University J Agricultural Sciences
– volume: 18
  start-page: 742
  year: 2005
  end-page: 750
  ident: B84
  article-title: GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-alfalfa symbiotic interaction
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-18-0742
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  ident: B9
  article-title: Antagonism of two plant-growth promoting Bacillus velezensis Isolates against Ralstonia solanacearum and Fusarium oxysporum
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-22782-z
– volume: 8
  start-page: 253
  year: 2018
  ident: B17
  article-title: Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1270-7
– start-page: 55
  year: 2017
  end-page: 67
  ident: B79
  article-title: Bacillus biofilms and their role in plant health
  publication-title: Biofilms in plant and soil health. ;John Wiley & Sons, Ltd
– volume: 24
  start-page: 327
  year: 2000
  end-page: 334
  ident: B106
  article-title: Indole-3-glycerol phosphate, a branch point of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2000.00883.x
– volume: 10
  start-page: 458
  year: 2020
  end-page: 572
  ident: B107
  article-title: Whole-genome analysis of Bacillus Velezensis ZF2, a biocontrol agent that protects Cucumis Sativus against Corynespora leaf spot diseases
  publication-title: 3 Biotech
  doi: 10.1007/s13205-020-2165-y
– volume: 6
  start-page: 34768
  year: 2016
  end-page: 34776
  ident: B11
  article-title: Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress
  publication-title: Sci Rep
  doi: 10.1038/srep34768
– volume: 13
  year: 2020
  ident: B18
  article-title: Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-020-1671-9
– volume: 14
  start-page: 1673
  year: 2015
  end-page: 1686
  ident: B108
  article-title: The cytochrome P450 superfamily: Key players in plant development and defense
  publication-title: J Integrative Agriculture
  doi: 10.1016/S2095-3119(14)60980-1
– volume: 17
  start-page: 371
  year: 1963
  end-page: 430
  ident: B29
  article-title: Enzymic synthesis and degradation of starch and glycogen
  publication-title: Advances in Carbohydrate Chemistry
– volume: 196
  start-page: 89
  year: 2017
  end-page: 94
  ident: B22
  article-title: Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2016.12.007
– year: 2017
  ident: B34
  publication-title: The future of food and agriculture: trends and challenges. ;Food and Agriculture Organization of the United Nations ;Rome, Italy
– volume: 10
  year: 2019
  ident: B41
  article-title: Genetic, epigenetic, and phenotypic diversity of four Bacillus velezensis strains used for plant protection or as probiotics
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02610
– volume: 37
  start-page: D233
  year: 2009
  end-page: D238
  ident: B103
  article-title: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn663
– volume: 32
  start-page: 268
  year: 2015
  end-page: 274
  ident: B91
  article-title: IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu300
– volume: 8
  start-page: 1
  year: 2019
  end-page: 14
  ident: B111
  article-title: Genome and transcriptome analysis of Bacillus velezensis BS-37, an efficient surfactin producer from glycerol, in response to d-/l-leucine
  publication-title: Microbiology Open
– volume: 24
  start-page: 1046
  year: 2019
  end-page: 1059
  ident: B60
  article-title: Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes
  publication-title: Molecules
  doi: 10.3390/molecules24061046
– volume: 44
  start-page: D372
  year: 2016
  end-page: D379
  ident: B101
  article-title: The Transporter Classification Database (TCDB): Recent advances
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1103
– volume: 27
  start-page: 844
  year: 2017
  end-page: 855
  ident: B125
  article-title: Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1611.11057
– volume: 35
  start-page: 3100
  year: 2007
  end-page: 3108
  ident: B100
  article-title: RNAmmer: Consistent and rapid annotation of ribosomal RNA genes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm160
– volume: 172
  start-page: 389
  year: 1990
  end-page: 396
  ident: B114
  article-title: The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.1.389-396.1990
– volume: 11
  start-page: e0164656
  year: 2016
  end-page: 1385
  ident: B59
  article-title: Biological role of paenilarvins, iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen Paenibacillus larvae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164656
– volume: 2
  start-page: 1080
  year: 2016
  end-page: 1100
  ident: B15
  article-title: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review
  publication-title: Cogent Food & Agriculture
  doi: 10.1080/23311932.2015.1127500
– volume: 148
  start-page: 815
  year: 2002
  end-page: 824
  ident: B117
  article-title: Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation the EMBL accession numbers for the nucleotide sequences reported in this paper are AJ313428, AJ318465, AJ318466, AJ318467, AJ318468, AJ318469 and AJ318470
  publication-title: Microbiology (Reading)
  doi: 10.1099/00221287-148-3-815
– volume: 94
  start-page: 1245
  year: 2004
  end-page: 1248
  ident: B38
  article-title: Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2004.94.11.1245
– volume: 7
  start-page: e35784
  year: 2012
  end-page: 1386
  ident: B47
  article-title: Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: Cold tolerance and aromatic hydrocarbon metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035784
– volume: 47
  start-page: W81
  year: 2019
  end-page: W87
  ident: B102
  article-title: AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz310
– volume: 39
  start-page: 888
  year: 1986
  end-page: 901
  ident: B56
  article-title: Fengycin - A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3
  publication-title: J Antibiot (Tokyo)
  doi: 10.7164/antibiotics.39.888
– volume: 11
  start-page: 752
  year: 2020
  ident: B13
  article-title: Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00752
– volume: 10
  year: 2020
  ident: B112
  article-title: Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion
  publication-title: AMB Expr
  doi: 10.1186/s13568-020-01101-8
– year: 1973
  ident: B44
  publication-title: The genus Bacillus. Agriculture Handbook 427. ;U.S. Government Printing Office ;Washington, DC
– volume: 61
  start-page: 1786
  year: 2011
  end-page: 1801
  ident: B36
  article-title: Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7 T and FZB42 T: A proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparison
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.023267-0
– ident: B93
  article-title: The Center for Computational Biology at Johns Hopkins University . 2021 . Glimmer . http://ccb.jhu.edu/software/glimmer/index.shtml . Retrieved August 15, 2021 .
– volume: 25
  start-page: e00406
  year: 2020
  end-page: 9
  ident: B74
  article-title: Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest
  publication-title: Biotechnol Rep (Amst)
  doi: 10.1016/j.btre.2019.e00406
– volume: 32
  start-page: 21
  year: 2013
  end-page: 27
  ident: B27
  article-title: Strain of Bacillus HNA3 antagonizing phytopathogenic fungi Identification and analysis of its active ingredients
  publication-title: J Huazhong Agricultural University
– volume: 184
  start-page: 290
  year: 2002
  end-page: 301
  ident: B80
  article-title: Biofilm formation and dispersal under the influence of the global regulator csrA of Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.1.290-301.2002
– volume: 29
  start-page: 794
  year: 2019
  end-page: 808
  ident: B53
  article-title: Complete genome sequencing of Bacillus velezensis WRN014, and comparison with genome sequences of other Bacillus velezensis strains
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1901.01040
– volume: 20
  start-page: 619
  year: 2007
  end-page: 626
  ident: B70
  article-title: Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-20-6-0619
– volume: 20
  start-page: 1386
  year: 2019
  ident: B42
  article-title: Nutritional regulation of gene expression: carbohydrate-, fat- and amino acid-dependent modulation of transcriptional activity
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20061386
– volume: 13
  start-page: 1228
  year: 2000
  end-page: 1236
  ident: B85
  article-title: A guaB mutant strain of Rhizobium tropici CIAT899 pleiotropically defective in thermal tolerance and symbiosis
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.2000.13.11.1228
– volume: 110
  start-page: 1007
  year: 2017
  end-page: 1018
  ident: B57
  article-title: Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-017-0874-y
– volume: 16
  start-page: 1090
  year: 2014
  end-page: 1104
  ident: B115
  article-title: FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12222
– volume: 142
  start-page: 2041
  year: 1996
  end-page: 2047
  ident: B118
  article-title: A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a pho regulon gene, phoD
  publication-title: Microbiology (Reading, Engl)
  doi: 10.1099/13500872-142-8-2041
– volume: 35
  start-page: 1044
  year: 2012
  end-page: 1051
  ident: B6
  article-title: Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents
  publication-title: Genet Mol Biol
  doi: 10.1590/s1415-47572012000600020
– volume: 68
  start-page: 436
  year: 2002
  end-page: 445
  ident: B69
  article-title: Polysaccharolytic activities of bacterial enzymes that degrade the cell walls of Pythium porphyrae, a causative fungus of red rot disease in Porphyrayezoensis
  publication-title: Fisheries Sci
  doi: 10.1046/j.1444-2906.2002.00443.x
– volume: 57
  start-page: 376
  year: 2017
  end-page: 385
  ident: B2
  article-title: Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere
  publication-title: J Basic Microbiol
  doi: 10.1002/jobm.201600588
– volume: 87
  start-page: 252
  year: 1960
  end-page: 258
  ident: B28
  article-title: The purification and properties of trehalase isolated from Phormiaregina, Meig
  publication-title: Arch Biochem Biophys
  doi: 10.1016/0003-9861(60)90169-7
– volume: 7
  start-page: 121
  year: 1968
  end-page: 125
  ident: B30
  article-title: Purification and properties of the cyclodextrinase of Bacillus macerans
  publication-title: Biochemistry
  doi: 10.1021/bi00841a016
– volume: 59
  start-page: 627
  year: 2021
  end-page: 633
  ident: B40
  article-title: Potential of Bacillus velezensis as a probiotic in animal feed: a review
  publication-title: J Microbiol
  doi: 10.1007/s12275-021-1161-1
– volume: 2
  start-page: 183
  year: 2015
  end-page: 205
  ident: B14
  article-title: Role of bacterial biofertilizers in agriculture and forestry
  publication-title: AIMS Bioengineering
  doi: 10.3934/bioeng.2015.3.183
– volume: 77
  start-page: 146
  year: 2019
  end-page: 157
  ident: B45
  article-title: Genomic and metabolic features of the Bacillus amyloliquefaciens group -B. amyloliquefaciens, B. velezensis, and B. siamensis– revealed by pan-genome analysis
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2018.09.001
– volume: 13
  start-page: 500
  year: 2018
  end-page: 505
  ident: B7
  article-title: Characteristics and application of a novel species of Bacillus: Bacillus velezensis
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.7b00874
– volume: 14
  start-page: 271
  year: 2013
  ident: B35
  article-title: Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-271
– volume: 65
  start-page: 2104
  year: 2015
  end-page: 2109
  ident: B23
  article-title: Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. Plantarum is a later heterotypic synonym of Bacillus methylotrophicus
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.000226
– volume: 11
  year: 2020
  ident: B26
  article-title: Bacterial diversity and interaction networks of Agave lechuguilla rhizosphere differ significantly from bulk soil in the oligotrophic basin of CuatroCienegas
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.01028
– volume: 57
  start-page: 1
  year: 2018
  end-page: 24
  ident: B51
  article-title: Gut microbiota functions: metabolism of nutrients and other food components
  publication-title: Eur J Nutr
  doi: 10.1007/s00394-017-1445-8
– volume: 16
  year: 2015
  ident: B77
  article-title: Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1825-5
– volume: 26
  start-page: 521
  year: 1961
  end-page: 528
  ident: B83
  article-title: The role of polygalacturonase in root-hair invasion by nodule bacteria
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-26-3-521
– volume: 4
  start-page: 287
  year: 2021
  ident: B16
  article-title: PGPR mediated alterations in root traits: way toward sustainable crop production
  publication-title: Front Sustain Food Syst
  doi: 10.3389/fsufs.2020.618230
– volume: 71
  start-page: 4577
  year: 2005
  end-page: 4584
  ident: B58
  article-title: Mycosubtilin overproduction by Bacillus subtilis BBG100enhances the organism’s antagonistic and biocontrol activities
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.8.4577-4584.2005
– volume: 108
  start-page: 386
  year: 2010
  end-page: 395
  ident: B64
  article-title: Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2009.04438.x
– volume: 32
  start-page: 1
  year: 2016
  end-page: 9
  ident: B68
  article-title: Β-1,3–1,4-Glucanase gene from Bacillus Velezensis Zj20 exerts antifungal effect on plant pathogenic fungi
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-015-1985-0
– volume: 743
  start-page: 140682
  year: 2020
  ident: B20
  article-title: Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.140682
– volume: 9
  start-page: 447
  year: 2005
  end-page: 458
  ident: B10
  article-title: Formation of novel secondary metabolites by bacterial multi modular assembly lines: Deviations from textbook biosynthetic logic
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2005.08.001
– volume: 10
  start-page: 61
  year: 2010
  ident: B90
  article-title: Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-10-61
– volume: 1
  start-page: research0009.1
  year: 2000
  ident: B94
  article-title: Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs)
  publication-title: Genome Biol
  doi: 10.1186/gb-2000-1-5-research0009
– volume: 117
  start-page: 1352
  year: 2018
  end-page: 1360
  ident: B88
  article-title: Molecular cloning and analysis of the full-length aciniformspidroin gene from Araneus ventricosus
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2017.12.090
– volume: 6
  start-page: 24856
  year: 2016
  ident: B110
  article-title: Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9
  publication-title: Sci Rep
  doi: 10.1038/srep24856
– volume: 56
  start-page: 1729
  year: 2005
  end-page: 1739
  ident: B121
  article-title: Biological costs and benefits to plant-microbe interactions in the rhizosphere
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eri205
– volume: 0
  start-page: 3151
  year: 2020
  ident: B19
  article-title: Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis yb-130, potential biocontrol agent against Fusarium graminearum
  publication-title: Front Microbiol
– volume: 21
  start-page: 3422
  year: 2005
  end-page: 3423
  ident: B96
  article-title: ACT: the Artemis comparison tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti553
– volume: 53
  start-page: 1069
  year: 2009
  end-page: 1074
  ident: B120
  article-title: Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP)
  publication-title: Int J Dev Biol
  doi: 10.1387/ijdb.082820mg
– volume: 137
  start-page: 2339
  year: 1991
  end-page: 2345
  ident: B31
  article-title: The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-137-10-2339
– ident: B104
  article-title: Nielsen H . 2021 . S ignalP-5.0, Signal peptide and cleavage sites in gram+, gram- and eukaryotic amino acid sequences . DTU Health Tech . SignalP - 5.0 . https://services.healthtech.dtu.dk/service.php?SignalP-5.0 . Retrieved 17 July 2021 .
– volume: 19
  start-page: 159
  year: 2019
  ident: B87
  article-title: Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-019-1536-1
– volume: 112
  start-page: 3086
  year: 2015
  end-page: 3091
  ident: B113
  article-title: Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1414272112
– volume: 196
  start-page: 1842
  year: 2014
  end-page: 1852
  ident: B62
  article-title: Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42
  publication-title: J Bacteriol
  doi: 10.1128/JB.01474-14
– volume: 81
  start-page: 27
  year: 2002
  end-page: 32
  ident: B86
  article-title: Bacterial endospores and their significance in stress resistance
  publication-title: Antonie Van Leeuwenhoek Int J General and Mol Microbiol
  doi: 10.1023/A:1020561122764
– volume: 73
  start-page: 169
  year: 2019
  end-page: 182
  ident: B21
  article-title: Bacillus based microbial formulations: Optimization of the production process
  publication-title: Hem Ind
  doi: 10.2298/HEMIND190214014S
– volume: 110
  start-page: 13821
  year: 2013
  end-page: 13826
  ident: B33
  article-title: Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereusYxeB
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1304235110
– volume: 104
  start-page: 1506
  year: 2007
  end-page: 1509
  ident: B55
  article-title: The identification of bacillaene, the product of the PksX mega complex in Bacillus subtilis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0610503104
– volume: 27
  start-page: 655
  year: 2014
  end-page: 663
  ident: B76
  article-title: Plant growth promotion by spermidine-producing Bacillus subtilis OKB105
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-01-14-0010-R
– volume: 28
  start-page: 984
  year: 2015
  end-page: 995
  ident: B8
  article-title: Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-03-15-0066-R
– volume: 286
  start-page: 885
  year: 1980
  end-page: 886
  ident: B32
  article-title: Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria
  publication-title: Nature
  doi: 10.1038/286885a0
– volume: 8
  start-page: 15
  year: 2010
  end-page: 25
  ident: B50
  article-title: Bacterial competition: Surviving and thriving in the microbial jungle
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2259
– volume: 235
  start-page: 126439
  year: 2020
  ident: B4
  article-title: ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops
  publication-title: Microbiological Res
  doi: 10.1016/j.micres.2020.126439
– volume: 18
  start-page: 357
  year: 2017
  end-page: 366
  ident: B98
  article-title: Zisland explorer: Detect genomic islands by combining homogeneity and heterogeneity properties
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw019
– volume: 13
  start-page: 2726
  year: 2011
  end-page: 2737
  ident: B65
  article-title: Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2011.02542.x
– volume: 187
  start-page: 1475
  year: 2019
  end-page: 1487
  ident: B123
  article-title: Integrated use of maize bran residue for one-step phosphate bio-fertilizer production
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-018-2874-4
– volume: 10
  start-page: 2889
  year: 2019
  ident: B67
  article-title: Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02889
– volume: 66
  start-page: 506
  year: 2002
  end-page: 577
  ident: B49
  article-title: Microbial cellulose utilization: fundamentals and biotechnology microbial cellulose utilization: fundamentals and biotechnology
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.66.3.506-577.2002
– volume: 9
  start-page: 1924
  year: 2021
  end-page: 1924
  ident: B52
  article-title: From strain characterization to field authorization: highlights on Bacillus velezensis strain b25 beneficial properties for plants and its activities on phytopathogenic fungi
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9091924
– volume: 8
  start-page: 678
  year: 2020
  end-page: 1211
  ident: B72
  article-title: Co-inoculation of Bacillus velezensis strain S141 and bradyrhizobium strains promotes nodule growth and nitrogen fixation
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8050678
– volume: 5
  year: 2017
  ident: B71
  article-title: Genome sequence of Bacillus velezensis S141, a new strain of plant growth promoting rhizobacterium isolated from soybean rhizosphere
  publication-title: Genome Announc
  doi: 10.1128/genomeA.01312-17
– volume: 95
  start-page: 9687
  year: 1998
  end-page: 9692
  ident: B82
  article-title: MsPG3, a medicago sativa polygalacturonase gene expressed during the alfalfa Rhizobium meliloti interaction
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.16.9687
– volume: 66
  start-page: 1212
  year: 2016
  end-page: 1217
  ident: B25
  article-title: Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. Plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenom
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.000858
– volume: 4
  year: 2016
  ident: B122
  article-title: Complete genome sequence of Bacillus velezensis CBMB205, a phosphate-solubilizing bacterium isolated from the rhizoplane of rice in the Republic of Korea
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00654-16
– volume: 279
  start-page: 40927
  year: 2004
  end-page: 40937
  ident: B119
  article-title: Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M405464200
– volume: 111
  start-page: E4096
  year: 2014
  end-page: E4102
  ident: B46
  article-title: Ecological and evolutionary significance of genomic GC content diversity in monocots
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1321152111
– volume: 103
  start-page: 951
  year: 2020
  end-page: 964
  ident: B1
  article-title: An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness
  publication-title: Plant J
  doi: 10.1111/tpj.14781
– volume: 177
  start-page: 200
  year: 1995
  end-page: 3660
  ident: B124
  article-title: Inositol monophosphatase activity from the Escherichia coli suhB gene product
  publication-title: J Bacteriology
  doi: 10.1128/jb.177.1.200-205.1995
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  ident: B92
  article-title: High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07641-9
– volume: 40
  start-page: e126
  year: 2012
  end-page: e126
  ident: B99
  article-title: PhiSpy: A novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks406
– volume: 378
  start-page: 1
  year: 2014
  end-page: 33
  ident: B66
  article-title: Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013)
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1956-x
– volume: 12
  start-page: 402
  year: 2011
  ident: B95
  article-title: BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-402
– volume: 321
  start-page: 189
  year: 2009
  end-page: 212
  ident: B3
  article-title: The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9991-3
– volume: 28
  start-page: 19
  year: 2020
  end-page: 26
  ident: B37
  article-title: Taxonomic note: Speciation within the operational group Bacillus amyloliquefaciens based on comparative phylogenies of housekeeping genes
  publication-title: APJMBB
  doi: 10.35118/apjmbb.2020.028.2.02
– volume: 30
  start-page: 225
  year: 1980
  end-page: 420
  ident: B39
  article-title: Approved lists of bacterial names
  publication-title: Int J Systematic Bacteriology
  doi: 10.1099/00207713-30-1-225
– volume: 9
  start-page: 1
  year: 2018
  end-page: 17
  ident: B12
  article-title: Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01473
– volume: 32
  start-page: 612
  year: 2015
  end-page: 619
  ident: B63
  article-title: Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic
  publication-title: N Biotechnol
  doi: 10.1016/j.nbt.2015.01.006
– volume: 14
  start-page: 51
  year: 2014
  ident: B73
  article-title: Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-14-51
– volume: 23
  start-page: 1113
  year: 2020
  end-page: 1121
  ident: B54
  article-title: Induced disease resistance and promotion of shallot growth by Bacillus velezensis B-27
  publication-title: Pakistan J Biological Sciences
  doi: 10.3923/pjbs.2020.1113.1121
– volume: 11
  start-page: 3238
  year: 2021
  ident: B81
  article-title: Genomic and phenotypic insights into the potential of rock phosphate solubilizing bacteria to promote millet growth in vivo
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.574550
– volume: 295
  start-page: 11949
  year: 2020
  end-page: 11962
  ident: B116
  article-title: PelX is a UDP-N-acetylglucosamine C4-epimerase involved in Pel polysaccharide-dependent biofilm formation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.014555
– volume: 79
  start-page: 853
  year: 2020
  end-page: 864
  ident: B43
  article-title: Environment shapes the intra-species diversity of Bacillus subtilis isolates
  publication-title: Microb Ecol
  doi: 10.1007/s00248-019-01455-y
– volume: 46
  start-page: 1951
  year: 2011
  end-page: 1957
  ident: B105
  article-title: Production and structural characterization of surfactin (C 14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry
  publication-title: Process Biochemistry
  doi: 10.1016/j.procbio.2011.07.001
SSID ssj0001105252
Score 2.4742892
Snippet This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol...
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work....
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work....
ABSTRACT Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0216921
SubjectTerms Antifungal Agents - metabolism
Bacillus - classification
Bacillus - genetics
Bacillus - metabolism
Bacillus velezensis HNA3
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Control Agents - metabolism
carbohydrate active enzymes
comparative analysis
Environmental Microbiology
gene cluster
genome sequencing
Genome, Bacterial
Genomics
Multigene Family
Phylogeny
Plant Growth Regulators - biosynthesis
plant growth-promoting rhizobacteria
Research Article
Secondary Metabolism
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ri9QwMBx3CH4R39YXEQRB6NkkfaQf9w7vVsXzEBfuW0iyKbuwm4rtCue_8Z86k6Z7rhyH30qaSUJnJjPTeRHy2spaa-GKdC7LOkXXWaor5tIsb2DYWGcM5jt_Piuns_zjRXGxR8oxFyZ-we5Qd-vgyN9yNpfvQvLhj836EAQTrIz54wcFr3NgyIPJZPbl09XfFYb92Xh0Y14LC3cw7MF35FEo23-drvlvyORfMujkLrkTlUc6GbB9j-w5f5_cGtpJXj4gv4-vSnnTU-fbtaNj0RH61f0EnbCj5wsw0YFqMHmRxjTdS9o29Ejb5Wq16Si2oviFce0dnZ5NBNV-PqyGADAM1nxHl75v6Qd4wK5HPT0Fa75f0PMhuK_1AQgOFiPh6VAkuXtIZifvvx1P09iCIdVFlvfAQ6U2UjuWWVk2thRzyzA8DbjYcSsrwUVT6zncCq4B5VFWDkShrjioOY1stBSPyL5vvXtCqBQO0C-lMaDBOFNriR5FA9MYPMo8IW8QH2qkABXMEy7ViDkVMKc4S0g2okzZWMkcG2qsbgJ5uwX5PpTxuGnyEdLBdiJW4A4DQI8qMjRAF7IRTFS2qHPNq5pJnTtmwP4UIH2yhLwaqUgBx6IbRnvXbjrFSx6CeiuekMcDVW23EnBFYhfNhFQ79LZzlt03frkIVcHhIq5Fnj3978_4jNzmmMuB-fniOdmHl-4FaFi9eRnZ6Q96nShK
  priority: 102
  providerName: American Society for Microbiology
Title Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects
URI https://www.ncbi.nlm.nih.gov/pubmed/35107331
https://journals.asm.org/doi/10.1128/spectrum.02169-21
https://www.proquest.com/docview/2624953372
https://pubmed.ncbi.nlm.nih.gov/PMC8809340
https://doaj.org/article/1058f3137c594a27918a4e1b71631460
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIvgifltPjwiCIFSbpB_p497h3ap4HuLCvYUkm7ILu6nY7sH53_ifOpN0112R88W3kibt0JnJzDQzvyHkpZW11sIV6UyWdYpHZ6mumEuzvIFhY50xWO_86aycTPMPF8XFTqsvzAmL8MDxw4FWF7IRTFS2qHPNq5pJnTtmwM8XoOUhWgebtxNMhb8rDPuz8eEYE_bgt6Fw8ft69QaMGlCF2KAj3a34nj0KsP1_8zX_TJncsUEnd8mdwXmk40j0PXLD-fvkVmwnefWA_Dz-DeVNT51vV45uQEfoF3cJPmFHz-cQooPUYPEiHcp0r2jb0CNtF8vluqPYiuIH5rV3dHI2FlT7WXwaLoBhiOY7uvB9S9_DBXY96ukpRPP9nJ7H5L7Wh0VA2JAJTyNIcveQTE_efT2epEMLhlQXWd6DDpXaSO1YZmXZ2FLMLMP0NNBix62sBBdNrWewK7gGnEdZOTCFuuLg5jSy0VI8IiPfeveEUCkcsF9KY8CDcabWEk8UDUxjcCnzhLxCfqhBhzoVwhMu1YZzKnBOcZaQbMMyZQckc2yosbxuyevtkm8RxuO6yUcoB9uJiMAdBkAu1SCX6l9ymZAXGylSoLF4DKO9a9ed4iUPSb0VT8jjKFXbVwnYIrGLZkKqPXnbo2X_jl_MAyo4bMS1yLOn_4P4A3KbY5kHlu6LZ2QEn8c9B-erN4fk5ng8_fzxMOjbL3Y-MCc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqbEHtB3BeuRgIhIWUkdi7OAw_dYGvpVia0Snvz7NShRW2ClpSp_A2vfCXnJE5H0TTxsrfIPcd1e67OuRHyKhWJUtyE7khEiYuhM1fFvnG9IINlnRqtsd75cBB1h8Gnk_Bkjfxua2G-4Vzeabmtylkdx0fBxhfRdh6heFcXIJ7NZ9tgnGB35tuEyr5ZnMN1rXzf-wC0fc3Y3sfj3a5rJwq4KvSCClgiUloo43upiLI04qPUx2wrYErDUhFzxrNEjYDJTQa-kIgNaHYVM7DamciU4LDvDbKBsUq46G10OsPP_Ys3Oj7OhGM2dHrpWUHvww9jKzawHhVwmX_7b5rmX3Zv7w65bR1W2mk47C5ZM_k9crMZYbm4T37tXrQPp_smL2aGto1O6BfzA_zQkh6NFwANWhX2oLY0eEGLjO6odDKdzkuK4y9-Yi59SbuDDqcqHzW7IQIsfx1XJZ3kVUF78ICTliq6f1acV2N61CQUFnmNBAez2fe0acxcPiDDayHSQ7KeF7nZIlRwAywnhNbgNRmdKIFRTA1gPjyKwCFvkB7Sym0p6ysRE7KlnKwpJ5nvEK8lmUxt93Qc4jG9CuXtEuV70zrkKuAd5IMlIHb9rhdACKRVIoAdioz7PE7DJFAsTnyhAuNruPNysHieQ162XCRBS2DoR-WmmJeSRaxOJI6ZQx41XLX8Kg5qGSd3OiRe4beVs6x-kk_GdSdyUP4JD7zH__03viC3useHB_KgN-g_IZsMa0mwPwB_StYB0DwDD6_Sz61oUXJ63dL8B17bZjE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTqC9IL4XPo0EQkLKSOx8OA88dBtdS6FUiEp7y5zEoZXaZFpSpvLf8MpfydlxOoqmiZe9Re6d6-Z-Pp97XwCvUh4JwaRvZzyIbOU6s0XoStvxchxOUpkkKt_58yjoT7yPx_7xFvxuc2HMG6z2RLXQjny1s0-z3PQj5O90AuLZcrGHhxPOTl0TUDmUq3O8rlXvB4co29eU9j58O-jbpqOALXzHqxESgUi4kK6T8iBPA5alroq2QlBKmvKQUZZHIkOQyxxtIR5K1OwipHhq5zwXnOG8N2BbO8c6sN3tTr4ML_7RcVVPOGpcp5euFfU-_i66cQbqVgGX2bf_hmn-de717sBtY7CSboOwu7Ali3tws2lhuboPvw4uyoeTI1mUC0naQifkq_yBdmhFxtMVUqNWxTmISQ1ekTIn-yKdzefLiqj2Fz9VLH1F-qMuI6LImtkUAw5_n9YVmRV1SQb4oDot1eTorDyvp2TcBBSWhWbChZnoe9IUZq4ewORahPQQOkVZyF0gnEmEHOdJglaTTCLBlRczQTIXH7lnwRslj7hFXayvRJTHreRiLbmYuhY4rcji1FRPV0085lexvF2znDalQ64i3lc4WBOqqt96APdAbJQIcvs8Zy4LUz_yBA0jlwtPugneeRmeeI4FL1sUxagllOtHFLJcVjENqA4kDqkFjxpUrb-KoVpWnTstCDfwtrGWzU-K2VRXIkflHzHPefzfr_EF3Bof9uJPg9HwCexQlUqiygOwp9BBOvkMDbw6eW52FoGT697MfwDKSmXN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Genome+Analysis+Reveals+Phylogenetic+Identity+of+Bacillus+velezensis+HNA3+and+Genomic+Insights+into+Its+Plant+Growth+Promotion+and+Biocontrol+Effects&rft.jtitle=Microbiology+spectrum&rft.au=Zaid%2C+Doaa+S.&rft.au=Cai%2C+Shuyun&rft.au=Hu%2C+Chang&rft.au=Li%2C+Ziqi&rft.date=2022-02-23&rft.issn=2165-0497&rft.eissn=2165-0497&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1128%2Fspectrum.02169-21&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_spectrum_02169_21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon