Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations
Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol sim...
Saved in:
Published in | Journal of physical chemistry. C Vol. 118; no. 20; pp. 10989 - 10997 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results. |
---|---|
AbstractList | Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results.Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results. Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results. Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results. |
Author | Macher, Markus Dellago, Christoph Kresse, Georg Loerting, Thomas Franchini, Cesare Stern, Josef N. Bernard, Jürgen Geiger, Philipp |
AuthorAffiliation | University of Vienna University of Innsbruck |
AuthorAffiliation_xml | – name: University of Vienna – name: University of Innsbruck |
Author_xml | – sequence: 1 givenname: Philipp surname: Geiger fullname: Geiger, Philipp – sequence: 2 givenname: Christoph surname: Dellago fullname: Dellago, Christoph email: Christoph.Dellago@univie.ac.at – sequence: 3 givenname: Markus surname: Macher fullname: Macher, Markus – sequence: 4 givenname: Cesare surname: Franchini fullname: Franchini, Cesare – sequence: 5 givenname: Georg surname: Kresse fullname: Kresse, Georg – sequence: 6 givenname: Jürgen surname: Bernard fullname: Bernard, Jürgen – sequence: 7 givenname: Josef N. surname: Stern fullname: Stern, Josef N. – sequence: 8 givenname: Thomas surname: Loerting fullname: Loerting, Thomas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24883169$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtL7DAAhYMovhf-AelG8C5G827rQpDh-gBBQV2HNA_N0CY1acX59zfX0UFFcBESyHcOh3O2wKoP3gCwh-ARghgdz3oGIcH0dQVsoprgSUkZW12-abkBtlKaQcgIRGQdbGBaVQTxehOc38YwBF_cRG2i849FsMV0bJwqrpTJ56S4640aYkgq9PNCel1MQ9ePg4nFnevGVg4u-LQD1qxsk9l9v7fBw_nf--nl5Prm4mp6dj2RDNJhgjDGmkJbMaIpMojIUhldW9PghmhoJNa2KnMyS0vLCWmsZlhxbi2qEEcV2QanC99-bDqjlfFDlK3oo-tknIsgnfj6492TeAwvguZ-sj4bHL4bxPA8mjSIziVl2lZ6E8YkUIU5q1ld8t_RkuPcKK_rjO5_jrXM89FzBo4XgMpNpmisUG54qy6ndK1AUPxfUiyXzIo_3xQfpj-xBwtWqiRmYYw-b_AD9w96g6nb |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_1c01254 crossref_primary_10_1063_1_5004509 crossref_primary_10_1021_acs_jpclett_2c02176 crossref_primary_10_1039_C9CP04867G crossref_primary_10_1063_1_4944633 crossref_primary_10_1063_1_5003636 crossref_primary_10_1021_acs_jpclett_3c00408 crossref_primary_10_4236_ns_2016_811048 crossref_primary_10_1039_C7CP07406A crossref_primary_10_1021_acs_jpclett_4c02338 crossref_primary_10_1038_s41467_019_09950_z crossref_primary_10_1016_j_chemphys_2023_111966 crossref_primary_10_1021_acs_jpclett_0c01635 crossref_primary_10_3390_cryst11060668 crossref_primary_10_1080_00268976_2015_1005191 crossref_primary_10_1021_acs_jpca_7b10664 crossref_primary_10_1039_C7RA04332E crossref_primary_10_2465_gkk_210108a crossref_primary_10_1063_1_5023178 crossref_primary_10_1080_0889311X_2022_2127148 crossref_primary_10_1134_S0021364019200050 crossref_primary_10_1021_acs_cgd_7b00356 crossref_primary_10_1063_1_4929468 crossref_primary_10_1002_wcms_1419 crossref_primary_10_1103_PhysRevX_5_021033 crossref_primary_10_1103_PhysRevB_96_134301 crossref_primary_10_1093_mnras_stad3401 crossref_primary_10_1021_acs_jctc_9b00596 crossref_primary_10_1063_1_4923461 crossref_primary_10_1063_1_5100634 crossref_primary_10_1063_1_5100812 crossref_primary_10_1073_pnas_2018837118 |
Cites_doi | 10.1063/1.477100 10.1080/00268979600100761 10.1063/1.448109 10.1093/oso/9780195140187.001.0001 10.1016/S0921-4526(97)00902-2 10.1016/0167-7322(94)00769-1 10.1016/j.cplett.2006.04.111 10.1063/1.464942 10.1063/1.1906216 10.1063/1.4865748 10.1016/S0009-2614(97)01266-9 10.1039/b507651j 10.1039/c1cp22506e 10.1063/1.439486 10.1103/PhysRevLett.77.3865 10.1063/1.448763 10.1039/c1cp22168j 10.1126/science.1123896 10.1016/S0921-4526(97)00430-4 10.1063/1.1678874 10.1103/PhysRevLett.107.185701 10.1063/1.456630 10.1103/PhysRevA.31.1695 10.1063/1.2830029 10.1073/pnas.1113059109 10.1103/PhysRevLett.103.056401 10.1016/j.molstruc.2010.03.024 10.1039/c1cp22022e 10.1063/1.1670922 10.1021/jp048434u 10.1063/1.1473654 10.1063/1.447334 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.103.105701 10.1063/1.467838 10.1073/pnas.1210331110 10.1016/0009-2614(95)00660-V 10.1063/1.452633 10.1039/a908688i 10.1021/jp9632551 10.1002/pssa.2211100219 10.1039/b418934e 10.1016/S0301-0104(00)00179-8 10.1063/1.1931662 10.1039/c0cp02600j 10.1103/PhysRevB.81.115126 10.1063/1.448101 10.1103/PhysRevB.83.195131 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.92.246401 10.1080/13642818908211189 10.1088/0067-0049/184/2/361 10.1021/jp980866f 10.1016/0022-3697(84)90008-8 10.1016/0022-2860(84)80033-2 10.1016/j.jcrysgro.2005.04.105 10.1103/PhysRevLett.108.193003 10.1021/ja0630902 10.1209/0295-5075/32/9/005 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical
Society Copyright © 2014 American Chemical Society 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society |
DBID | N~. AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1021/jp500324x |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 10997 |
ExternalDocumentID | PMC4032183 24883169 10_1021_jp500324x f33154661 |
Genre | Journal Article |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ EJD F5P GGK GNL IH9 IHE JG~ LG6 N~. RNS ROL UI2 UKR VF5 VG9 VQA W1F AAYXX ABBLG ABLBI CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-a504t-1222d40f853d41e13a7ced9feb2b3d0ea2df87316f47f633bfd52c66ff1816183 |
IEDL.DBID | N~. |
ISSN | 1932-7447 |
IngestDate | Thu Aug 21 18:13:24 EDT 2025 Fri Jul 11 08:13:28 EDT 2025 Fri Jul 11 10:57:57 EDT 2025 Thu Apr 03 06:53:24 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Tue Jul 01 01:21:51 EDT 2025 Wed Jul 10 01:28:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html Terms of Use CC-BY |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a504t-1222d40f853d41e13a7ced9feb2b3d0ea2df87316f47f633bfd52c66ff1816183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/jp500324x |
PMID | 24883169 |
PQID | 1762053699 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4032183 proquest_miscellaneous_1826595976 proquest_miscellaneous_1762053699 pubmed_primary_24883169 crossref_citationtrail_10_1021_jp500324x crossref_primary_10_1021_jp500324x acs_journals_10_1021_jp500324x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-22 |
PublicationDateYYYYMMDD | 2014-05-22 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Itoh H. (ref24/cit24) 1998; 109 Dion M. (ref44/cit44) 2004; 92 Li J.-C. (ref17/cit17) 1995; 241 Lekner J. (ref18/cit18) 1997; 240 Martyna G. J. (ref30/cit30) 1996; 87 Hansen T. C. (ref61/cit61) 2008; 20 Kohl I. (ref59/cit59) 2000; 2 Klimeš J. (ref45/cit45) 2010; 22 Rahman A. (ref35/cit35) 1972; 57 Andersen H. C. (ref33/cit33) 1980; 72 Kamberaj H. (ref28/cit28) 2005; 122 Nosé S. (ref31/cit31) 1984; 81 Kohl I. (ref65/cit65) 2005; 7 Hirsch T. K. (ref21/cit21) 2004; 108 Abascal J. L. F. (ref26/cit26) 2005; 122 McQuarrie D. A. (ref37/cit37) 1976 Moore E. B. (ref62/cit62) 2011; 13 Yamamuro O. (ref14/cit14) 1987; 86 Loerting T. (ref4/cit4) 2006; 18 Harl J. (ref48/cit48) 2009; 103 Kuhs W. F. (ref63/cit63) 2012; 109 Minc̆eva-Śukarova B. (ref8/cit8) 1984; 115 Soper A. K. (ref36/cit36) 2000; 258 Martí J. (ref40/cit40) 1994; 62 Raza Z. (ref20/cit20) 2011; 13 Blöchl P. E. (ref41/cit41) 1994; 50 Klimeš J. (ref46/cit46) 2011; 83 Leadbetter A. J. (ref11/cit11) 1985; 82 Bertie J. E. (ref57/cit57) 1969; 50 Tribello G. A. (ref67/cit67) 2006; 128 Garg A. (ref23/cit23) 1988; 110 Macher M. (ref51/cit51) 2014; 140 Salzmann C. G. (ref2/cit2) 2006; 311 Zwanzig R. (ref38/cit38) 2001 Kuhs W. F. (ref7/cit7) 1984; 81 Miller T. F. (ref29/cit29) 2002; 116 Hallbrucker A. (ref58/cit58) 1989; 60 Kresse G. (ref42/cit42) 1999; 59 Petrenko V. (ref1/cit1) 1999 Santra B. (ref50/cit50) 2011; 107 Vega C. (ref27/cit27) 2011; 13 Winkel K. (ref5/cit5) 2008; 128 Martí J. (ref39/cit39) 1994; 101 Fukazawa H. (ref12/cit12) 2005; 282 Kresse G. (ref47/cit47) 1995; 32 Tajima Y. (ref13/cit13) 1984; 45 Salzmann C. G. (ref3/cit3) 2009; 103 Vega C. (ref52/cit52) 2005; 7 Pamuk B. (ref66/cit66) 2012; 108 Loerting T. (ref6/cit6) 2011; 13 Londono J. D. (ref9/cit9) 1993; 98 Jackson S. M. (ref16/cit16) 1997; 101 Frenkel D. (ref34/cit34) 2002 Perdew J. P. (ref43/cit43) 1996; 77 Harl J. (ref49/cit49) 2010; 81 Davidson E. R. (ref53/cit53) 1984; 81 Lekner J. (ref19/cit19) 1998; 252 Buch V. (ref22/cit22) 1998; 102 Hansen T. C. (ref60/cit60) 2008; 20 Hoover W. G. (ref32/cit32) 1985; 31 Singer S. J. (ref54/cit54) 2011; 147 Arakawa M. (ref56/cit56) 2009; 184 Furić K. (ref25/cit25) 2010; 976 Malkin T. L. (ref64/cit64) 2012; 109 Howe R. (ref15/cit15) 1989; 90 Tribello G. A. (ref55/cit55) 2006; 425 Fukazawa H. (ref10/cit10) 1998; 282 22232652 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1041-5 21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201 22009135 - Phys Chem Chem Phys. 2011 Nov 28;13(44):20008-16 23003032 - Phys Rev Lett. 2012 May 11;108(19):193003 22009223 - Phys Chem Chem Phys. 2011 Nov 28;13(44):19788-95 19792330 - Phys Rev Lett. 2009 Sep 4;103(10):105701 16008466 - J Chem Phys. 2005 Jun 15;122(23):234511 24588180 - J Chem Phys. 2014 Feb 28;140(8):084502 19787967 - Phys Chem Chem Phys. 2005 Apr 7;7(7):1450-6 21927736 - Phys Chem Chem Phys. 2011 Nov 28;13(44):19663-88 23236184 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21259-64 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 16556840 - Science. 2006 Mar 24;311(5768):1758-61 19792517 - Phys Rev Lett. 2009 Jul 31;103(5):056401 16240034 - Phys Chem Chem Phys. 2005 Sep 7;7(17):3210-20 17002322 - J Am Chem Soc. 2006 Oct 4;128(39):12594-5 18247972 - J Chem Phys. 2008 Jan 28;128(4):044510 15974658 - J Chem Phys. 2005 Jun 8;122(22):224114 9895674 - Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401 22107644 - Phys Rev Lett. 2011 Oct 28;107(18):185701 21431195 - Phys Chem Chem Phys. 2011 May 21;13(19):8783-94 |
References_xml | – volume: 109 start-page: 4894 year: 1998 ident: ref24/cit24 publication-title: J. Chem. Phys. doi: 10.1063/1.477100 – volume: 87 start-page: 1117 year: 1996 ident: ref30/cit30 publication-title: Mol. Phys. doi: 10.1080/00268979600100761 – volume: 81 start-page: 3612 year: 1984 ident: ref7/cit7 publication-title: J. Chem. Phys. doi: 10.1063/1.448109 – volume-title: Nonequilibrium Statistical Mechanics year: 2001 ident: ref38/cit38 doi: 10.1093/oso/9780195140187.001.0001 – volume: 252 start-page: 149 year: 1998 ident: ref19/cit19 publication-title: Physica B doi: 10.1016/S0921-4526(97)00902-2 – volume: 62 start-page: 17 year: 1994 ident: ref40/cit40 publication-title: J. Mol. Liq. doi: 10.1016/0167-7322(94)00769-1 – volume: 425 start-page: 246 year: 2006 ident: ref55/cit55 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.04.111 – volume: 98 start-page: 4878 year: 1993 ident: ref9/cit9 publication-title: J. Chem. Phys. doi: 10.1063/1.464942 – volume: 122 start-page: 224114 year: 2005 ident: ref28/cit28 publication-title: J. Chem. Phys. doi: 10.1063/1.1906216 – volume: 140 start-page: 084502 year: 2014 ident: ref51/cit51 publication-title: J. Chem. Phys. doi: 10.1063/1.4865748 – volume: 20 start-page: 285104 year: 2008 ident: ref60/cit60 publication-title: J. Phys.: Condens. Matter – volume: 282 start-page: 215 year: 1998 ident: ref10/cit10 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)01266-9 – volume: 7 start-page: 3210 year: 2005 ident: ref65/cit65 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b507651j – volume: 13 start-page: 19788 year: 2011 ident: ref20/cit20 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22506e – volume: 72 start-page: 2384 year: 1980 ident: ref33/cit33 publication-title: J. Chem. Phys. doi: 10.1063/1.439486 – volume: 77 start-page: 3865 year: 1996 ident: ref43/cit43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 82 start-page: 424 year: 1985 ident: ref11/cit11 publication-title: J. Chem. Phys. doi: 10.1063/1.448763 – volume: 13 start-page: 19663 year: 2011 ident: ref27/cit27 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22168j – volume: 311 start-page: 1758 year: 2006 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1123896 – volume: 240 start-page: 263 year: 1997 ident: ref18/cit18 publication-title: Physica B doi: 10.1016/S0921-4526(97)00430-4 – volume: 57 start-page: 4009 year: 1972 ident: ref35/cit35 publication-title: J. Chem. Phys. doi: 10.1063/1.1678874 – volume: 107 start-page: 185701 year: 2011 ident: ref50/cit50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.185701 – volume: 90 start-page: 4450 year: 1989 ident: ref15/cit15 publication-title: J. Chem. Phys. doi: 10.1063/1.456630 – volume: 31 start-page: 1695 year: 1985 ident: ref32/cit32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 128 start-page: 044510 year: 2008 ident: ref5/cit5 publication-title: J. Chem. Phys. doi: 10.1063/1.2830029 – volume: 22 start-page: 022201 year: 2010 ident: ref45/cit45 publication-title: J. Phys.: Condens. Matter – volume: 109 start-page: 1041 year: 2012 ident: ref64/cit64 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1113059109 – volume: 103 start-page: 056401 year: 2009 ident: ref48/cit48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.056401 – volume: 18 start-page: R919 year: 2006 ident: ref4/cit4 publication-title: J. Phys.: Condens. Matter – volume: 976 start-page: 174 year: 2010 ident: ref25/cit25 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2010.03.024 – volume: 20 start-page: 285105 year: 2008 ident: ref61/cit61 publication-title: J. Phys.: Condens. Matter – volume: 13 start-page: 20008 year: 2011 ident: ref62/cit62 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22022e – volume: 50 start-page: 4501 year: 1969 ident: ref57/cit57 publication-title: J. Chem. Phys. doi: 10.1063/1.1670922 – volume: 108 start-page: 15856 year: 2004 ident: ref21/cit21 publication-title: J. Phys. Chem. B doi: 10.1021/jp048434u – volume: 116 start-page: 8649 year: 2002 ident: ref29/cit29 publication-title: J. Chem. Phys. doi: 10.1063/1.1473654 – volume: 81 start-page: 511 year: 1984 ident: ref31/cit31 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 59 start-page: 1758 year: 1999 ident: ref42/cit42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 103 start-page: 105701 year: 2009 ident: ref3/cit3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.105701 – volume: 101 start-page: 10883 year: 1994 ident: ref39/cit39 publication-title: J. Chem. Phys. doi: 10.1063/1.467838 – volume: 109 start-page: 21259 year: 2012 ident: ref63/cit63 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1210331110 – volume: 241 start-page: 290 year: 1995 ident: ref17/cit17 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00660-V – volume: 86 start-page: 5137 year: 1987 ident: ref14/cit14 publication-title: J. Chem. Phys. doi: 10.1063/1.452633 – volume: 2 start-page: 1579 year: 2000 ident: ref59/cit59 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a908688i – volume: 101 start-page: 6142 year: 1997 ident: ref16/cit16 publication-title: J. Phys. Chem. B doi: 10.1021/jp9632551 – volume: 110 start-page: 467 year: 1988 ident: ref23/cit23 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.2211100219 – volume: 7 start-page: 1450 year: 2005 ident: ref52/cit52 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b418934e – volume: 258 start-page: 121 year: 2000 ident: ref36/cit36 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(00)00179-8 – volume-title: Understanding Molecular Simulation: From Algorithms to Applications year: 2002 ident: ref34/cit34 – volume: 147 start-page: 1 year: 2011 ident: ref54/cit54 publication-title: Adv. Chem. Phys. – volume: 122 start-page: 234511 year: 2005 ident: ref26/cit26 publication-title: J. Chem. Phys. doi: 10.1063/1.1931662 – volume: 13 start-page: 8783 year: 2011 ident: ref6/cit6 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02600j – volume: 81 start-page: 115126 year: 2010 ident: ref49/cit49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.115126 – volume: 81 start-page: 3741 year: 1984 ident: ref53/cit53 publication-title: J. Chem. Phys. doi: 10.1063/1.448101 – volume-title: Physics of Ice year: 1999 ident: ref1/cit1 – volume-title: Statistical Mechanics year: 1976 ident: ref37/cit37 – volume: 83 start-page: 195131 year: 2011 ident: ref46/cit46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 50 start-page: 17953 year: 1994 ident: ref41/cit41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 92 start-page: 246401 year: 2004 ident: ref44/cit44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 60 start-page: 179 year: 1989 ident: ref58/cit58 publication-title: Philos. Mag. B doi: 10.1080/13642818908211189 – volume: 184 start-page: 361 year: 2009 ident: ref56/cit56 publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/184/2/361 – volume: 102 start-page: 8642 year: 1998 ident: ref22/cit22 publication-title: J. Phys. Chem. B doi: 10.1021/jp980866f – volume: 45 start-page: 1135 year: 1984 ident: ref13/cit13 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(84)90008-8 – volume: 115 start-page: 137 year: 1984 ident: ref8/cit8 publication-title: J. Mol. Struct. doi: 10.1016/0022-2860(84)80033-2 – volume: 282 start-page: 251 year: 2005 ident: ref12/cit12 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.04.105 – volume: 108 start-page: 193003 year: 2012 ident: ref66/cit66 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.193003 – volume: 128 start-page: 12594 year: 2006 ident: ref67/cit67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0630902 – volume: 32 start-page: 729 year: 1995 ident: ref47/cit47 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/32/9/005 – reference: 21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201 – reference: 23236184 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21259-64 – reference: 22009135 - Phys Chem Chem Phys. 2011 Nov 28;13(44):20008-16 – reference: 18247972 - J Chem Phys. 2008 Jan 28;128(4):044510 – reference: 22107644 - Phys Rev Lett. 2011 Oct 28;107(18):185701 – reference: 19792517 - Phys Rev Lett. 2009 Jul 31;103(5):056401 – reference: 24588180 - J Chem Phys. 2014 Feb 28;140(8):084502 – reference: 22232652 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1041-5 – reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 – reference: 23003032 - Phys Rev Lett. 2012 May 11;108(19):193003 – reference: 19792330 - Phys Rev Lett. 2009 Sep 4;103(10):105701 – reference: 21927736 - Phys Chem Chem Phys. 2011 Nov 28;13(44):19663-88 – reference: 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401 – reference: 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 – reference: 17002322 - J Am Chem Soc. 2006 Oct 4;128(39):12594-5 – reference: 16556840 - Science. 2006 Mar 24;311(5768):1758-61 – reference: 22009223 - Phys Chem Chem Phys. 2011 Nov 28;13(44):19788-95 – reference: 21431195 - Phys Chem Chem Phys. 2011 May 21;13(19):8783-94 – reference: 19787967 - Phys Chem Chem Phys. 2005 Apr 7;7(7):1450-6 – reference: 16008466 - J Chem Phys. 2005 Jun 15;122(23):234511 – reference: 16240034 - Phys Chem Chem Phys. 2005 Sep 7;7(17):3210-20 – reference: 9895674 - Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 – reference: 15974658 - J Chem Phys. 2005 Jun 8;122(22):224114 |
SSID | ssj0053013 |
Score | 2.3134828 |
Snippet | Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure... Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10989 |
SubjectTerms | Computer simulation Ferroelectric materials Ferroelectricity Molecular structure Nanomaterials Order disorder Spectra Spectroscopy Vibrational spectra |
Title | Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations |
URI | http://dx.doi.org/10.1021/jp500324x https://www.ncbi.nlm.nih.gov/pubmed/24883169 https://www.proquest.com/docview/1762053699 https://www.proquest.com/docview/1826595976 https://pubmed.ncbi.nlm.nih.gov/PMC4032183 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5V4VAuFX1AAyVaaA-9GOz1etfLDUWNAhKhUoiUW7TehwgCO8rjwKW_vd8mdpTQAgefPCtbM7PzfaPZnSHkSoICAzjiSDofhys5LlLKZVGqjIylBWPIwwXnLwPRH_HP42x8QC7_UsFnyfsfswyexziI4hMm8jzsvsHduybcZvDQdFM6BlXkXDbtg3aXBugxi33oecAn_zwWuYMzvWfkqCaI9OPGosfkwJUn5LDbzGU7Jb3beQXCRr-GppkAHlp52l0VU0M_GYfnAw0z5ZehS2U1-011aWkzuoEOp7_qcV2LMzLq3Xzr9qN6GkKks5gvowRIbnnsga-WJy5JtTTOKo_UuEht7DSzPg9zqDyXXqRp4W3GjBDewxYCO_c5aZVV6c4J9bmRiHG6sFJwbXPtmEyMclIDzjxTbdKBuia1Ny8m60I1Q6LQ6LNNrhtNTkzdSzyMtPj5mOjbrehs00DjMaE3jTkm0GaoWejSVSt8GsEaNhZK_UMGKVKmkBmJNnmxMeH2UwwBCjrBarln3K1AaK-9_6acfl-32eb4Najt5f-U8Yo8BYvi4UgBYxektZyv3GswlWXRAVPvDjtrf70Hu83kYQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYQHOil4tV2ebqoh17SJo4Tr7mhFaulhS0SIHGLHD_EIkhWZPfAhd_O591kywKCQ04Zx9HMeOazxv6GkB8CEBiJIwyEdaG_kmMDKW0SxFKLUBgghra_4HzaT3uX_M9VclXT5Pi7MPiJCl-qJkX8_-wC0e-bYQIHZBx4cQkgJPGLsP_4q4m6CRw1nlaQgRg5Fw2L0POhPgPpaj4DvYKVL09HPks33RXyucaJ9HBq2FWyYIs1stxp2rOtk-7ZfQncRv957kzkH1o62hnnA02PtcVzQH1r-ZEnqyyHD1QVhjYdHOj54K7u2lVtkMvu0UWnF9RNEQKVhHwUREjohocOadbwyEaxEtoa6bBDzmMTWsWMa_t2VI4Ll8Zx7kzCdJo6B5OkWMBfyGJRFvYboa6tBUKdyo1IuTJtZZmItLRCIas5JltkF-rKaqeuskm9mmG_0OizRX42msx0TSnuO1vcviW6PxMdTnk03hL63pgjgzZ96UIVthxjasRs2DiV8h0Z7JQSiQ1S2iJfpyacTcUQp6ATjBZzxp0JeJbt-TfF4HrCts3xa1Db5kfK2CPLvYvTk-zkuP93i3wCsOL-lAFj22RxdD-2OwAvo3x34rVPeMrpDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLbQJjEuEz8GK7DiTRy4BBLHiWtuU6FqGSuVRqXeIsc_RNFIqqU97LK_fZ_bpGpHBYec8hxH7z37fU_P_h4h7wUgMAJHGAjrQn8lxwZS2iSIpRahMEAMHX_B-XKY9sf82ySZ1ImivwuDn6jwpWpZxPeremZczTAQffo9S-CEjAMz7gOGhH4hDu8-NjtvAmeNV1VkoEbORcMktDnURyFdbUehv6DlwxOSGyGn95Qc1liRnq-M-4w8ssVzctBtWrS9IL3RTQnsRn94_kzEIFo62l3kU00H2uL5TH17-bknrCxnt1QVhjZdHOjV9E_duas6IuPe15_dflA3RghUEvJ5ECGoGx46hFrDIxvFSmhrpEOWnMcmtIoZ1_EtqRwXLo3j3JmE6TR1DmZJsYhfkr2iLOwxoa6jBbY7lRuRcmU6yjIRaWmFQmRzTLZIG-rKaseusmXNmiFnaPTZIh8aTWa6phX33S2ud4merUVnKy6NXUKnjTkyaNOXL1RhywWmxr4NG6dS_kMG2VIikSSlLfJqZcL1VAx7FXSC0WLLuGsBz7S9_aaY_loybnP8GtT2-n_KeEcej770su-D4cUb8gTYivuDBoy9JXvzm4U9AX6Z5-2l094D31DqGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+Ordering+of+Cubic+Ice+Ic%3A+Spectroscopy+and+Computer+Simulations&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Geiger%2C+Philipp&rft.au=Dellago%2C+Christoph&rft.au=Macher%2C+Markus&rft.au=Franchini%2C+Cesare&rft.date=2014-05-22&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=118&rft.issue=20&rft.spage=10989&rft.epage=10997&rft_id=info:doi/10.1021%2Fjp500324x&rft_id=info%3Apmid%2F24883169&rft.externalDocID=PMC4032183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |