Interactions between DNA and Poly(amido amine) Dendrimers on Silica Surfaces

This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which is a subject of potential interest in applications such as gene therapy. We have used in situ null ellipsometry and neutron reflectometry to s...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 26; no. 11; pp. 8625 - 8635
Main Authors Ainalem, Marie-Louise, Campbell, Richard A, Nylander, Tommy
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.06.2010
Subjects
Online AccessGet full text
ISSN0743-7463
1520-5827
1520-5827
DOI10.1021/la9047177

Cover

Loading…
Abstract This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which is a subject of potential interest in applications such as gene therapy. We have used in situ null ellipsometry and neutron reflectometry to study the structure of multilayer arrangements formed by PAMAM dendrimers of generation 2 (G2), 4 (G4), and 6 (G6) and DNA on silica surfaces. Specifically, we adsorbed cationic dendrimer layers, then we condensed DNA to form dendrimer−DNA bilayers, and last we exposed further dendrimer molecules to the interface to encapsulate DNA in dendrimer−DNA−dendrimer trilayers. The dendrimer monolayers formed initially result in the deformation of the cationic adsorbates as a result of their strong electrostatic attraction to the hydrophilic silica surface. The highest surface excess and most pronounced deformation occurs for the G6 molecules due to their relatively large size and high surface charge density. G6-functionalized surfaces give rise to the highest surface excess of DNA during the bilayer formation process. This result is explained in terms of the high number of charged binding sites in the G6 monolayer and the low electrostatic repulsion between DNA and exposed patches of silica surface due to the relatively thick G6 monolayer. The binding strengths of the silica−dendrimer and dendrimer−DNA interactions are demonstrated by the high stability of the interfacial bilayers during rinsing. For the formation of trilayers of dendrimers, DNA, and dendrimers, G2 adsorbs as a smooth layer while G4 and G6 induce the formation of less well-defined structures due to more complex DNA layer morphologies.
AbstractList This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which is a subject of potential interest in applications such as gene therapy. We have used in situ null ellipsometry and neutron reflectometry to study the structure of multilayer arrangements formed by PAMAM dendrimers of generation 2 (G2), 4 (G4), and 6 (G6) and DNA on silica surfaces. Specifically, we adsorbed cationic dendrimer layers, then we condensed DNA to form dendrimer-DNA bilayers, and last we exposed further dendrimer molecules to the interface to encapsulate DNA in dendrimer-DNA-dendrimer trilayers. The dendrimer monolayers formed initially result in the deformation of the cationic adsorbates as a result of their strong electrostatic attraction to the hydrophilic silica surface. The highest surface excess and most pronounced deformation occurs for the G6 molecules due to their relatively large size and high surface charge density. G6-functionalized surfaces give rise to the highest surface excess of DNA during the bilayer formation process. This result is explained in terms of the high number of charged binding sites in the G6 monolayer and the low electrostatic repulsion between DNA and exposed patches of silica surface due to the relatively thick G6 monolayer. The binding strengths of the silica-dendrimer and dendrimer-DNA interactions are demonstrated by the high stability of the interfacial bilayers during rinsing. For the formation of trilayers of dendrimers, DNA, and dendrimers, G2 adsorbs as a smooth layer while G4 and G6 induce the formation of less well-defined structures due to more complex DNA layer morphologies.This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which is a subject of potential interest in applications such as gene therapy. We have used in situ null ellipsometry and neutron reflectometry to study the structure of multilayer arrangements formed by PAMAM dendrimers of generation 2 (G2), 4 (G4), and 6 (G6) and DNA on silica surfaces. Specifically, we adsorbed cationic dendrimer layers, then we condensed DNA to form dendrimer-DNA bilayers, and last we exposed further dendrimer molecules to the interface to encapsulate DNA in dendrimer-DNA-dendrimer trilayers. The dendrimer monolayers formed initially result in the deformation of the cationic adsorbates as a result of their strong electrostatic attraction to the hydrophilic silica surface. The highest surface excess and most pronounced deformation occurs for the G6 molecules due to their relatively large size and high surface charge density. G6-functionalized surfaces give rise to the highest surface excess of DNA during the bilayer formation process. This result is explained in terms of the high number of charged binding sites in the G6 monolayer and the low electrostatic repulsion between DNA and exposed patches of silica surface due to the relatively thick G6 monolayer. The binding strengths of the silica-dendrimer and dendrimer-DNA interactions are demonstrated by the high stability of the interfacial bilayers during rinsing. For the formation of trilayers of dendrimers, DNA, and dendrimers, G2 adsorbs as a smooth layer while G4 and G6 induce the formation of less well-defined structures due to more complex DNA layer morphologies.
This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which is a subject of potential interest in applications such as gene therapy. We have used in situ null ellipsometry and neutron reflectometry to study the structure of multilayer arrangements formed by PAMAM dendrimers of generation 2 (G2), 4 (G4), and 6 (G6) and DNA on silica surfaces. Specifically, we adsorbed cationic dendrimer layers, then we condensed DNA to form dendrimer-DNA bilayers, and last we exposed further dendrimer molecules to the interface to encapsulate DNA in dendrimer-DNA-dendrimer trilayers. The dendrimer monolayers formed initially result in the deformation of the cationic adsorbates as a result of their strong electrostatic attraction to the hydrophilic silica surface. The highest surface excess and most pronounced deformation occurs for the G6 molecules due to their relatively large size and high surface charge density. G6-functionalized surfaces give rise to the highest surface excess of DNA during the bilayer formation process. This result is explained in terms of the high number of charged binding sites in the G6 monolayer and the low electrostatic repulsion between DNA and exposed patches of silica surface due to the relatively thick G6 monolayer. The binding strengths of the silica-dendrimer and dendrimer-DNA interactions are demonstrated by the high stability of the interfacial bilayers during rinsing. For the formation of trilayers of dendrimers, DNA, and dendrimers, G2 adsorbs as a smooth layer while G4 and G6 induce the formation of less well-defined structures due to more complex DNA layer morphologies.
This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which is a subject of potential interest in applications such as gene therapy. We have used in situ null ellipsometry and neutron reflectometry to study the structure of multilayer arrangements formed by PAMAM dendrimers of generation 2 (G2), 4 (G4), and 6 (G6) and DNA on silica surfaces. Specifically, we adsorbed cationic dendrimer layers, then we condensed DNA to form dendrimer−DNA bilayers, and last we exposed further dendrimer molecules to the interface to encapsulate DNA in dendrimer−DNA−dendrimer trilayers. The dendrimer monolayers formed initially result in the deformation of the cationic adsorbates as a result of their strong electrostatic attraction to the hydrophilic silica surface. The highest surface excess and most pronounced deformation occurs for the G6 molecules due to their relatively large size and high surface charge density. G6-functionalized surfaces give rise to the highest surface excess of DNA during the bilayer formation process. This result is explained in terms of the high number of charged binding sites in the G6 monolayer and the low electrostatic repulsion between DNA and exposed patches of silica surface due to the relatively thick G6 monolayer. The binding strengths of the silica−dendrimer and dendrimer−DNA interactions are demonstrated by the high stability of the interfacial bilayers during rinsing. For the formation of trilayers of dendrimers, DNA, and dendrimers, G2 adsorbs as a smooth layer while G4 and G6 induce the formation of less well-defined structures due to more complex DNA layer morphologies.
Author Ainalem, Marie-Louise
Nylander, Tommy
Campbell, Richard A
Author_xml – sequence: 1
  givenname: Marie-Louise
  surname: Ainalem
  fullname: Ainalem, Marie-Louise
  email: marie-louise.ainalem@fkem1.lu.se
– sequence: 2
  givenname: Richard A
  surname: Campbell
  fullname: Campbell, Richard A
– sequence: 3
  givenname: Tommy
  surname: Nylander
  fullname: Nylander, Tommy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22825359$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20429604$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/1610732$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/939807a9-eb80-4fb9-8a0e-75bd4251cc0c$$DView record from Swedish Publication Index
BookMark eNqNkk1v1DAQhi1URLcLB_4AygWVHkL9lTg-Vi0flVaAVDhbE2csUnntxU5U9d_jdtMioSJxsH155p13_M4ROQgxICGvGX3PKGenHjSViin1jKxYw2nddFwdkBVVUtRKtuKQHOV8TSnVQuoX5JBTyXVL5YpsLsOECew0xpCrHqcbxFBdfDmrIAzVt-hv38F2HGJV7oAn1QWGIY1bTLmKoboa_WihupqTA4v5JXnuwGd8tbxr8uPjh-_nn-vN10-X52ebGhoqptq11jreDh1oxhDBctEKbAc6dE7L3lqqO-skQ0DgjVMSVN-jltqCQzEIsSaw1803uJt7syuOIN2aCKPZxTSBNwkzQrI_jZ9NRlOoO6f3UxotdEcVaIN9R410vTYdUDSq6QfJG1YM2NJj888eft6V0y_a_yl3vJfbpfhrxjyZ7Zgteg8B45yNEoJq3pTA1uTNQs79FofHxg-ZFeDtAkC24F2CYMf8h-Mdb0SjC3e652yKOSd0xo7T_RdMCUZvGDV322Met6dUnPxV8SD6FLu4AJvNdZxTKIk_wf0GgMHQmg
CODEN LANGD5
CitedBy_id crossref_primary_10_1021_acs_macromol_7b01470
crossref_primary_10_1002_adbi_201700200
crossref_primary_10_1039_c0jm04359a
crossref_primary_10_1039_C0SM00644K
crossref_primary_10_1016_j_jcis_2020_03_014
crossref_primary_10_1021_la400774p
crossref_primary_10_1021_jp507230m
crossref_primary_10_1002_qua_24260
crossref_primary_10_1021_jp506510s
crossref_primary_10_1039_C6RA27064F
crossref_primary_10_1016_j_jcis_2016_09_007
crossref_primary_10_1039_c2sm06700e
crossref_primary_10_3390_nano11010019
crossref_primary_10_1016_j_addr_2011_03_017
crossref_primary_10_3390_polym13162820
crossref_primary_10_1016_j_jcis_2016_01_025
crossref_primary_10_1016_j_jcis_2011_09_029
crossref_primary_10_1021_la3027144
crossref_primary_10_1039_c0sm01171a
crossref_primary_10_1039_c1sm05632h
crossref_primary_10_1021_acs_langmuir_5b03757
crossref_primary_10_1021_la301297s
crossref_primary_10_1016_j_colsurfb_2015_07_039
crossref_primary_10_1016_j_jcis_2020_03_123
crossref_primary_10_1039_D2NR07164A
crossref_primary_10_1126_scitranslmed_3007909
crossref_primary_10_1016_j_molliq_2025_126897
crossref_primary_10_1021_la501129y
crossref_primary_10_1039_C4SM02712D
crossref_primary_10_1039_C4TB01108B
crossref_primary_10_1021_acsami_2c06065
crossref_primary_10_1021_ma3004295
crossref_primary_10_1021_ma502301a
crossref_primary_10_1016_j_ica_2013_08_006
crossref_primary_10_1021_am401348v
Cites_doi 10.1016/0021-9797(86)90058-5
10.1016/j.addr.2005.09.017
10.1002/masy.19910460145
10.1016/j.jcis.2007.01.050
10.1021/bm049254t
10.1016/S0169-409X(00)00133-2
10.1021/la801497d
10.1039/b801630e
10.1007/PL00006646
10.1021/la0200461
10.1021/la7021352
10.1021/bc990036k
10.1021/la00028a009
10.1021/la000231j
10.1021/ja00188a079
10.1021/ma00194a048
10.1021/la903068v
10.1023/A:1011066408283
10.1021/ie020034a
10.1021/la0504208
10.1021/jp072211x
10.1021/la001297h
10.1051/anphys/194812030504
10.1007/s003390201611
10.1016/j.biomaterials.2005.07.021
10.1039/B612249C
10.1021/bm061194z
10.1038/nrg1577
10.1021/la051800w
10.1080/10448630108244979
10.1016/j.colsurfb.2006.08.016
10.1016/S0378-5173(99)00463-9
10.1021/ma0300241
10.1038/35003071
10.1021/bm0001289
10.1021/ma060698m
10.1021/ma010354q
10.1016/0003-9861(54)90466-X
10.1021/la035955k
10.1038/35003155
10.1039/a707853f
10.1021/la0004552
10.1016/j.progpolymsci.2005.01.007
10.1021/j100110a030
10.1021/la802766n
10.1021/la030016d
10.1016/j.addr.2005.09.018
10.1016/j.biomaterials.2007.10.033
10.1140/epje/i2003-10087-5
10.1021/la050069q
10.1021/la011776w
10.1039/b821629k
10.1039/b309043b
10.1021/la000035c
10.1116/1.2976448
10.1002/jps.20251
10.1039/b708788h
10.1021/ja9819007
10.1021/la049922w
10.1021/la8038818
10.1137/0111030
10.1039/B310798A
10.1016/S0378-5173(01)00861-4
ContentType Journal Article
Copyright Copyright © American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © American Chemical Society
– notice: 2015 INIST-CNRS
CorporateAuthor Department of Chemistry
Kemiska institutionen
Physical Chemistry
Lunds universitet
Naturvetenskapliga fakulteten
Physical and theoretical chemistry
Faculty of Science
Enheten för fysikalisk och teoretisk kemi
Fysikalisk kemi
Lund University
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Physical and theoretical chemistry
– name: Physical Chemistry
– name: Department of Chemistry
– name: Lund University
– name: Enheten för fysikalisk och teoretisk kemi
– name: Kemiska institutionen
– name: Faculty of Science
– name: Lunds universitet
– name: Fysikalisk kemi
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D95
DOI 10.1021/la9047177
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 8635
ExternalDocumentID oai_portal_research_lu_se_publications_939807a9_eb80_4fb9_8a0e_75bd4251cc0c
oai_lup_lub_lu_se_939807a9_eb80_4fb9_8a0e_75bd4251cc0c
20429604
22825359
10_1021_la9047177
b163505988
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
186
1WB
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABDEX
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AFFNX
AGXLV
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
HR
IH9
IHE
JG
JG~
K2
LG6
OHM
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
.HR
6TJ
ABHMW
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-a503t-f6ccf26d8a911eeac2363e6d0d8f94bcc098cf41eaea25f74a7bbe949cafe3d33
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Aug 21 06:41:27 EDT 2025
Thu Jul 03 05:06:08 EDT 2025
Fri Jul 11 07:37:54 EDT 2025
Mon Jul 21 06:04:34 EDT 2025
Mon Jul 21 09:15:08 EDT 2025
Tue Jul 01 03:43:21 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Monolayer
Binary compound
Deformation
In situ
Neutrons
Potential
Silica
Solid
Amine
Reflectometry
Electrostatic repulsion
Binding
Surface charge
Stability
Multilayer
Branched polymer
Rinsing
Complexes
Bilayer
Ellipsometry
Charge density
Electrostatic attraction
DNA
Morphology
Interface
Dendritic structure
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a503t-f6ccf26d8a911eeac2363e6d0d8f94bcc098cf41eaea25f74a7bbe949cafe3d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20429604
PQID 733092574
PQPubID 23479
PageCount 11
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_939807a9_eb80_4fb9_8a0e_75bd4251cc0c
swepub_primary_oai_lup_lub_lu_se_939807a9_eb80_4fb9_8a0e_75bd4251cc0c
proquest_miscellaneous_733092574
pubmed_primary_20429604
pascalfrancis_primary_22825359
crossref_citationtrail_10_1021_la9047177
crossref_primary_10_1021_la9047177
acs_journals_10_1021_la9047177
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
AGXLV
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
1WB
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Svenson S. (ref11/cit11) 2005; 57
Ren K. F. (ref33/cit33) 2006; 27
Erickson B. (ref16/cit16) 2008; 24
Percec V. (ref66/cit66) 1998; 120
Vandoolaeghe P. (ref53/cit53) 2009; 25
Carnerup A. M. (ref69/cit69) 2009; 25
Pei R. J. (ref32/cit32) 2001; 2
Samoshina Y. (ref68/cit68) 2005; 21
Li J. (ref19/cit19) 2000; 16
Abeles F. (ref55/cit55) 1948; 3
Braun C. S. (ref6/cit6) 2005; 94
Chincholi B. A. (ref47/cit47) 1974; 19
Svendsen I. E. (ref60/cit60) 2006; 53
Brown M. D. (ref1/cit1) 2001; 229
Betley T. A. (ref18/cit18) 2001; 17
Landgren M. (ref42/cit42) 1993; 97
Mecke A. (ref22/cit22) 2004; 14
Cahill B. P. (ref27/cit27) 2008; 24
Mészáros R. (ref25/cit25) 2002; 18
Ogihara M. (ref37/cit37) 2000; 403
Lee I. (ref8/cit8) 2002; 35
El-Sayed M. (ref39/cit39) 2001; 18
Pericet-Camara R. (ref23/cit23) 2007
Marquardt D. W. (ref56/cit56) 1963; 11
Trurnit H. J. (ref58/cit58) 1954; 51
Majkrzak C. F. (ref51/cit51) 2001
Mahanty J. (ref46/cit46) 1976
Azzam R. M. A. (ref45/cit45) 1989
Decher G. (ref28/cit28) 1991; 46
van Duijvenbode R. C. (ref63/cit63) 2000; 16
Lu J. R. (ref49/cit49) 1998; 94
ref64/cit64
Kouskoumvekaki I. A. (ref41/cit41) 2002; 41
ref54/cit54
Konieczny M. (ref21/cit21) 2007; 3
Vinogradova O. I. (ref34/cit34) 2005; 6
Cardenas M. (ref61/cit61) 2004; 6
van Duijvenbode R. C. (ref71/cit71) 2000; 16
Boas U. (ref5/cit5) 2004; 33
Kim B. S. (ref30/cit30) 2005; 21
Nylander T. (ref50/cit50) 2009; 3
Bielinska A. U. (ref4/cit4) 1999; 10
Corsel J. W. (ref62/cit62) 1986; 111
Kim B. S. (ref35/cit35) 2006; 39
Holmberg K. (ref70/cit70) 2003
Lu Z. Z. (ref31/cit31) 2008; 29
Naylor A. M. (ref9/cit9) 1989; 111
Terada E. (ref57/cit57) 2004; 20
Dufes C. (ref7/cit7) 2005; 57
Mecke A. (ref17/cit17) 2005; 21
Milhem O. M. (ref40/cit40) 2000; 197
Liu Q. H. (ref36/cit36) 2000; 403
Tiberg F. (ref43/cit43) 2000; 29
Ainalem M. L. (ref15/cit15) 2010
Paulo P. M. R. (ref10/cit10) 2007; 111
Cubitt R. (ref52/cit52) 2002; 74
Muller T. (ref20/cit20) 2002; 18
Glover D. J. (ref2/cit2) 2005; 6
Kop J. M. M. (ref59/cit59) 1983; 44
Pouton C. W. (ref3/cit3) 2001; 46
Tomalia D. A. (ref12/cit12) 2005; 30
Örberg M. L. (ref14/cit14) 2007; 8
Vandoolaeghe P. (ref44/cit44) 2008; 4
Popa I. (ref26/cit26) 2007; 309
Pericet-Camara R. (ref24/cit24) 2004; 20
Podgornik R. (ref65/cit65) 1989; 22
Ainalem M. L. (ref13/cit13) 2009; 5
Tiberg F. (ref48/cit48) 1993; 9
Cakara D. (ref38/cit38) 2003; 36
Longtin R. (ref67/cit67) 2009; 25
Khopade A. J. (ref29/cit29) 2003; 19
References_xml – volume: 111
  start-page: 544
  year: 1986
  ident: ref62/cit62
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(86)90058-5
– volume: 57
  start-page: 2177
  year: 2005
  ident: ref7/cit7
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2005.09.017
– volume: 46
  start-page: 321
  year: 1991
  ident: ref28/cit28
  publication-title: Makromol. Chem. Macromol. Symp.
  doi: 10.1002/masy.19910460145
– volume: 309
  start-page: 28
  year: 2007
  ident: ref26/cit26
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.01.050
– volume: 6
  start-page: 1495
  year: 2005
  ident: ref34/cit34
  publication-title: Biomacromolecules
  doi: 10.1021/bm049254t
– volume: 46
  start-page: 187
  year: 2001
  ident: ref3/cit3
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(00)00133-2
– volume: 24
  start-page: 11003
  year: 2008
  ident: ref16/cit16
  publication-title: Langmuir
  doi: 10.1021/la801497d
– year: 2010
  ident: ref15/cit15
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 2267
  year: 2008
  ident: ref44/cit44
  publication-title: Soft Matter
  doi: 10.1039/b801630e
– volume: 29
  start-page: 196
  year: 2000
  ident: ref43/cit43
  publication-title: Eur. Biophys. J.
  doi: 10.1007/PL00006646
– volume: 18
  start-page: 7452
  year: 2002
  ident: ref20/cit20
  publication-title: Langmuir
  doi: 10.1021/la0200461
– volume: 24
  start-page: 465
  year: 2008
  ident: ref27/cit27
  publication-title: Langmuir
  doi: 10.1021/la7021352
– volume: 10
  start-page: 843
  year: 1999
  ident: ref4/cit4
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc990036k
– volume: 9
  start-page: 927
  year: 1993
  ident: ref48/cit48
  publication-title: Langmuir
  doi: 10.1021/la00028a009
– volume: 16
  start-page: 7713
  year: 2000
  ident: ref71/cit71
  publication-title: Langmuir
  doi: 10.1021/la000231j
– volume: 111
  start-page: 2339
  year: 1989
  ident: ref9/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00188a079
– volume: 22
  start-page: 1780
  year: 1989
  ident: ref65/cit65
  publication-title: Macromolecules
  doi: 10.1021/ma00194a048
– volume: 25
  start-page: 12466
  year: 2009
  ident: ref69/cit69
  publication-title: Langmuir
  doi: 10.1021/la903068v
– volume: 18
  start-page: 23
  year: 2001
  ident: ref39/cit39
  publication-title: Pharm. Res.
  doi: 10.1023/A:1011066408283
– volume: 19
  start-page: 148
  year: 1974
  ident: ref47/cit47
  publication-title: J. Chemical Eng.
– volume: 41
  start-page: 4848
  year: 2002
  ident: ref41/cit41
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020034a
– volume: 21
  start-page: 7200
  year: 2005
  ident: ref30/cit30
  publication-title: Langmuir
  doi: 10.1021/la0504208
– volume: 111
  start-page: 10651
  year: 2007
  ident: ref10/cit10
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp072211x
– volume: 17
  start-page: 2768
  year: 2001
  ident: ref18/cit18
  publication-title: Langmuir
  doi: 10.1021/la001297h
– volume-title: Ellipsometry and Polarized Light
  year: 1989
  ident: ref45/cit45
– volume: 3
  start-page: 504
  year: 1948
  ident: ref55/cit55
  publication-title: Ann. Phys.
  doi: 10.1051/anphys/194812030504
– ident: ref64/cit64
– volume: 74
  start-page: 329
  year: 2002
  ident: ref52/cit52
  publication-title: Appl. Phys. A Mat. Sci. Proc.
  doi: 10.1007/s003390201611
– volume: 44
  start-page: 491
  year: 1983
  ident: ref59/cit59
  publication-title: J. Phys. Colloques
– volume: 27
  start-page: 1152
  year: 2006
  ident: ref33/cit33
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.021
– start-page: 266
  year: 2007
  ident: ref23/cit23
  publication-title: Chem. Commun.
  doi: 10.1039/B612249C
– volume: 8
  start-page: 1557
  year: 2007
  ident: ref14/cit14
  publication-title: Biomacromolecules
  doi: 10.1021/bm061194z
– volume: 6
  start-page: 299
  year: 2005
  ident: ref2/cit2
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1577
– volume: 21
  start-page: 8588
  year: 2005
  ident: ref17/cit17
  publication-title: Langmuir
  doi: 10.1021/la051800w
– start-page: 25
  year: 2001
  ident: ref51/cit51
  publication-title: Neutron News
  doi: 10.1080/10448630108244979
– volume: 53
  start-page: 157
  year: 2006
  ident: ref60/cit60
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2006.08.016
– volume: 197
  start-page: 239
  year: 2000
  ident: ref40/cit40
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(99)00463-9
– volume: 36
  start-page: 4201
  year: 2003
  ident: ref38/cit38
  publication-title: Macromolecules
  doi: 10.1021/ma0300241
– volume: 403
  start-page: 143
  year: 2000
  ident: ref37/cit37
  publication-title: Nature
  doi: 10.1038/35003071
– volume: 2
  start-page: 463
  year: 2001
  ident: ref32/cit32
  publication-title: Biomacromolecules
  doi: 10.1021/bm0001289
– volume: 39
  start-page: 5479
  year: 2006
  ident: ref35/cit35
  publication-title: Macromolecules
  doi: 10.1021/ma060698m
– ident: ref54/cit54
– volume: 35
  start-page: 4510
  year: 2002
  ident: ref8/cit8
  publication-title: Macromolecules
  doi: 10.1021/ma010354q
– volume: 51
  start-page: 176
  year: 1954
  ident: ref58/cit58
  publication-title: Arc. Biochem. Biophys.
  doi: 10.1016/0003-9861(54)90466-X
– volume: 20
  start-page: 3264
  year: 2004
  ident: ref24/cit24
  publication-title: Langmuir
  doi: 10.1021/la035955k
– volume: 403
  start-page: 175
  year: 2000
  ident: ref36/cit36
  publication-title: Nature
  doi: 10.1038/35003155
– volume: 94
  start-page: 995
  year: 1998
  ident: ref49/cit49
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/a707853f
– volume: 16
  start-page: 7720
  year: 2000
  ident: ref63/cit63
  publication-title: Langmuir
  doi: 10.1021/la0004552
– volume: 30
  start-page: 294
  year: 2005
  ident: ref12/cit12
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2005.01.007
– volume: 97
  start-page: 1656
  year: 1993
  ident: ref42/cit42
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100110a030
– volume: 25
  start-page: 4009
  year: 2009
  ident: ref53/cit53
  publication-title: Langmuir
  doi: 10.1021/la802766n
– volume: 19
  start-page: 6219
  year: 2003
  ident: ref29/cit29
  publication-title: Langmuir
  doi: 10.1021/la030016d
– volume-title: Surfactants and Polymers in Aqueous Solutions
  year: 2003
  ident: ref70/cit70
– volume: 57
  start-page: 2106
  year: 2005
  ident: ref11/cit11
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2005.09.018
– volume: 29
  start-page: 733
  year: 2008
  ident: ref31/cit31
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.10.033
– volume: 14
  start-page: 7
  year: 2004
  ident: ref22/cit22
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2003-10087-5
– volume: 21
  start-page: 5872
  year: 2005
  ident: ref68/cit68
  publication-title: Langmuir
  doi: 10.1021/la050069q
– volume: 18
  start-page: 6164
  year: 2002
  ident: ref25/cit25
  publication-title: Langmuir
  doi: 10.1021/la011776w
– volume: 5
  start-page: 2310
  year: 2009
  ident: ref13/cit13
  publication-title: Soft Matter
  doi: 10.1039/b821629k
– volume: 33
  start-page: 43
  year: 2004
  ident: ref5/cit5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b309043b
– volume: 16
  start-page: 5613
  year: 2000
  ident: ref19/cit19
  publication-title: Langmuir
  doi: 10.1021/la000035c
– volume: 3
  start-page: 64
  year: 2009
  ident: ref50/cit50
  publication-title: Biointerphases
  doi: 10.1116/1.2976448
– volume-title: Dispersion Forces
  year: 1976
  ident: ref46/cit46
– volume: 94
  start-page: 423
  year: 2005
  ident: ref6/cit6
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20251
– volume: 3
  start-page: 1130
  year: 2007
  ident: ref21/cit21
  publication-title: Soft Matter
  doi: 10.1039/b708788h
– volume: 120
  start-page: 11061
  year: 1998
  ident: ref66/cit66
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9819007
– volume: 20
  start-page: 6692
  year: 2004
  ident: ref57/cit57
  publication-title: Langmuir
  doi: 10.1021/la049922w
– volume: 25
  start-page: 2928
  year: 2009
  ident: ref67/cit67
  publication-title: Langmuir
  doi: 10.1021/la8038818
– volume: 11
  start-page: 431
  year: 1963
  ident: ref56/cit56
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 6
  start-page: 1603
  year: 2004
  ident: ref61/cit61
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B310798A
– volume: 229
  start-page: 1
  year: 2001
  ident: ref1/cit1
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(01)00861-4
SSID ssj0009349
Score 2.1611133
Snippet This study increases the understanding at a molecular level of the interactions between DNA and poly(amido amine) (PAMAM) dendrimers on solid surfaces, which...
SourceID swepub
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8625
SubjectTerms Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials
Chemical Sciences
Chemistry
Colloidal state and disperse state
Dendrimers - chemistry
DNA - chemistry
Exact sciences and technology
Fysikalisk kemi
Fysikalisk kemi (Här ingår: Yt- och kolloidkemi)
General and physical chemistry
Kemi
Natural Sciences
Naturvetenskap
Physical Chemistry
Physical Chemistry (including Surface- and Colloid Chemistry)
Silicon Dioxide - chemistry
Surface physical chemistry
Title Interactions between DNA and Poly(amido amine) Dendrimers on Silica Surfaces
URI http://dx.doi.org/10.1021/la9047177
https://www.ncbi.nlm.nih.gov/pubmed/20429604
https://www.proquest.com/docview/733092574
https://lup.lub.lu.se/record/1610732
oai:portal.research.lu.se:publications/939807a9-eb80-4fb9-8a0e-75bd4251cc0c
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOYCEeD-Wx8oCDuWQ4sSOYx-r3VYVggppqVRxscYvUbEkq83mAL8ee51sW1geh-Tih5IZe2Y8nvkGoddEcwmC-Qy89BnjJWRCaJ05KqkwFIyvYnLyhxN-fMrenZVnO-jVH27wi_ztHCQJErSqrqHrBQ-bN9o_k9kFsi5NNm7E2qwYpwN80OWhUfWY9orqubWANlDBp_IV2-zLX8BD1wrn6A6aDmk7Kc7k63630vvmx-8ojn_7l7vodm9w4oO0Qu6hHVffRzcmQ523B-j92imY8hta3Mdt4enJAYba4o_N_PsefDu3DQ7v2r3BU1fbWBNg2eKmxrPz6PXDs27pY3DXQ3R6dPhpcpz1NRYyKAldZZ4b4wtuBQSp54IULiinjltihZdMG0OkMJ7lDhwUpa8YVFo7yaQB76il9BHarZvaPUG4soHtADoPzGYahOAsnI24zXXJjDRshMaBCarfI61aX38XudoQZYT2Bv4o0yOUx0IZ821dX266LhIsx7ZO4ytM3vQsYsIuLeUI4YHrKhA9XpVA7ZquVRWlRAZpFj76cVoNF4OjCucktBym5bFpiUjd824RHh0e1TolqRSkAqmcFkQxr6USQJyqSm2DsMwDec0Ifd4yTzp8qR7x6Us_3-KSK_e_Jn_6L5o_QzdTPET0Kz1Hu6tl514EM2ulx-tt9hNhOCJI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHIqEeD_CI1iIQzls2V17_ThGaasAaYSUVqq4WH6KirAbZZMD_HrGu5ukrSLRg_fiseWdGY_HY_sbhD6mhkktaEh0kCGhrNCJEMYknkgiLNE28Pg4-XTCRuf060Vx0cHkxLcwMIgaeqqbQ_wtukD2eaZlCoaU87voHjghedTmwXC6BdglrasbITc5ZWSNInS1aVyBbH1tBXow1zUwI7RZLHa5mTcwRJt15-RRm8CoGXFz3eTX4WppDu3fG2COt_ulx-hh537iQasvT9AdXz5F-8N11rdnaNyECNvXDjXubnHho8kA69Lh79Xsz4H-fekqDN_Sf8JHvnQxQ8CixlWJp5cxBoinq0WIV72eo_OT47PhKOkyLiS6SMkyCczakDMnNNhADzY5J4x45lIngqTG2lQKG2jmtdd5ETjV3BgvqbQ6eOIIeYH2yqr0rxDmDpRAa5OB6KnRQjAKOyXmMlNQKy3toT7wRHUzplbNYXieqQ1TeuhgLSZlO7zymDZjtov0w4Z03oJ07CLqX5P1hjKPz3dJIXsIr4WvgOnx4ESXvlrVihOSSrBtMOiXrVJsG8cFnaVQc9xqyaYm4nbPVnMoBoqqvZJEipRrqbwRqaLBSCV06hUvjAPTmQF7bQ_92NFPuxVTHf7Tz66_-ZXA7q06f_0_nr9H-6Oz07Eaf5l8e4PutzclYsTpLdpbLlb-HThgS9NvZt4_KboqqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELZgkWAlxH2Uo1iIh-UhixM7Ph6rdqsFlrJSWWnFi-VTrLYkVdM8wK_HTtLsoUrsg_PiQ854PDOesb8B4APSVChOfKK88AmhuUo41zpxWGBusDKexcfJ32b08IR8Oc1Pu4NifAsTJlGFkaomiB939dL6DmEg_bRQAgVhythtcCeG6yJHj8bzC5Bd3Jq7EXaTEYo3SEKXu0YtZKorWuj-UlWBIL7NZLHN1LyGI9ronulD8L2fdXPl5Hy_Xut98_caoOPNf-sReNCZoXDU8s1jcMsVT8C98Sb721Nw1LgK21cPFexuc8HJbARVYeFxufizp36f2RKGb-E-wokrbMwUsKpgWcD5WfQFwnm98vHK1zNwMj34MT5MuswLicoRXieeGuMzarkKstAF2Zxhih21yHIviDYGCW48SZ1yKss9I4pp7QQRRnmHLcbPwU5RFu4lgMwGZlBKp4EFiFacUxJOTNSmOidGGDIAw0AX2e2cSjZB8SyVPVEGYG-zVNJ0uOUxfcZiW9P3fdNlC9axrdHwynr3LbP4jBfnYgDghgFkIHoMoKjClXUlGcZIBBkXJv2iZYyLzlGxUxRqDlpO6WsifveiXoaiQ5GVkwILjpgS0mmOJPFaSK6QkyzXNojQNJDXDMDPLeO0RzLZ4UD96sZbXnLw3mjwV_-j-Ttw93gylUefZ19fg932wkR0PL0BO-tV7d4GO2yth83m-we9mS0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+DNA+and+Poly%28amido+amine%29+Dendrimers+on+Silica+Surfaces&rft.jtitle=Langmuir&rft.au=Ainalem%2C+Marie-Louise&rft.au=Campbell%2C+Richard+A&rft.au=Nylander%2C+Tommy&rft.date=2010-06-01&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021%2Fla9047177&rft.externalDocID=b163505988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon