Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles
The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 3; pp. 4155 - 4162 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.01.2020
Washington, D.C. : American Chemical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal–organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir–Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250–300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities. |
---|---|
AbstractList | The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal–organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir–Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250–300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities. The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal–organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir–Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250–300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities. The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal-organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir-Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250-300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities.The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal-organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir-Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250-300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities. |
Author | Vijjapu, Mani Teja Andrés, Miguel A Shekhah, Osama Surya, Sandeep G Roubeau, Olivier Eddaoudi, Mohamed Gascón, Ignacio Salama, Khaled Nabil Serre, Christian |
AuthorAffiliation | Instituto de Ciencia de Materiales de Aragón (ICMA) Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab PSL University Departamento de Química Física and Instituto de Nanociencia de Aragón (INA) Institut des Matériaux Poreux de Paris, UMR 8004 CNRS, École Normale Supérieure, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris |
AuthorAffiliation_xml | – name: Instituto de Ciencia de Materiales de Aragón (ICMA) – name: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab – name: Institut des Matériaux Poreux de Paris, UMR 8004 CNRS, École Normale Supérieure, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris – name: PSL University – name: Departamento de Química Física and Instituto de Nanociencia de Aragón (INA) – name: Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3) |
Author_xml | – sequence: 1 givenname: Miguel A orcidid: 0000-0003-3691-3437 surname: Andrés fullname: Andrés, Miguel A organization: Instituto de Ciencia de Materiales de Aragón (ICMA) – sequence: 2 givenname: Mani Teja surname: Vijjapu fullname: Vijjapu, Mani Teja organization: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab – sequence: 3 givenname: Sandeep G orcidid: 0000-0003-3425-1265 surname: Surya fullname: Surya, Sandeep G organization: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab – sequence: 4 givenname: Osama orcidid: 0000-0003-1861-9226 surname: Shekhah fullname: Shekhah, Osama organization: Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3) – sequence: 5 givenname: Khaled Nabil orcidid: 0000-0001-7742-1282 surname: Salama fullname: Salama, Khaled Nabil organization: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab – sequence: 6 givenname: Christian orcidid: 0000-0003-3040-2564 surname: Serre fullname: Serre, Christian organization: PSL University – sequence: 7 givenname: Mohamed orcidid: 0000-0003-1916-9837 surname: Eddaoudi fullname: Eddaoudi, Mohamed organization: Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3) – sequence: 8 givenname: Olivier orcidid: 0000-0003-2095-5843 surname: Roubeau fullname: Roubeau, Olivier organization: Instituto de Ciencia de Materiales de Aragón (ICMA) – sequence: 9 givenname: Ignacio orcidid: 0000-0002-3492-6456 surname: Gascón fullname: Gascón, Ignacio email: igascon@unizar.es organization: Instituto de Ciencia de Materiales de Aragón (ICMA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31909968$$D View this record in MEDLINE/PubMed https://hal.science/hal-03080178$$DView record in HAL |
BookMark | eNqFkd1rFDEUxYNU7Ie--ih5VGHXm4-ZTB7bxXWFrUWsz-E2ybApM8mazBT63zvLbPsgFCFww-V3DpdzzslJTNET8p7BkgFnX9AW7MNS33FQtXhFzpiWctHwip88_6U8Jeel3APUgkP1hpwKpkHrujkjP6_9sMOYOorR0c3YBxeGR7rCPdowhAdPf_lYUi70Cot3NEV6uwuRrkPXF5paen2zpj8mgz3mIdjOl7fkdYtd8e-O84L8Xn-9XW0W25tv31eX2wVWIIYFcqXA2Uox5traN61TgjGrlNXTc7oWSoOsGiYAddvqCpgSWirrwQrHuLggn2bfHXZmn0OP-dEkDGZzuTWHHQhoJlHzwCb248zuc_oz-jKYPhTruw6jT2MxXAJI1Qhe_R8VQirgVXO44MMRHe96756PeEp3AuQM2JxKyb41U6Y4hBSHjKEzDMyhRDOXaI4lTrLlP7In5xcFn2fBtDf3acxxCv4l-C-zvKo_ |
CitedBy_id | crossref_primary_10_1039_C9CS00778D crossref_primary_10_1088_1361_6528_ac810d crossref_primary_10_1016_j_synthmet_2022_117020 crossref_primary_10_1016_j_sna_2023_114860 crossref_primary_10_1016_j_talanta_2023_125412 crossref_primary_10_3390_chemosensors9110320 crossref_primary_10_3390_nano14030284 crossref_primary_10_1002_smll_202407021 crossref_primary_10_1039_D1NA00798J crossref_primary_10_1016_j_snb_2022_131806 crossref_primary_10_3390_s20102851 crossref_primary_10_1016_j_yofte_2020_102406 crossref_primary_10_1021_acsami_1c24759 crossref_primary_10_1021_acsami_4c07732 crossref_primary_10_1109_JFLEX_2023_3339587 crossref_primary_10_1016_j_trechm_2020_09_004 crossref_primary_10_1016_j_mtener_2024_101703 crossref_primary_10_1016_j_snb_2022_132612 crossref_primary_10_1021_acs_chemrev_1c00754 crossref_primary_10_1016_j_snb_2022_132572 crossref_primary_10_1016_j_jcis_2021_09_189 crossref_primary_10_1016_j_snb_2024_136646 crossref_primary_10_3390_chemosensors11100524 crossref_primary_10_1016_j_ccr_2023_215558 crossref_primary_10_1039_D2GC00226D crossref_primary_10_1016_j_snb_2021_129450 crossref_primary_10_1016_j_ccr_2024_216067 crossref_primary_10_1016_j_ccr_2020_213479 crossref_primary_10_1021_acsami_3c16745 crossref_primary_10_1063_5_0206165 crossref_primary_10_1016_j_surfin_2023_102819 crossref_primary_10_1002_cnma_202000560 crossref_primary_10_1016_j_jcis_2021_01_030 crossref_primary_10_3390_electronics11060903 crossref_primary_10_1063_5_0073233 crossref_primary_10_1109_LED_2021_3062063 crossref_primary_10_2139_ssrn_4059854 crossref_primary_10_1016_j_matchemphys_2025_130456 crossref_primary_10_1039_D0NR06396G crossref_primary_10_1016_j_sse_2022_108383 crossref_primary_10_1002_admt_202000933 crossref_primary_10_1016_j_cclet_2023_108181 crossref_primary_10_1016_j_jcis_2021_06_064 crossref_primary_10_1016_j_microc_2023_109297 crossref_primary_10_1039_D4TC00454J crossref_primary_10_1039_D0RA08354B crossref_primary_10_1007_s10904_023_02597_w crossref_primary_10_1021_acssensors_0c01589 crossref_primary_10_1002_adfm_202109541 crossref_primary_10_1016_j_microc_2024_110564 crossref_primary_10_1021_acsami_1c06546 crossref_primary_10_1021_acsami_2c20141 crossref_primary_10_1021_acssensors_2c02656 crossref_primary_10_1063_5_0203820 crossref_primary_10_1007_s10854_024_13377_8 crossref_primary_10_1016_j_cej_2024_149286 crossref_primary_10_1016_j_snb_2021_130972 crossref_primary_10_1021_acsami_2c22172 crossref_primary_10_3390_nano12234208 crossref_primary_10_1016_j_sna_2023_114472 crossref_primary_10_1007_s12039_022_02130_5 crossref_primary_10_1007_s10854_021_07597_5 crossref_primary_10_1016_j_seppur_2022_121080 crossref_primary_10_1002_adfm_202308376 crossref_primary_10_1016_j_cjche_2024_06_004 crossref_primary_10_1039_D4CE00446A crossref_primary_10_1016_j_snb_2021_129637 crossref_primary_10_1016_j_snb_2023_134507 crossref_primary_10_1039_D3TA01588B crossref_primary_10_1002_aelm_202000853 crossref_primary_10_1021_acsami_0c07532 crossref_primary_10_6023_A22020093 crossref_primary_10_1109_JSEN_2022_3229129 crossref_primary_10_1109_LSENS_2020_3009033 crossref_primary_10_1002_admt_202100127 crossref_primary_10_1021_acs_cgd_9b01384 crossref_primary_10_1039_D3TA03231K crossref_primary_10_1016_j_snb_2020_128542 crossref_primary_10_1016_j_cej_2025_160626 crossref_primary_10_1016_j_trac_2022_116644 crossref_primary_10_1021_acs_nanolett_2c04428 crossref_primary_10_1109_JSEN_2020_3029431 crossref_primary_10_1080_17458080_2021_1873385 crossref_primary_10_1002_adom_202001817 crossref_primary_10_1039_D1TA10589B crossref_primary_10_1002_chem_202401464 crossref_primary_10_3390_ma14164352 crossref_primary_10_1021_acsami_0c16302 crossref_primary_10_1016_j_micromeso_2022_112031 crossref_primary_10_1016_j_apsusc_2022_155772 crossref_primary_10_1021_acs_inorgchem_2c00650 crossref_primary_10_1002_advs_202104374 crossref_primary_10_3390_nano12234263 crossref_primary_10_1016_j_jcis_2024_08_221 crossref_primary_10_1002_bkcs_12268 crossref_primary_10_1021_jacs_1c11507 crossref_primary_10_1039_D1MH00609F crossref_primary_10_1021_acsanm_2c01557 crossref_primary_10_1002_admi_202102595 crossref_primary_10_1016_j_mssp_2021_105744 crossref_primary_10_1021_acsami_0c00803 crossref_primary_10_1002_cplu_202200396 crossref_primary_10_1016_j_microc_2023_108815 crossref_primary_10_1109_JSEN_2023_3289835 crossref_primary_10_1109_TNANO_2022_3154590 crossref_primary_10_3389_fchem_2022_881172 crossref_primary_10_1021_acssensors_3c00362 crossref_primary_10_3390_s24154806 crossref_primary_10_1109_TED_2024_3446744 crossref_primary_10_3390_s22041664 crossref_primary_10_1088_1361_6463_ac9ac5 crossref_primary_10_3390_catal12050485 crossref_primary_10_1021_acsnano_1c10004 crossref_primary_10_1039_D3TA06529D crossref_primary_10_1088_1361_6528_acc4ca crossref_primary_10_1021_acsami_2c12842 crossref_primary_10_1016_j_sna_2024_115701 crossref_primary_10_1021_acsami_4c20696 crossref_primary_10_1021_acsami_4c11976 crossref_primary_10_1016_j_surfin_2020_100525 crossref_primary_10_3390_s21144897 crossref_primary_10_1016_j_ica_2025_122565 crossref_primary_10_1016_j_memsci_2021_120064 crossref_primary_10_1016_j_jhazmat_2022_129412 crossref_primary_10_1109_JIOT_2024_3361009 crossref_primary_10_1016_j_jhazmat_2022_128321 crossref_primary_10_1039_D1DT01133B crossref_primary_10_3390_nano11010160 |
Cites_doi | 10.3762/bjnano.8.155 10.1016/j.snb.2019.05.008 10.3390/s18092843 10.3390/s150818153 10.1007/s12161-016-0739-4 10.1021/acssensors.7b00304 10.1002/anie.201706745 10.1016/j.jcis.2018.02.058 10.1039/C7TA09696H 10.3390/s100302088 10.1007/s40820-018-0218-0 10.1002/anie.201608780 10.1021/acsami.8b18327 10.1039/C7TA10538J 10.1002/anie.201906222 10.1109/JSEN.2017.2786739 10.1109/ICSIMA.2015.7559021 10.1121/1.2336758 10.1109/TCSI.2011.2143090 10.3390/s18113898 10.3390/metabo9030052 10.1021/acsami.9b05933 10.1109/TCSII.2014.2327312 10.3390/s120709635 10.1002/asia.201200754 10.1039/C8TA02767F 10.3390/ma3031803 10.1016/j.atmosenv.2004.12.039 10.1021/la102790w 10.1108/SR-09-2014-696 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 1XC |
DOI | 10.1021/acsami.9b20763 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 4162 |
ExternalDocumentID | oai_HAL_hal_03080178v1 31909968 10_1021_acsami_9b20763 b805340689 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-a503t-a2770dc5711df6e8fd7311c77c97c9d963790458130a9ff950173947ce0c3d123 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Tue May 13 06:32:58 EDT 2025 Thu Jul 10 18:26:15 EDT 2025 Fri Jul 11 05:03:38 EDT 2025 Thu Jan 02 22:59:37 EST 2025 Tue Jul 01 01:48:27 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Thu Aug 27 22:10:37 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | capacitive sensor interdigitated electrodes (IDE) metal−organic framework (MOF) nanoparticles (NPs) MIL-96(Al) Langmuir−Blodgett (LB) films |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a503t-a2770dc5711df6e8fd7311c77c97c9d963790458130a9ff950173947ce0c3d123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3425-1265 0000-0003-2095-5843 0000-0003-3691-3437 0000-0003-1916-9837 0000-0002-3492-6456 0000-0003-1861-9226 0000-0001-7742-1282 0000-0003-3040-2564 |
OpenAccessLink | http://zaguan.unizar.es/record/129555 |
PMID | 31909968 |
PQID | 2334702582 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_03080178v1 proquest_miscellaneous_2400478325 proquest_miscellaneous_2334702582 pubmed_primary_31909968 crossref_citationtrail_10_1021_acsami_9b20763 crossref_primary_10_1021_acsami_9b20763 acs_journals_10_1021_acsami_9b20763 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-22 |
PublicationDateYYYYMMDD | 2020-01-22 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society Washington, D.C. : American Chemical Society |
Publisher_xml | – name: American Chemical Society – name: Washington, D.C. : American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.3762/bjnano.8.155 – ident: ref19/cit19 doi: 10.1016/j.snb.2019.05.008 – ident: ref1/cit1 doi: 10.3390/s18092843 – ident: ref10/cit10 doi: 10.3390/s150818153 – ident: ref2/cit2 doi: 10.1007/s12161-016-0739-4 – ident: ref18/cit18 doi: 10.1021/acssensors.7b00304 – ident: ref20/cit20 doi: 10.1002/anie.201706745 – ident: ref25/cit25 doi: 10.1016/j.jcis.2018.02.058 – ident: ref27/cit27 doi: 10.1039/C7TA09696H – ident: ref5/cit5 doi: 10.3390/s100302088 – ident: ref13/cit13 doi: 10.1007/s40820-018-0218-0 – ident: ref16/cit16 doi: 10.1002/anie.201608780 – ident: ref15/cit15 doi: 10.1021/acsami.8b18327 – ident: ref17/cit17 doi: 10.1039/C7TA10538J – ident: ref24/cit24 doi: 10.1002/anie.201906222 – ident: ref26/cit26 doi: 10.1109/JSEN.2017.2786739 – ident: ref11/cit11 doi: 10.1109/ICSIMA.2015.7559021 – ident: ref7/cit7 doi: 10.1121/1.2336758 – ident: ref9/cit9 doi: 10.1109/TCSI.2011.2143090 – ident: ref14/cit14 doi: 10.3390/s18113898 – ident: ref3/cit3 doi: 10.3390/metabo9030052 – ident: ref21/cit21 doi: 10.1021/acsami.9b05933 – ident: ref12/cit12 doi: 10.1109/TCSII.2014.2327312 – ident: ref4/cit4 doi: 10.3390/s120709635 – ident: ref22/cit22 doi: 10.1002/asia.201200754 – ident: ref23/cit23 doi: 10.1039/C8TA02767F – ident: ref29/cit29 doi: 10.3390/ma3031803 – ident: ref8/cit8 doi: 10.1016/j.atmosenv.2004.12.039 – ident: ref30/cit30 doi: 10.1021/la102790w – ident: ref6/cit6 doi: 10.1108/SR-09-2014-696 |
SSID | ssj0063205 |
Score | 2.607051 |
Snippet | The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the... |
SourceID | hal proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4155 |
SubjectTerms | Chemical Sciences chloroform coordination polymers cost effectiveness electrodes films (materials) humidity methanol nanoparticles sorption toluene vapors |
Title | Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles |
URI | http://dx.doi.org/10.1021/acsami.9b20763 https://www.ncbi.nlm.nih.gov/pubmed/31909968 https://www.proquest.com/docview/2334702582 https://www.proquest.com/docview/2400478325 https://hal.science/hal-03080178 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoucABKI-yPCrzkDi5jR-x42NZsVpVbBEqlXqL_IpasSSo2eXAr2cmyS6FaqFSTtFEkcee-Wbs8TeEvM0KFb1zirkKr-Qo75nzwrDMc7zGqITzeFF4dqynp-roLD_7vd_x9wm-4AcutNgKx3oBKbfcIreFBgvGIGh8svK5WoquWBEycsUKQKwVPeO17xGEQvsHCG2dYwnkpviyw5nJ_Z70qO3oCbG85Ov-cuH3w8_r5I3_HcIDcm8INulhvzp2yK1UPyR3r1AQPiKfZwk3z5s5dXWkMLkXEeJyOgYMDV1ZET2BRLe5bOl7wLtIm5piq086uZh_a2lT0dmnCQUXDbn3UGL3mJxOPnwZT9nQZoG5PJML5oQxWQy54TxWOhVVNJLzYEyw8ESwUGPxOBXQztmqsjkYsbTKhJQFGQH5npDtuqnTU0J1tE5aHaQuuDLaQnCpbQomSZUDXPoReQO6KAczacvuBFzwsldQOShoRNhqdsowMJVjw4z5Rvl3a_nvPUfHRsnXMNlrIaTWnh5-LPEd8vbAwIoffERerdZCCbaGByiuTs2yLYWUykCQWIh_yKBTNOAn8xHZ7RfS-n_g7iAg18WzG6nhObkjMLnPOBPiBdleXC7TS4iAFn6vW_y_ADS0_FI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB615QA9UJ4lUGB5SJzceh_2eo8hIgqQFFBbqbfVviwqgo3qhAO_nlnHDi8FgeTTavzY2Zn5ZjyzswDP00J4a4xITBm35AhrE2OZTFJL4zZGwYyNG4Vnx_nkTLw5z8634KjfC4Mf0eCTmjaJ_6O7AD3CsXgijrIMI2--DVfQE2FRpIejk9705py1NYsYmIukQODquzT-cX_EItf8gkXbH2Ml5CY3s4Wb8R68X39oW2Xy6XC5sIfu2289HP9jJjfgeud6kuFKVm7CVqhuwe5PDQlvw4dZiL_S6zkxlSe41BcevXQyQkR1bZEROcGwt75syEtEP0_qisSDP8n4Yv65IXVJZu_GBA02RuJdwd0dOBu_Oh1Nku7QhcRkKV8khkmZepdJSn2Zh6L0klPqpHQKL4_6KlVMriL2GVWWKkOV5kpIF1LHPeLgXdip6ircA5J7ZbjKHc8LKmSu0NXMVXAycJEheNoBPENe6E5pGt3mwxnVKwbpjkEDSPpF0q7rWx6Pz5hvpH-xpv-y6tixkfIprvmaKDbangynOo7FLj44seIrHcCTXiQ0al5Mp5gq1MtGM86FRJexYH-hiSZSotXMBrC_kqf1-9D4oXueF_f_iQ2P4erkdDbV09fHbx_ANRbD_pQmjB3AzuJyGR6ib7Swj1p9-A4NdQTC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZokRB9aLkKSznMIfHkEh-J48dlIVqgW0Btpb5FvqJWbJOq2eWBX89MNrvi0CKQ8mRNDo89881kDhPyMslVcNYqZissyVHOMeuEZonjWMaohHVYKDw5zMYn6sNpetrXcWMtDHxEC09quyA-SvVlqPoOA_w1jOOpOMYJ8L7lBrmOMTvc1sPR0VL9ZlJ0eYvgnCuWA3gtOzX-cT_ikW9_waONM8yGXGdqdpBT7JDj1cd2mSZf9-czt--__9bH8T9nc4ts9yYoHS72zG1yLdZ3yNZPjQnvki-TiL_Umym1daCw5OcBrHU6AmT1XbIRPQL3t7lq6RtAwUCbmuIBoLQ4n160tKno5FNBQXGDR94n3t0jJ8W749GY9YcvMJsmcsas0DoJPtWchyqLeRW05Nxr7Q1cAeRWGwyyAgZaU1UmBdGWRmkfEy8D4OEu2aybOj4gNAvGSpN5meVc6cyAyZmZ6HWUKgUQdQPyAnhR9sLTll1cXPBywaCyZ9CAsOVClb7vX47HaEzX0r9a0V8uOnespXwO674iwobb4-FBiWPYzQcmln_jA_JsuS1KkEAMq9g6NvO2FFIqDaZjLv5Cg6pSg_ZMB-T-Yk-t3gdKEMz0LH_4T2x4Sm58fluUB-8PP-6RmwK9_4QzIR6RzdnVPD4GE2nmnnQi8QOjUAdF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methanol+and+Humidity+Capacitive+Sensors+Based+on+Thin+Films+of+MOF+Nanoparticles&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Andr%C3%A9s%2C+Miguel+A&rft.au=Vijjapu%2C+Mani+Teja&rft.au=Surya%2C+Sandeep+G&rft.au=Shekhah%2C+Osama&rft.date=2020-01-22&rft.eissn=1944-8252&rft.volume=12&rft.issue=3&rft.spage=4155&rft_id=info:doi/10.1021%2Facsami.9b20763&rft_id=info%3Apmid%2F31909968&rft.externalDocID=31909968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |