Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles

The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 3; pp. 4155 - 4162
Main Authors Andrés, Miguel A, Vijjapu, Mani Teja, Surya, Sandeep G, Shekhah, Osama, Salama, Khaled Nabil, Serre, Christian, Eddaoudi, Mohamed, Roubeau, Olivier, Gascón, Ignacio
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.01.2020
Washington, D.C. : American Chemical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal–organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96­(Al) MOF thin films via the Langmuir–Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96­(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96­(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250–300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities.
AbstractList The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal–organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96­(Al) MOF thin films via the Langmuir–Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96­(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96­(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250–300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities.
The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal–organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir–Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250–300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities.
The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal-organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir-Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250-300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities.The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the necessity to miniaturize devices while reducing the amount of sensing material. The appealing alternative of integrating nanoparticles of a porous metal-organic framework (MOF) onto capacitive sensors based on interdigitated electrode (IDE) chips is presented. We report the deposition of MIL-96(Al) MOF thin films via the Langmuir-Blodgett (LB) method on the IDE chips, which allowed the study of their gas/vapor sensing properties. First, sorption studies of several organic vapors like methanol, toluene, chloroform, etc. were conducted on bulk MOF. The sorption data revealed that MIL-96(Al) presents high affinity toward water and methanol. Later on, ordered LB monolayer films of MIL-96(Al) particles of ∼200 nm were successfully deposited onto IDE chips with homogeneous coverage of the surface in comparison to conventional thin film fabrication techniques such as drop-casting. The sensing tests showed that MOF LB films were selective for water and methanol, and short response/recovery times were achieved. Finally, chemical vapor deposition (CVD) of a porous thin film of Parylene C (thickness ∼250-300 nm) was performed on top of the MOF LB films to fabricate a thin selective layer. The sensing results showed an increase in the water selectivity and sensitivity, while those of methanol showed a huge decrease. These results prove the feasibility of the LB technique for the fabrication of ordered MOF thin films onto IDE chips using very small MOF quantities.
Author Vijjapu, Mani Teja
Andrés, Miguel A
Shekhah, Osama
Surya, Sandeep G
Roubeau, Olivier
Eddaoudi, Mohamed
Gascón, Ignacio
Salama, Khaled Nabil
Serre, Christian
AuthorAffiliation Instituto de Ciencia de Materiales de Aragón (ICMA)
Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3)
Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab
PSL University
Departamento de Química Física and Instituto de Nanociencia de Aragón (INA)
Institut des Matériaux Poreux de Paris, UMR 8004 CNRS, École Normale Supérieure, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris
AuthorAffiliation_xml – name: Instituto de Ciencia de Materiales de Aragón (ICMA)
– name: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab
– name: Institut des Matériaux Poreux de Paris, UMR 8004 CNRS, École Normale Supérieure, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris
– name: PSL University
– name: Departamento de Química Física and Instituto de Nanociencia de Aragón (INA)
– name: Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3)
Author_xml – sequence: 1
  givenname: Miguel A
  orcidid: 0000-0003-3691-3437
  surname: Andrés
  fullname: Andrés, Miguel A
  organization: Instituto de Ciencia de Materiales de Aragón (ICMA)
– sequence: 2
  givenname: Mani Teja
  surname: Vijjapu
  fullname: Vijjapu, Mani Teja
  organization: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab
– sequence: 3
  givenname: Sandeep G
  orcidid: 0000-0003-3425-1265
  surname: Surya
  fullname: Surya, Sandeep G
  organization: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab
– sequence: 4
  givenname: Osama
  orcidid: 0000-0003-1861-9226
  surname: Shekhah
  fullname: Shekhah, Osama
  organization: Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3)
– sequence: 5
  givenname: Khaled Nabil
  orcidid: 0000-0001-7742-1282
  surname: Salama
  fullname: Salama, Khaled Nabil
  organization: Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering Division, Sensors Lab
– sequence: 6
  givenname: Christian
  orcidid: 0000-0003-3040-2564
  surname: Serre
  fullname: Serre, Christian
  organization: PSL University
– sequence: 7
  givenname: Mohamed
  orcidid: 0000-0003-1916-9837
  surname: Eddaoudi
  fullname: Eddaoudi, Mohamed
  organization: Advanced Membranes and Porous Materials Centre (AMPMC). Physical Sciences and Engineering Division, Functional Materials Design, Discovery and Development Research Group (FMD3)
– sequence: 8
  givenname: Olivier
  orcidid: 0000-0003-2095-5843
  surname: Roubeau
  fullname: Roubeau, Olivier
  organization: Instituto de Ciencia de Materiales de Aragón (ICMA)
– sequence: 9
  givenname: Ignacio
  orcidid: 0000-0002-3492-6456
  surname: Gascón
  fullname: Gascón, Ignacio
  email: igascon@unizar.es
  organization: Instituto de Ciencia de Materiales de Aragón (ICMA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31909968$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03080178$$DView record in HAL
BookMark eNqFkd1rFDEUxYNU7Ie--ih5VGHXm4-ZTB7bxXWFrUWsz-E2ybApM8mazBT63zvLbPsgFCFww-V3DpdzzslJTNET8p7BkgFnX9AW7MNS33FQtXhFzpiWctHwip88_6U8Jeel3APUgkP1hpwKpkHrujkjP6_9sMOYOorR0c3YBxeGR7rCPdowhAdPf_lYUi70Cot3NEV6uwuRrkPXF5paen2zpj8mgz3mIdjOl7fkdYtd8e-O84L8Xn-9XW0W25tv31eX2wVWIIYFcqXA2Uox5traN61TgjGrlNXTc7oWSoOsGiYAddvqCpgSWirrwQrHuLggn2bfHXZmn0OP-dEkDGZzuTWHHQhoJlHzwCb248zuc_oz-jKYPhTruw6jT2MxXAJI1Qhe_R8VQirgVXO44MMRHe96756PeEp3AuQM2JxKyb41U6Y4hBSHjKEzDMyhRDOXaI4lTrLlP7In5xcFn2fBtDf3acxxCv4l-C-zvKo_
CitedBy_id crossref_primary_10_1039_C9CS00778D
crossref_primary_10_1088_1361_6528_ac810d
crossref_primary_10_1016_j_synthmet_2022_117020
crossref_primary_10_1016_j_sna_2023_114860
crossref_primary_10_1016_j_talanta_2023_125412
crossref_primary_10_3390_chemosensors9110320
crossref_primary_10_3390_nano14030284
crossref_primary_10_1002_smll_202407021
crossref_primary_10_1039_D1NA00798J
crossref_primary_10_1016_j_snb_2022_131806
crossref_primary_10_3390_s20102851
crossref_primary_10_1016_j_yofte_2020_102406
crossref_primary_10_1021_acsami_1c24759
crossref_primary_10_1021_acsami_4c07732
crossref_primary_10_1109_JFLEX_2023_3339587
crossref_primary_10_1016_j_trechm_2020_09_004
crossref_primary_10_1016_j_mtener_2024_101703
crossref_primary_10_1016_j_snb_2022_132612
crossref_primary_10_1021_acs_chemrev_1c00754
crossref_primary_10_1016_j_snb_2022_132572
crossref_primary_10_1016_j_jcis_2021_09_189
crossref_primary_10_1016_j_snb_2024_136646
crossref_primary_10_3390_chemosensors11100524
crossref_primary_10_1016_j_ccr_2023_215558
crossref_primary_10_1039_D2GC00226D
crossref_primary_10_1016_j_snb_2021_129450
crossref_primary_10_1016_j_ccr_2024_216067
crossref_primary_10_1016_j_ccr_2020_213479
crossref_primary_10_1021_acsami_3c16745
crossref_primary_10_1063_5_0206165
crossref_primary_10_1016_j_surfin_2023_102819
crossref_primary_10_1002_cnma_202000560
crossref_primary_10_1016_j_jcis_2021_01_030
crossref_primary_10_3390_electronics11060903
crossref_primary_10_1063_5_0073233
crossref_primary_10_1109_LED_2021_3062063
crossref_primary_10_2139_ssrn_4059854
crossref_primary_10_1016_j_matchemphys_2025_130456
crossref_primary_10_1039_D0NR06396G
crossref_primary_10_1016_j_sse_2022_108383
crossref_primary_10_1002_admt_202000933
crossref_primary_10_1016_j_cclet_2023_108181
crossref_primary_10_1016_j_jcis_2021_06_064
crossref_primary_10_1016_j_microc_2023_109297
crossref_primary_10_1039_D4TC00454J
crossref_primary_10_1039_D0RA08354B
crossref_primary_10_1007_s10904_023_02597_w
crossref_primary_10_1021_acssensors_0c01589
crossref_primary_10_1002_adfm_202109541
crossref_primary_10_1016_j_microc_2024_110564
crossref_primary_10_1021_acsami_1c06546
crossref_primary_10_1021_acsami_2c20141
crossref_primary_10_1021_acssensors_2c02656
crossref_primary_10_1063_5_0203820
crossref_primary_10_1007_s10854_024_13377_8
crossref_primary_10_1016_j_cej_2024_149286
crossref_primary_10_1016_j_snb_2021_130972
crossref_primary_10_1021_acsami_2c22172
crossref_primary_10_3390_nano12234208
crossref_primary_10_1016_j_sna_2023_114472
crossref_primary_10_1007_s12039_022_02130_5
crossref_primary_10_1007_s10854_021_07597_5
crossref_primary_10_1016_j_seppur_2022_121080
crossref_primary_10_1002_adfm_202308376
crossref_primary_10_1016_j_cjche_2024_06_004
crossref_primary_10_1039_D4CE00446A
crossref_primary_10_1016_j_snb_2021_129637
crossref_primary_10_1016_j_snb_2023_134507
crossref_primary_10_1039_D3TA01588B
crossref_primary_10_1002_aelm_202000853
crossref_primary_10_1021_acsami_0c07532
crossref_primary_10_6023_A22020093
crossref_primary_10_1109_JSEN_2022_3229129
crossref_primary_10_1109_LSENS_2020_3009033
crossref_primary_10_1002_admt_202100127
crossref_primary_10_1021_acs_cgd_9b01384
crossref_primary_10_1039_D3TA03231K
crossref_primary_10_1016_j_snb_2020_128542
crossref_primary_10_1016_j_cej_2025_160626
crossref_primary_10_1016_j_trac_2022_116644
crossref_primary_10_1021_acs_nanolett_2c04428
crossref_primary_10_1109_JSEN_2020_3029431
crossref_primary_10_1080_17458080_2021_1873385
crossref_primary_10_1002_adom_202001817
crossref_primary_10_1039_D1TA10589B
crossref_primary_10_1002_chem_202401464
crossref_primary_10_3390_ma14164352
crossref_primary_10_1021_acsami_0c16302
crossref_primary_10_1016_j_micromeso_2022_112031
crossref_primary_10_1016_j_apsusc_2022_155772
crossref_primary_10_1021_acs_inorgchem_2c00650
crossref_primary_10_1002_advs_202104374
crossref_primary_10_3390_nano12234263
crossref_primary_10_1016_j_jcis_2024_08_221
crossref_primary_10_1002_bkcs_12268
crossref_primary_10_1021_jacs_1c11507
crossref_primary_10_1039_D1MH00609F
crossref_primary_10_1021_acsanm_2c01557
crossref_primary_10_1002_admi_202102595
crossref_primary_10_1016_j_mssp_2021_105744
crossref_primary_10_1021_acsami_0c00803
crossref_primary_10_1002_cplu_202200396
crossref_primary_10_1016_j_microc_2023_108815
crossref_primary_10_1109_JSEN_2023_3289835
crossref_primary_10_1109_TNANO_2022_3154590
crossref_primary_10_3389_fchem_2022_881172
crossref_primary_10_1021_acssensors_3c00362
crossref_primary_10_3390_s24154806
crossref_primary_10_1109_TED_2024_3446744
crossref_primary_10_3390_s22041664
crossref_primary_10_1088_1361_6463_ac9ac5
crossref_primary_10_3390_catal12050485
crossref_primary_10_1021_acsnano_1c10004
crossref_primary_10_1039_D3TA06529D
crossref_primary_10_1088_1361_6528_acc4ca
crossref_primary_10_1021_acsami_2c12842
crossref_primary_10_1016_j_sna_2024_115701
crossref_primary_10_1021_acsami_4c20696
crossref_primary_10_1021_acsami_4c11976
crossref_primary_10_1016_j_surfin_2020_100525
crossref_primary_10_3390_s21144897
crossref_primary_10_1016_j_ica_2025_122565
crossref_primary_10_1016_j_memsci_2021_120064
crossref_primary_10_1016_j_jhazmat_2022_129412
crossref_primary_10_1109_JIOT_2024_3361009
crossref_primary_10_1016_j_jhazmat_2022_128321
crossref_primary_10_1039_D1DT01133B
crossref_primary_10_3390_nano11010160
Cites_doi 10.3762/bjnano.8.155
10.1016/j.snb.2019.05.008
10.3390/s18092843
10.3390/s150818153
10.1007/s12161-016-0739-4
10.1021/acssensors.7b00304
10.1002/anie.201706745
10.1016/j.jcis.2018.02.058
10.1039/C7TA09696H
10.3390/s100302088
10.1007/s40820-018-0218-0
10.1002/anie.201608780
10.1021/acsami.8b18327
10.1039/C7TA10538J
10.1002/anie.201906222
10.1109/JSEN.2017.2786739
10.1109/ICSIMA.2015.7559021
10.1121/1.2336758
10.1109/TCSI.2011.2143090
10.3390/s18113898
10.3390/metabo9030052
10.1021/acsami.9b05933
10.1109/TCSII.2014.2327312
10.3390/s120709635
10.1002/asia.201200754
10.1039/C8TA02767F
10.3390/ma3031803
10.1016/j.atmosenv.2004.12.039
10.1021/la102790w
10.1108/SR-09-2014-696
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
DOI 10.1021/acsami.9b20763
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 4162
ExternalDocumentID oai_HAL_hal_03080178v1
31909968
10_1021_acsami_9b20763
b805340689
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-a503t-a2770dc5711df6e8fd7311c77c97c9d963790458130a9ff950173947ce0c3d123
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Tue May 13 06:32:58 EDT 2025
Thu Jul 10 18:26:15 EDT 2025
Fri Jul 11 05:03:38 EDT 2025
Thu Jan 02 22:59:37 EST 2025
Tue Jul 01 01:48:27 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Thu Aug 27 22:10:37 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords capacitive sensor
interdigitated electrodes (IDE)
metal−organic framework (MOF)
nanoparticles (NPs)
MIL-96(Al)
Langmuir−Blodgett (LB) films
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a503t-a2770dc5711df6e8fd7311c77c97c9d963790458130a9ff950173947ce0c3d123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3425-1265
0000-0003-2095-5843
0000-0003-3691-3437
0000-0003-1916-9837
0000-0002-3492-6456
0000-0003-1861-9226
0000-0001-7742-1282
0000-0003-3040-2564
OpenAccessLink http://zaguan.unizar.es/record/129555
PMID 31909968
PQID 2334702582
PQPubID 23479
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_03080178v1
proquest_miscellaneous_2400478325
proquest_miscellaneous_2334702582
pubmed_primary_31909968
crossref_citationtrail_10_1021_acsami_9b20763
crossref_primary_10_1021_acsami_9b20763
acs_journals_10_1021_acsami_9b20763
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-22
PublicationDateYYYYMMDD 2020-01-22
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Washington, D.C. : American Chemical Society
Publisher_xml – name: American Chemical Society
– name: Washington, D.C. : American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.3762/bjnano.8.155
– ident: ref19/cit19
  doi: 10.1016/j.snb.2019.05.008
– ident: ref1/cit1
  doi: 10.3390/s18092843
– ident: ref10/cit10
  doi: 10.3390/s150818153
– ident: ref2/cit2
  doi: 10.1007/s12161-016-0739-4
– ident: ref18/cit18
  doi: 10.1021/acssensors.7b00304
– ident: ref20/cit20
  doi: 10.1002/anie.201706745
– ident: ref25/cit25
  doi: 10.1016/j.jcis.2018.02.058
– ident: ref27/cit27
  doi: 10.1039/C7TA09696H
– ident: ref5/cit5
  doi: 10.3390/s100302088
– ident: ref13/cit13
  doi: 10.1007/s40820-018-0218-0
– ident: ref16/cit16
  doi: 10.1002/anie.201608780
– ident: ref15/cit15
  doi: 10.1021/acsami.8b18327
– ident: ref17/cit17
  doi: 10.1039/C7TA10538J
– ident: ref24/cit24
  doi: 10.1002/anie.201906222
– ident: ref26/cit26
  doi: 10.1109/JSEN.2017.2786739
– ident: ref11/cit11
  doi: 10.1109/ICSIMA.2015.7559021
– ident: ref7/cit7
  doi: 10.1121/1.2336758
– ident: ref9/cit9
  doi: 10.1109/TCSI.2011.2143090
– ident: ref14/cit14
  doi: 10.3390/s18113898
– ident: ref3/cit3
  doi: 10.3390/metabo9030052
– ident: ref21/cit21
  doi: 10.1021/acsami.9b05933
– ident: ref12/cit12
  doi: 10.1109/TCSII.2014.2327312
– ident: ref4/cit4
  doi: 10.3390/s120709635
– ident: ref22/cit22
  doi: 10.1002/asia.201200754
– ident: ref23/cit23
  doi: 10.1039/C8TA02767F
– ident: ref29/cit29
  doi: 10.3390/ma3031803
– ident: ref8/cit8
  doi: 10.1016/j.atmosenv.2004.12.039
– ident: ref30/cit30
  doi: 10.1021/la102790w
– ident: ref6/cit6
  doi: 10.1108/SR-09-2014-696
SSID ssj0063205
Score 2.607051
Snippet The successful development of modern gas sensing technologies requires high sensitivity and selectivity coupled to cost effectiveness, which implies the...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4155
SubjectTerms Chemical Sciences
chloroform
coordination polymers
cost effectiveness
electrodes
films (materials)
humidity
methanol
nanoparticles
sorption
toluene
vapors
Title Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles
URI http://dx.doi.org/10.1021/acsami.9b20763
https://www.ncbi.nlm.nih.gov/pubmed/31909968
https://www.proquest.com/docview/2334702582
https://www.proquest.com/docview/2400478325
https://hal.science/hal-03080178
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoucABKI-yPCrzkDi5jR-x42NZsVpVbBEqlXqL_IpasSSo2eXAr2cmyS6FaqFSTtFEkcee-Wbs8TeEvM0KFb1zirkKr-Qo75nzwrDMc7zGqITzeFF4dqynp-roLD_7vd_x9wm-4AcutNgKx3oBKbfcIreFBgvGIGh8svK5WoquWBEycsUKQKwVPeO17xGEQvsHCG2dYwnkpviyw5nJ_Z70qO3oCbG85Ov-cuH3w8_r5I3_HcIDcm8INulhvzp2yK1UPyR3r1AQPiKfZwk3z5s5dXWkMLkXEeJyOgYMDV1ZET2BRLe5bOl7wLtIm5piq086uZh_a2lT0dmnCQUXDbn3UGL3mJxOPnwZT9nQZoG5PJML5oQxWQy54TxWOhVVNJLzYEyw8ESwUGPxOBXQztmqsjkYsbTKhJQFGQH5npDtuqnTU0J1tE5aHaQuuDLaQnCpbQomSZUDXPoReQO6KAczacvuBFzwsldQOShoRNhqdsowMJVjw4z5Rvl3a_nvPUfHRsnXMNlrIaTWnh5-LPEd8vbAwIoffERerdZCCbaGByiuTs2yLYWUykCQWIh_yKBTNOAn8xHZ7RfS-n_g7iAg18WzG6nhObkjMLnPOBPiBdleXC7TS4iAFn6vW_y_ADS0_FI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB615QA9UJ4lUGB5SJzceh_2eo8hIgqQFFBbqbfVviwqgo3qhAO_nlnHDi8FgeTTavzY2Zn5ZjyzswDP00J4a4xITBm35AhrE2OZTFJL4zZGwYyNG4Vnx_nkTLw5z8634KjfC4Mf0eCTmjaJ_6O7AD3CsXgijrIMI2--DVfQE2FRpIejk9705py1NYsYmIukQODquzT-cX_EItf8gkXbH2Ml5CY3s4Wb8R68X39oW2Xy6XC5sIfu2289HP9jJjfgeud6kuFKVm7CVqhuwe5PDQlvw4dZiL_S6zkxlSe41BcevXQyQkR1bZEROcGwt75syEtEP0_qisSDP8n4Yv65IXVJZu_GBA02RuJdwd0dOBu_Oh1Nku7QhcRkKV8khkmZepdJSn2Zh6L0klPqpHQKL4_6KlVMriL2GVWWKkOV5kpIF1LHPeLgXdip6ircA5J7ZbjKHc8LKmSu0NXMVXAycJEheNoBPENe6E5pGt3mwxnVKwbpjkEDSPpF0q7rWx6Pz5hvpH-xpv-y6tixkfIprvmaKDbangynOo7FLj44seIrHcCTXiQ0al5Mp5gq1MtGM86FRJexYH-hiSZSotXMBrC_kqf1-9D4oXueF_f_iQ2P4erkdDbV09fHbx_ANRbD_pQmjB3AzuJyGR6ib7Swj1p9-A4NdQTC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZokRB9aLkKSznMIfHkEh-J48dlIVqgW0Btpb5FvqJWbJOq2eWBX89MNrvi0CKQ8mRNDo89881kDhPyMslVcNYqZissyVHOMeuEZonjWMaohHVYKDw5zMYn6sNpetrXcWMtDHxEC09quyA-SvVlqPoOA_w1jOOpOMYJ8L7lBrmOMTvc1sPR0VL9ZlJ0eYvgnCuWA3gtOzX-cT_ikW9_waONM8yGXGdqdpBT7JDj1cd2mSZf9-czt--__9bH8T9nc4ts9yYoHS72zG1yLdZ3yNZPjQnvki-TiL_Umym1daCw5OcBrHU6AmT1XbIRPQL3t7lq6RtAwUCbmuIBoLQ4n160tKno5FNBQXGDR94n3t0jJ8W749GY9YcvMJsmcsas0DoJPtWchyqLeRW05Nxr7Q1cAeRWGwyyAgZaU1UmBdGWRmkfEy8D4OEu2aybOj4gNAvGSpN5meVc6cyAyZmZ6HWUKgUQdQPyAnhR9sLTll1cXPBywaCyZ9CAsOVClb7vX47HaEzX0r9a0V8uOnespXwO674iwobb4-FBiWPYzQcmln_jA_JsuS1KkEAMq9g6NvO2FFIqDaZjLv5Cg6pSg_ZMB-T-Yk-t3gdKEMz0LH_4T2x4Sm58fluUB-8PP-6RmwK9_4QzIR6RzdnVPD4GE2nmnnQi8QOjUAdF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methanol+and+Humidity+Capacitive+Sensors+Based+on+Thin+Films+of+MOF+Nanoparticles&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Andr%C3%A9s%2C+Miguel+A&rft.au=Vijjapu%2C+Mani+Teja&rft.au=Surya%2C+Sandeep+G&rft.au=Shekhah%2C+Osama&rft.date=2020-01-22&rft.eissn=1944-8252&rft.volume=12&rft.issue=3&rft.spage=4155&rft_id=info:doi/10.1021%2Facsami.9b20763&rft_id=info%3Apmid%2F31909968&rft.externalDocID=31909968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon