A comprehensive study of deep learning for soil moisture prediction

Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water transport and the variability of boundary conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamic...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 28; no. 4; pp. 917 - 943
Main Authors Wang, Yanling, Shi, Liangsheng, Hu, Yaan, Hu, Xiaolong, Song, Wenxiang, Wang, Lijun
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 27.02.2024
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water transport and the variability of boundary conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamics. In this study, we explore 10 different network structures to uncover their data utilization mechanisms and to maximize the potential of deep learning for soil moisture prediction, including three basic feature extractors and seven diverse hybrid structures, six of which are applied to soil moisture prediction for the first time. We compare the predictive abilities and computational costs of the models across different soil textures and depths systematically. Furthermore, we exploit the interpretability of the models to gain insights into their workings and attempt to advance our understanding of deep learning in soil moisture dynamics. For soil moisture forecasting, our results demonstrate that the temporal modeling capability of long short-term memory (LSTM) is well suited. Furthermore, the improved accuracy achieved by feature attention LSTM (FA-LSTM) and the generative-adversarial-network-based LSTM (GAN-LSTM), along with the Shapley (SHAP) additive explanations analysis, help us discover the effectiveness of attention mechanisms and the benefits of adversarial training in feature extraction. These findings provide effective network design principles. The Shapley values also reveal varying data leveraging approaches among different models. The t-distributed stochastic neighbor embedding (t-SNE) visualization illustrates differences in encoded features across models. In summary, our comprehensive study provides insights into soil moisture prediction and highlights the importance of the appropriate model design for specific soil moisture prediction tasks. We also hope this work serves as a reference for deep learning studies in other hydrology problems. The codes of 3 machine learning and 10 deep learning models are open source.
AbstractList Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water transport and the variability of boundary conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamics. In this study, we explore 10 different network structures to uncover their data utilization mechanisms and to maximize the potential of deep learning for soil moisture prediction, including three basic feature extractors and seven diverse hybrid structures, six of which are applied to soil moisture prediction for the first time. We compare the predictive abilities and computational costs of the models across different soil textures and depths systematically. Furthermore, we exploit the interpretability of the models to gain insights into their workings and attempt to advance our understanding of deep learning in soil moisture dynamics. For soil moisture forecasting, our results demonstrate that the temporal modeling capability of long short-term memory (LSTM) is well suited. Furthermore, the improved accuracy achieved by feature attention LSTM (FA-LSTM) and the generative-adversarial-network-based LSTM (GAN-LSTM), along with the Shapley (SHAP) additive explanations analysis, help us discover the effectiveness of attention mechanisms and the benefits of adversarial training in feature extraction. These findings provide effective network design principles. The Shapley values also reveal varying data leveraging approaches among different models. The t-distributed stochastic neighbor embedding (t-SNE) visualization illustrates differences in encoded features across models. In summary, our comprehensive study provides insights into soil moisture prediction and highlights the importance of the appropriate model design for specific soil moisture prediction tasks. We also hope this work serves as a reference for deep learning studies in other hydrology problems. The codes of 3 machine learning and 10 deep learning models are open source.
Audience Academic
Author Hu, Xiaolong
Hu, Yaan
Song, Wenxiang
Shi, Liangsheng
Wang, Lijun
Wang, Yanling
Author_xml – sequence: 1
  givenname: Yanling
  surname: Wang
  fullname: Wang, Yanling
– sequence: 2
  givenname: Liangsheng
  surname: Shi
  fullname: Shi, Liangsheng
– sequence: 3
  givenname: Yaan
  surname: Hu
  fullname: Hu, Yaan
– sequence: 4
  givenname: Xiaolong
  orcidid: 0009-0007-2015-4946
  surname: Hu
  fullname: Hu, Xiaolong
– sequence: 5
  givenname: Wenxiang
  surname: Song
  fullname: Song, Wenxiang
– sequence: 6
  givenname: Lijun
  orcidid: 0009-0008-9298-1059
  surname: Wang
  fullname: Wang, Lijun
BookMark eNp1kc9rFDEYhoNUsK3ePQY8eZg2yeTXHJdF7UKhYOs5ZJMv2ywzkzXJiv3vzXZFXVFySPh4npcvvBfobE4zIPSWkitBB379CKV0THcDVR0jjL9A51QS1amh12d_vF-hi1K2hDCtJTtHywV2adpleIS5xG-AS937J5wC9gA7PILNc5w3OKSMS4ojnlJsSAbcHB9djWl-jV4GOxZ48_O-RF8-fnhY3nS3d59Wy8VtZwXpaydEUFpYa50cHPc9cG0d9B48kd5pr5SnXIJUAsRaEs9BOQ-WW9rzdeC2v0SrY65Pdmt2OU42P5lko3kepLwxNtfoRjCuV54FAp47z7lcr50gSjAGLjgQXresd8esXU5f91Cq2aZ9ntv6hg09HSiTnP6mNraFxjmkmq2bYnFmoTSnmgrBGnX1D6odD1N0raYQ2_xEeH8iNKbC97qx-1LM6v7zKUuOrMuplAzh18cpMYfmzaF5w7RpzZtD802RfykuVntoqu0Vx_-LPwBsYLTt
CitedBy_id crossref_primary_10_1016_j_compag_2024_109031
crossref_primary_10_3390_w16101376
crossref_primary_10_1016_j_jhydrol_2025_133086
crossref_primary_10_3390_s24237480
crossref_primary_10_3390_rs17050753
crossref_primary_10_3390_agronomy15030696
crossref_primary_10_1016_j_jhydrol_2025_133073
crossref_primary_10_3390_agriculture15050467
crossref_primary_10_3390_ai6020041
crossref_primary_10_1016_j_catena_2025_108743
Cites_doi 10.1109/ic-ETITE47903.2020.049
10.1029/2008WR006829
10.1016/j.mex.2017.07.004
10.1038/s41586-021-03854-z
10.1162/neco.1997.9.8.1735
10.1016/j.agwat.2013.08.018
10.1007/s12145-020-00477-2
10.1109/CCIS.2014.7175768
10.1016/0004-3702(90)90005-K
10.1016/j.catena.2012.03.008
10.1038/s41597-021-00964-1
10.1016/S0378-3774(02)00078-1
10.1002/2015WR017139
10.1029/2000JD900051
10.1029/2021GL096847
10.1109/ICICCT.2018.8473260
10.1111/j.1752-1688.2006.tb04512.x
10.1109/72.279188
10.1109/ACCESS.2020.2982225
10.1029/2001WR000826
10.1109/TASLP.2014.2339736
10.5194/gmd-2023-190
10.1016/S0341-8162(03)00064-X
10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00095
10.3390/su14063352
10.1016/S0168-1699(01)00163-6
10.1016/j.neunet.2014.09.003
10.1016/j.jag.2021.102550
10.1109/ICEngTechnol.2017.8308186
10.13031/2013.36935
10.1007/s40808-021-01316-z
10.18653/v1/S15-2079
10.1371/journal.pone.0214508
10.1007/s11227-021-03768-7
10.1016/j.compag.2018.02.016
10.1007/BF00994018
10.1038/s43017-022-00324-6
10.1038/nature14539
10.1016/j.agwat.2020.106649
10.1109/ACCESS.2020.2982996
10.1029/2018WR023354
10.5194/isprs-archives-XLII-3-W9-89-2019
10.1016/j.compag.2022.106816
10.1038/s41597-022-01785-6
10.1016/j.neucom.2005.12.126
10.1007/s00477-021-01969-3
10.1007/978-981-15-7078-0_3
10.1109/CVPR.2016.90
10.1023/A:1010933404324
10.1109/TGRS.2018.2872131
10.1016/j.neucom.2020.04.110
10.1109/ICASSP.2011.5947611
10.1016/j.catena.2019.02.012
10.1016/j.jhydrol.2020.125840
10.1016/j.geoderma.2021.115651
ContentType Journal Article
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/hess-28-917-2024
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 943
ExternalDocumentID oai_doaj_org_article_c37d2f0ed4cd446bbc507522ecfce5d8
A784181552
10_5194_hess_28_917_2024
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
~KM
BBORY
PMFND
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-a503t-55f785aaac69c4d3e48ace3ded06dc8d77d146e675e5b60d4e7cdea4a134bf4a3
IEDL.DBID BENPR
ISSN 1607-7938
1027-5606
IngestDate Wed Aug 27 01:28:27 EDT 2025
Sat Aug 23 14:04:31 EDT 2025
Tue Jun 17 22:18:40 EDT 2025
Tue Jun 10 21:12:32 EDT 2025
Fri Jun 27 05:55:29 EDT 2025
Tue Jul 01 03:14:48 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a503t-55f785aaac69c4d3e48ace3ded06dc8d77d146e675e5b60d4e7cdea4a134bf4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-9298-1059
0009-0007-2015-4946
OpenAccessLink https://www.proquest.com/docview/2931912641?pq-origsite=%requestingapplication%
PQID 2931912641
PQPubID 105724
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_c37d2f0ed4cd446bbc507522ecfce5d8
proquest_journals_2931912641
gale_infotracmisc_A784181552
gale_infotracacademiconefile_A784181552
gale_incontextgauss_ISR_A784181552
crossref_primary_10_5194_hess_28_917_2024
crossref_citationtrail_10_5194_hess_28_917_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-27
PublicationDateYYYYMMDD 2024-02-27
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-27
  day: 27
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref4
  doi: 10.1109/ic-ETITE47903.2020.049
– ident: ref62
  doi: 10.1029/2008WR006829
– ident: ref66
– ident: ref27
  doi: 10.1016/j.mex.2017.07.004
– ident: ref49
  doi: 10.1038/s41586-021-03854-z
– ident: ref26
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref50
  doi: 10.1016/j.agwat.2013.08.018
– ident: ref30
  doi: 10.1007/s12145-020-00477-2
– ident: ref41
  doi: 10.1109/CCIS.2014.7175768
– ident: ref45
  doi: 10.1016/0004-3702(90)90005-K
– ident: ref25
  doi: 10.1016/j.catena.2012.03.008
– ident: ref57
  doi: 10.1038/s41597-021-00964-1
– ident: ref31
  doi: 10.1016/S0378-3774(02)00078-1
– ident: ref9
  doi: 10.1002/2015WR017139
– ident: ref17
  doi: 10.1029/2000JD900051
– ident: ref40
  doi: 10.1029/2021GL096847
– ident: ref46
  doi: 10.1109/ICICCT.2018.8473260
– ident: ref20
  doi: 10.1111/j.1752-1688.2006.tb04512.x
– ident: ref12
  doi: 10.1109/72.279188
– ident: ref65
  doi: 10.1109/ACCESS.2020.2982225
– ident: ref23
  doi: 10.1029/2001WR000826
– ident: ref2
  doi: 10.1109/TASLP.2014.2339736
– ident: ref19
  doi: 10.5194/gmd-2023-190
– ident: ref36
– ident: ref61
– ident: ref48
  doi: 10.1016/S0341-8162(03)00064-X
– ident: ref6
– ident: ref14
  doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00095
– ident: ref34
  doi: 10.3390/su14063352
– ident: ref29
  doi: 10.1016/S0168-1699(01)00163-6
– ident: ref52
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref11
  doi: 10.1016/j.jag.2021.102550
– ident: ref5
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: ref51
  doi: 10.13031/2013.36935
– ident: ref64
  doi: 10.1007/s40808-021-01316-z
– ident: ref54
  doi: 10.18653/v1/S15-2079
– ident: ref16
– ident: ref8
  doi: 10.1371/journal.pone.0214508
– ident: ref53
  doi: 10.1007/s11227-021-03768-7
– ident: ref33
  doi: 10.1016/j.compag.2018.02.016
– ident: ref13
  doi: 10.1007/BF00994018
– ident: ref63
  doi: 10.1038/s43017-022-00324-6
– ident: ref35
  doi: 10.1038/nature14539
– ident: ref60
– ident: ref67
  doi: 10.1016/j.agwat.2020.106649
– ident: ref37
  doi: 10.1109/ACCESS.2020.2982996
– ident: ref22
– ident: ref1
  doi: 10.1029/2018WR023354
– ident: ref32
  doi: 10.5194/isprs-archives-XLII-3-W9-89-2019
– ident: ref39
  doi: 10.1016/j.compag.2022.106816
– ident: ref58
  doi: 10.1038/s41597-022-01785-6
– ident: ref28
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref3
  doi: 10.1007/s00477-021-01969-3
– ident: ref55
– ident: ref44
  doi: 10.1007/978-981-15-7078-0_3
– ident: ref24
  doi: 10.1109/CVPR.2016.90
– ident: ref59
– ident: ref42
– ident: ref21
– ident: ref7
  doi: 10.1023/A:1010933404324
– ident: ref18
  doi: 10.1109/TGRS.2018.2872131
– ident: ref15
  doi: 10.1016/j.neucom.2020.04.110
– ident: ref43
  doi: 10.1109/ICASSP.2011.5947611
– ident: ref47
  doi: 10.1016/j.catena.2019.02.012
– ident: ref56
– ident: ref10
  doi: 10.1016/j.jhydrol.2020.125840
– ident: ref38
  doi: 10.1016/j.geoderma.2021.115651
SSID ssj0028862
Score 2.5477872
Snippet Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 917
SubjectTerms Additives
Agricultural production
Analysis
Boundary conditions
Correlation analysis
Deep learning
Design
Embedding
Feature extraction
Hybrid structures
Hydrologic cycle
Hydrological cycle
Hydrology
Long short-term memory
Machine learning
Moisture content
Network design
Neural networks
Nonlinear systems
Nonlinearity
Performance evaluation
Precipitation
Predictions
Radiation
Soil
Soil dynamics
Soil moisture
Soil moisture dynamics
Soil texture
Soil water
Time series
Water transport
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl3JBLVCx5UMWQkI9RJtN7Ng5LqiIVioHPiRuluMZs0h0g5bdA_--M4kXsQfopddkosRvbM-b2H4jxDEFdW_tyGeF0ZgpoKFYF1ZnECOlbjXGIvL_jt-X1cWt-nWn796U-uI9Yb08cA_cMJQGipgjqACUujRNIAZDpAFDDKihO-ZLMW-ZTKVUy9qqX-csTEYxPS1QEltRwwnNIFnBo9xQFynUSkDqdPvfm527kHP-WWwmrijH_Td-EWs43RKfUtnyycu2OBtL3hI-w0m_DV12YrGyjRIQn2SqCHEviZjK5_bhUf5pyauLGUp6Bh66Iw074vb8x83ZRZaqImRe5-U80zoaq733oaqDghKV9QFLQMgrCBaMAZr9kBIB1E2Vg0ITAL3yo1I1Ufnyq1iftlPcFZI1QHMoqwhEKprY-DxUlSHGCMGHulYDMVxC40KSDOfKFY-OUgcG0zGYrrCOwHQM5kB8f33iqZfL-MD2lNF-tWOh6-4Cud8l97t_uX8gjthXjqUsprxX5t4v6DU_r6_cmJdULUvMDcRJMootfT81rj96QCiw-tWK5f6KJY21sHp72SVcGuvUpJqmsRERy9G3_9GiPbHB6HTH5s2-WJ_PFnhAxGfeHHZ9_C-1lgCP
  priority: 102
  providerName: Directory of Open Access Journals
Title A comprehensive study of deep learning for soil moisture prediction
URI https://www.proquest.com/docview/2931912641
https://doaj.org/article/c37d2f0ed4cd446bbc507522ecfce5d8
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdre9guo_tiWbsgxmDsYOLYsiWfSlqatoOWrVtZb0LWe0oKXZylyaH__d6zlUAO68lgPWHrSe9T0u8J8ZmMujNm6JJMF5goIFGsMlMkEAKFbhWGLHC-4_KqPL9R326L25hwe4jHKtc6sVXU0HjOkQ_ILFFoQeZ7eDT_m3DVKN5djSU0dsQeqWBDwdfe8enV9-tNyGVM2e13Zjoh2x43KslrUYMpaZIkY2nXtFQytWWYWvz-_2np1vSM98XL6DPKUTfJr8QznL0Wz2P58unjG3Eyknw0fIHT7ji6bEFjZRMkIM5lrAwxkeSgyofm7l7-aWh2VwuU1Afu2qsNb8XN-PTXyXkSqyMkrkjzZVIUQZvCOefLyivIURnnMQeEtARvQGsgLYgUEGBRlyko1B7QKTfMVR2Uy9-J3Vkzw_dCMhZoCnkZgJyLOtQu9WWpyXME73xVqZ4YrFljfYQO5woW95ZCCGamZWbazFhipmVm9sTXTY95B5vxBO0xc3tDx4DX7YtmMbFRfqzPNWQhRVAeKIKta0-OLPmO6IPHAkxPfOK5sgxpMeMzMxO3os9c_Ly2I95aNQw11xNfIlFo6P9pcN0VBOICo2BtUR5uUZLM-e3m9ZKwUeZpSJsV-uHp5gPxgsfdXozXh2J3uVjhR3JtlnVf7JjxWT-uYn6OL3_87reJgn-wwvtI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXxFOkLbBCIMTBirNe2-sDQqEQEvo4QCv1tqx3ZpNKJU7TRKh_it_IjO1EyoHeerXHr8_z-GYfM0K8paDujOm5SOUpRhrIFAtl0ghCoNStwKACj3ccn2TDM_39PD3fEn9Xe2F4WeXKJ9aOGirPY-RdCkuUWlD47n2aXUXcNYpnV1ctNBq1OMSbP5SyXX8cfaH_-06pwdfTg2HUdhWIXBoniyhNQ25S55zPCq8hQW2cxwQQ4gy8gTwH8h5IRBrTMotBY-4BnXa9RJdBu4Tue0_c10lSsEWZwbd1gmdM1syuqjwiJtFOixJH0t0J-a1IsW_JSTGV3giDdbeA_8WEOtANHomHLUOV_UalHostnD4RO22z9MnNU3HQl7wQfY6TZvG7rEvUyipIQJzJtg_FWBIdltfVxaX8XZEuLeco6Rq4qDdSPBNnd4Lac7E9rab4QkiuPBpDkgUgKlOG0sU-y3LiqeCdLwrdEd0VNNa3hcq5X8alpYSFwbQMplXGEpiWweyID-srZk2RjltkPzPaazkur10fqOZj21qr9UkOKsQI2gPly2XpiTYTU0UfPKZgOuIN_yvLBTSmvEJn7Jb0mNHPH7bPE7mGC9t1xPtWKFT0_vRxzYYHQoFrbm1I7m9IkoX7zdMrlbCth6FPWtvD7u2nX4ud4enxkT0anRzuiQeMQb0lP98X24v5El8SqVqUr2pNluLXXZvOP-TxNcI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVAIuvBGBAisEQhzcOOu1vTkglLZEDaUVr4relvU-kooShzQRKj-Nv8KfYcZeRwoSvfXANR4n2fW3M994Z78BeIpBXUvZ1RHPUxcJi0uxx2UaWe8xdes5zz2979g_yHYPxZuj9GgNfjVnYaissvGJlaO2paF35B0MS5haYPjudnwoi3i3M3g1_R5RBynaaW3aadQQ2XNnPzB9O3053MFn_YzzwetP27tR6DAQ6TRO5lGa-lymWmuT9YywiRNSG5dYZ-PMGmnz3KIncUiqXVpksRUuN9ZpobuJKLzQCX7vJViXmUx5C9a3BvvvPy_TPSmzeq-V5xHyirBJioxJdMboxSJOniZHmHKxEhSr3gH_ihBV2Btch9_NhNXVLl83F_Ni0_z8S0vy_5zRG3AtsHHWr5fPTVhzk1twJTSGH5_dhu0-o6L7mRvXhf6skuNlpWfWuSkLPTdGDKk_Oy2PT9i3EtfNYuYY3mOPq0Mjd-DwQsZwF1qTcuLuASOV1dgmmbdI2wpf6NhkWY6c3Bptej3Rhk7z4JUJouzUG-REYXJGUFEEFcWlQqgogkobXizvmNaCJOfYbhGWlnYkJV59UM5GKngmZZLcch87K4wVIisKgykCsnJnvHGplW14QkhUJBYyIZCM9AJ_Zvjxg-rTprUkEb82PA9GvsT_j4OrD3fgLJC-2IrlxoolejOzerkBqwreFIe0ROr98y8_hssIYfV2eLD3AK7SFFTqA_kGtOazhXuI_HFePAoLlcGXi0byHwXbhBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+study+of+deep+learning+for+soil+moisture+prediction&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Wang%2C+Yanling&rft.au=Shi%2C+Liangsheng&rft.au=Hu%2C+Yaan&rft.au=Hu%2C+Xiaolong&rft.date=2024-02-27&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=28&rft.issue=4&rft.spage=917&rft.epage=943&rft_id=info:doi/10.5194%2Fhess-28-917-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_28_917_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon