A comprehensive study of deep learning for soil moisture prediction
Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water transport and the variability of boundary conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamic...
Saved in:
Published in | Hydrology and earth system sciences Vol. 28; no. 4; pp. 917 - 943 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
27.02.2024
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water transport and the variability of boundary conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamics. In this study, we explore 10 different network structures to uncover their data utilization mechanisms and to maximize the potential of deep learning for soil moisture prediction, including three basic feature extractors and seven diverse hybrid structures, six of which are applied to soil moisture prediction for the first time. We compare the predictive abilities and computational costs of the models across different soil textures and depths systematically. Furthermore, we exploit the interpretability of the models to gain insights into their workings and attempt to advance our understanding of deep learning in soil moisture dynamics. For soil moisture forecasting, our results demonstrate that the temporal modeling capability of long short-term memory (LSTM) is well suited. Furthermore, the improved accuracy achieved by feature attention LSTM (FA-LSTM) and the generative-adversarial-network-based LSTM (GAN-LSTM), along with the Shapley (SHAP) additive explanations analysis, help us discover the effectiveness of attention mechanisms and the benefits of adversarial training in feature extraction. These findings provide effective network design principles. The Shapley values also reveal varying data leveraging approaches among different models. The t-distributed stochastic neighbor embedding (t-SNE) visualization illustrates differences in encoded features across models. In summary, our comprehensive study provides insights into soil moisture prediction and highlights the importance of the appropriate model design for specific soil moisture prediction tasks. We also hope this work serves as a reference for deep learning studies in other hydrology problems. The codes of 3 machine learning and 10 deep learning models are open source. |
---|---|
AbstractList | Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water transport and the variability of boundary conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamics. In this study, we explore 10 different network structures to uncover their data utilization mechanisms and to maximize the potential of deep learning for soil moisture prediction, including three basic feature extractors and seven diverse hybrid structures, six of which are applied to soil moisture prediction for the first time. We compare the predictive abilities and computational costs of the models across different soil textures and depths systematically. Furthermore, we exploit the interpretability of the models to gain insights into their workings and attempt to advance our understanding of deep learning in soil moisture dynamics. For soil moisture forecasting, our results demonstrate that the temporal modeling capability of long short-term memory (LSTM) is well suited. Furthermore, the improved accuracy achieved by feature attention LSTM (FA-LSTM) and the generative-adversarial-network-based LSTM (GAN-LSTM), along with the Shapley (SHAP) additive explanations analysis, help us discover the effectiveness of attention mechanisms and the benefits of adversarial training in feature extraction. These findings provide effective network design principles. The Shapley values also reveal varying data leveraging approaches among different models. The t-distributed stochastic neighbor embedding (t-SNE) visualization illustrates differences in encoded features across models. In summary, our comprehensive study provides insights into soil moisture prediction and highlights the importance of the appropriate model design for specific soil moisture prediction tasks. We also hope this work serves as a reference for deep learning studies in other hydrology problems. The codes of 3 machine learning and 10 deep learning models are open source. |
Audience | Academic |
Author | Hu, Xiaolong Hu, Yaan Song, Wenxiang Shi, Liangsheng Wang, Lijun Wang, Yanling |
Author_xml | – sequence: 1 givenname: Yanling surname: Wang fullname: Wang, Yanling – sequence: 2 givenname: Liangsheng surname: Shi fullname: Shi, Liangsheng – sequence: 3 givenname: Yaan surname: Hu fullname: Hu, Yaan – sequence: 4 givenname: Xiaolong orcidid: 0009-0007-2015-4946 surname: Hu fullname: Hu, Xiaolong – sequence: 5 givenname: Wenxiang surname: Song fullname: Song, Wenxiang – sequence: 6 givenname: Lijun orcidid: 0009-0008-9298-1059 surname: Wang fullname: Wang, Lijun |
BookMark | eNp1kc9rFDEYhoNUsK3ePQY8eZg2yeTXHJdF7UKhYOs5ZJMv2ywzkzXJiv3vzXZFXVFySPh4npcvvBfobE4zIPSWkitBB379CKV0THcDVR0jjL9A51QS1amh12d_vF-hi1K2hDCtJTtHywV2adpleIS5xG-AS937J5wC9gA7PILNc5w3OKSMS4ojnlJsSAbcHB9djWl-jV4GOxZ48_O-RF8-fnhY3nS3d59Wy8VtZwXpaydEUFpYa50cHPc9cG0d9B48kd5pr5SnXIJUAsRaEs9BOQ-WW9rzdeC2v0SrY65Pdmt2OU42P5lko3kepLwxNtfoRjCuV54FAp47z7lcr50gSjAGLjgQXresd8esXU5f91Cq2aZ9ntv6hg09HSiTnP6mNraFxjmkmq2bYnFmoTSnmgrBGnX1D6odD1N0raYQ2_xEeH8iNKbC97qx-1LM6v7zKUuOrMuplAzh18cpMYfmzaF5w7RpzZtD802RfykuVntoqu0Vx_-LPwBsYLTt |
CitedBy_id | crossref_primary_10_1016_j_compag_2024_109031 crossref_primary_10_3390_w16101376 crossref_primary_10_1016_j_jhydrol_2025_133086 crossref_primary_10_3390_s24237480 crossref_primary_10_3390_rs17050753 crossref_primary_10_3390_agronomy15030696 crossref_primary_10_1016_j_jhydrol_2025_133073 crossref_primary_10_3390_agriculture15050467 crossref_primary_10_3390_ai6020041 crossref_primary_10_1016_j_catena_2025_108743 |
Cites_doi | 10.1109/ic-ETITE47903.2020.049 10.1029/2008WR006829 10.1016/j.mex.2017.07.004 10.1038/s41586-021-03854-z 10.1162/neco.1997.9.8.1735 10.1016/j.agwat.2013.08.018 10.1007/s12145-020-00477-2 10.1109/CCIS.2014.7175768 10.1016/0004-3702(90)90005-K 10.1016/j.catena.2012.03.008 10.1038/s41597-021-00964-1 10.1016/S0378-3774(02)00078-1 10.1002/2015WR017139 10.1029/2000JD900051 10.1029/2021GL096847 10.1109/ICICCT.2018.8473260 10.1111/j.1752-1688.2006.tb04512.x 10.1109/72.279188 10.1109/ACCESS.2020.2982225 10.1029/2001WR000826 10.1109/TASLP.2014.2339736 10.5194/gmd-2023-190 10.1016/S0341-8162(03)00064-X 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00095 10.3390/su14063352 10.1016/S0168-1699(01)00163-6 10.1016/j.neunet.2014.09.003 10.1016/j.jag.2021.102550 10.1109/ICEngTechnol.2017.8308186 10.13031/2013.36935 10.1007/s40808-021-01316-z 10.18653/v1/S15-2079 10.1371/journal.pone.0214508 10.1007/s11227-021-03768-7 10.1016/j.compag.2018.02.016 10.1007/BF00994018 10.1038/s43017-022-00324-6 10.1038/nature14539 10.1016/j.agwat.2020.106649 10.1109/ACCESS.2020.2982996 10.1029/2018WR023354 10.5194/isprs-archives-XLII-3-W9-89-2019 10.1016/j.compag.2022.106816 10.1038/s41597-022-01785-6 10.1016/j.neucom.2005.12.126 10.1007/s00477-021-01969-3 10.1007/978-981-15-7078-0_3 10.1109/CVPR.2016.90 10.1023/A:1010933404324 10.1109/TGRS.2018.2872131 10.1016/j.neucom.2020.04.110 10.1109/ICASSP.2011.5947611 10.1016/j.catena.2019.02.012 10.1016/j.jhydrol.2020.125840 10.1016/j.geoderma.2021.115651 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Copernicus GmbH 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 Copernicus GmbH – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/hess-28-917-2024 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1607-7938 |
EndPage | 943 |
ExternalDocumentID | oai_doaj_org_article_c37d2f0ed4cd446bbc507522ecfce5d8 A784181552 10_5194_hess_28_917_2024 |
GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 ~KM BBORY PMFND 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-a503t-55f785aaac69c4d3e48ace3ded06dc8d77d146e675e5b60d4e7cdea4a134bf4a3 |
IEDL.DBID | BENPR |
ISSN | 1607-7938 1027-5606 |
IngestDate | Wed Aug 27 01:28:27 EDT 2025 Sat Aug 23 14:04:31 EDT 2025 Tue Jun 17 22:18:40 EDT 2025 Tue Jun 10 21:12:32 EDT 2025 Fri Jun 27 05:55:29 EDT 2025 Tue Jul 01 03:14:48 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a503t-55f785aaac69c4d3e48ace3ded06dc8d77d146e675e5b60d4e7cdea4a134bf4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-9298-1059 0009-0007-2015-4946 |
OpenAccessLink | https://www.proquest.com/docview/2931912641?pq-origsite=%requestingapplication% |
PQID | 2931912641 |
PQPubID | 105724 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c37d2f0ed4cd446bbc507522ecfce5d8 proquest_journals_2931912641 gale_infotracmisc_A784181552 gale_infotracacademiconefile_A784181552 gale_incontextgauss_ISR_A784181552 crossref_primary_10_5194_hess_28_917_2024 crossref_citationtrail_10_5194_hess_28_917_2024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-27 |
PublicationDateYYYYMMDD | 2024-02-27 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Hydrology and earth system sciences |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref4 doi: 10.1109/ic-ETITE47903.2020.049 – ident: ref62 doi: 10.1029/2008WR006829 – ident: ref66 – ident: ref27 doi: 10.1016/j.mex.2017.07.004 – ident: ref49 doi: 10.1038/s41586-021-03854-z – ident: ref26 doi: 10.1162/neco.1997.9.8.1735 – ident: ref50 doi: 10.1016/j.agwat.2013.08.018 – ident: ref30 doi: 10.1007/s12145-020-00477-2 – ident: ref41 doi: 10.1109/CCIS.2014.7175768 – ident: ref45 doi: 10.1016/0004-3702(90)90005-K – ident: ref25 doi: 10.1016/j.catena.2012.03.008 – ident: ref57 doi: 10.1038/s41597-021-00964-1 – ident: ref31 doi: 10.1016/S0378-3774(02)00078-1 – ident: ref9 doi: 10.1002/2015WR017139 – ident: ref17 doi: 10.1029/2000JD900051 – ident: ref40 doi: 10.1029/2021GL096847 – ident: ref46 doi: 10.1109/ICICCT.2018.8473260 – ident: ref20 doi: 10.1111/j.1752-1688.2006.tb04512.x – ident: ref12 doi: 10.1109/72.279188 – ident: ref65 doi: 10.1109/ACCESS.2020.2982225 – ident: ref23 doi: 10.1029/2001WR000826 – ident: ref2 doi: 10.1109/TASLP.2014.2339736 – ident: ref19 doi: 10.5194/gmd-2023-190 – ident: ref36 – ident: ref61 – ident: ref48 doi: 10.1016/S0341-8162(03)00064-X – ident: ref6 – ident: ref14 doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00095 – ident: ref34 doi: 10.3390/su14063352 – ident: ref29 doi: 10.1016/S0168-1699(01)00163-6 – ident: ref52 doi: 10.1016/j.neunet.2014.09.003 – ident: ref11 doi: 10.1016/j.jag.2021.102550 – ident: ref5 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: ref51 doi: 10.13031/2013.36935 – ident: ref64 doi: 10.1007/s40808-021-01316-z – ident: ref54 doi: 10.18653/v1/S15-2079 – ident: ref16 – ident: ref8 doi: 10.1371/journal.pone.0214508 – ident: ref53 doi: 10.1007/s11227-021-03768-7 – ident: ref33 doi: 10.1016/j.compag.2018.02.016 – ident: ref13 doi: 10.1007/BF00994018 – ident: ref63 doi: 10.1038/s43017-022-00324-6 – ident: ref35 doi: 10.1038/nature14539 – ident: ref60 – ident: ref67 doi: 10.1016/j.agwat.2020.106649 – ident: ref37 doi: 10.1109/ACCESS.2020.2982996 – ident: ref22 – ident: ref1 doi: 10.1029/2018WR023354 – ident: ref32 doi: 10.5194/isprs-archives-XLII-3-W9-89-2019 – ident: ref39 doi: 10.1016/j.compag.2022.106816 – ident: ref58 doi: 10.1038/s41597-022-01785-6 – ident: ref28 doi: 10.1016/j.neucom.2005.12.126 – ident: ref3 doi: 10.1007/s00477-021-01969-3 – ident: ref55 – ident: ref44 doi: 10.1007/978-981-15-7078-0_3 – ident: ref24 doi: 10.1109/CVPR.2016.90 – ident: ref59 – ident: ref42 – ident: ref21 – ident: ref7 doi: 10.1023/A:1010933404324 – ident: ref18 doi: 10.1109/TGRS.2018.2872131 – ident: ref15 doi: 10.1016/j.neucom.2020.04.110 – ident: ref43 doi: 10.1109/ICASSP.2011.5947611 – ident: ref47 doi: 10.1016/j.catena.2019.02.012 – ident: ref56 – ident: ref10 doi: 10.1016/j.jhydrol.2020.125840 – ident: ref38 doi: 10.1016/j.geoderma.2021.115651 |
SSID | ssj0028862 |
Score | 2.5477872 |
Snippet | Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil moisture presents challenges due to the nonlinearity of soil water... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 917 |
SubjectTerms | Additives Agricultural production Analysis Boundary conditions Correlation analysis Deep learning Design Embedding Feature extraction Hybrid structures Hydrologic cycle Hydrological cycle Hydrology Long short-term memory Machine learning Moisture content Network design Neural networks Nonlinear systems Nonlinearity Performance evaluation Precipitation Predictions Radiation Soil Soil dynamics Soil moisture Soil moisture dynamics Soil texture Soil water Time series Water transport |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl3JBLVCx5UMWQkI9RJtN7Ng5LqiIVioHPiRuluMZs0h0g5bdA_--M4kXsQfopddkosRvbM-b2H4jxDEFdW_tyGeF0ZgpoKFYF1ZnECOlbjXGIvL_jt-X1cWt-nWn796U-uI9Yb08cA_cMJQGipgjqACUujRNIAZDpAFDDKihO-ZLMW-ZTKVUy9qqX-csTEYxPS1QEltRwwnNIFnBo9xQFynUSkDqdPvfm527kHP-WWwmrijH_Td-EWs43RKfUtnyycu2OBtL3hI-w0m_DV12YrGyjRIQn2SqCHEviZjK5_bhUf5pyauLGUp6Bh66Iw074vb8x83ZRZaqImRe5-U80zoaq733oaqDghKV9QFLQMgrCBaMAZr9kBIB1E2Vg0ITAL3yo1I1Ufnyq1iftlPcFZI1QHMoqwhEKprY-DxUlSHGCMGHulYDMVxC40KSDOfKFY-OUgcG0zGYrrCOwHQM5kB8f33iqZfL-MD2lNF-tWOh6-4Cud8l97t_uX8gjthXjqUsprxX5t4v6DU_r6_cmJdULUvMDcRJMootfT81rj96QCiw-tWK5f6KJY21sHp72SVcGuvUpJqmsRERy9G3_9GiPbHB6HTH5s2-WJ_PFnhAxGfeHHZ9_C-1lgCP priority: 102 providerName: Directory of Open Access Journals |
Title | A comprehensive study of deep learning for soil moisture prediction |
URI | https://www.proquest.com/docview/2931912641 https://doaj.org/article/c37d2f0ed4cd446bbc507522ecfce5d8 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdre9guo_tiWbsgxmDsYOLYsiWfSlqatoOWrVtZb0LWe0oKXZylyaH__d6zlUAO68lgPWHrSe9T0u8J8ZmMujNm6JJMF5goIFGsMlMkEAKFbhWGLHC-4_KqPL9R326L25hwe4jHKtc6sVXU0HjOkQ_ILFFoQeZ7eDT_m3DVKN5djSU0dsQeqWBDwdfe8enV9-tNyGVM2e13Zjoh2x43KslrUYMpaZIkY2nXtFQytWWYWvz-_2np1vSM98XL6DPKUTfJr8QznL0Wz2P58unjG3Eyknw0fIHT7ji6bEFjZRMkIM5lrAwxkeSgyofm7l7-aWh2VwuU1Afu2qsNb8XN-PTXyXkSqyMkrkjzZVIUQZvCOefLyivIURnnMQeEtARvQGsgLYgUEGBRlyko1B7QKTfMVR2Uy9-J3Vkzw_dCMhZoCnkZgJyLOtQu9WWpyXME73xVqZ4YrFljfYQO5woW95ZCCGamZWbazFhipmVm9sTXTY95B5vxBO0xc3tDx4DX7YtmMbFRfqzPNWQhRVAeKIKta0-OLPmO6IPHAkxPfOK5sgxpMeMzMxO3os9c_Ly2I95aNQw11xNfIlFo6P9pcN0VBOICo2BtUR5uUZLM-e3m9ZKwUeZpSJsV-uHp5gPxgsfdXozXh2J3uVjhR3JtlnVf7JjxWT-uYn6OL3_87reJgn-wwvtI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXxFOkLbBCIMTBirNe2-sDQqEQEvo4QCv1tqx3ZpNKJU7TRKh_it_IjO1EyoHeerXHr8_z-GYfM0K8paDujOm5SOUpRhrIFAtl0ghCoNStwKACj3ccn2TDM_39PD3fEn9Xe2F4WeXKJ9aOGirPY-RdCkuUWlD47n2aXUXcNYpnV1ctNBq1OMSbP5SyXX8cfaH_-06pwdfTg2HUdhWIXBoniyhNQ25S55zPCq8hQW2cxwQQ4gy8gTwH8h5IRBrTMotBY-4BnXa9RJdBu4Tue0_c10lSsEWZwbd1gmdM1syuqjwiJtFOixJH0t0J-a1IsW_JSTGV3giDdbeA_8WEOtANHomHLUOV_UalHostnD4RO22z9MnNU3HQl7wQfY6TZvG7rEvUyipIQJzJtg_FWBIdltfVxaX8XZEuLeco6Rq4qDdSPBNnd4Lac7E9rab4QkiuPBpDkgUgKlOG0sU-y3LiqeCdLwrdEd0VNNa3hcq5X8alpYSFwbQMplXGEpiWweyID-srZk2RjltkPzPaazkur10fqOZj21qr9UkOKsQI2gPly2XpiTYTU0UfPKZgOuIN_yvLBTSmvEJn7Jb0mNHPH7bPE7mGC9t1xPtWKFT0_vRxzYYHQoFrbm1I7m9IkoX7zdMrlbCth6FPWtvD7u2nX4ud4enxkT0anRzuiQeMQb0lP98X24v5El8SqVqUr2pNluLXXZvOP-TxNcI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVAIuvBGBAisEQhzcOOu1vTkglLZEDaUVr4relvU-kooShzQRKj-Nv8KfYcZeRwoSvfXANR4n2fW3M994Z78BeIpBXUvZ1RHPUxcJi0uxx2UaWe8xdes5zz2979g_yHYPxZuj9GgNfjVnYaissvGJlaO2paF35B0MS5haYPjudnwoi3i3M3g1_R5RBynaaW3aadQQ2XNnPzB9O3053MFn_YzzwetP27tR6DAQ6TRO5lGa-lymWmuT9YywiRNSG5dYZ-PMGmnz3KIncUiqXVpksRUuN9ZpobuJKLzQCX7vJViXmUx5C9a3BvvvPy_TPSmzeq-V5xHyirBJioxJdMboxSJOniZHmHKxEhSr3gH_ihBV2Btch9_NhNXVLl83F_Ni0_z8S0vy_5zRG3AtsHHWr5fPTVhzk1twJTSGH5_dhu0-o6L7mRvXhf6skuNlpWfWuSkLPTdGDKk_Oy2PT9i3EtfNYuYY3mOPq0Mjd-DwQsZwF1qTcuLuASOV1dgmmbdI2wpf6NhkWY6c3Bptej3Rhk7z4JUJouzUG-REYXJGUFEEFcWlQqgogkobXizvmNaCJOfYbhGWlnYkJV59UM5GKngmZZLcch87K4wVIisKgykCsnJnvHGplW14QkhUJBYyIZCM9AJ_Zvjxg-rTprUkEb82PA9GvsT_j4OrD3fgLJC-2IrlxoolejOzerkBqwreFIe0ROr98y8_hssIYfV2eLD3AK7SFFTqA_kGtOazhXuI_HFePAoLlcGXi0byHwXbhBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+study+of+deep+learning+for+soil+moisture+prediction&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Wang%2C+Yanling&rft.au=Shi%2C+Liangsheng&rft.au=Hu%2C+Yaan&rft.au=Hu%2C+Xiaolong&rft.date=2024-02-27&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=28&rft.issue=4&rft.spage=917&rft.epage=943&rft_id=info:doi/10.5194%2Fhess-28-917-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_28_917_2024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |