Volcanoes Erupt Stressed Quartz Crystals

Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that dr...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 46; no. 15; pp. 8791 - 8800
Main Authors Befus, K. S., Manga, M., Stan, C., Tamura, N.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.08.2019
American Geophysical Union
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X‐ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. Stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal‐bearing glass during ascent. Plain Language Summary Because of inherent danger, volcano scientists have little direct understanding of the stresses active during volcanic eruptions. We propose that the crystal cargo carried by a volcanic eruption may preserve a record of those stresses. We used synchrotron X‐ray microdiffraction to measure crystal deformation in quartz from explosive and effusive eruptions from Yellowstone and Long Valley calderas. All the crystals were strained by stresses ranging from 100 to 300 MPa. These values are large but are not related to eruption style. The stresses may have been caused by crystal‐crystal impingements in the crystal‐rich magma chambers. More likely, we propose that the residual stresses record those required for brittle failure of the crystal‐bearing melt in the conduit during eruptive ascent. Key Points Explosive and effusive eruptions from volcanoes contain deformed quartz crystals with the same residual stresses Residual stresses are proposed to originate from the stresses required to fragment magma Residual stress may also originate from crystal‐crystal contacts in crystal‐rich magmatic mushes
AbstractList Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X‐ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. Stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal‐bearing glass during ascent.
Abstract Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X‐ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. Stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal‐bearing glass during ascent.
Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X-ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. In conclusion, stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal-bearing glass during ascent.
Abstract Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X‐ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. Stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal‐bearing glass during ascent. Plain Language Summary Because of inherent danger, volcano scientists have little direct understanding of the stresses active during volcanic eruptions. We propose that the crystal cargo carried by a volcanic eruption may preserve a record of those stresses. We used synchrotron X‐ray microdiffraction to measure crystal deformation in quartz from explosive and effusive eruptions from Yellowstone and Long Valley calderas. All the crystals were strained by stresses ranging from 100 to 300 MPa. These values are large but are not related to eruption style. The stresses may have been caused by crystal‐crystal impingements in the crystal‐rich magma chambers. More likely, we propose that the residual stresses record those required for brittle failure of the crystal‐bearing melt in the conduit during eruptive ascent. Key Points Explosive and effusive eruptions from volcanoes contain deformed quartz crystals with the same residual stresses Residual stresses are proposed to originate from the stresses required to fragment magma Residual stress may also originate from crystal‐crystal contacts in crystal‐rich magmatic mushes
Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X‐ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. Stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal‐bearing glass during ascent. Plain Language Summary Because of inherent danger, volcano scientists have little direct understanding of the stresses active during volcanic eruptions. We propose that the crystal cargo carried by a volcanic eruption may preserve a record of those stresses. We used synchrotron X‐ray microdiffraction to measure crystal deformation in quartz from explosive and effusive eruptions from Yellowstone and Long Valley calderas. All the crystals were strained by stresses ranging from 100 to 300 MPa. These values are large but are not related to eruption style. The stresses may have been caused by crystal‐crystal impingements in the crystal‐rich magma chambers. More likely, we propose that the residual stresses record those required for brittle failure of the crystal‐bearing melt in the conduit during eruptive ascent. Key Points Explosive and effusive eruptions from volcanoes contain deformed quartz crystals with the same residual stresses Residual stresses are proposed to originate from the stresses required to fragment magma Residual stress may also originate from crystal‐crystal contacts in crystal‐rich magmatic mushes
Author Stan, C.
Befus, K. S.
Manga, M.
Tamura, N.
Author_xml – sequence: 1
  givenname: K. S.
  orcidid: 0000-0003-4636-7417
  surname: Befus
  fullname: Befus, K. S.
  email: Kenneth_Befus@Baylor.edu
  organization: Baylor University
– sequence: 2
  givenname: M.
  orcidid: 0000-0003-3286-4682
  surname: Manga
  fullname: Manga, M.
  organization: University of California
– sequence: 3
  givenname: C.
  orcidid: 0000-0002-5025-5568
  surname: Stan
  fullname: Stan, C.
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: N.
  orcidid: 0000-0002-3698-2611
  surname: Tamura
  fullname: Tamura, N.
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
BackLink https://www.osti.gov/servlets/purl/1564066$$D View this record in Osti.gov
BookMark eNp9kEtLAzEUhYMoWB87f0DRjQur9yaTzGQppVahID63Ic3c0Sl1UpMZpP56U0fElat7OHwczj17bLvxDTF2hHCOwPUFB9TTGRRCod5iA9RZNioA8m02ANBJ81ztsr0YFwAgQOCAnT77pbONpzichG7VDh_aQDFSObzrbGg_h-Owjq1dxgO2U6VDhz93nz1dTR7H16PZ7fRmfDkbWZkCR1bLsuK8VJWwUDidC1vNM40SK-UkagkcN66ySpLIK-6shRznoC13zhZin930uaW3C7MK9ZsNa-Ntbb4NH15M6lW7JZlyjiCcllQSZFhWFpRAyouchCZQPGUd91k-trWJrm7JvTrfNORag1JloFSCTnpoFfx7R7E1C9-FJv1oOC845iAynaiznnLBxxio-q2GYDbjm7_jJ5z3-Ee9pPW_rJnez6ROSnwBUdSD3g
CitedBy_id crossref_primary_10_1007_s00410_024_02126_z
crossref_primary_10_1016_j_msea_2021_140817
crossref_primary_10_1107_S1600576724000517
crossref_primary_10_3389_feart_2020_00291
Cites_doi 10.1007/s00410‐016‐1244‐x
10.1093/petrology/egh019
10.1029/2000JB900901
10.1016/j.msea.2009.03.062
10.1029/2006GL025890
10.1029/1999JB900207
10.1130/g19777.1
10.1029/96JB03394
10.1107/S0021889812031287
10.1038/nature12991
10.1007/s00410‐009‐0487‐1
10.1016/0012‐821X(90)90145‐N
10.1063/1.3096295
10.1063/1.166428
10.1016/j.earscirev.2006.06.006
10.1371/journal.pone.0159200
10.1038/nature03805
10.1017/CBO9781139171731
10.1038/s41467‐018‐07187‐w
10.1038/nature02138
10.2138/am.2009.3216
10.1038/17109
10.1130/G3914.1
10.1016/j.jvolgeores.2004.05.019
10.1146/annurev.fluid.39.050905.110207
10.1016/j.jvolgeores.2014.12.014
10.3133/ofr20071071
10.1038/s41467‐017‐01931‐4
10.1016/j.epsl.2007.09.032
10.1126/science.1080653
10.1179/026708301101509980
10.1007/s00445‐018‐1196‐2
10.1038/nature09799
10.1002/2017JB014218
10.1016/j.epsl.2016.07.023
10.1130/0016‐7606(1997)109<0063:OOBPIA>2.3.CO;2
10.1002/2014GL059588
10.1086/515937
10.1016/j.epsl.2007.08.026
10.1007/s00410-015-1189-5
10.1130/G36443.1
10.2138/am‐1998‐1‐201
10.3133/pp729G
10.1002/2017JB014513
10.1007/s00445‐018‐1202‐8
10.1007/s004450000123
10.1038/srep09652
10.1038/ngeo2042
10.1016/j.epsl.2008.03.038
10.1016/j.epsl.2011.02.022
10.1142/9781908979636_0004
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
OIOZB
OTOTI
DOA
DOI 10.1029/2019GL083619
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 8800
ExternalDocumentID oai_doaj_org_article_db103c95ede041dfa0631e787e39e062
1564066
10_1029_2019GL083619
GRL59361
Genre article
GeographicLocations Long Valley
GeographicLocations_xml – name: Long Valley
GrantInformation_xml – fundername: National Science Foundation (NSF)
  funderid: 1724429; 1521855
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
AAJUZ
AAPBV
ABCVL
ABHUG
ADAWD
ADDAD
AFVGU
AGJLS
ARAPS
OIOZB
OTOTI
WN4
GROUPED_DOAJ
ID FETCH-LOGICAL-a5031-a95df22d6f3a08c973afb49151f6c5195021c9736a65e37f2caa071b09a2cca83
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Fri Oct 04 13:08:10 EDT 2024
Fri May 19 00:41:45 EDT 2023
Thu Oct 10 20:57:08 EDT 2024
Thu Sep 12 17:39:48 EDT 2024
Sat Aug 24 01:11:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5031-a95df22d6f3a08c973afb49151f6c5195021c9736a65e37f2caa071b09a2cca83
Notes AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-5025-5568
0000-0002-3698-2611
0000-0003-4636-7417
0000-0003-3286-4682
0000000250255568
0000000236982611
0000000346367417
0000000332864682
OpenAccessLink https://doaj.org/article/db103c95ede041dfa0631e787e39e062
PQID 2282170349
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_db103c95ede041dfa0631e787e39e062
osti_scitechconnect_1564066
proquest_journals_2282170349
crossref_primary_10_1029_2019GL083619
wiley_primary_10_1029_2019GL083619_GRL59361
PublicationCentury 2000
PublicationDate 16 August 2019
PublicationDateYYYYMMDD 2019-08-16
PublicationDate_xml – month: 08
  year: 2019
  text: 16 August 2019
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Geophysical research letters
PublicationYear 2019
Publisher John Wiley & Sons, Inc
American Geophysical Union
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union
– name: Wiley
References 2007; 39
2017; 8
1990; 99
2006; 79
2009; 80
2006; 33
2007; 264
2007; 263
2018; 80
1998; 83
2011; 471
1997; 102
2018; 9
1997; 105
2015; 170
2004; 136
1997; 109
2001
2009; 94
2015; 298
2015; 43
2018; 136
1985
2001; 17
2017; 122
2014; 7
2008; 271
2009; 524
2015; 5
1991; 76
2004; 45
2005; 435
2007
2010; 160
2014; 41
1999; 104
2003; 299
2003; 31
2001; 63
2016; 11
1999; 9
2003; 426
2014; 506
2011; 304
2000; 105
2016; 451
2017
1999; 397
2014
2013
2016; 171
2012; 45
2012; 40
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Noyan I. C. (e_1_2_7_40_1) 2013
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Stan C. (e_1_2_7_46_1) 2018; 136
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
National Academies of Sciences, Engineering, and Medicine (e_1_2_7_39_1) 2017
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
Heaney P. J. (e_1_2_7_27_1) 1991; 76
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – year: 1985
– volume: 136
  start-page: 169
  issue: 3‐4
  year: 2004
  end-page: 198
  article-title: Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems
  publication-title: Journal of Volcanology and Geothermal Research
– volume: 80
  start-page: 22
  issue: 3
  year: 2018
  article-title: Causes of fragmented crystals in ignimbrites: A case study of the Cardones ignimbrite, Northern Chile
  publication-title: Bulletin of Volcanology
– volume: 122
  start-page: 7659
  year: 2017
  end-page: 7678
  article-title: Dislocation interactions in olivine revealed by HR‐EBSD
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 83
  start-page: 2
  issue: 1‐2
  year: 1998
  end-page: 22
  article-title: Calibration of excess thermodynamic properties and elastic constant variations associated with the <‐ > phase transition in quartz
  publication-title: American Mineralogist
– volume: 299
  start-page: 2061
  issue: 5615
  year: 2003
  end-page: 2063
  article-title: Magma ascent and the pressurization of Mount Etna's volcanic system
  publication-title: Science
– year: 2001
– volume: 80
  issue: 3
  year: 2009
  article-title: A dedicated superbend X‐ray microdiffraction beamline for materials, geo‐, and environmental sciences at the advanced light source
  publication-title: Review of Scientific Instruments
– volume: 263
  start-page: 74
  issue: 1‐2
  year: 2007
  end-page: 87
  article-title: Modelling shear bands in a volcanic conduit: Implications for over‐pressures and extrusion‐rates
  publication-title: Earth and Planetary Science Letters
– volume: 451
  start-page: 285
  year: 2016
  end-page: 297
  article-title: Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone
  publication-title: Earth and Planetary Science Letters
– volume: 298
  start-page: 71
  year: 2015
  end-page: 84
  article-title: Magma fracturing and degassing associated with obsidian formation: The explosive‐effusive transition
  publication-title: Journal of Volcanology and Geothermal Research
– year: 2014
– volume: 136
  year: 2018
  article-title: Synchrotron X‐ray microdiffraction and fluorescence imaging of mineral and rock samples
  publication-title: Journal of Visualized Experiments
– volume: 104
  start-page: 20,097
  issue: B9
  year: 1999
  end-page: 20,122
  article-title: Gradients in H O, CO , and exsolved gas in a large‐volume silicic magma system: Interpreting the record preserved in melt inclusions from the Bishop Tuff
  publication-title: Journal of Geophysical Research
– volume: 94
  start-page: 1059
  issue: 7
  year: 2009
  end-page: 1062
  article-title: Evidence for residual elastic strain in deformed natural quartz
  publication-title: American Mineralogist
– volume: 39
  start-page: 321
  issue: 1
  year: 2007
  end-page: 356
  article-title: The fluid mechanics inside a volcano
  publication-title: Annual Review of Fluid Mechanics
– volume: 102
  start-page: 18,443
  issue: B8
  year: 1997
  end-page: 18,452
  article-title: Quartz dislocation microstructure between 7000 m and 9100 m depth from the Continental Deep Drilling Program KTB
  publication-title: Journal of Geophysical Research
– volume: 9
  start-page: 544
  issue: 3
  year: 1999
  end-page: 550
  article-title: Contact forces in a granular packing
  publication-title: Chaos
– volume: 271
  start-page: 123
  issue: 1‐4
  year: 2008
  end-page: 134
  article-title: Viscosity of magmatic liquids: A model
  publication-title: Earth and Planetary Science Letters
– volume: 63
  start-page: 83
  issue: 2‐3
  year: 2001
  end-page: 97
  article-title: Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics
  publication-title: Bulletin of Volcanology
– volume: 435
  start-page: 1079
  issue: 7045
  year: 2005
  end-page: 1082
  article-title: Contact force measurements and stress‐induced anisotropy in granular materials
  publication-title: Nature
– volume: 122
  start-page: 6131
  year: 2017
  end-page: 6159
  article-title: On the kinematics and dynamics of crystal‐rich systems
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 9
  start-page: 4696
  issue: 1
  year: 2018
  article-title: Combined effusive‐explosive silicic volcanism straddles the multiphase viscous‐to‐brittle transition
  publication-title: Nature communications
– volume: 41
  start-page: 3068
  year: 2014
  end-page: 3073
  article-title: Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera
  publication-title: Geophysical Research Letters
– volume: 79
  start-page: 1
  issue: 1‐2
  year: 2006
  end-page: 31
  article-title: How local stresses control magma‐chamber ruptures, dyke injections, and eruptions in composite volcanoes
  publication-title: Earth‐Science Reviews
– volume: 426
  start-page: 432
  issue: 6965
  year: 2003
  end-page: 435
  article-title: Explosive volcanism may not be an inevitable consequence of magma fragmentation
  publication-title: Nature
– volume: 471
  start-page: 212
  issue: 7337
  year: 2011
  end-page: 215
  article-title: A rapid mechanism to remobilize and homogenize highly crystalline magma bodies
  publication-title: Nature
– volume: 304
  start-page: 443
  issue: 3‐4
  year: 2011
  end-page: 454
  article-title: Thermo‐mechanical reactivation of locked crystal mushes: Melting‐induced internal fracturing and assimilation processes in magmas
  publication-title: Earth and Planetary Science Letters
– volume: 8
  start-page: 1926
  issue: 1
  year: 2017
  article-title: Crystal plasticity as an indicator of the viscous‐brittle transition in magmas
  publication-title: Nature communications
– volume: 105
  start-page: 21,431
  issue: B9
  year: 2000
  end-page: 21,443
  article-title: New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama‐Brunhes boundary
  publication-title: Journal of Geophysical Research
– volume: 99
  start-page: 395
  issue: 4
  year: 1990
  end-page: 399
  article-title: Second reply to comment of RSJ Sparks, HE Huppert and CJN Wilson on “Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: The isotopic record in the precaldera lavas of Glass Mountain”
  publication-title: Earth and Planetary Science Letters
– volume: 31
  start-page: 1089
  issue: 12
  year: 2003
  article-title: Repeated fracture and healing of silicic magma generate flow banding and earthquakes?
  publication-title: Geology
– volume: 17
  start-page: 355
  issue: 4
  year: 2001
  end-page: 365
  article-title: Residual stress. Part 1—Measurement techniques
  publication-title: Materials science and Technology
– year: 2007
– volume: 7
  start-page: 122
  issue: 2
  year: 2014
  end-page: 125
  article-title: Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers
  publication-title: Nature Geoscience
– volume: 105
  start-page: 407
  issue: 4
  year: 1997
  end-page: 440
  article-title: The Bishop Tuff: New insights from eruptive stratigraphy
  publication-title: The Journal of Geology
– volume: 397
  start-page: 425
  issue: 6718
  year: 1999
  end-page: 428
  article-title: Strain‐induced magma fragmentation in explosive eruptions
  publication-title: Nature
– volume: 160
  start-page: 441
  issue: 3
  year: 2010
  end-page: 465
  article-title: Rapid extraction of discrete magma batches from a large differentiating magma chamber: The Central Plateau Member rhyolites, Yellowstone Caldera, Wyoming
  publication-title: Contributions to Mineralogy and Petrology
– volume: 170
  start-page: 1
  issue: 4
  year: 2015
  end-page: 25
  article-title: Oxygen isotope and trace element evidence for three‐stage petrogenesis of the youngest episode (260–79 ka) of Yellowstone rhyolitic volcanism
  publication-title: Contributions to Mineralogy and Petrology
– volume: 171
  start-page: 30
  issue: 4
  year: 2016
  article-title: Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone caldera
  publication-title: Contributions to Mineralogy and Petrology
– volume: 506
  start-page: 480
  issue: 7489
  year: 2014
  end-page: 483
  article-title: Rapid remobilization of magmatic crystals kept in cold storage
  publication-title: Nature
– volume: 40
  start-page: 611
  issue: 7
  year: 2012
  end-page: 614
  article-title: The viscous‐brittle transition of crystal‐bearing silicic melt: Direct observation of magma rupture and healing
  publication-title: Geology
– volume: 264
  start-page: 402
  issue: 3–4
  year: 2007
  end-page: 419
  article-title: Non‐Newtonian rheology of crystal‐bearing magmas and implications for magma ascent dynamics
  publication-title: Earth and Planetary Science Letters
– volume: 43
  start-page: 219
  issue: 3
  year: 2015
  end-page: 222
  article-title: Residual stress preserved in quartz from the San Andreas Fault Observatory at depth
  publication-title: Geology
– volume: 80
  start-page: 23
  issue: 3
  year: 2018
  article-title: Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites
  publication-title: Bulletin of Volcanology
– volume: 45
  start-page: 1565
  issue: 8
  year: 2004
  end-page: 1582
  article-title: On the origin of crystal‐poor rhyolites: Extracted from batholithic crystal mushes
  publication-title: Journal of Petrology
– volume: 5
  start-page: 9652
  issue: 1
  year: 2015
  article-title: On granular elasticity
  publication-title: Scientific reports
– volume: 45
  start-page: 982
  issue: 5
  year: 2012
  end-page: 989
  article-title: Unambiguous indexing of trigonal crystals from white‐beam Laue diffraction patterns: Application to Dauphiné twinning and lattice stress mapping in deformed quartz
  publication-title: Journal of Applied Crystallography
– volume: 76
  start-page: 1018
  issue: 5‐6
  year: 1991
  end-page: 1032
  article-title: Observations of the alpha‐beta phase transition in quartz: A review of imaging and diffraction studies and some new results
  publication-title: American mineralogist
– volume: 109
  start-page: 63
  issue: 1
  year: 1997
  end-page: 73
  article-title: Origin of broken phenocrysts in ash‐flow tuffs
  publication-title: Geological Society of America Bulletin
– year: 2017
– volume: 524
  start-page: 28
  issue: 1–2
  year: 2009
  end-page: 32
  article-title: A superbend X‐ray microdiffraction beamline at the advanced light source
  publication-title: Materials Science and Engineering: A
– volume: 33
  year: 2006
  article-title: Shear stress along the conduit wall as a plausible source of tilt at Soufrière Hills volcano, Montserrat
  publication-title: Geophysical Research Letters
– volume: 11
  issue: 7
  year: 2016
  article-title: The year leading to a supereruption
  publication-title: PloS one
– year: 2013
– ident: e_1_2_7_3_1
  doi: 10.1007/s00410‐016‐1244‐x
– ident: e_1_2_7_2_1
  doi: 10.1093/petrology/egh019
– volume: 76
  start-page: 1018
  issue: 5
  year: 1991
  ident: e_1_2_7_27_1
  article-title: Observations of the alpha‐beta phase transition in quartz: A review of imaging and diffraction studies and some new results
  publication-title: American mineralogist
  contributor:
    fullname: Heaney P. J.
– ident: e_1_2_7_45_1
  doi: 10.1029/2000JB900901
– ident: e_1_2_7_49_1
  doi: 10.1016/j.msea.2009.03.062
– volume: 136
  year: 2018
  ident: e_1_2_7_46_1
  article-title: Synchrotron X‐ray microdiffraction and fluorescence imaging of mineral and rock samples
  publication-title: Journal of Visualized Experiments
  contributor:
    fullname: Stan C.
– ident: e_1_2_7_23_1
  doi: 10.1029/2006GL025890
– ident: e_1_2_7_53_1
  doi: 10.1029/1999JB900207
– ident: e_1_2_7_50_1
  doi: 10.1130/g19777.1
– ident: e_1_2_7_16_1
  doi: 10.1029/96JB03394
– ident: e_1_2_7_10_1
  doi: 10.1107/S0021889812031287
– ident: e_1_2_7_14_1
  doi: 10.1038/nature12991
– ident: e_1_2_7_20_1
  doi: 10.1007/s00410‐009‐0487‐1
– ident: e_1_2_7_35_1
  doi: 10.1016/0012‐821X(90)90145‐N
– ident: e_1_2_7_33_1
  doi: 10.1063/1.3096295
– ident: e_1_2_7_44_1
  doi: 10.1063/1.166428
– ident: e_1_2_7_25_1
  doi: 10.1016/j.earscirev.2006.06.006
– ident: e_1_2_7_24_1
  doi: 10.1371/journal.pone.0159200
– ident: e_1_2_7_36_1
  doi: 10.1038/nature03805
– volume-title: Volcanic eruptions and their repose, unrest, precursors, and timing
  year: 2017
  ident: e_1_2_7_39_1
  contributor:
    fullname: National Academies of Sciences, Engineering, and Medicine
– ident: e_1_2_7_30_1
  doi: 10.1017/CBO9781139171731
– ident: e_1_2_7_52_1
  doi: 10.1038/s41467‐018‐07187‐w
– ident: e_1_2_7_21_1
  doi: 10.1038/nature02138
– ident: e_1_2_7_32_1
  doi: 10.2138/am.2009.3216
– ident: e_1_2_7_41_1
  doi: 10.1038/17109
– ident: e_1_2_7_15_1
  doi: 10.1130/G3914.1
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jvolgeores.2004.05.019
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.fluid.39.050905.110207
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jvolgeores.2014.12.014
– ident: e_1_2_7_13_1
  doi: 10.3133/ofr20071071
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467‐017‐01931‐4
– ident: e_1_2_7_8_1
  doi: 10.1016/j.epsl.2007.09.032
– ident: e_1_2_7_42_1
  doi: 10.1126/science.1080653
– ident: e_1_2_7_56_1
  doi: 10.1179/026708301101509980
– ident: e_1_2_7_51_1
  doi: 10.1007/s00445‐018‐1196‐2
– ident: e_1_2_7_6_1
  doi: 10.1038/nature09799
– ident: e_1_2_7_4_1
  doi: 10.1002/2017JB014218
– ident: e_1_2_7_38_1
  doi: 10.1016/j.epsl.2016.07.023
– ident: e_1_2_7_5_1
  doi: 10.1130/0016‐7606(1997)109<0063:OOBPIA>2.3.CO;2
– ident: e_1_2_7_17_1
  doi: 10.1002/2014GL059588
– ident: e_1_2_7_55_1
  doi: 10.1086/515937
– ident: e_1_2_7_26_1
  doi: 10.1016/j.epsl.2007.08.026
– ident: e_1_2_7_34_1
  doi: 10.1007/s00410-015-1189-5
– ident: e_1_2_7_11_1
  doi: 10.1130/G36443.1
– ident: e_1_2_7_9_1
  doi: 10.2138/am‐1998‐1‐201
– ident: e_1_2_7_12_1
  doi: 10.3133/pp729G
– ident: e_1_2_7_54_1
  doi: 10.1002/2017JB014513
– ident: e_1_2_7_18_1
  doi: 10.1007/s00445‐018‐1202‐8
– ident: e_1_2_7_43_1
  doi: 10.1007/s004450000123
– volume-title: Residual stress: Measurement by diffraction and interpretation
  year: 2013
  ident: e_1_2_7_40_1
  contributor:
    fullname: Noyan I. C.
– ident: e_1_2_7_47_1
  doi: 10.1038/srep09652
– ident: e_1_2_7_37_1
  doi: 10.1038/ngeo2042
– ident: e_1_2_7_19_1
  doi: 10.1016/j.epsl.2008.03.038
– ident: e_1_2_7_29_1
  doi: 10.1016/j.epsl.2011.02.022
– ident: e_1_2_7_48_1
  doi: 10.1142/9781908979636_0004
SSID ssj0003031
Score 2.3748734
Snippet Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they...
Abstract Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because...
Abstract Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because...
SourceID doaj
osti
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 8791
SubjectTerms Ascent
Bearing
Brittleness
Calderas
Cargo
Cargo handling
Crystal lattices
Crystals
Deformation
Deformation analysis
Density currents
diffraction
force chain
fragmentation
GEOSCIENCES
Hazards
In situ measurement
Lava
Magma
Magma chambers
Quartz
Quartz crystals
Residual stress
Storage conditions
supereruption
synchrotron
Volcanic activity
Volcanic eruptions
Volcanoes
Yellowstone
Title Volcanoes Erupt Stressed Quartz Crystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL083619
https://www.proquest.com/docview/2282170349
https://www.osti.gov/servlets/purl/1564066
https://doaj.org/article/db103c95ede041dfa0631e787e39e062
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH-IIngRP7E6Rw8KghSbtMma4xzbRNSDOhEvIZ8n2WSbB_3rfUk7mRe9eGoIpbz-XvI-2pffAzhRHUKEMVVWVQoTlJLgyNsqyw1jRnPtXKRdvL3jV6Py-pk9L7X6CjVhNT1wDdyF1SQvjGDOurwk1iv0qcThMnOFcHljfQlbJFONDUbDXPfKE2VW0Q5vSt5zKjDbJ2J4E0iZA7vOkjOKnP14meDe-hFvLket0e0MtmCziRfTbi3nNqy48Q6sD2M_3g8cxQpOM9uFs6fJK8I0cbO0P31_m6cP8RSIs2ms2_xMe9MPjARfZ3swGvQfe1dZ0wYhUwxfI1OCWU-p5b5QeWVEp1BelwJdtecmkMOgmw6zXHGGyHpqlMLAQedCUdRPVezD6ngydgeQ5tQ67tG-OeZLK4gW4SCuUph1EasrncDpAg_5VrNdyPiXmgq5jFsClwGs73sCR3WcQM3JRnPyL80lcBSglujqA1-tCYU9Zi4Dew3GQQm0FhqQzbaaSYoJIukESp0EzqNWfhVTDu9vQsdCcvgf8h7BRnh4-KBMeAtW59N3d4wRyVy3Ya37NHoZteMi_AKTE9fB
link.rule.ids 230,315,786,790,870,891,2115,27955,27956,50847,50956
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2hRVV7QaW0aoCWHIpUCUWNndgbHymCXejCobAI9WL5kwvaoN3lAL-eGW9YLZdKnGJZTpTMeGaenfEbgB-mz5hyrimaxuACpWbYir4pSieEs9KGkGgXzy_kcFyf3Yibrs4pnYVZ8EMsN9zIMpK_JgOnDemObYBIMjF0qcGI2JWJ9nNdEKVeD9YPr8f_xktnjB56UTRP1UXD-7LLfccn_Fq9_1VUSuT9eGnRyF4Bz1X4muLPyUfY6IBjfrjQ9CashckneDdIhXkfsZVSOd1sC35et3corzbM8uPpw_08v0zHQYLPUwLnU340fURIeDf7DOOT46ujYdHVQyiMwM8ojBI-cu5lrEzZONWvTLS1wpgdpSOWGIzX1CuNFCjiyJ0xiCBsqQxHRTXVF-hN2kn4CnnJfZARHV0QsfaKWUUnco3B5RfztrEZ7L_IQ98vaC90-l3NlV6VWwa_SVjLMURWnTra6a3u5r72lpWVUyL4UNbMR4OwiAX0FKFSoZQ8gx0StcaYT8S1jjJ83FwTjQ0Cogx2XzSgO_uaaY4rRdYnbp0MDpJW_vuaevB3RKUL2fabRu_B--HV-UiPTi_-7MAHGkPbyUzuQm8-fQjfEI_M7fduzj0Dy_rTDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hEIgLaoGK8Cg5tFIlFDV2Em985LUL7YIqYBHqxfKTC9qsdpcD_fXMeMNquVTiFMtyomTGM_ONM_4M8E13GJPW1llda0xQSoat4Oost1VljTDeR9rFq2txMSh_PVQP7YIb7YWZ8UPMF9zIMqK_JgMfudCSDRBHJkYu2esTuTKxfq4g0Cgx-Vo5vh_8Hcx9MTro2Zl5ssxq3hFt6Ts-4efi_e-CUuTux0uDNvYOdy6i1xh-up9go8WN6fFM0Z9hyQ83YbUXz-V9wVas5LSTLfhx3zyhuBo_Sc_Hz6Npeht3g3iXxvrNf-np-AUR4dNkGwbd87vTi6w9DiHTFX5GpmXlAudOhELntZWdQgdTSgzZQVgiicFwTb1CiwolHLjVGgGEyaXmqKe6-ALLw2bodyDNufMioJ_zVSidZEbShlytMftiztQmge9v8lCjGeuFin-ruVSLckvghIQ1H0Nc1bGjGT-qduorZ1heWFl55_OSuaARFTGPjsIX0ueCJ7BHolYY8om31lKBj50qYrFBPJTA_psGVGteE8UxUWQdotZJ4Chq5b-vqXo3fTq5kO1-aPQhrP0566r-5fXvPVinIbSYzMQ-LE_Hz_4A0cjUfG2n3CuXO9I1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volcanoes+Erupt+Stressed+Quartz+Crystals&rft.jtitle=Geophysical+research+letters&rft.au=Befus%2C+K+S&rft.au=Manga%2C+M&rft.au=Stan%2C+C&rft.au=Tamura%2C+N&rft.date=2019-08-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=46&rft.issue=15&rft.spage=8791&rft.epage=8800&rft_id=info:doi/10.1029%2F2019GL083619&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon