Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activ...
Saved in:
Published in | Environmental science & technology Vol. 54; no. 4; pp. 2476 - 2488 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ+), half-wave oxidation potential (E 1/2), and pK a values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2 •– after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2 •– through thermodynamically feasible reactions. |
---|---|
AbstractList | Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•– after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•– through thermodynamically feasible reactions. Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe O not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the O based nonradical process. CuOMgO/Fe O catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ , σ ), half-wave oxidation potential ( ), and p values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O after accepting an electron from another PMS molecule, and finally O as sole reactive species was generated from the direct oxidation of O through thermodynamically feasible reactions. Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ+), half-wave oxidation potential (E 1/2), and pK a values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2 •– after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2 •– through thermodynamically feasible reactions. Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe₃O₄ not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the ¹O₂ based nonradical process. CuOMgO/Fe₃O₄ catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ⁺), half-wave oxidation potential (E₁/₂), and pKₐ values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O₂•– after accepting an electron from another PMS molecule, and finally ¹O₂ as sole reactive species was generated from the direct oxidation of O₂•– through thermodynamically feasible reactions. Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ-, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•- after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•- through thermodynamically feasible reactions.Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ-, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•- after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•- through thermodynamically feasible reactions. |
Author | Wang, Haibin Zhan, Kun Zeng, Zehua Zhou, Xinquan Jawad, Ali Chen, Zhuqi Shahzad, Ajmal Wang, Jia Chen, Zhulei Ullah, Habib |
AuthorAffiliation | Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering University of Exeter Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education Environment and Sustainably Institute (ESI) |
AuthorAffiliation_xml | – name: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering – name: Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education – name: University of Exeter – name: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering – name: Environment and Sustainably Institute (ESI) |
Author_xml | – sequence: 1 givenname: Ali surname: Jawad fullname: Jawad, Ali organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering – sequence: 2 givenname: Kun surname: Zhan fullname: Zhan, Kun organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering – sequence: 3 givenname: Haibin surname: Wang fullname: Wang, Haibin organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering – sequence: 4 givenname: Ajmal surname: Shahzad fullname: Shahzad, Ajmal organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering – sequence: 5 givenname: Zehua surname: Zeng fullname: Zeng, Zehua organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering – sequence: 6 givenname: Jia surname: Wang fullname: Wang, Jia organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering – sequence: 7 givenname: Xinquan surname: Zhou fullname: Zhou, Xinquan organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering – sequence: 8 givenname: Habib surname: Ullah fullname: Ullah, Habib organization: University of Exeter – sequence: 9 givenname: Zhulei surname: Chen fullname: Chen, Zhulei organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering – sequence: 10 givenname: Zhuqi orcidid: 0000-0002-0503-9671 surname: Chen fullname: Chen, Zhuqi email: zqchen@hust.edu.cn organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31971792$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1P3DAQxa2KqizQc2-VpV4qVVn8mY8jQoUiQUFoD71Fk2Sya5TYW9tp4cpfXm934YCEOFgj27959rx3QPass0jIJ87mnAl-DG2YY4jzqmEqr_J3ZMa1YJkuNd8jM8a4zCqZ_9onByHcMcaEZOUHsi95VfCiEjPyuJissUvqenqDPkxDDxHpSRvNH4jGWdp7N1KgZx6R3kJnWhhodOnkp7N-t7-BuPoLDzSuvJuWq1SRXtjW-bXzW5Ukn_jsFjt3T69gaTGYaaTX96bDI_K-hyHgx109JIuz74vTH9nl9fnF6cllBprxmDWtapCrPs3DNG_KnBVccw1CdgwFsrKoEFXZ50oAaCU7XqVVQAkgEXt5SL5uZdfe_Z6SafVoQovDABbdFGqh8-RdyaV8G5VKiUIxVSb0ywv0zk3epjkSlSfDdZ6LRH3eUVMzYlevvRnBP9RPOSRAb4HWuxA89nVr4n_rogcz1JzVm7zrlHe9eWSXd-o7ftH3JP16x7dtx-bi-a-v0f8AMhK86w |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_150214 crossref_primary_10_1021_acs_est_3c01553 crossref_primary_10_1016_j_cej_2022_135863 crossref_primary_10_1002_adma_202202891 crossref_primary_10_1016_j_apcatb_2024_123997 crossref_primary_10_1016_j_scitotenv_2020_140388 crossref_primary_10_1016_j_jhazmat_2023_132401 crossref_primary_10_1016_j_apcatb_2020_119484 crossref_primary_10_1016_j_ceja_2025_100736 crossref_primary_10_1016_j_ces_2022_118178 crossref_primary_10_3390_catal12101092 crossref_primary_10_1016_j_cej_2022_140097 crossref_primary_10_1016_j_jphotochem_2023_115224 crossref_primary_10_2139_ssrn_4184717 crossref_primary_10_1016_j_apcatb_2021_120889 crossref_primary_10_1016_j_apcatb_2022_122093 crossref_primary_10_1016_j_cej_2025_159684 crossref_primary_10_1016_j_jece_2022_107654 crossref_primary_10_1016_j_scitotenv_2020_140492 crossref_primary_10_1016_j_scitotenv_2020_142794 crossref_primary_10_1016_j_jhazmat_2023_132417 crossref_primary_10_1016_j_jhazmat_2023_132538 crossref_primary_10_1016_j_watcyc_2024_12_001 crossref_primary_10_1016_j_chemosphere_2022_135035 crossref_primary_10_1016_j_seppur_2022_122864 crossref_primary_10_1016_j_cej_2020_126128 crossref_primary_10_1016_j_seppur_2021_120362 crossref_primary_10_1016_j_envpol_2024_123865 crossref_primary_10_1016_j_cej_2021_133060 crossref_primary_10_1039_D2TA00561A crossref_primary_10_1016_j_rineng_2024_102528 crossref_primary_10_1039_D0EN01280G crossref_primary_10_2139_ssrn_3976143 crossref_primary_10_1021_acs_est_2c06571 crossref_primary_10_1016_j_apcatb_2024_124749 crossref_primary_10_1016_j_cej_2022_136616 crossref_primary_10_1038_s41598_024_55414_w crossref_primary_10_1016_j_cej_2021_128713 crossref_primary_10_1021_acs_est_1c02015 crossref_primary_10_1016_j_envres_2023_115994 crossref_primary_10_1016_j_cej_2023_141317 crossref_primary_10_1021_acs_est_3c10361 crossref_primary_10_1016_j_jorganchem_2021_122070 crossref_primary_10_1016_j_cej_2021_134385 crossref_primary_10_1016_j_ces_2023_118666 crossref_primary_10_1016_j_cej_2021_134026 crossref_primary_10_1016_j_jhazmat_2023_132751 crossref_primary_10_1016_j_envpol_2024_123747 crossref_primary_10_1021_acscatal_2c05409 crossref_primary_10_1021_acsomega_4c07301 crossref_primary_10_1007_s11356_021_17540_0 crossref_primary_10_1016_j_seppur_2022_121525 crossref_primary_10_1016_j_cej_2024_149571 crossref_primary_10_1016_j_apcatb_2023_123466 crossref_primary_10_1016_j_cej_2023_148068 crossref_primary_10_1016_j_apcatb_2025_125290 crossref_primary_10_1021_acssuschemeng_0c03389 crossref_primary_10_1016_j_apcatb_2022_121091 crossref_primary_10_1016_j_jece_2024_113743 crossref_primary_10_1016_j_cej_2025_160865 crossref_primary_10_1016_j_seppur_2023_125077 crossref_primary_10_1021_acs_est_3c00022 crossref_primary_10_1016_j_seppur_2024_127931 crossref_primary_10_1016_j_seppur_2024_126841 crossref_primary_10_1016_j_seppur_2024_126725 crossref_primary_10_1016_j_jenvman_2024_121723 crossref_primary_10_1016_j_seppur_2021_120199 crossref_primary_10_1016_j_cej_2020_128312 crossref_primary_10_1016_j_seppur_2022_122871 crossref_primary_10_1016_j_cej_2023_142863 crossref_primary_10_1016_j_seppur_2021_120197 crossref_primary_10_1016_j_cej_2024_156074 crossref_primary_10_1016_j_chemosphere_2023_139809 crossref_primary_10_1142_S179360472150003X crossref_primary_10_1002_wer_70054 crossref_primary_10_1016_j_watres_2020_116777 crossref_primary_10_1016_j_apcatb_2023_122359 crossref_primary_10_1016_j_catcom_2023_106774 crossref_primary_10_1021_acs_est_3c04870 crossref_primary_10_1016_j_carbon_2020_03_025 crossref_primary_10_1016_j_jece_2025_116062 crossref_primary_10_1039_D1CC05629H crossref_primary_10_1016_j_seppur_2022_121334 crossref_primary_10_1016_j_jclepro_2024_144548 crossref_primary_10_1021_acsestengg_3c00195 crossref_primary_10_1016_j_watres_2024_121519 crossref_primary_10_1016_j_apcatb_2023_122569 crossref_primary_10_1016_j_jece_2022_108937 crossref_primary_10_1016_j_apcatb_2024_124941 crossref_primary_10_1021_acsestengg_4c00637 crossref_primary_10_1021_acsestengg_2c00410 crossref_primary_10_1016_j_colsurfa_2022_128731 crossref_primary_10_1016_j_psep_2023_09_055 crossref_primary_10_1016_j_seppur_2025_132661 crossref_primary_10_1016_j_cej_2023_141513 crossref_primary_10_1016_j_apsusc_2025_162643 crossref_primary_10_1021_acs_est_2c01913 crossref_primary_10_1016_j_jwpe_2023_104567 crossref_primary_10_1007_s11705_023_2327_7 crossref_primary_10_1016_j_jhazmat_2021_125838 crossref_primary_10_1021_acscatal_2c04484 crossref_primary_10_3390_catal15030230 crossref_primary_10_1016_j_jhazmat_2022_128282 crossref_primary_10_1016_j_cej_2022_138605 crossref_primary_10_1016_j_jhazmat_2022_129013 crossref_primary_10_1016_j_jhazmat_2023_131622 crossref_primary_10_1016_j_cej_2023_148026 crossref_primary_10_1016_j_seppur_2024_126936 crossref_primary_10_1016_j_cej_2020_127242 crossref_primary_10_1016_j_seppur_2021_120420 crossref_primary_10_1039_D1NR03157K crossref_primary_10_1016_j_cej_2020_127957 crossref_primary_10_2139_ssrn_4179193 crossref_primary_10_1016_j_seppur_2021_120305 crossref_primary_10_1007_s11356_022_18929_1 crossref_primary_10_1016_j_cej_2022_134933 crossref_primary_10_1016_j_apcatb_2021_119914 crossref_primary_10_1016_j_cej_2020_125881 crossref_primary_10_1016_j_scitotenv_2022_160838 crossref_primary_10_2139_ssrn_4101131 crossref_primary_10_1016_j_cclet_2021_01_019 crossref_primary_10_1016_j_watres_2023_120614 crossref_primary_10_1016_j_chemosphere_2022_137728 crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1016_j_seppur_2024_128894 crossref_primary_10_1016_j_apcatb_2021_120370 crossref_primary_10_1016_j_isci_2022_104930 crossref_primary_10_1016_j_seppur_2024_127324 crossref_primary_10_1016_j_seppur_2023_123385 crossref_primary_10_1016_j_jhazmat_2023_131844 crossref_primary_10_1016_j_seppur_2022_121904 crossref_primary_10_2139_ssrn_3986104 crossref_primary_10_1016_j_seppur_2023_123146 crossref_primary_10_1016_j_jece_2024_112280 crossref_primary_10_1016_j_apcatb_2021_119903 crossref_primary_10_1016_j_cej_2020_127972 crossref_primary_10_1016_j_envres_2023_117883 crossref_primary_10_1021_acs_est_1c06205 crossref_primary_10_1016_j_jece_2024_114493 crossref_primary_10_1016_j_cej_2020_127738 crossref_primary_10_1016_j_jtice_2025_105951 crossref_primary_10_1016_j_cej_2021_133581 crossref_primary_10_1016_j_desal_2023_116859 crossref_primary_10_1016_j_seppur_2024_127430 crossref_primary_10_1016_j_efmat_2022_12_001 crossref_primary_10_1016_j_cej_2021_133464 crossref_primary_10_3390_molecules27207064 crossref_primary_10_1016_j_jece_2021_105145 crossref_primary_10_1016_j_jece_2022_108210 crossref_primary_10_1016_j_watres_2023_119957 crossref_primary_10_1016_j_apcatb_2022_122248 crossref_primary_10_1021_acs_est_2c04312 crossref_primary_10_1016_j_jwpe_2023_104120 crossref_primary_10_1016_j_seppur_2021_119782 crossref_primary_10_1016_j_cej_2023_146960 crossref_primary_10_1016_j_jcis_2024_03_024 crossref_primary_10_1016_j_chemosphere_2022_134564 crossref_primary_10_1016_j_cej_2024_149052 crossref_primary_10_1016_j_cej_2024_149294 crossref_primary_10_1021_acs_est_3c03201 crossref_primary_10_1016_j_jhazmat_2021_128062 crossref_primary_10_1016_j_cej_2022_140282 crossref_primary_10_1016_j_cej_2023_142360 crossref_primary_10_1016_j_seppur_2024_126339 crossref_primary_10_1016_j_jcis_2023_11_076 crossref_primary_10_1016_j_envres_2023_115322 crossref_primary_10_2139_ssrn_4045412 crossref_primary_10_1016_j_cej_2023_144531 crossref_primary_10_1016_j_cej_2023_143444 crossref_primary_10_1021_acsami_0c03481 crossref_primary_10_1016_j_jmst_2021_01_022 crossref_primary_10_1021_acs_est_3c06887 crossref_primary_10_1016_j_scitotenv_2021_149833 crossref_primary_10_1021_acs_est_4c02257 crossref_primary_10_1016_j_jhazmat_2024_135437 crossref_primary_10_1016_j_cej_2024_153651 crossref_primary_10_1016_j_cej_2021_133004 crossref_primary_10_1016_j_cej_2022_134610 crossref_primary_10_1080_09593330_2020_1782994 crossref_primary_10_1016_j_diamond_2022_109313 crossref_primary_10_1021_acs_est_3c02167 crossref_primary_10_1016_j_apcatb_2021_120048 crossref_primary_10_1016_j_apcatb_2022_122349 crossref_primary_10_1016_j_seppur_2023_124389 crossref_primary_10_1016_j_jwpe_2024_105574 crossref_primary_10_1016_j_jwpe_2024_106307 crossref_primary_10_1016_j_watres_2025_123488 crossref_primary_10_1021_acs_est_4c03218 crossref_primary_10_1016_j_cej_2020_127507 crossref_primary_10_1016_j_cej_2023_144529 crossref_primary_10_1016_j_cclet_2022_107755 crossref_primary_10_1039_D2EN00054G crossref_primary_10_1039_D2TA02188A crossref_primary_10_1016_j_jece_2024_114305 crossref_primary_10_1016_j_seppur_2023_124151 crossref_primary_10_1016_j_apcatb_2023_123606 crossref_primary_10_1016_j_cej_2022_136806 crossref_primary_10_1016_j_jhazmat_2021_128044 crossref_primary_10_1016_j_jhazmat_2022_128581 crossref_primary_10_1016_j_scitotenv_2022_159937 crossref_primary_10_1016_j_cej_2022_141161 crossref_primary_10_1016_j_ijbiomac_2023_126984 crossref_primary_10_1021_acs_est_1c06762 crossref_primary_10_1016_j_jhazmat_2020_124952 crossref_primary_10_1016_j_jwpe_2024_106517 crossref_primary_10_1016_j_seppur_2025_132396 crossref_primary_10_1016_j_jtice_2025_105990 crossref_primary_10_1016_j_chemosphere_2021_130949 crossref_primary_10_2139_ssrn_4114269 crossref_primary_10_1016_j_apcatb_2022_121593 crossref_primary_10_1016_j_cej_2021_132299 crossref_primary_10_1016_j_cej_2024_149003 crossref_primary_10_1016_j_cej_2022_140198 crossref_primary_10_1016_j_surfin_2021_101482 crossref_primary_10_1016_j_colsurfa_2022_128696 crossref_primary_10_1039_D2EN01156E crossref_primary_10_1016_j_memsci_2023_121466 crossref_primary_10_3390_toxics12010070 crossref_primary_10_1016_j_apcatb_2022_121342 crossref_primary_10_1016_j_seppur_2023_125381 crossref_primary_10_1016_j_cej_2021_131080 crossref_primary_10_1016_j_catcom_2023_106833 crossref_primary_10_1016_j_jece_2025_115324 crossref_primary_10_1016_j_jes_2023_03_038 crossref_primary_10_1016_j_seppur_2023_125719 crossref_primary_10_1016_j_jece_2023_109442 crossref_primary_10_1002_ange_202422892 crossref_primary_10_1016_j_cej_2022_140537 crossref_primary_10_1016_j_jcis_2022_10_060 crossref_primary_10_1016_j_psep_2023_06_080 crossref_primary_10_1016_j_seppur_2024_128025 crossref_primary_10_1073_pnas_2119492119 crossref_primary_10_1021_acsami_4c05315 crossref_primary_10_1016_j_cej_2022_140773 crossref_primary_10_1016_j_envres_2022_113970 crossref_primary_10_1016_j_watres_2024_121485 crossref_primary_10_1021_acs_est_2c00369 crossref_primary_10_1016_j_apsusc_2022_154760 crossref_primary_10_1016_j_chemosphere_2023_140203 crossref_primary_10_1016_j_apsusc_2024_160545 crossref_primary_10_1016_j_cej_2022_138461 crossref_primary_10_1016_j_jcis_2021_08_086 crossref_primary_10_1007_s11356_024_32456_1 crossref_primary_10_1016_j_cej_2022_138468 crossref_primary_10_1016_j_jhazmat_2024_135740 crossref_primary_10_1016_j_ceja_2023_100506 crossref_primary_10_1016_j_jece_2023_109576 crossref_primary_10_1016_j_apsusc_2022_154997 crossref_primary_10_1016_j_cej_2021_131776 crossref_primary_10_1016_j_cej_2021_131777 crossref_primary_10_1016_j_cej_2021_133834 crossref_primary_10_1016_j_cej_2021_131779 crossref_primary_10_1016_j_seppur_2023_125965 crossref_primary_10_1002_ejic_202300526 crossref_primary_10_1016_j_envpol_2024_125123 crossref_primary_10_1016_j_envres_2024_118779 crossref_primary_10_1016_j_psep_2023_12_002 crossref_primary_10_1016_j_apcatb_2024_124185 crossref_primary_10_1016_j_cclet_2020_10_026 crossref_primary_10_1016_j_chemosphere_2022_133735 crossref_primary_10_1016_j_seppur_2021_118965 crossref_primary_10_1073_pnas_2220608120 crossref_primary_10_1016_j_colsurfa_2023_133083 crossref_primary_10_1016_j_apcatb_2022_121671 crossref_primary_10_1007_s11356_024_34144_6 crossref_primary_10_1016_j_seppur_2024_128247 crossref_primary_10_1016_j_jece_2021_106757 crossref_primary_10_1016_j_jhazmat_2022_130605 crossref_primary_10_1016_j_apcatb_2024_124291 crossref_primary_10_1016_j_jece_2025_115358 crossref_primary_10_1016_j_apcatb_2024_124290 crossref_primary_10_2139_ssrn_4129307 crossref_primary_10_1016_j_jhazmat_2022_129613 crossref_primary_10_1016_j_apcatb_2022_121419 crossref_primary_10_1016_j_cej_2022_136180 crossref_primary_10_1016_j_watres_2022_118730 crossref_primary_10_1016_j_cej_2022_137274 crossref_primary_10_1016_j_seppur_2022_121082 crossref_primary_10_1016_j_jece_2022_107196 crossref_primary_10_1021_acsestengg_1c00464 crossref_primary_10_1021_acs_est_2c09034 crossref_primary_10_1002_adma_202401454 crossref_primary_10_1021_acsestwater_2c00471 crossref_primary_10_1016_j_cattod_2024_114733 crossref_primary_10_1016_j_chemosphere_2021_133455 crossref_primary_10_1016_j_cej_2023_146683 crossref_primary_10_1016_j_jece_2024_114038 crossref_primary_10_2139_ssrn_4092243 crossref_primary_10_1016_j_cej_2023_147769 crossref_primary_10_1021_acs_est_1c05374 crossref_primary_10_1016_j_colsurfa_2022_130343 crossref_primary_10_1016_j_jece_2024_115123 crossref_primary_10_1016_j_cej_2023_147525 crossref_primary_10_1021_acs_est_4c03869 crossref_primary_10_1016_j_cej_2020_127916 crossref_primary_10_1016_j_jece_2023_110870 crossref_primary_10_1016_j_scitotenv_2022_155670 crossref_primary_10_3390_separations9120420 crossref_primary_10_1016_j_cej_2022_137044 crossref_primary_10_1016_j_jece_2023_110747 crossref_primary_10_1021_acs_est_3c05153 crossref_primary_10_1016_j_cej_2024_156769 crossref_primary_10_1016_j_psep_2024_07_082 crossref_primary_10_1016_j_jece_2023_109762 crossref_primary_10_1016_j_seppur_2024_129432 crossref_primary_10_1039_D0TA11503G crossref_primary_10_1016_j_apcatb_2022_121537 crossref_primary_10_1016_j_cej_2021_129498 crossref_primary_10_1016_j_seppur_2023_124302 crossref_primary_10_2139_ssrn_4184114 crossref_primary_10_1016_j_watres_2024_122255 crossref_primary_10_1016_j_cej_2022_139233 crossref_primary_10_1016_j_cej_2020_125603 crossref_primary_10_1016_j_apsusc_2023_158263 crossref_primary_10_1016_j_jece_2021_106781 crossref_primary_10_1016_j_apcatb_2024_124594 crossref_primary_10_1016_j_psep_2022_12_027 crossref_primary_10_1016_j_jece_2021_106545 crossref_primary_10_1016_j_jhazmat_2021_125294 crossref_primary_10_1016_j_cej_2021_131233 crossref_primary_10_1007_s11356_023_25191_6 crossref_primary_10_1016_j_isci_2023_107306 crossref_primary_10_5004_dwt_2021_27472 crossref_primary_10_1016_j_seppur_2021_119978 crossref_primary_10_1016_j_jclepro_2021_128781 crossref_primary_10_1016_j_cej_2022_139249 crossref_primary_10_1016_j_cej_2021_132578 crossref_primary_10_1016_j_cej_2024_156749 crossref_primary_10_1016_j_seppur_2023_123111 crossref_primary_10_1016_j_jhazmat_2024_136826 crossref_primary_10_1016_j_cej_2023_146523 crossref_primary_10_1021_acs_est_1c05048 crossref_primary_10_1021_acsestengg_3c00521 crossref_primary_10_1016_j_jwpe_2024_105272 crossref_primary_10_1016_j_cej_2023_146404 crossref_primary_10_1016_j_envpol_2024_124083 crossref_primary_10_1016_j_seppur_2021_118654 crossref_primary_10_1002_anie_202422892 crossref_primary_10_1021_acs_est_1c08790 crossref_primary_10_1016_j_jhazmat_2024_133425 crossref_primary_10_1016_j_seppur_2024_127225 crossref_primary_10_1016_j_cclet_2023_108407 crossref_primary_10_1016_j_psep_2021_11_033 crossref_primary_10_1007_s11356_023_27874_6 crossref_primary_10_2139_ssrn_4184269 crossref_primary_10_1016_j_seppur_2022_122560 crossref_primary_10_1038_s41467_023_39228_4 crossref_primary_10_1039_D4NJ05373G crossref_primary_10_1016_j_chemosphere_2023_140847 crossref_primary_10_1021_acsestwater_4c00383 crossref_primary_10_1016_j_colsurfa_2024_134862 crossref_primary_10_1016_j_cej_2021_129971 crossref_primary_10_1016_j_carbon_2021_06_062 crossref_primary_10_1002_slct_202402032 crossref_primary_10_1016_j_jcis_2023_08_124 crossref_primary_10_1016_j_jclepro_2023_136054 crossref_primary_10_1016_j_ese_2023_100338 crossref_primary_10_1016_j_cej_2024_150500 crossref_primary_10_1016_j_jece_2023_111494 crossref_primary_10_1021_acsomega_2c02063 crossref_primary_10_1016_j_jece_2024_113814 crossref_primary_10_1016_j_cej_2022_135474 crossref_primary_10_1016_j_scitotenv_2020_143127 crossref_primary_10_3390_ijerph18073344 crossref_primary_10_1016_j_scitotenv_2020_143120 crossref_primary_10_1016_j_chemosphere_2023_138401 crossref_primary_10_1016_j_scitotenv_2024_170877 crossref_primary_10_1016_j_chemosphere_2021_130482 crossref_primary_10_1016_j_seppur_2022_122437 crossref_primary_10_1016_j_seppur_2022_121015 crossref_primary_10_1002_aesr_202100038 crossref_primary_10_1016_j_seppur_2021_120086 crossref_primary_10_1142_S179360472451010X crossref_primary_10_1016_j_cej_2024_149724 crossref_primary_10_1021_acs_est_2c01968 crossref_primary_10_1016_j_seppur_2024_129186 crossref_primary_10_1016_j_jece_2024_114810 crossref_primary_10_1021_acs_est_4c07457 crossref_primary_10_1016_j_efmat_2022_04_001 crossref_primary_10_1016_j_jes_2023_01_010 crossref_primary_10_1016_j_cej_2022_135002 crossref_primary_10_1021_acs_est_3c10898 crossref_primary_10_1016_j_jcis_2022_05_105 crossref_primary_10_1016_j_jhazmat_2024_134720 crossref_primary_10_1007_s42114_023_00757_7 crossref_primary_10_1016_j_cej_2021_132816 crossref_primary_10_1016_j_jhazmat_2021_126447 crossref_primary_10_1016_j_jenvman_2024_120210 crossref_primary_10_1016_j_jece_2023_110143 crossref_primary_10_1016_j_psep_2023_01_069 crossref_primary_10_1016_j_seppur_2024_130037 crossref_primary_10_1021_acsestwater_4c01147 crossref_primary_10_1016_j_apcatb_2024_124695 crossref_primary_10_1016_j_chemosphere_2022_137394 crossref_primary_10_1016_j_molstruc_2023_136344 crossref_primary_10_1016_j_chemosphere_2023_138783 crossref_primary_10_1016_j_seppur_2023_124827 crossref_primary_10_1016_j_jhazmat_2021_126794 crossref_primary_10_1016_j_ccr_2024_215749 crossref_primary_10_1021_acs_est_2c02636 crossref_primary_10_1007_s43630_023_00480_8 crossref_primary_10_1016_j_jwpe_2023_103781 crossref_primary_10_1016_j_cej_2024_156245 crossref_primary_10_1016_j_seppur_2024_130145 crossref_primary_10_1016_j_seppur_2022_122009 crossref_primary_10_1016_j_seppur_2023_124944 crossref_primary_10_1073_pnas_2201607119 crossref_primary_10_1016_j_seppur_2023_123868 crossref_primary_10_1021_acs_est_4c02809 crossref_primary_10_1016_j_jhazmat_2021_127515 crossref_primary_10_1016_j_molstruc_2024_137914 crossref_primary_10_1016_j_cej_2021_129667 crossref_primary_10_1016_j_watres_2024_121684 crossref_primary_10_1016_j_cej_2024_148623 crossref_primary_10_1016_j_jhazmat_2020_124146 crossref_primary_10_1002_smll_202004579 crossref_primary_10_1016_j_cej_2022_135277 crossref_primary_10_1021_acsami_0c19013 crossref_primary_10_1016_j_scitotenv_2022_160001 crossref_primary_10_1016_j_ica_2024_122407 crossref_primary_10_1016_j_jes_2021_08_054 crossref_primary_10_1016_j_desal_2025_118643 crossref_primary_10_1016_j_chemosphere_2023_138563 crossref_primary_10_1016_j_seppur_2023_123866 crossref_primary_10_1016_j_jenvman_2024_122568 crossref_primary_10_1016_j_ccr_2024_215765 crossref_primary_10_1016_j_jclepro_2023_136483 crossref_primary_10_1016_j_seppur_2022_122265 crossref_primary_10_1039_D1TA00033K crossref_primary_10_1016_j_cej_2022_136251 crossref_primary_10_3390_catal12111359 crossref_primary_10_1016_j_jece_2023_109460 crossref_primary_10_1016_j_cej_2024_149928 crossref_primary_10_1016_j_jece_2023_111424 crossref_primary_10_1016_j_cej_2022_136373 crossref_primary_10_1016_j_seppur_2024_127076 crossref_primary_10_1016_j_seppur_2025_131869 crossref_primary_10_12677_OJNS_2023_113058 crossref_primary_10_1016_j_apcatb_2023_123130 crossref_primary_10_1007_s12274_024_6836_6 crossref_primary_10_1016_j_cej_2021_133822 crossref_primary_10_1016_j_seppur_2023_125811 crossref_primary_10_1016_j_desal_2025_118630 crossref_primary_10_1016_j_envint_2024_108466 crossref_primary_10_1016_j_talo_2023_100229 crossref_primary_10_1016_j_cej_2021_130679 crossref_primary_10_1016_j_seppur_2022_122136 crossref_primary_10_1016_j_heliyon_2023_e19992 crossref_primary_10_1021_acsami_2c19243 crossref_primary_10_1021_acs_est_2c01759 crossref_primary_10_1016_j_jwpe_2023_103633 crossref_primary_10_1016_j_seppur_2024_128042 crossref_primary_10_1016_j_jece_2024_113910 crossref_primary_10_1016_j_seppur_2025_131737 crossref_primary_10_1016_j_jwpe_2023_104715 crossref_primary_10_1016_j_jmst_2020_05_057 crossref_primary_10_1016_j_seppur_2025_131739 crossref_primary_10_1016_j_jcis_2021_10_150 crossref_primary_10_1016_j_cej_2021_133933 crossref_primary_10_2166_wrd_2021_046 crossref_primary_10_1021_acs_est_2c08266 crossref_primary_10_1016_j_apcatb_2024_124411 crossref_primary_10_1021_acsestengg_3c00249 crossref_primary_10_2139_ssrn_4020837 crossref_primary_10_1016_j_apcatb_2024_124652 |
Cites_doi | 10.1021/es400878c 10.1016/j.jhazmat.2014.12.026 10.1016/0039-6028(93)90721-U 10.1016/j.apcatb.2007.02.001 10.1021/acs.est.7b02271 10.1021/acs.est.7b03007 10.1016/j.aca.2003.11.036 10.1021/es501218f 10.1016/j.jhazmat.2010.03.039 10.1016/j.chemosphere.2008.08.043 10.1016/j.watres.2017.04.070 10.1016/j.watres.2008.05.021 10.1021/es990457c 10.1021/acs.est.8b04669 10.1016/j.watres.2014.05.005 10.1016/j.watres.2017.02.016 10.1021/acscatal.6b00205 10.1016/j.apcatb.2014.02.012 10.1016/j.cej.2018.07.103 10.1021/acs.est.5b00623 10.1039/C7TA07942G 10.1016/j.apcatb.2019.01.079 10.1021/es5061512 10.1016/j.apcatb.2017.11.051 10.1016/j.jhazmat.2016.12.063 10.1016/j.apcatb.2014.07.057 10.1016/j.envpol.2016.04.088 10.1016/j.apcatb.2016.01.059 10.1021/es970648k 10.1021/acs.est.6b02079 10.1016/0584-8539(93)80114-P 10.1021/es0263792 10.1021/es011109p 10.1021/es1013714 10.1021/acs.est.8b00959 10.1016/j.apcatb.2009.12.014 10.1021/acs.est.6b02841 10.1016/j.apcatb.2017.11.056 10.1021/acscatal.5b01044 10.1016/j.watres.2013.06.023 10.6028/NBS.NSRDS.65 10.1021/es304721g 10.1016/0021-9517(91)90334-Z 10.1016/j.watres.2016.04.001 10.1016/j.apcatb.2015.08.001 10.1039/C7CC02820B 10.1016/j.watres.2017.03.043 10.1039/C7TA00880E 10.1016/j.cej.2017.04.018 10.1016/j.apcatb.2019.118238 10.1021/acscatal.7b03338 10.1016/j.apcatb.2014.10.051 10.1016/j.jhazmat.2016.01.023 10.1016/j.apcatb.2017.08.088 10.1016/j.chemosphere.2014.12.053 10.1016/j.apcatb.2016.04.043 10.1016/j.cej.2017.08.116 10.1021/acs.est.5b05974 10.1016/j.apcatb.2010.10.013 10.1016/j.chemosphere.2013.08.090 10.1021/es502056d 10.1021/es00021a011 10.1021/es2029944 10.1007/s11814-018-0074-0 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Feb 18, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Feb 18, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.9b04696 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2488 |
ExternalDocumentID | 31971792 10_1021_acs_est_9b04696 b200163440 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a501t-bc4be14f936051b86071515a23d0e2e0879ee48f642aa543d193d17a8aa3eef3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 16:38:56 EDT 2025 Fri Jul 11 12:43:10 EDT 2025 Sun Jun 29 16:12:01 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Tue Jul 01 02:58:08 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Thu Aug 27 22:10:50 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a501t-bc4be14f936051b86071515a23d0e2e0879ee48f642aa543d193d17a8aa3eef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0503-9671 |
OpenAccessLink | https://ore.exeter.ac.uk/repository/bitstream/10871/40558/1/ES%26T.pdf |
PMID | 31971792 |
PQID | 2360025662 |
PQPubID | 45412 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2561528133 proquest_miscellaneous_2344274048 proquest_journals_2360025662 pubmed_primary_31971792 crossref_citationtrail_10_1021_acs_est_9b04696 crossref_primary_10_1021_acs_est_9b04696 acs_journals_10_1021_acs_est_9b04696 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-18 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1021/es400878c – ident: ref19/cit19 doi: 10.1016/j.jhazmat.2014.12.026 – ident: ref50/cit50 doi: 10.1016/0039-6028(93)90721-U – ident: ref5/cit5 doi: 10.1016/j.apcatb.2007.02.001 – ident: ref62/cit62 doi: 10.1021/acs.est.7b02271 – ident: ref11/cit11 doi: 10.1021/acs.est.7b03007 – ident: ref56/cit56 doi: 10.1016/j.aca.2003.11.036 – ident: ref21/cit21 doi: 10.1021/es501218f – ident: ref2/cit2 doi: 10.1016/j.jhazmat.2010.03.039 – ident: ref37/cit37 doi: 10.1016/j.chemosphere.2008.08.043 – ident: ref24/cit24 doi: 10.1016/j.watres.2017.04.070 – ident: ref36/cit36 doi: 10.1016/j.watres.2008.05.021 – ident: ref59/cit59 doi: 10.1021/es990457c – ident: ref26/cit26 doi: 10.1021/acs.est.8b04669 – ident: ref35/cit35 doi: 10.1016/j.watres.2014.05.005 – ident: ref25/cit25 doi: 10.1016/j.watres.2017.02.016 – ident: ref42/cit42 doi: 10.1021/acscatal.6b00205 – ident: ref13/cit13 doi: 10.1016/j.apcatb.2014.02.012 – ident: ref60/cit60 doi: 10.1016/j.cej.2018.07.103 – ident: ref10/cit10 doi: 10.1021/acs.est.5b00623 – ident: ref31/cit31 doi: 10.1039/C7TA07942G – ident: ref46/cit46 doi: 10.1016/j.apcatb.2019.01.079 – ident: ref12/cit12 doi: 10.1021/es5061512 – ident: ref23/cit23 doi: 10.1016/j.apcatb.2017.11.051 – ident: ref8/cit8 doi: 10.1016/j.jhazmat.2016.12.063 – ident: ref40/cit40 doi: 10.1016/j.apcatb.2014.07.057 – ident: ref14/cit14 doi: 10.1016/j.envpol.2016.04.088 – ident: ref45/cit45 doi: 10.1016/j.apcatb.2016.01.059 – ident: ref16/cit16 doi: 10.1021/es970648k – ident: ref44/cit44 doi: 10.1021/acs.est.6b02079 – ident: ref51/cit51 doi: 10.1016/0584-8539(93)80114-P – ident: ref4/cit4 doi: 10.1021/es0263792 – ident: ref17/cit17 doi: 10.1021/es011109p – ident: ref18/cit18 doi: 10.1021/es1013714 – ident: ref43/cit43 doi: 10.1021/acs.est.8b00959 – ident: ref52/cit52 doi: 10.1016/j.apcatb.2009.12.014 – ident: ref22/cit22 doi: 10.1021/acs.est.6b02841 – ident: ref27/cit27 doi: 10.1016/j.apcatb.2017.11.056 – ident: ref57/cit57 doi: 10.1021/acscatal.5b01044 – ident: ref48/cit48 doi: 10.1016/j.watres.2013.06.023 – ident: ref20/cit20 doi: 10.6028/NBS.NSRDS.65 – ident: ref7/cit7 doi: 10.1021/es304721g – ident: ref39/cit39 doi: 10.1016/0021-9517(91)90334-Z – ident: ref63/cit63 doi: 10.1016/j.watres.2016.04.001 – ident: ref41/cit41 doi: 10.1016/j.apcatb.2015.08.001 – ident: ref28/cit28 doi: 10.1039/C7CC02820B – ident: ref30/cit30 doi: 10.1016/j.watres.2017.03.043 – ident: ref58/cit58 doi: 10.1039/C7TA00880E – ident: ref29/cit29 doi: 10.1016/j.cej.2017.04.018 – ident: ref47/cit47 doi: 10.1016/j.apcatb.2019.118238 – ident: ref32/cit32 doi: 10.1021/acscatal.7b03338 – ident: ref49/cit49 doi: 10.1016/j.apcatb.2014.10.051 – ident: ref53/cit53 doi: 10.1016/j.jhazmat.2016.01.023 – ident: ref55/cit55 doi: 10.1016/j.apcatb.2017.08.088 – ident: ref3/cit3 doi: 10.1016/j.chemosphere.2014.12.053 – ident: ref15/cit15 doi: 10.1016/j.apcatb.2016.04.043 – ident: ref64/cit64 doi: 10.1016/j.cej.2017.08.116 – ident: ref9/cit9 doi: 10.1021/acs.est.5b05974 – ident: ref38/cit38 doi: 10.1016/j.apcatb.2010.10.013 – ident: ref1/cit1 doi: 10.1016/j.chemosphere.2013.08.090 – ident: ref6/cit6 doi: 10.1021/es502056d – ident: ref61/cit61 doi: 10.1021/es00021a011 – ident: ref54/cit54 doi: 10.1021/es2029944 – ident: ref33/cit33 doi: 10.1007/s11814-018-0074-0 |
SSID | ssj0002308 |
Score | 2.7058077 |
Snippet | Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2476 |
SubjectTerms | Anions Catalysts Copper Degradation Electron transfer Electron Transport Free radicals Heavy metals Intermediates Iron oxides Kinetics Magnesium Magnesium Oxide Metals Organic matter Oxidation Oxidation process Oxidation-Reduction Peroxides Phenols Pollutant removal Pollutants pollution control Reaction kinetics Superconductors (materials) technology thermodynamics |
Title | Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide |
URI | http://dx.doi.org/10.1021/acs.est.9b04696 https://www.ncbi.nlm.nih.gov/pubmed/31971792 https://www.proquest.com/docview/2360025662 https://www.proquest.com/docview/2344274048 https://www.proquest.com/docview/2561528133 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQoFBYaJGReuCSsH4ksY-rqqu2EgWVRdpb5MekqiibqknUwpFfzjjJZinVAqcoztiyJp7xN358Q8ieRQzvuJVoaS6NpJA6UlD4KHNaALOZQcccTlucpIdf5PE8ma_Iov_cwefsvXFVjA4y1jaEcul98oCnKgtx1mT_8-B0EUmrZbICLdL5wOJzp4EwDbnq9jS0Blu2c8z0cXc6q2qpCcPRkq9xU9vY_bhL3Pjv7j8hmz3SpJNuaDwl92CxRR79xj-4RbYPVtfcULS38-oZ-TlrwnoJLQsajsg3FwVCUjpxy1xoNNxKoYZOrwDoqWn3emhdYslJSFfQvX9CcHltvtM-FRA-gR4F2szLftiF5lE-OgVf3tAP5gzd7nnzjX68OffwnMymB7P9w6jP1hCZZMzqyDppgckCtY-GblUgrkOwZLjwY-AwVpkGkKrAgMeYRAqP0NGzzChjBEAhtsnGolzAS0JZojwbe280oiPUobZaG8fBG2YRHqoR2UOt5r2xVXm7j85ZHgpR1Xmv6hGJl784dz3heci7cbG-wruhwmXH9bFedGc5Zlb94CJtIWTKR-Tt8BnNNezBmAWUTZCRkmcS_eZfZBDTJlwxIUbkRTceh_6gx8QAXPNX_6eD1-QhDwsEIYON2iEb9VUDu4iiavumtZ9flssYmg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOBQqFhQJG6oFLtvEjiX1cVV1toV2gLNLeIjt2UEXZVE2iFo78csbZJMtDi-AUxRlbznhm_I0fMwB7BjF8xoxATcviQHChAulyGySZ4o6aRKNh9qctpvHko3g9j-YbEHZ3YbATJbZUNpv4q-gCdN-XoZ0cKuM9uvgG3EQowry7NTr40NteBNSyy1mgeDzvg_n80YCfjbLy19loDcRspprxXXjfd7I5YfJ5WFdmmH37LX7j__zFPdhqcScZLQXlPmy4xTbc-Ska4TbsHK4uvSFpq_XlA_g-q_3qCSly4g_M1-c5AlQyyrrMaMTfUSGajC-dI6e62fkhVYElU5-8YPn-DqHmlf5K2sRA-HTkyAfRvGiF0DeP9MGps8U1OdGf0Aif1V_I2-sz6x7CbHw4O5gEbe6GQEchrQKTCeOoyHEQUO2N9GHsEDppxm3omAtlopwTMkf3R-tIcItA0tJES625cznfgc1FsXCPgdBIWhpaqxViJeShMkrpjDmrqUGwKAewh1xNW9Ur02ZXndHUFyKr05bVAxh2I51mbfhzn4XjfH2FV32Fi2Xkj_Wku53orPrBeNwAypgN4GX_GZXX78johStqTyMESwRa0b_QIMKNmKScD-DRUiz7_qD9RHdcsSf_xoMXcGsyOzlOj4-mb57CbeaXDnxuG7kLm9Vl7Z4hvqrM80alfgBAPyD7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSIg9MBgMygYYaQ-8pNQfSezHaqza-CjT6KS-RXbsoImtqZZE23jkL-cudTM-VARPUZyz5Zx959_57DtCdi1g-JxbCZKWJ5EUUkfKFy5Kcy08s6kBxYynLcbJwYl8N42n4VIY3oWBTlTQUtU68VGq564IEQbYGywHXdnXFq265Da5g047NLmGe587_QugWi3zFmiRTLuAPn80gCtSXv26Iq2Ame1yM9ogJ11H21MmX_tNbfv5t99iOP7vnzwg9wP-pMPFhHlIbvnZJln_KSrhJtnav7n8BqRB-qtH5PukwV0UWhYUD843ZwUAVTrMlxnSKN5VoYaOLrynx6b1ANG6hJIxJjFYvB8B5Lw01zQkCIKnp4cYTHMeJiM2D_TRsXflFf1ovoAyPm3O6aerU-cfk8lof7J3EIUcDpGJB6yObC6tZ7KAgQDxtwrD2QGEMly4ged-oFLtvVQFmEHGxFI4AJSOpUYZI7wvxBZZm5Uz_5RQFivHBs4ZDZgJeKit1ibn3hlmATSqHtkFrmZBBKus9a5zlmEhsDoLrO6R_nK0szyEQcdsHGerK7zuKswXEUBWk-4sp89NP7hIWmCZ8B551X0GIUbPjJn5skEaKXkqQZv-hQaQbswVE6JHniymZtcf0KNglmv-7N948JLcPXo7yj4cjt9vk3scdxAwxY3aIWv1ReOfA8yq7YtWqn4Agp0jfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+of+Persulfate+Activation+from+a+Free+Radical+to+a+Nonradical+Pathway+through+the+Incorporation+of+Non-Redox+Magnesium+Oxide&rft.jtitle=Environmental+science+%26+technology&rft.au=Jawad%2C+Ali&rft.au=Zhan%2C+Kun&rft.au=Wang%2C+Haibin&rft.au=Shahzad%2C+Ajmal&rft.date=2020-02-18&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=54&rft.issue=4&rft.spage=2476&rft.epage=2488&rft_id=info:doi/10.1021%2Facs.est.9b04696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_9b04696 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |