Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide

Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activ...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 54; no. 4; pp. 2476 - 2488
Main Authors Jawad, Ali, Zhan, Kun, Wang, Haibin, Shahzad, Ajmal, Zeng, Zehua, Wang, Jia, Zhou, Xinquan, Ullah, Habib, Chen, Zhulei, Chen, Zhuqi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ+), half-wave oxidation potential (E 1/2), and pK a values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2 •– after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2 •– through thermodynamically feasible reactions.
AbstractList Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•– after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•– through thermodynamically feasible reactions.
Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe O not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the O based nonradical process. CuOMgO/Fe O catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ , σ ), half-wave oxidation potential ( ), and p values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O after accepting an electron from another PMS molecule, and finally O as sole reactive species was generated from the direct oxidation of O through thermodynamically feasible reactions.
Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ+), half-wave oxidation potential (E 1/2), and pK a values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2 •– after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2 •– through thermodynamically feasible reactions.
Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe₃O₄ not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the ¹O₂ based nonradical process. CuOMgO/Fe₃O₄ catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure–activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ–, σ⁺), half-wave oxidation potential (E₁/₂), and pKₐ values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O₂•– after accepting an electron from another PMS molecule, and finally ¹O₂ as sole reactive species was generated from the direct oxidation of O₂•– through thermodynamically feasible reactions.
Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ-, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•- after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•- through thermodynamically feasible reactions.Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ-, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•- after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•- through thermodynamically feasible reactions.
Author Wang, Haibin
Zhan, Kun
Zeng, Zehua
Zhou, Xinquan
Jawad, Ali
Chen, Zhuqi
Shahzad, Ajmal
Wang, Jia
Chen, Zhulei
Ullah, Habib
AuthorAffiliation Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering
University of Exeter
Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education
Environment and Sustainably Institute (ESI)
AuthorAffiliation_xml – name: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering
– name: Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education
– name: University of Exeter
– name: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering
– name: Environment and Sustainably Institute (ESI)
Author_xml – sequence: 1
  givenname: Ali
  surname: Jawad
  fullname: Jawad, Ali
  organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Kun
  surname: Zhan
  fullname: Zhan, Kun
  organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering
– sequence: 3
  givenname: Haibin
  surname: Wang
  fullname: Wang, Haibin
  organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering
– sequence: 4
  givenname: Ajmal
  surname: Shahzad
  fullname: Shahzad, Ajmal
  organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering
– sequence: 5
  givenname: Zehua
  surname: Zeng
  fullname: Zeng, Zehua
  organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering
– sequence: 6
  givenname: Jia
  surname: Wang
  fullname: Wang, Jia
  organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering
– sequence: 7
  givenname: Xinquan
  surname: Zhou
  fullname: Zhou, Xinquan
  organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering
– sequence: 8
  givenname: Habib
  surname: Ullah
  fullname: Ullah, Habib
  organization: University of Exeter
– sequence: 9
  givenname: Zhulei
  surname: Chen
  fullname: Chen, Zhulei
  organization: Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, School of Environmental Science and Engineering
– sequence: 10
  givenname: Zhuqi
  orcidid: 0000-0002-0503-9671
  surname: Chen
  fullname: Chen, Zhuqi
  email: zqchen@hust.edu.cn
  organization: Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31971792$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1P3DAQxa2KqizQc2-VpV4qVVn8mY8jQoUiQUFoD71Fk2Sya5TYW9tp4cpfXm934YCEOFgj27959rx3QPass0jIJ87mnAl-DG2YY4jzqmEqr_J3ZMa1YJkuNd8jM8a4zCqZ_9onByHcMcaEZOUHsi95VfCiEjPyuJissUvqenqDPkxDDxHpSRvNH4jGWdp7N1KgZx6R3kJnWhhodOnkp7N-t7-BuPoLDzSuvJuWq1SRXtjW-bXzW5Ukn_jsFjt3T69gaTGYaaTX96bDI_K-hyHgx109JIuz74vTH9nl9fnF6cllBprxmDWtapCrPs3DNG_KnBVccw1CdgwFsrKoEFXZ50oAaCU7XqVVQAkgEXt5SL5uZdfe_Z6SafVoQovDABbdFGqh8-RdyaV8G5VKiUIxVSb0ywv0zk3epjkSlSfDdZ6LRH3eUVMzYlevvRnBP9RPOSRAb4HWuxA89nVr4n_rogcz1JzVm7zrlHe9eWSXd-o7ftH3JP16x7dtx-bi-a-v0f8AMhK86w
CitedBy_id crossref_primary_10_1016_j_cej_2024_150214
crossref_primary_10_1021_acs_est_3c01553
crossref_primary_10_1016_j_cej_2022_135863
crossref_primary_10_1002_adma_202202891
crossref_primary_10_1016_j_apcatb_2024_123997
crossref_primary_10_1016_j_scitotenv_2020_140388
crossref_primary_10_1016_j_jhazmat_2023_132401
crossref_primary_10_1016_j_apcatb_2020_119484
crossref_primary_10_1016_j_ceja_2025_100736
crossref_primary_10_1016_j_ces_2022_118178
crossref_primary_10_3390_catal12101092
crossref_primary_10_1016_j_cej_2022_140097
crossref_primary_10_1016_j_jphotochem_2023_115224
crossref_primary_10_2139_ssrn_4184717
crossref_primary_10_1016_j_apcatb_2021_120889
crossref_primary_10_1016_j_apcatb_2022_122093
crossref_primary_10_1016_j_cej_2025_159684
crossref_primary_10_1016_j_jece_2022_107654
crossref_primary_10_1016_j_scitotenv_2020_140492
crossref_primary_10_1016_j_scitotenv_2020_142794
crossref_primary_10_1016_j_jhazmat_2023_132417
crossref_primary_10_1016_j_jhazmat_2023_132538
crossref_primary_10_1016_j_watcyc_2024_12_001
crossref_primary_10_1016_j_chemosphere_2022_135035
crossref_primary_10_1016_j_seppur_2022_122864
crossref_primary_10_1016_j_cej_2020_126128
crossref_primary_10_1016_j_seppur_2021_120362
crossref_primary_10_1016_j_envpol_2024_123865
crossref_primary_10_1016_j_cej_2021_133060
crossref_primary_10_1039_D2TA00561A
crossref_primary_10_1016_j_rineng_2024_102528
crossref_primary_10_1039_D0EN01280G
crossref_primary_10_2139_ssrn_3976143
crossref_primary_10_1021_acs_est_2c06571
crossref_primary_10_1016_j_apcatb_2024_124749
crossref_primary_10_1016_j_cej_2022_136616
crossref_primary_10_1038_s41598_024_55414_w
crossref_primary_10_1016_j_cej_2021_128713
crossref_primary_10_1021_acs_est_1c02015
crossref_primary_10_1016_j_envres_2023_115994
crossref_primary_10_1016_j_cej_2023_141317
crossref_primary_10_1021_acs_est_3c10361
crossref_primary_10_1016_j_jorganchem_2021_122070
crossref_primary_10_1016_j_cej_2021_134385
crossref_primary_10_1016_j_ces_2023_118666
crossref_primary_10_1016_j_cej_2021_134026
crossref_primary_10_1016_j_jhazmat_2023_132751
crossref_primary_10_1016_j_envpol_2024_123747
crossref_primary_10_1021_acscatal_2c05409
crossref_primary_10_1021_acsomega_4c07301
crossref_primary_10_1007_s11356_021_17540_0
crossref_primary_10_1016_j_seppur_2022_121525
crossref_primary_10_1016_j_cej_2024_149571
crossref_primary_10_1016_j_apcatb_2023_123466
crossref_primary_10_1016_j_cej_2023_148068
crossref_primary_10_1016_j_apcatb_2025_125290
crossref_primary_10_1021_acssuschemeng_0c03389
crossref_primary_10_1016_j_apcatb_2022_121091
crossref_primary_10_1016_j_jece_2024_113743
crossref_primary_10_1016_j_cej_2025_160865
crossref_primary_10_1016_j_seppur_2023_125077
crossref_primary_10_1021_acs_est_3c00022
crossref_primary_10_1016_j_seppur_2024_127931
crossref_primary_10_1016_j_seppur_2024_126841
crossref_primary_10_1016_j_seppur_2024_126725
crossref_primary_10_1016_j_jenvman_2024_121723
crossref_primary_10_1016_j_seppur_2021_120199
crossref_primary_10_1016_j_cej_2020_128312
crossref_primary_10_1016_j_seppur_2022_122871
crossref_primary_10_1016_j_cej_2023_142863
crossref_primary_10_1016_j_seppur_2021_120197
crossref_primary_10_1016_j_cej_2024_156074
crossref_primary_10_1016_j_chemosphere_2023_139809
crossref_primary_10_1142_S179360472150003X
crossref_primary_10_1002_wer_70054
crossref_primary_10_1016_j_watres_2020_116777
crossref_primary_10_1016_j_apcatb_2023_122359
crossref_primary_10_1016_j_catcom_2023_106774
crossref_primary_10_1021_acs_est_3c04870
crossref_primary_10_1016_j_carbon_2020_03_025
crossref_primary_10_1016_j_jece_2025_116062
crossref_primary_10_1039_D1CC05629H
crossref_primary_10_1016_j_seppur_2022_121334
crossref_primary_10_1016_j_jclepro_2024_144548
crossref_primary_10_1021_acsestengg_3c00195
crossref_primary_10_1016_j_watres_2024_121519
crossref_primary_10_1016_j_apcatb_2023_122569
crossref_primary_10_1016_j_jece_2022_108937
crossref_primary_10_1016_j_apcatb_2024_124941
crossref_primary_10_1021_acsestengg_4c00637
crossref_primary_10_1021_acsestengg_2c00410
crossref_primary_10_1016_j_colsurfa_2022_128731
crossref_primary_10_1016_j_psep_2023_09_055
crossref_primary_10_1016_j_seppur_2025_132661
crossref_primary_10_1016_j_cej_2023_141513
crossref_primary_10_1016_j_apsusc_2025_162643
crossref_primary_10_1021_acs_est_2c01913
crossref_primary_10_1016_j_jwpe_2023_104567
crossref_primary_10_1007_s11705_023_2327_7
crossref_primary_10_1016_j_jhazmat_2021_125838
crossref_primary_10_1021_acscatal_2c04484
crossref_primary_10_3390_catal15030230
crossref_primary_10_1016_j_jhazmat_2022_128282
crossref_primary_10_1016_j_cej_2022_138605
crossref_primary_10_1016_j_jhazmat_2022_129013
crossref_primary_10_1016_j_jhazmat_2023_131622
crossref_primary_10_1016_j_cej_2023_148026
crossref_primary_10_1016_j_seppur_2024_126936
crossref_primary_10_1016_j_cej_2020_127242
crossref_primary_10_1016_j_seppur_2021_120420
crossref_primary_10_1039_D1NR03157K
crossref_primary_10_1016_j_cej_2020_127957
crossref_primary_10_2139_ssrn_4179193
crossref_primary_10_1016_j_seppur_2021_120305
crossref_primary_10_1007_s11356_022_18929_1
crossref_primary_10_1016_j_cej_2022_134933
crossref_primary_10_1016_j_apcatb_2021_119914
crossref_primary_10_1016_j_cej_2020_125881
crossref_primary_10_1016_j_scitotenv_2022_160838
crossref_primary_10_2139_ssrn_4101131
crossref_primary_10_1016_j_cclet_2021_01_019
crossref_primary_10_1016_j_watres_2023_120614
crossref_primary_10_1016_j_chemosphere_2022_137728
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1016_j_seppur_2024_128894
crossref_primary_10_1016_j_apcatb_2021_120370
crossref_primary_10_1016_j_isci_2022_104930
crossref_primary_10_1016_j_seppur_2024_127324
crossref_primary_10_1016_j_seppur_2023_123385
crossref_primary_10_1016_j_jhazmat_2023_131844
crossref_primary_10_1016_j_seppur_2022_121904
crossref_primary_10_2139_ssrn_3986104
crossref_primary_10_1016_j_seppur_2023_123146
crossref_primary_10_1016_j_jece_2024_112280
crossref_primary_10_1016_j_apcatb_2021_119903
crossref_primary_10_1016_j_cej_2020_127972
crossref_primary_10_1016_j_envres_2023_117883
crossref_primary_10_1021_acs_est_1c06205
crossref_primary_10_1016_j_jece_2024_114493
crossref_primary_10_1016_j_cej_2020_127738
crossref_primary_10_1016_j_jtice_2025_105951
crossref_primary_10_1016_j_cej_2021_133581
crossref_primary_10_1016_j_desal_2023_116859
crossref_primary_10_1016_j_seppur_2024_127430
crossref_primary_10_1016_j_efmat_2022_12_001
crossref_primary_10_1016_j_cej_2021_133464
crossref_primary_10_3390_molecules27207064
crossref_primary_10_1016_j_jece_2021_105145
crossref_primary_10_1016_j_jece_2022_108210
crossref_primary_10_1016_j_watres_2023_119957
crossref_primary_10_1016_j_apcatb_2022_122248
crossref_primary_10_1021_acs_est_2c04312
crossref_primary_10_1016_j_jwpe_2023_104120
crossref_primary_10_1016_j_seppur_2021_119782
crossref_primary_10_1016_j_cej_2023_146960
crossref_primary_10_1016_j_jcis_2024_03_024
crossref_primary_10_1016_j_chemosphere_2022_134564
crossref_primary_10_1016_j_cej_2024_149052
crossref_primary_10_1016_j_cej_2024_149294
crossref_primary_10_1021_acs_est_3c03201
crossref_primary_10_1016_j_jhazmat_2021_128062
crossref_primary_10_1016_j_cej_2022_140282
crossref_primary_10_1016_j_cej_2023_142360
crossref_primary_10_1016_j_seppur_2024_126339
crossref_primary_10_1016_j_jcis_2023_11_076
crossref_primary_10_1016_j_envres_2023_115322
crossref_primary_10_2139_ssrn_4045412
crossref_primary_10_1016_j_cej_2023_144531
crossref_primary_10_1016_j_cej_2023_143444
crossref_primary_10_1021_acsami_0c03481
crossref_primary_10_1016_j_jmst_2021_01_022
crossref_primary_10_1021_acs_est_3c06887
crossref_primary_10_1016_j_scitotenv_2021_149833
crossref_primary_10_1021_acs_est_4c02257
crossref_primary_10_1016_j_jhazmat_2024_135437
crossref_primary_10_1016_j_cej_2024_153651
crossref_primary_10_1016_j_cej_2021_133004
crossref_primary_10_1016_j_cej_2022_134610
crossref_primary_10_1080_09593330_2020_1782994
crossref_primary_10_1016_j_diamond_2022_109313
crossref_primary_10_1021_acs_est_3c02167
crossref_primary_10_1016_j_apcatb_2021_120048
crossref_primary_10_1016_j_apcatb_2022_122349
crossref_primary_10_1016_j_seppur_2023_124389
crossref_primary_10_1016_j_jwpe_2024_105574
crossref_primary_10_1016_j_jwpe_2024_106307
crossref_primary_10_1016_j_watres_2025_123488
crossref_primary_10_1021_acs_est_4c03218
crossref_primary_10_1016_j_cej_2020_127507
crossref_primary_10_1016_j_cej_2023_144529
crossref_primary_10_1016_j_cclet_2022_107755
crossref_primary_10_1039_D2EN00054G
crossref_primary_10_1039_D2TA02188A
crossref_primary_10_1016_j_jece_2024_114305
crossref_primary_10_1016_j_seppur_2023_124151
crossref_primary_10_1016_j_apcatb_2023_123606
crossref_primary_10_1016_j_cej_2022_136806
crossref_primary_10_1016_j_jhazmat_2021_128044
crossref_primary_10_1016_j_jhazmat_2022_128581
crossref_primary_10_1016_j_scitotenv_2022_159937
crossref_primary_10_1016_j_cej_2022_141161
crossref_primary_10_1016_j_ijbiomac_2023_126984
crossref_primary_10_1021_acs_est_1c06762
crossref_primary_10_1016_j_jhazmat_2020_124952
crossref_primary_10_1016_j_jwpe_2024_106517
crossref_primary_10_1016_j_seppur_2025_132396
crossref_primary_10_1016_j_jtice_2025_105990
crossref_primary_10_1016_j_chemosphere_2021_130949
crossref_primary_10_2139_ssrn_4114269
crossref_primary_10_1016_j_apcatb_2022_121593
crossref_primary_10_1016_j_cej_2021_132299
crossref_primary_10_1016_j_cej_2024_149003
crossref_primary_10_1016_j_cej_2022_140198
crossref_primary_10_1016_j_surfin_2021_101482
crossref_primary_10_1016_j_colsurfa_2022_128696
crossref_primary_10_1039_D2EN01156E
crossref_primary_10_1016_j_memsci_2023_121466
crossref_primary_10_3390_toxics12010070
crossref_primary_10_1016_j_apcatb_2022_121342
crossref_primary_10_1016_j_seppur_2023_125381
crossref_primary_10_1016_j_cej_2021_131080
crossref_primary_10_1016_j_catcom_2023_106833
crossref_primary_10_1016_j_jece_2025_115324
crossref_primary_10_1016_j_jes_2023_03_038
crossref_primary_10_1016_j_seppur_2023_125719
crossref_primary_10_1016_j_jece_2023_109442
crossref_primary_10_1002_ange_202422892
crossref_primary_10_1016_j_cej_2022_140537
crossref_primary_10_1016_j_jcis_2022_10_060
crossref_primary_10_1016_j_psep_2023_06_080
crossref_primary_10_1016_j_seppur_2024_128025
crossref_primary_10_1073_pnas_2119492119
crossref_primary_10_1021_acsami_4c05315
crossref_primary_10_1016_j_cej_2022_140773
crossref_primary_10_1016_j_envres_2022_113970
crossref_primary_10_1016_j_watres_2024_121485
crossref_primary_10_1021_acs_est_2c00369
crossref_primary_10_1016_j_apsusc_2022_154760
crossref_primary_10_1016_j_chemosphere_2023_140203
crossref_primary_10_1016_j_apsusc_2024_160545
crossref_primary_10_1016_j_cej_2022_138461
crossref_primary_10_1016_j_jcis_2021_08_086
crossref_primary_10_1007_s11356_024_32456_1
crossref_primary_10_1016_j_cej_2022_138468
crossref_primary_10_1016_j_jhazmat_2024_135740
crossref_primary_10_1016_j_ceja_2023_100506
crossref_primary_10_1016_j_jece_2023_109576
crossref_primary_10_1016_j_apsusc_2022_154997
crossref_primary_10_1016_j_cej_2021_131776
crossref_primary_10_1016_j_cej_2021_131777
crossref_primary_10_1016_j_cej_2021_133834
crossref_primary_10_1016_j_cej_2021_131779
crossref_primary_10_1016_j_seppur_2023_125965
crossref_primary_10_1002_ejic_202300526
crossref_primary_10_1016_j_envpol_2024_125123
crossref_primary_10_1016_j_envres_2024_118779
crossref_primary_10_1016_j_psep_2023_12_002
crossref_primary_10_1016_j_apcatb_2024_124185
crossref_primary_10_1016_j_cclet_2020_10_026
crossref_primary_10_1016_j_chemosphere_2022_133735
crossref_primary_10_1016_j_seppur_2021_118965
crossref_primary_10_1073_pnas_2220608120
crossref_primary_10_1016_j_colsurfa_2023_133083
crossref_primary_10_1016_j_apcatb_2022_121671
crossref_primary_10_1007_s11356_024_34144_6
crossref_primary_10_1016_j_seppur_2024_128247
crossref_primary_10_1016_j_jece_2021_106757
crossref_primary_10_1016_j_jhazmat_2022_130605
crossref_primary_10_1016_j_apcatb_2024_124291
crossref_primary_10_1016_j_jece_2025_115358
crossref_primary_10_1016_j_apcatb_2024_124290
crossref_primary_10_2139_ssrn_4129307
crossref_primary_10_1016_j_jhazmat_2022_129613
crossref_primary_10_1016_j_apcatb_2022_121419
crossref_primary_10_1016_j_cej_2022_136180
crossref_primary_10_1016_j_watres_2022_118730
crossref_primary_10_1016_j_cej_2022_137274
crossref_primary_10_1016_j_seppur_2022_121082
crossref_primary_10_1016_j_jece_2022_107196
crossref_primary_10_1021_acsestengg_1c00464
crossref_primary_10_1021_acs_est_2c09034
crossref_primary_10_1002_adma_202401454
crossref_primary_10_1021_acsestwater_2c00471
crossref_primary_10_1016_j_cattod_2024_114733
crossref_primary_10_1016_j_chemosphere_2021_133455
crossref_primary_10_1016_j_cej_2023_146683
crossref_primary_10_1016_j_jece_2024_114038
crossref_primary_10_2139_ssrn_4092243
crossref_primary_10_1016_j_cej_2023_147769
crossref_primary_10_1021_acs_est_1c05374
crossref_primary_10_1016_j_colsurfa_2022_130343
crossref_primary_10_1016_j_jece_2024_115123
crossref_primary_10_1016_j_cej_2023_147525
crossref_primary_10_1021_acs_est_4c03869
crossref_primary_10_1016_j_cej_2020_127916
crossref_primary_10_1016_j_jece_2023_110870
crossref_primary_10_1016_j_scitotenv_2022_155670
crossref_primary_10_3390_separations9120420
crossref_primary_10_1016_j_cej_2022_137044
crossref_primary_10_1016_j_jece_2023_110747
crossref_primary_10_1021_acs_est_3c05153
crossref_primary_10_1016_j_cej_2024_156769
crossref_primary_10_1016_j_psep_2024_07_082
crossref_primary_10_1016_j_jece_2023_109762
crossref_primary_10_1016_j_seppur_2024_129432
crossref_primary_10_1039_D0TA11503G
crossref_primary_10_1016_j_apcatb_2022_121537
crossref_primary_10_1016_j_cej_2021_129498
crossref_primary_10_1016_j_seppur_2023_124302
crossref_primary_10_2139_ssrn_4184114
crossref_primary_10_1016_j_watres_2024_122255
crossref_primary_10_1016_j_cej_2022_139233
crossref_primary_10_1016_j_cej_2020_125603
crossref_primary_10_1016_j_apsusc_2023_158263
crossref_primary_10_1016_j_jece_2021_106781
crossref_primary_10_1016_j_apcatb_2024_124594
crossref_primary_10_1016_j_psep_2022_12_027
crossref_primary_10_1016_j_jece_2021_106545
crossref_primary_10_1016_j_jhazmat_2021_125294
crossref_primary_10_1016_j_cej_2021_131233
crossref_primary_10_1007_s11356_023_25191_6
crossref_primary_10_1016_j_isci_2023_107306
crossref_primary_10_5004_dwt_2021_27472
crossref_primary_10_1016_j_seppur_2021_119978
crossref_primary_10_1016_j_jclepro_2021_128781
crossref_primary_10_1016_j_cej_2022_139249
crossref_primary_10_1016_j_cej_2021_132578
crossref_primary_10_1016_j_cej_2024_156749
crossref_primary_10_1016_j_seppur_2023_123111
crossref_primary_10_1016_j_jhazmat_2024_136826
crossref_primary_10_1016_j_cej_2023_146523
crossref_primary_10_1021_acs_est_1c05048
crossref_primary_10_1021_acsestengg_3c00521
crossref_primary_10_1016_j_jwpe_2024_105272
crossref_primary_10_1016_j_cej_2023_146404
crossref_primary_10_1016_j_envpol_2024_124083
crossref_primary_10_1016_j_seppur_2021_118654
crossref_primary_10_1002_anie_202422892
crossref_primary_10_1021_acs_est_1c08790
crossref_primary_10_1016_j_jhazmat_2024_133425
crossref_primary_10_1016_j_seppur_2024_127225
crossref_primary_10_1016_j_cclet_2023_108407
crossref_primary_10_1016_j_psep_2021_11_033
crossref_primary_10_1007_s11356_023_27874_6
crossref_primary_10_2139_ssrn_4184269
crossref_primary_10_1016_j_seppur_2022_122560
crossref_primary_10_1038_s41467_023_39228_4
crossref_primary_10_1039_D4NJ05373G
crossref_primary_10_1016_j_chemosphere_2023_140847
crossref_primary_10_1021_acsestwater_4c00383
crossref_primary_10_1016_j_colsurfa_2024_134862
crossref_primary_10_1016_j_cej_2021_129971
crossref_primary_10_1016_j_carbon_2021_06_062
crossref_primary_10_1002_slct_202402032
crossref_primary_10_1016_j_jcis_2023_08_124
crossref_primary_10_1016_j_jclepro_2023_136054
crossref_primary_10_1016_j_ese_2023_100338
crossref_primary_10_1016_j_cej_2024_150500
crossref_primary_10_1016_j_jece_2023_111494
crossref_primary_10_1021_acsomega_2c02063
crossref_primary_10_1016_j_jece_2024_113814
crossref_primary_10_1016_j_cej_2022_135474
crossref_primary_10_1016_j_scitotenv_2020_143127
crossref_primary_10_3390_ijerph18073344
crossref_primary_10_1016_j_scitotenv_2020_143120
crossref_primary_10_1016_j_chemosphere_2023_138401
crossref_primary_10_1016_j_scitotenv_2024_170877
crossref_primary_10_1016_j_chemosphere_2021_130482
crossref_primary_10_1016_j_seppur_2022_122437
crossref_primary_10_1016_j_seppur_2022_121015
crossref_primary_10_1002_aesr_202100038
crossref_primary_10_1016_j_seppur_2021_120086
crossref_primary_10_1142_S179360472451010X
crossref_primary_10_1016_j_cej_2024_149724
crossref_primary_10_1021_acs_est_2c01968
crossref_primary_10_1016_j_seppur_2024_129186
crossref_primary_10_1016_j_jece_2024_114810
crossref_primary_10_1021_acs_est_4c07457
crossref_primary_10_1016_j_efmat_2022_04_001
crossref_primary_10_1016_j_jes_2023_01_010
crossref_primary_10_1016_j_cej_2022_135002
crossref_primary_10_1021_acs_est_3c10898
crossref_primary_10_1016_j_jcis_2022_05_105
crossref_primary_10_1016_j_jhazmat_2024_134720
crossref_primary_10_1007_s42114_023_00757_7
crossref_primary_10_1016_j_cej_2021_132816
crossref_primary_10_1016_j_jhazmat_2021_126447
crossref_primary_10_1016_j_jenvman_2024_120210
crossref_primary_10_1016_j_jece_2023_110143
crossref_primary_10_1016_j_psep_2023_01_069
crossref_primary_10_1016_j_seppur_2024_130037
crossref_primary_10_1021_acsestwater_4c01147
crossref_primary_10_1016_j_apcatb_2024_124695
crossref_primary_10_1016_j_chemosphere_2022_137394
crossref_primary_10_1016_j_molstruc_2023_136344
crossref_primary_10_1016_j_chemosphere_2023_138783
crossref_primary_10_1016_j_seppur_2023_124827
crossref_primary_10_1016_j_jhazmat_2021_126794
crossref_primary_10_1016_j_ccr_2024_215749
crossref_primary_10_1021_acs_est_2c02636
crossref_primary_10_1007_s43630_023_00480_8
crossref_primary_10_1016_j_jwpe_2023_103781
crossref_primary_10_1016_j_cej_2024_156245
crossref_primary_10_1016_j_seppur_2024_130145
crossref_primary_10_1016_j_seppur_2022_122009
crossref_primary_10_1016_j_seppur_2023_124944
crossref_primary_10_1073_pnas_2201607119
crossref_primary_10_1016_j_seppur_2023_123868
crossref_primary_10_1021_acs_est_4c02809
crossref_primary_10_1016_j_jhazmat_2021_127515
crossref_primary_10_1016_j_molstruc_2024_137914
crossref_primary_10_1016_j_cej_2021_129667
crossref_primary_10_1016_j_watres_2024_121684
crossref_primary_10_1016_j_cej_2024_148623
crossref_primary_10_1016_j_jhazmat_2020_124146
crossref_primary_10_1002_smll_202004579
crossref_primary_10_1016_j_cej_2022_135277
crossref_primary_10_1021_acsami_0c19013
crossref_primary_10_1016_j_scitotenv_2022_160001
crossref_primary_10_1016_j_ica_2024_122407
crossref_primary_10_1016_j_jes_2021_08_054
crossref_primary_10_1016_j_desal_2025_118643
crossref_primary_10_1016_j_chemosphere_2023_138563
crossref_primary_10_1016_j_seppur_2023_123866
crossref_primary_10_1016_j_jenvman_2024_122568
crossref_primary_10_1016_j_ccr_2024_215765
crossref_primary_10_1016_j_jclepro_2023_136483
crossref_primary_10_1016_j_seppur_2022_122265
crossref_primary_10_1039_D1TA00033K
crossref_primary_10_1016_j_cej_2022_136251
crossref_primary_10_3390_catal12111359
crossref_primary_10_1016_j_jece_2023_109460
crossref_primary_10_1016_j_cej_2024_149928
crossref_primary_10_1016_j_jece_2023_111424
crossref_primary_10_1016_j_cej_2022_136373
crossref_primary_10_1016_j_seppur_2024_127076
crossref_primary_10_1016_j_seppur_2025_131869
crossref_primary_10_12677_OJNS_2023_113058
crossref_primary_10_1016_j_apcatb_2023_123130
crossref_primary_10_1007_s12274_024_6836_6
crossref_primary_10_1016_j_cej_2021_133822
crossref_primary_10_1016_j_seppur_2023_125811
crossref_primary_10_1016_j_desal_2025_118630
crossref_primary_10_1016_j_envint_2024_108466
crossref_primary_10_1016_j_talo_2023_100229
crossref_primary_10_1016_j_cej_2021_130679
crossref_primary_10_1016_j_seppur_2022_122136
crossref_primary_10_1016_j_heliyon_2023_e19992
crossref_primary_10_1021_acsami_2c19243
crossref_primary_10_1021_acs_est_2c01759
crossref_primary_10_1016_j_jwpe_2023_103633
crossref_primary_10_1016_j_seppur_2024_128042
crossref_primary_10_1016_j_jece_2024_113910
crossref_primary_10_1016_j_seppur_2025_131737
crossref_primary_10_1016_j_jwpe_2023_104715
crossref_primary_10_1016_j_jmst_2020_05_057
crossref_primary_10_1016_j_seppur_2025_131739
crossref_primary_10_1016_j_jcis_2021_10_150
crossref_primary_10_1016_j_cej_2021_133933
crossref_primary_10_2166_wrd_2021_046
crossref_primary_10_1021_acs_est_2c08266
crossref_primary_10_1016_j_apcatb_2024_124411
crossref_primary_10_1021_acsestengg_3c00249
crossref_primary_10_2139_ssrn_4020837
crossref_primary_10_1016_j_apcatb_2024_124652
Cites_doi 10.1021/es400878c
10.1016/j.jhazmat.2014.12.026
10.1016/0039-6028(93)90721-U
10.1016/j.apcatb.2007.02.001
10.1021/acs.est.7b02271
10.1021/acs.est.7b03007
10.1016/j.aca.2003.11.036
10.1021/es501218f
10.1016/j.jhazmat.2010.03.039
10.1016/j.chemosphere.2008.08.043
10.1016/j.watres.2017.04.070
10.1016/j.watres.2008.05.021
10.1021/es990457c
10.1021/acs.est.8b04669
10.1016/j.watres.2014.05.005
10.1016/j.watres.2017.02.016
10.1021/acscatal.6b00205
10.1016/j.apcatb.2014.02.012
10.1016/j.cej.2018.07.103
10.1021/acs.est.5b00623
10.1039/C7TA07942G
10.1016/j.apcatb.2019.01.079
10.1021/es5061512
10.1016/j.apcatb.2017.11.051
10.1016/j.jhazmat.2016.12.063
10.1016/j.apcatb.2014.07.057
10.1016/j.envpol.2016.04.088
10.1016/j.apcatb.2016.01.059
10.1021/es970648k
10.1021/acs.est.6b02079
10.1016/0584-8539(93)80114-P
10.1021/es0263792
10.1021/es011109p
10.1021/es1013714
10.1021/acs.est.8b00959
10.1016/j.apcatb.2009.12.014
10.1021/acs.est.6b02841
10.1016/j.apcatb.2017.11.056
10.1021/acscatal.5b01044
10.1016/j.watres.2013.06.023
10.6028/NBS.NSRDS.65
10.1021/es304721g
10.1016/0021-9517(91)90334-Z
10.1016/j.watres.2016.04.001
10.1016/j.apcatb.2015.08.001
10.1039/C7CC02820B
10.1016/j.watres.2017.03.043
10.1039/C7TA00880E
10.1016/j.cej.2017.04.018
10.1016/j.apcatb.2019.118238
10.1021/acscatal.7b03338
10.1016/j.apcatb.2014.10.051
10.1016/j.jhazmat.2016.01.023
10.1016/j.apcatb.2017.08.088
10.1016/j.chemosphere.2014.12.053
10.1016/j.apcatb.2016.04.043
10.1016/j.cej.2017.08.116
10.1021/acs.est.5b05974
10.1016/j.apcatb.2010.10.013
10.1016/j.chemosphere.2013.08.090
10.1021/es502056d
10.1021/es00021a011
10.1021/es2029944
10.1007/s11814-018-0074-0
ContentType Journal Article
Copyright Copyright American Chemical Society Feb 18, 2020
Copyright_xml – notice: Copyright American Chemical Society Feb 18, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.9b04696
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2488
ExternalDocumentID 31971792
10_1021_acs_est_9b04696
b200163440
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a501t-bc4be14f936051b86071515a23d0e2e0879ee48f642aa543d193d17a8aa3eef3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 16:38:56 EDT 2025
Fri Jul 11 12:43:10 EDT 2025
Sun Jun 29 16:12:01 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Tue Jul 01 02:58:08 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Thu Aug 27 22:10:50 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a501t-bc4be14f936051b86071515a23d0e2e0879ee48f642aa543d193d17a8aa3eef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0503-9671
OpenAccessLink https://ore.exeter.ac.uk/repository/bitstream/10871/40558/1/ES%26T.pdf
PMID 31971792
PQID 2360025662
PQPubID 45412
PageCount 13
ParticipantIDs proquest_miscellaneous_2561528133
proquest_miscellaneous_2344274048
proquest_journals_2360025662
pubmed_primary_31971792
crossref_citationtrail_10_1021_acs_est_9b04696
crossref_primary_10_1021_acs_est_9b04696
acs_journals_10_1021_acs_est_9b04696
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1021/es400878c
– ident: ref19/cit19
  doi: 10.1016/j.jhazmat.2014.12.026
– ident: ref50/cit50
  doi: 10.1016/0039-6028(93)90721-U
– ident: ref5/cit5
  doi: 10.1016/j.apcatb.2007.02.001
– ident: ref62/cit62
  doi: 10.1021/acs.est.7b02271
– ident: ref11/cit11
  doi: 10.1021/acs.est.7b03007
– ident: ref56/cit56
  doi: 10.1016/j.aca.2003.11.036
– ident: ref21/cit21
  doi: 10.1021/es501218f
– ident: ref2/cit2
  doi: 10.1016/j.jhazmat.2010.03.039
– ident: ref37/cit37
  doi: 10.1016/j.chemosphere.2008.08.043
– ident: ref24/cit24
  doi: 10.1016/j.watres.2017.04.070
– ident: ref36/cit36
  doi: 10.1016/j.watres.2008.05.021
– ident: ref59/cit59
  doi: 10.1021/es990457c
– ident: ref26/cit26
  doi: 10.1021/acs.est.8b04669
– ident: ref35/cit35
  doi: 10.1016/j.watres.2014.05.005
– ident: ref25/cit25
  doi: 10.1016/j.watres.2017.02.016
– ident: ref42/cit42
  doi: 10.1021/acscatal.6b00205
– ident: ref13/cit13
  doi: 10.1016/j.apcatb.2014.02.012
– ident: ref60/cit60
  doi: 10.1016/j.cej.2018.07.103
– ident: ref10/cit10
  doi: 10.1021/acs.est.5b00623
– ident: ref31/cit31
  doi: 10.1039/C7TA07942G
– ident: ref46/cit46
  doi: 10.1016/j.apcatb.2019.01.079
– ident: ref12/cit12
  doi: 10.1021/es5061512
– ident: ref23/cit23
  doi: 10.1016/j.apcatb.2017.11.051
– ident: ref8/cit8
  doi: 10.1016/j.jhazmat.2016.12.063
– ident: ref40/cit40
  doi: 10.1016/j.apcatb.2014.07.057
– ident: ref14/cit14
  doi: 10.1016/j.envpol.2016.04.088
– ident: ref45/cit45
  doi: 10.1016/j.apcatb.2016.01.059
– ident: ref16/cit16
  doi: 10.1021/es970648k
– ident: ref44/cit44
  doi: 10.1021/acs.est.6b02079
– ident: ref51/cit51
  doi: 10.1016/0584-8539(93)80114-P
– ident: ref4/cit4
  doi: 10.1021/es0263792
– ident: ref17/cit17
  doi: 10.1021/es011109p
– ident: ref18/cit18
  doi: 10.1021/es1013714
– ident: ref43/cit43
  doi: 10.1021/acs.est.8b00959
– ident: ref52/cit52
  doi: 10.1016/j.apcatb.2009.12.014
– ident: ref22/cit22
  doi: 10.1021/acs.est.6b02841
– ident: ref27/cit27
  doi: 10.1016/j.apcatb.2017.11.056
– ident: ref57/cit57
  doi: 10.1021/acscatal.5b01044
– ident: ref48/cit48
  doi: 10.1016/j.watres.2013.06.023
– ident: ref20/cit20
  doi: 10.6028/NBS.NSRDS.65
– ident: ref7/cit7
  doi: 10.1021/es304721g
– ident: ref39/cit39
  doi: 10.1016/0021-9517(91)90334-Z
– ident: ref63/cit63
  doi: 10.1016/j.watres.2016.04.001
– ident: ref41/cit41
  doi: 10.1016/j.apcatb.2015.08.001
– ident: ref28/cit28
  doi: 10.1039/C7CC02820B
– ident: ref30/cit30
  doi: 10.1016/j.watres.2017.03.043
– ident: ref58/cit58
  doi: 10.1039/C7TA00880E
– ident: ref29/cit29
  doi: 10.1016/j.cej.2017.04.018
– ident: ref47/cit47
  doi: 10.1016/j.apcatb.2019.118238
– ident: ref32/cit32
  doi: 10.1021/acscatal.7b03338
– ident: ref49/cit49
  doi: 10.1016/j.apcatb.2014.10.051
– ident: ref53/cit53
  doi: 10.1016/j.jhazmat.2016.01.023
– ident: ref55/cit55
  doi: 10.1016/j.apcatb.2017.08.088
– ident: ref3/cit3
  doi: 10.1016/j.chemosphere.2014.12.053
– ident: ref15/cit15
  doi: 10.1016/j.apcatb.2016.04.043
– ident: ref64/cit64
  doi: 10.1016/j.cej.2017.08.116
– ident: ref9/cit9
  doi: 10.1021/acs.est.5b05974
– ident: ref38/cit38
  doi: 10.1016/j.apcatb.2010.10.013
– ident: ref1/cit1
  doi: 10.1016/j.chemosphere.2013.08.090
– ident: ref6/cit6
  doi: 10.1021/es502056d
– ident: ref61/cit61
  doi: 10.1021/es00021a011
– ident: ref54/cit54
  doi: 10.1021/es2029944
– ident: ref33/cit33
  doi: 10.1007/s11814-018-0074-0
SSID ssj0002308
Score 2.7058077
Snippet Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2476
SubjectTerms Anions
Catalysts
Copper
Degradation
Electron transfer
Electron Transport
Free radicals
Heavy metals
Intermediates
Iron oxides
Kinetics
Magnesium
Magnesium Oxide
Metals
Organic matter
Oxidation
Oxidation process
Oxidation-Reduction
Peroxides
Phenols
Pollutant removal
Pollutants
pollution control
Reaction kinetics
Superconductors (materials)
technology
thermodynamics
Title Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
URI http://dx.doi.org/10.1021/acs.est.9b04696
https://www.ncbi.nlm.nih.gov/pubmed/31971792
https://www.proquest.com/docview/2360025662
https://www.proquest.com/docview/2344274048
https://www.proquest.com/docview/2561528133
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQoFBYaJGReuCSsH4ksY-rqqu2EgWVRdpb5MekqiibqknUwpFfzjjJZinVAqcoztiyJp7xN358Q8ieRQzvuJVoaS6NpJA6UlD4KHNaALOZQcccTlucpIdf5PE8ma_Iov_cwefsvXFVjA4y1jaEcul98oCnKgtx1mT_8-B0EUmrZbICLdL5wOJzp4EwDbnq9jS0Blu2c8z0cXc6q2qpCcPRkq9xU9vY_bhL3Pjv7j8hmz3SpJNuaDwl92CxRR79xj-4RbYPVtfcULS38-oZ-TlrwnoJLQsajsg3FwVCUjpxy1xoNNxKoYZOrwDoqWn3emhdYslJSFfQvX9CcHltvtM-FRA-gR4F2szLftiF5lE-OgVf3tAP5gzd7nnzjX68OffwnMymB7P9w6jP1hCZZMzqyDppgckCtY-GblUgrkOwZLjwY-AwVpkGkKrAgMeYRAqP0NGzzChjBEAhtsnGolzAS0JZojwbe280oiPUobZaG8fBG2YRHqoR2UOt5r2xVXm7j85ZHgpR1Xmv6hGJl784dz3heci7cbG-wruhwmXH9bFedGc5Zlb94CJtIWTKR-Tt8BnNNezBmAWUTZCRkmcS_eZfZBDTJlwxIUbkRTceh_6gx8QAXPNX_6eD1-QhDwsEIYON2iEb9VUDu4iiavumtZ9flssYmg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOBQqFhQJG6oFLtvEjiX1cVV1toV2gLNLeIjt2UEXZVE2iFo78csbZJMtDi-AUxRlbznhm_I0fMwB7BjF8xoxATcviQHChAulyGySZ4o6aRKNh9qctpvHko3g9j-YbEHZ3YbATJbZUNpv4q-gCdN-XoZ0cKuM9uvgG3EQowry7NTr40NteBNSyy1mgeDzvg_n80YCfjbLy19loDcRspprxXXjfd7I5YfJ5WFdmmH37LX7j__zFPdhqcScZLQXlPmy4xTbc-Ska4TbsHK4uvSFpq_XlA_g-q_3qCSly4g_M1-c5AlQyyrrMaMTfUSGajC-dI6e62fkhVYElU5-8YPn-DqHmlf5K2sRA-HTkyAfRvGiF0DeP9MGps8U1OdGf0Aif1V_I2-sz6x7CbHw4O5gEbe6GQEchrQKTCeOoyHEQUO2N9GHsEDppxm3omAtlopwTMkf3R-tIcItA0tJES625cznfgc1FsXCPgdBIWhpaqxViJeShMkrpjDmrqUGwKAewh1xNW9Ur02ZXndHUFyKr05bVAxh2I51mbfhzn4XjfH2FV32Fi2Xkj_Wku53orPrBeNwAypgN4GX_GZXX78johStqTyMESwRa0b_QIMKNmKScD-DRUiz7_qD9RHdcsSf_xoMXcGsyOzlOj4-mb57CbeaXDnxuG7kLm9Vl7Z4hvqrM80alfgBAPyD7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSIg9MBgMygYYaQ-8pNQfSezHaqza-CjT6KS-RXbsoImtqZZE23jkL-cudTM-VARPUZyz5Zx959_57DtCdi1g-JxbCZKWJ5EUUkfKFy5Kcy08s6kBxYynLcbJwYl8N42n4VIY3oWBTlTQUtU68VGq564IEQbYGywHXdnXFq265Da5g047NLmGe587_QugWi3zFmiRTLuAPn80gCtSXv26Iq2Ame1yM9ogJ11H21MmX_tNbfv5t99iOP7vnzwg9wP-pMPFhHlIbvnZJln_KSrhJtnav7n8BqRB-qtH5PukwV0UWhYUD843ZwUAVTrMlxnSKN5VoYaOLrynx6b1ANG6hJIxJjFYvB8B5Lw01zQkCIKnp4cYTHMeJiM2D_TRsXflFf1ovoAyPm3O6aerU-cfk8lof7J3EIUcDpGJB6yObC6tZ7KAgQDxtwrD2QGEMly4ged-oFLtvVQFmEHGxFI4AJSOpUYZI7wvxBZZm5Uz_5RQFivHBs4ZDZgJeKit1ibn3hlmATSqHtkFrmZBBKus9a5zlmEhsDoLrO6R_nK0szyEQcdsHGerK7zuKswXEUBWk-4sp89NP7hIWmCZ8B551X0GIUbPjJn5skEaKXkqQZv-hQaQbswVE6JHniymZtcf0KNglmv-7N948JLcPXo7yj4cjt9vk3scdxAwxY3aIWv1ReOfA8yq7YtWqn4Agp0jfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+of+Persulfate+Activation+from+a+Free+Radical+to+a+Nonradical+Pathway+through+the+Incorporation+of+Non-Redox+Magnesium+Oxide&rft.jtitle=Environmental+science+%26+technology&rft.au=Jawad%2C+Ali&rft.au=Zhan%2C+Kun&rft.au=Wang%2C+Haibin&rft.au=Shahzad%2C+Ajmal&rft.date=2020-02-18&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=54&rft.issue=4&rft.spage=2476&rft.epage=2488&rft_id=info:doi/10.1021%2Facs.est.9b04696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_9b04696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon