Methanobacterium Capable of Direct Interspecies Electron Transfer
Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, lead...
Saved in:
Published in | Environmental science & technology Vol. 54; no. 23; pp. 15347 - 15354 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function. |
---|---|
AbstractList | Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H₂, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function. Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function. Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function. Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the , leading to the assumption that an abundance of other types of methanogens, such as species, indicates a lack of DIET. We report here on a strain of , designated strain YSL, that grows via DIET in defined cocultures with . The cocultures formed aggregates, in which cells of strain YSL and were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in , the genus of methanogens that has been the exemplar for interspecies electron transfer H , suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function. |
Author | Zhang, Yuechao Liu, Fanghua Wang, Bingchen Zheng, Shiling Lovley, Derek R |
AuthorAffiliation | Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) Chinese Academy of Sciences National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences Pilot National Laboratory for Marine Science and Technology (Qingdao) Department of Microbiology Guangdong Academy of Sciences Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research Laboratory for Marine Biology and Biotechnology Center for Ocean Mega-Science, Chinese Academy of Sciences University of Massachusetts Northeastern University |
AuthorAffiliation_xml | – name: Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research – name: Pilot National Laboratory for Marine Science and Technology (Qingdao) – name: Northeastern University – name: National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences – name: Center for Ocean Mega-Science, Chinese Academy of Sciences – name: Chinese Academy of Sciences – name: Department of Microbiology – name: University of Massachusetts – name: Laboratory for Marine Biology and Biotechnology – name: Guangdong Academy of Sciences – name: Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) |
Author_xml | – sequence: 1 givenname: Shiling surname: Zheng fullname: Zheng, Shiling organization: Pilot National Laboratory for Marine Science and Technology (Qingdao) – sequence: 2 givenname: Fanghua orcidid: 0000-0002-1934-3674 surname: Liu fullname: Liu, Fanghua email: fhliu@yic.ac.cn organization: Center for Ocean Mega-Science, Chinese Academy of Sciences – sequence: 3 givenname: Bingchen surname: Wang fullname: Wang, Bingchen organization: Chinese Academy of Sciences – sequence: 4 givenname: Yuechao surname: Zhang fullname: Zhang, Yuechao organization: Chinese Academy of Sciences – sequence: 5 givenname: Derek R orcidid: 0000-0001-7158-3555 surname: Lovley fullname: Lovley, Derek R organization: University of Massachusetts |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33205658$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LAzEQxYMoWqtnb7LgRZCt-dhJs0ep9QMULwrelmx2givbpCa7B_97U1p7ENRTYOb3XmbmHZJd5x0ScsLohFHOLrWJE4z9hBoKwGGHjBhwmoMCtktGlDKRl0K-HpDDGN8ppVxQtU8OhOAUJKgRuXrE_k07X2vTY2iHRTbTS113mHmbXbcBTZ_du9SKSzQtxmzepVLwLnsO2kWL4YjsWd1FPN68Y_JyM3-e3eUPT7f3s6uHXANlfQ6I2hppbaMl1Dz9VzYKeKlEzWzdYFE0ghdooS5oWYBkVkPDlQY-NSVSI8bkfO27DP5jSEtXizYa7Drt0A-x4jAtkgOo8n-0kExJITlP6NkP9N0PwaVFVlSpCjGVIlGnG2qoF9hUy9AudPisvu-YgMs1YIKPMaDdIoxWq6SqlFS1st8klRTwQ2HaXvetd33QbfeH7mKtWzW2s_5GfwHBaacS |
CitedBy_id | crossref_primary_10_1016_j_biortech_2024_131975 crossref_primary_10_1007_s11274_023_03582_8 crossref_primary_10_1016_j_biortech_2024_131734 crossref_primary_10_1002_wer_10994 crossref_primary_10_1016_j_biortech_2021_125052 crossref_primary_10_1016_j_cej_2023_146359 crossref_primary_10_1016_j_watres_2024_122104 crossref_primary_10_1016_j_biortech_2022_128205 crossref_primary_10_1016_j_jece_2023_110035 crossref_primary_10_1016_j_ijhydene_2024_09_450 crossref_primary_10_1016_j_biortech_2022_127113 crossref_primary_10_1016_j_cej_2024_156041 crossref_primary_10_1016_j_envint_2023_107964 crossref_primary_10_1016_j_fuel_2023_130517 crossref_primary_10_3390_fermentation9050444 crossref_primary_10_1016_j_renene_2022_06_106 crossref_primary_10_1016_j_cej_2022_140019 crossref_primary_10_1016_j_scitotenv_2022_155190 crossref_primary_10_1016_j_biotechadv_2024_108369 crossref_primary_10_1016_j_biortech_2025_132153 crossref_primary_10_1016_j_cej_2022_135746 crossref_primary_10_1016_j_seppur_2024_130463 crossref_primary_10_1039_D2EE03886B crossref_primary_10_1016_j_cej_2025_160028 crossref_primary_10_1016_j_jenvman_2025_124896 crossref_primary_10_1016_j_scitotenv_2022_158510 crossref_primary_10_1016_j_jenvman_2022_116732 crossref_primary_10_2139_ssrn_3963578 crossref_primary_10_1016_j_biortech_2024_130374 crossref_primary_10_1016_j_fuel_2025_134393 crossref_primary_10_1016_j_cej_2023_148376 crossref_primary_10_1016_j_copbio_2021_01_014 crossref_primary_10_1016_j_jwpe_2022_103193 crossref_primary_10_1016_j_envres_2024_119958 crossref_primary_10_1016_j_energy_2025_134788 crossref_primary_10_1016_j_bej_2024_109254 crossref_primary_10_1016_j_envres_2023_116589 crossref_primary_10_1016_j_fuel_2022_126140 crossref_primary_10_1016_j_biortech_2022_127102 crossref_primary_10_1016_j_biortech_2021_126553 crossref_primary_10_1016_j_jclepro_2024_144116 crossref_primary_10_1016_j_resconrec_2024_107507 crossref_primary_10_1016_j_cej_2024_156792 crossref_primary_10_1016_j_psep_2024_11_038 crossref_primary_10_1016_j_enconman_2023_116747 crossref_primary_10_1016_j_jwpe_2022_103199 crossref_primary_10_1128_AEM_01488_21 crossref_primary_10_1016_j_biortech_2021_126308 crossref_primary_10_1016_j_scitotenv_2022_159333 crossref_primary_10_1016_j_biortech_2021_124928 crossref_primary_10_1016_j_watres_2022_118118 crossref_primary_10_1016_j_renene_2022_06_059 crossref_primary_10_1002_aic_18305 crossref_primary_10_1016_j_jece_2024_114654 crossref_primary_10_1016_j_scitotenv_2024_171384 crossref_primary_10_1007_s10123_023_00458_7 crossref_primary_10_1016_j_biotechadv_2021_107812 crossref_primary_10_1016_j_isci_2023_107504 crossref_primary_10_1016_j_memsci_2023_122108 crossref_primary_10_1016_j_watres_2022_119270 crossref_primary_10_2139_ssrn_3937102 crossref_primary_10_1016_j_biortech_2022_127658 crossref_primary_10_1016_j_cej_2022_136177 crossref_primary_10_1016_j_watres_2021_117055 crossref_primary_10_3390_fermentation11030117 crossref_primary_10_3390_fermentation9050467 crossref_primary_10_1016_j_scitotenv_2023_167842 crossref_primary_10_3389_fbioe_2024_1395810 crossref_primary_10_1016_j_jenvman_2024_123183 crossref_primary_10_1016_j_ese_2024_100410 crossref_primary_10_1016_j_wasman_2023_05_050 crossref_primary_10_1016_j_biortech_2024_131767 crossref_primary_10_1128_spectrum_00941_23 crossref_primary_10_1016_j_watres_2022_118335 crossref_primary_10_1007_s00253_024_13246_8 crossref_primary_10_1016_j_biteb_2023_101455 crossref_primary_10_1016_j_cej_2024_157460 crossref_primary_10_1186_s13068_021_02034_5 crossref_primary_10_1016_j_biortech_2022_127641 crossref_primary_10_1016_j_psep_2024_05_062 crossref_primary_10_1016_j_biortech_2023_128632 crossref_primary_10_1016_j_jhazmat_2025_137285 crossref_primary_10_1016_j_scitotenv_2024_178340 crossref_primary_10_1016_j_ecoenv_2021_112646 crossref_primary_10_1016_j_wasman_2022_07_018 crossref_primary_10_1016_j_biotechadv_2024_108398 crossref_primary_10_2139_ssrn_4181112 crossref_primary_10_3389_fmicb_2023_1114201 crossref_primary_10_1016_j_biortech_2025_132243 crossref_primary_10_1016_j_biortech_2024_130683 crossref_primary_10_1016_j_scitotenv_2022_153416 crossref_primary_10_1016_j_jece_2024_114398 crossref_primary_10_1016_j_biortech_2024_131414 crossref_primary_10_1128_AEM_00241_21 crossref_primary_10_1016_j_envres_2024_119765 crossref_primary_10_1016_j_biortech_2021_126340 crossref_primary_10_1021_acsestengg_4c00701 crossref_primary_10_1016_j_biortech_2021_126465 crossref_primary_10_1016_j_jece_2024_114435 crossref_primary_10_1016_j_watres_2021_117197 crossref_primary_10_1016_j_biortech_2021_126104 crossref_primary_10_1021_acsestengg_1c00316 crossref_primary_10_1016_j_watres_2024_122307 crossref_primary_10_1016_j_biortech_2022_127558 crossref_primary_10_1680_jemmr_23_00034 crossref_primary_10_1016_j_fuel_2024_131926 crossref_primary_10_1016_j_jhazmat_2024_135279 crossref_primary_10_1016_j_chemosphere_2023_140007 crossref_primary_10_1016_j_jwpe_2024_105715 crossref_primary_10_1016_j_cej_2024_149268 crossref_primary_10_1128_mbio_00360_23 crossref_primary_10_1016_j_jhazmat_2024_135836 crossref_primary_10_1016_j_biortech_2025_132115 crossref_primary_10_1016_j_scitotenv_2022_152950 crossref_primary_10_1016_j_biortech_2022_127385 crossref_primary_10_1016_j_watres_2024_122773 crossref_primary_10_1016_j_envres_2023_117590 crossref_primary_10_1016_j_scitotenv_2024_174085 crossref_primary_10_1007_s11783_021_1498_z crossref_primary_10_3390_fermentation10030158 crossref_primary_10_1016_j_cej_2022_137973 crossref_primary_10_1016_j_biortech_2023_128927 crossref_primary_10_3389_fmicb_2021_611739 crossref_primary_10_1016_j_scenv_2024_100106 crossref_primary_10_3390_microbiolres14040122 crossref_primary_10_1016_j_biortech_2024_131830 crossref_primary_10_1038_s41579_021_00597_6 crossref_primary_10_1016_j_renene_2024_120181 crossref_primary_10_1016_j_watres_2021_117490 crossref_primary_10_1016_j_jclepro_2023_140544 crossref_primary_10_1016_j_cej_2023_146931 crossref_primary_10_1061_JOEEDU_EEENG_7143 crossref_primary_10_1016_j_rser_2023_113536 crossref_primary_10_1016_j_biortech_2022_127454 crossref_primary_10_1093_femsre_fuad019 crossref_primary_10_1016_j_jwpe_2025_107121 crossref_primary_10_1093_femsre_fuad013 crossref_primary_10_3390_w16142057 crossref_primary_10_1016_j_scitotenv_2022_158172 crossref_primary_10_1016_j_cej_2024_156466 crossref_primary_10_1016_j_cej_2024_155013 crossref_primary_10_1016_j_ibiod_2022_105524 crossref_primary_10_1128_MRA_00752_21 crossref_primary_10_1016_j_renene_2022_01_101 crossref_primary_10_1016_j_scitotenv_2023_167006 crossref_primary_10_1016_j_envres_2022_113006 crossref_primary_10_1016_j_fuel_2022_123604 crossref_primary_10_1016_j_scitotenv_2023_166793 crossref_primary_10_1002_anie_202402318 crossref_primary_10_1016_j_chemosphere_2021_132296 crossref_primary_10_1016_j_jenvman_2024_121867 crossref_primary_10_1016_j_watres_2024_121503 crossref_primary_10_1128_mBio_02344_21 crossref_primary_10_1002_ange_202402318 crossref_primary_10_1002_smll_202306331 crossref_primary_10_1016_j_cej_2023_144228 crossref_primary_10_1021_acssuschemeng_1c07464 crossref_primary_10_1016_j_cej_2024_150761 crossref_primary_10_1016_j_jclepro_2021_129854 crossref_primary_10_1016_j_chemosphere_2022_135606 crossref_primary_10_1016_j_jenvman_2022_114471 crossref_primary_10_1016_j_fmre_2023_12_014 crossref_primary_10_1016_j_scitotenv_2022_160813 crossref_primary_10_1021_acs_est_1c04071 crossref_primary_10_1038_s41598_021_87118_w crossref_primary_10_1016_j_psep_2024_05_139 crossref_primary_10_1016_j_jbiosc_2023_03_009 crossref_primary_10_1002_jobm_70015 crossref_primary_10_1016_j_biombioe_2023_106783 crossref_primary_10_1016_j_jenvman_2023_117756 crossref_primary_10_1007_s10311_024_01774_8 crossref_primary_10_1002_mlf2_12037 crossref_primary_10_1016_j_chemosphere_2022_134483 crossref_primary_10_2139_ssrn_4125382 |
Cites_doi | 10.1016/j.bioelechem.2014.11.004 10.1007/s12275-017-7104-1 10.1128/mbio.00303-19 10.1039/c7en00577f 10.1038/ismej.2016.136 10.1016/j.soilbio.2018.11.015 10.1099/ijs.0.059964-0 10.1007/s00253-018-8976-7 10.1007/bf00407413 10.1007/bf00549357 10.1128/mbio.01273-18 10.1016/j.scitotenv.2015.10.154 10.1146/annurev-micro-030117-020420 10.1126/science.1196526 10.1016/j.biortech.2005.02.011 10.1099/ijs.0.034538-0 10.1111/1462-2920.12576 10.3389/fmicb.2019.02997 10.1111/1758-2229.12093 10.1128/aem.01154-18 10.1039/c2ee22459c 10.1111/j.1574-6941.1998.tb00467.x 10.1016/j.biortech.2014.09.009 10.1093/molbev/msy096 10.1016/j.copbio.2009.10.001 10.1016/j.rser.2015.10.102 10.1111/j.1462-2920.2004.00593.x 10.1099/00207713-37-2-172 10.1016/j.biortech.2010.11.119 10.1039/c3ee42189a 10.1186/1471-2180-9-109 10.3389/fmicb.2015.00941 10.1016/s0580-9517(08)70503-8 10.1016/j.watres.2016.10.077 10.1016/j.coal.2010.01.009 10.1093/femsec/fiy222 10.1111/j.1462-2920.2004.00616.x 10.1099/00207713-48-2-357 10.1038/s41579-019-0173-x 10.1038/nrmicro2166 10.1021/es803531g 10.3389/fmicb.2016.00498 10.1021/acs.est.8b01913 10.1038/nature02321 10.1016/j.copbio.2019.03.018 10.1016/j.scitotenv.2017.10.224 10.1038/s41598-019-57206-z 10.1128/aem.00895-14 10.3389/fenrg.2019.00029 10.1007/bf00290916 10.1099/00207713-37-2-171 10.1111/j.1758-2229.2011.00305.x 10.1007/0-387-30743-5_11 10.1128/aem.03837-12 10.1007/bf00406313 10.1196/annals.1419.005 |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society Copyright American Chemical Society Dec 1, 2020 |
Copyright_xml | – notice: 2020 American Chemical Society – notice: Copyright American Chemical Society Dec 1, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.0c05525 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Biotechnology Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 15354 |
ExternalDocumentID | 33205658 10_1021_acs_est_0c05525 b042838493 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a501t-5eeafc6ffda65b2bac9d852983b1fbde44d324ef5b4094561fa5d28a527c9e0c3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Jul 10 22:49:53 EDT 2025 Fri Jul 11 11:13:08 EDT 2025 Mon Jun 30 07:01:48 EDT 2025 Thu Apr 03 07:00:58 EDT 2025 Tue Jul 01 01:45:02 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Thu Dec 03 03:12:40 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a501t-5eeafc6ffda65b2bac9d852983b1fbde44d324ef5b4094561fa5d28a527c9e0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1934-3674 0000-0001-7158-3555 |
OpenAccessLink | http://ir.yic.ac.cn/handle/133337/26157 |
PMID | 33205658 |
PQID | 2469843763 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2574324589 proquest_miscellaneous_2461863622 proquest_journals_2469843763 pubmed_primary_33205658 crossref_primary_10_1021_acs_est_0c05525 crossref_citationtrail_10_1021_acs_est_0c05525 acs_journals_10_1021_acs_est_0c05525 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Bonin A. S. (ref34/cit34) 2006; 3 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1016/j.bioelechem.2014.11.004 – ident: ref54/cit54 doi: 10.1007/s12275-017-7104-1 – ident: ref21/cit21 doi: 10.1128/mbio.00303-19 – ident: ref56/cit56 doi: 10.1039/c7en00577f – ident: ref8/cit8 doi: 10.1038/ismej.2016.136 – ident: ref52/cit52 doi: 10.1016/j.soilbio.2018.11.015 – ident: ref27/cit27 doi: 10.1099/ijs.0.059964-0 – ident: ref50/cit50 doi: 10.1007/s00253-018-8976-7 – ident: ref1/cit1 doi: 10.1007/bf00407413 – ident: ref23/cit23 doi: 10.1007/bf00549357 – ident: ref42/cit42 doi: 10.1128/mbio.01273-18 – ident: ref48/cit48 doi: 10.1016/j.scitotenv.2015.10.154 – ident: ref5/cit5 doi: 10.1146/annurev-micro-030117-020420 – ident: ref41/cit41 doi: 10.1126/science.1196526 – ident: ref45/cit45 doi: 10.1016/j.biortech.2005.02.011 – ident: ref28/cit28 doi: 10.1099/ijs.0.034538-0 – ident: ref55/cit55 doi: 10.1111/1462-2920.12576 – ident: ref20/cit20 doi: 10.3389/fmicb.2019.02997 – ident: ref40/cit40 doi: 10.1111/1758-2229.12093 – ident: ref18/cit18 doi: 10.1128/aem.01154-18 – ident: ref32/cit32 doi: 10.1039/c2ee22459c – ident: ref36/cit36 doi: 10.1111/j.1574-6941.1998.tb00467.x – ident: ref43/cit43 doi: 10.1016/j.biortech.2014.09.009 – ident: ref26/cit26 doi: 10.1093/molbev/msy096 – ident: ref4/cit4 doi: 10.1016/j.copbio.2009.10.001 – ident: ref9/cit9 doi: 10.1016/j.rser.2015.10.102 – ident: ref22/cit22 doi: 10.1111/j.1462-2920.2004.00593.x – ident: ref38/cit38 doi: 10.1099/00207713-37-2-172 – ident: ref47/cit47 doi: 10.1016/j.biortech.2010.11.119 – ident: ref12/cit12 doi: 10.1039/c3ee42189a – ident: ref29/cit29 doi: 10.1186/1471-2180-9-109 – ident: ref24/cit24 doi: 10.3389/fmicb.2015.00941 – ident: ref25/cit25 doi: 10.1016/s0580-9517(08)70503-8 – ident: ref49/cit49 doi: 10.1016/j.watres.2016.10.077 – ident: ref46/cit46 doi: 10.1016/j.coal.2010.01.009 – ident: ref19/cit19 doi: 10.1093/femsec/fiy222 – ident: ref44/cit44 doi: 10.1111/j.1462-2920.2004.00616.x – ident: ref35/cit35 doi: 10.1099/00207713-48-2-357 – ident: ref7/cit7 doi: 10.1038/s41579-019-0173-x – ident: ref3/cit3 doi: 10.1038/nrmicro2166 – ident: ref16/cit16 doi: 10.1021/es803531g – ident: ref33/cit33 doi: 10.3389/fmicb.2016.00498 – ident: ref6/cit6 doi: 10.1021/acs.est.8b01913 – ident: ref17/cit17 doi: 10.1038/nature02321 – ident: ref10/cit10 doi: 10.1016/j.copbio.2019.03.018 – ident: ref51/cit51 doi: 10.1016/j.scitotenv.2017.10.224 – ident: ref14/cit14 doi: 10.1038/s41598-019-57206-z – ident: ref11/cit11 doi: 10.1128/aem.00895-14 – ident: ref13/cit13 doi: 10.3389/fenrg.2019.00029 – ident: ref30/cit30 doi: 10.1007/bf00290916 – ident: ref53/cit53 doi: 10.1099/00207713-37-2-171 – ident: ref31/cit31 doi: 10.1111/j.1758-2229.2011.00305.x – volume: 3 start-page: 231 volume-title: The Prokaryotes year: 2006 ident: ref34/cit34 doi: 10.1007/0-387-30743-5_11 – ident: ref39/cit39 doi: 10.1128/aem.03837-12 – ident: ref37/cit37 doi: 10.1007/bf00406313 – ident: ref2/cit2 doi: 10.1196/annals.1419.005 |
SSID | ssj0002308 |
Score | 2.6622856 |
Snippet | Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15347 |
SubjectTerms | Activated carbon Anaerobic digestion coculture Diet Electron transfer Electron Transport Electrons Energy and Climate environmental science fimbriae Geobacter Geobacter metallireducens Metabolism Methane Methanobacterium Methanogenic bacteria methanogens Methanosarcinales Microorganisms Pili Sediments |
Title | Methanobacterium Capable of Direct Interspecies Electron Transfer |
URI | http://dx.doi.org/10.1021/acs.est.0c05525 https://www.ncbi.nlm.nih.gov/pubmed/33205658 https://www.proquest.com/docview/2469843763 https://www.proquest.com/docview/2461863622 https://www.proquest.com/docview/2574324589 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4LDDwfpSXgsTAkpA4ucQeq6oIIcECSN0iPxegRU278Os5O2nKQwXW5Bw5d76Xz_6OkAvlUdEEDy0wG2aap6EwMg4TI3gBeSapcRXdu_v85im7HcBgDhb9vYJPkyuhqggNZBSrGIDCMlmlOStcntXtPbRGFyNpNmtWwNN80KL4_PiAc0Oq-uqGFsSW3sdcb9ansyoPTeiOljxH04mM1PtP4Ma_p79FNppIM-jWS2ObLJnhDln_hD-4Q_b782tuSNroebVLunfGbamjrnss5-lr0EOnKl9MMLJBbSUDv5foLmpirh30m246gfd91oz3yNN1_7F3EzbNFkIBcTIJwRhhVW6tFjlIit_nmgHlLJWJldpkmcbYy1iQLiPEqMsK0JQJoIXiJlbpPlkZjobmkAQ0UygCFD6VGrNNIbXOQRnOuBUFj3mHXCBXykZZqtLXwWlSuofIqrJhVYdEMxGVqgEsd30zXhYPuGwHvNVYHYtJT2Yyn8-Dum6ambO4HXLevkZ1czUUMTSjqadJWI5en_5CA4XDOQSGf3pQr6d2PmlKMeQEdvQ_HhyTNeoSfH9-5oSsTMZTc4pR0ESe-fX_ATflAoQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB6VcgAOBQqFQAEjFYnLhl3vemMfOEQhVUqbXmil3BbbO5YQJUHdRBU8Da_SN-vY2d3woyAulbh6bcvrGc989tjfAOzZwIqmVeSEdFFWqjTSaOIoQa16Is8MRx_RHR_no9Ps_URMNuBH8xaGBlFRT1UI4q_YBZI3vozsZDe2sRC8uUZ5iN8uaJNWvT14RxJ9xfn-8GQwiuo8ApEWcTKPBKJ2Nneu1Lkw3GirSim4kqlJnCkxy0qCFeiE8ZsdAhROi5JLLXjPKoxtSv3egJsEfbjf3vUHH1pbTwBeNjkSVJpPWvKgPwbsvZ-tfvV-ayBtcG37d-GynZRwo-VzdzE3Xfv9N77I_3nW7sFWjatZf7kQ7sMGTrfhzk9si9uwM1w96qOqtVWrHkB_jD6AQJYtMFcvvrABQQhzhmzm2NInsHBy6p-lfsKKDevcQSx4eofnD-H0Wn5uBzansyk-BsYzS5InVeempL21NmWZC4tKKqd7KlYd2CMpFLVpqIoQ9edJ4QtJNEUtmg50G80obE3P7rOEnK1v8Lpt8HXJTLK-6m6jaqtxcJ87NPP-pQMv289kXHzESE9xtgh1EpkTxuF_qSN6ntVRSPrTR0s1bseTppwAtpBP_m0OXsCt0cn4qDg6OD58Cre5P9oIN4d2YXN-vsBnhP_m5nlYggw-Xrf2XgGgPWgd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-NISH2wGCwUTbASEPiJV3ixGn8sIeqa7UxNiHBpL4F_zlLiNFOSysEn4evwvfi7CbZABXxMolXx7Yc3_nuZ5_9O4BdE1jRlIycKFyUWZlGCnUcJahkT-SZ5ugjuien-eFZ9nosxivwvXkLQ4OoqKcqBPH9qr6wrmYYSPZ8OdnKbmxiIXhzlfIYv36hjVq1f3RAUn3J-Wj4fnAY1bkEIiXiZBYJROVM7pxVudBcKyNtIbgsUp04bTHLLEELdEL7DQ-BCqeE5YUSvGckxialfm_BbR8k9Fu8_uBda-8JxBdNngSZ5uOWQOiPAXsPaKpfPeASWBvc22gdfrQTE261fOrOZ7prvv3GGfm_z9x9uFfja9ZfLIgHsIKTDVi7xrq4AZvDq8d9VLW2btVD6J-gDySQhQsM1vPPbEBQQp8jmzq28A0snKD656kfsWLDOocQCx7f4eUjOLuRn9uE1cl0go-B8cyQ9Enluba0x1ba2lwYlIV0qidj2YFdkkJZm4iqDNF_npS-kERT1qLpQLfRjtLUNO0-W8j58gav2gYXC4aS5VV3GnW7Ggf3OUQz72c68KL9TEbGR47UBKfzUCcpcsI6_C91RM-zO4qC_nRrocrteNKUE9AWxZN_m4PncOftwah8c3R6vA13uT_hCBeIdmB1djnHpwQDZ_pZWIUMPty08v4EXSxqoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methanobacterium+Capable+of+Direct+Interspecies+Electron+Transfer&rft.jtitle=Environmental+science+%26+technology&rft.au=Zheng%2C+Shiling&rft.au=Liu%2C+Fanghua&rft.au=Wang%2C+Bingchen&rft.au=Zhang%2C+Yuechao&rft.date=2020-12-01&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=54&rft.issue=23&rft.spage=15347&rft.epage=15354&rft_id=info:doi/10.1021%2Facs.est.0c05525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_0c05525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |