Methanobacterium Capable of Direct Interspecies Electron Transfer

Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, lead...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 54; no. 23; pp. 15347 - 15354
Main Authors Zheng, Shiling, Liu, Fanghua, Wang, Bingchen, Zhang, Yuechao, Lovley, Derek R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.
AbstractList Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H₂, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.
Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.
Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.
Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the , leading to the assumption that an abundance of other types of methanogens, such as species, indicates a lack of DIET. We report here on a strain of , designated strain YSL, that grows via DIET in defined cocultures with . The cocultures formed aggregates, in which cells of strain YSL and were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in , the genus of methanogens that has been the exemplar for interspecies electron transfer H , suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.
Author Zhang, Yuechao
Liu, Fanghua
Wang, Bingchen
Zheng, Shiling
Lovley, Derek R
AuthorAffiliation Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)
Chinese Academy of Sciences
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences
Pilot National Laboratory for Marine Science and Technology (Qingdao)
Department of Microbiology
Guangdong Academy of Sciences
Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research
Laboratory for Marine Biology and Biotechnology
Center for Ocean Mega-Science, Chinese Academy of Sciences
University of Massachusetts
Northeastern University
AuthorAffiliation_xml – name: Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research
– name: Pilot National Laboratory for Marine Science and Technology (Qingdao)
– name: Northeastern University
– name: National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences
– name: Center for Ocean Mega-Science, Chinese Academy of Sciences
– name: Chinese Academy of Sciences
– name: Department of Microbiology
– name: University of Massachusetts
– name: Laboratory for Marine Biology and Biotechnology
– name: Guangdong Academy of Sciences
– name: Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)
Author_xml – sequence: 1
  givenname: Shiling
  surname: Zheng
  fullname: Zheng, Shiling
  organization: Pilot National Laboratory for Marine Science and Technology (Qingdao)
– sequence: 2
  givenname: Fanghua
  orcidid: 0000-0002-1934-3674
  surname: Liu
  fullname: Liu, Fanghua
  email: fhliu@yic.ac.cn
  organization: Center for Ocean Mega-Science, Chinese Academy of Sciences
– sequence: 3
  givenname: Bingchen
  surname: Wang
  fullname: Wang, Bingchen
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Yuechao
  surname: Zhang
  fullname: Zhang, Yuechao
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Derek R
  orcidid: 0000-0001-7158-3555
  surname: Lovley
  fullname: Lovley, Derek R
  organization: University of Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33205658$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LAzEQxYMoWqtnb7LgRZCt-dhJs0ep9QMULwrelmx2givbpCa7B_97U1p7ENRTYOb3XmbmHZJd5x0ScsLohFHOLrWJE4z9hBoKwGGHjBhwmoMCtktGlDKRl0K-HpDDGN8ppVxQtU8OhOAUJKgRuXrE_k07X2vTY2iHRTbTS113mHmbXbcBTZ_du9SKSzQtxmzepVLwLnsO2kWL4YjsWd1FPN68Y_JyM3-e3eUPT7f3s6uHXANlfQ6I2hppbaMl1Dz9VzYKeKlEzWzdYFE0ghdooS5oWYBkVkPDlQY-NSVSI8bkfO27DP5jSEtXizYa7Drt0A-x4jAtkgOo8n-0kExJITlP6NkP9N0PwaVFVlSpCjGVIlGnG2qoF9hUy9AudPisvu-YgMs1YIKPMaDdIoxWq6SqlFS1st8klRTwQ2HaXvetd33QbfeH7mKtWzW2s_5GfwHBaacS
CitedBy_id crossref_primary_10_1016_j_biortech_2024_131975
crossref_primary_10_1007_s11274_023_03582_8
crossref_primary_10_1016_j_biortech_2024_131734
crossref_primary_10_1002_wer_10994
crossref_primary_10_1016_j_biortech_2021_125052
crossref_primary_10_1016_j_cej_2023_146359
crossref_primary_10_1016_j_watres_2024_122104
crossref_primary_10_1016_j_biortech_2022_128205
crossref_primary_10_1016_j_jece_2023_110035
crossref_primary_10_1016_j_ijhydene_2024_09_450
crossref_primary_10_1016_j_biortech_2022_127113
crossref_primary_10_1016_j_cej_2024_156041
crossref_primary_10_1016_j_envint_2023_107964
crossref_primary_10_1016_j_fuel_2023_130517
crossref_primary_10_3390_fermentation9050444
crossref_primary_10_1016_j_renene_2022_06_106
crossref_primary_10_1016_j_cej_2022_140019
crossref_primary_10_1016_j_scitotenv_2022_155190
crossref_primary_10_1016_j_biotechadv_2024_108369
crossref_primary_10_1016_j_biortech_2025_132153
crossref_primary_10_1016_j_cej_2022_135746
crossref_primary_10_1016_j_seppur_2024_130463
crossref_primary_10_1039_D2EE03886B
crossref_primary_10_1016_j_cej_2025_160028
crossref_primary_10_1016_j_jenvman_2025_124896
crossref_primary_10_1016_j_scitotenv_2022_158510
crossref_primary_10_1016_j_jenvman_2022_116732
crossref_primary_10_2139_ssrn_3963578
crossref_primary_10_1016_j_biortech_2024_130374
crossref_primary_10_1016_j_fuel_2025_134393
crossref_primary_10_1016_j_cej_2023_148376
crossref_primary_10_1016_j_copbio_2021_01_014
crossref_primary_10_1016_j_jwpe_2022_103193
crossref_primary_10_1016_j_envres_2024_119958
crossref_primary_10_1016_j_energy_2025_134788
crossref_primary_10_1016_j_bej_2024_109254
crossref_primary_10_1016_j_envres_2023_116589
crossref_primary_10_1016_j_fuel_2022_126140
crossref_primary_10_1016_j_biortech_2022_127102
crossref_primary_10_1016_j_biortech_2021_126553
crossref_primary_10_1016_j_jclepro_2024_144116
crossref_primary_10_1016_j_resconrec_2024_107507
crossref_primary_10_1016_j_cej_2024_156792
crossref_primary_10_1016_j_psep_2024_11_038
crossref_primary_10_1016_j_enconman_2023_116747
crossref_primary_10_1016_j_jwpe_2022_103199
crossref_primary_10_1128_AEM_01488_21
crossref_primary_10_1016_j_biortech_2021_126308
crossref_primary_10_1016_j_scitotenv_2022_159333
crossref_primary_10_1016_j_biortech_2021_124928
crossref_primary_10_1016_j_watres_2022_118118
crossref_primary_10_1016_j_renene_2022_06_059
crossref_primary_10_1002_aic_18305
crossref_primary_10_1016_j_jece_2024_114654
crossref_primary_10_1016_j_scitotenv_2024_171384
crossref_primary_10_1007_s10123_023_00458_7
crossref_primary_10_1016_j_biotechadv_2021_107812
crossref_primary_10_1016_j_isci_2023_107504
crossref_primary_10_1016_j_memsci_2023_122108
crossref_primary_10_1016_j_watres_2022_119270
crossref_primary_10_2139_ssrn_3937102
crossref_primary_10_1016_j_biortech_2022_127658
crossref_primary_10_1016_j_cej_2022_136177
crossref_primary_10_1016_j_watres_2021_117055
crossref_primary_10_3390_fermentation11030117
crossref_primary_10_3390_fermentation9050467
crossref_primary_10_1016_j_scitotenv_2023_167842
crossref_primary_10_3389_fbioe_2024_1395810
crossref_primary_10_1016_j_jenvman_2024_123183
crossref_primary_10_1016_j_ese_2024_100410
crossref_primary_10_1016_j_wasman_2023_05_050
crossref_primary_10_1016_j_biortech_2024_131767
crossref_primary_10_1128_spectrum_00941_23
crossref_primary_10_1016_j_watres_2022_118335
crossref_primary_10_1007_s00253_024_13246_8
crossref_primary_10_1016_j_biteb_2023_101455
crossref_primary_10_1016_j_cej_2024_157460
crossref_primary_10_1186_s13068_021_02034_5
crossref_primary_10_1016_j_biortech_2022_127641
crossref_primary_10_1016_j_psep_2024_05_062
crossref_primary_10_1016_j_biortech_2023_128632
crossref_primary_10_1016_j_jhazmat_2025_137285
crossref_primary_10_1016_j_scitotenv_2024_178340
crossref_primary_10_1016_j_ecoenv_2021_112646
crossref_primary_10_1016_j_wasman_2022_07_018
crossref_primary_10_1016_j_biotechadv_2024_108398
crossref_primary_10_2139_ssrn_4181112
crossref_primary_10_3389_fmicb_2023_1114201
crossref_primary_10_1016_j_biortech_2025_132243
crossref_primary_10_1016_j_biortech_2024_130683
crossref_primary_10_1016_j_scitotenv_2022_153416
crossref_primary_10_1016_j_jece_2024_114398
crossref_primary_10_1016_j_biortech_2024_131414
crossref_primary_10_1128_AEM_00241_21
crossref_primary_10_1016_j_envres_2024_119765
crossref_primary_10_1016_j_biortech_2021_126340
crossref_primary_10_1021_acsestengg_4c00701
crossref_primary_10_1016_j_biortech_2021_126465
crossref_primary_10_1016_j_jece_2024_114435
crossref_primary_10_1016_j_watres_2021_117197
crossref_primary_10_1016_j_biortech_2021_126104
crossref_primary_10_1021_acsestengg_1c00316
crossref_primary_10_1016_j_watres_2024_122307
crossref_primary_10_1016_j_biortech_2022_127558
crossref_primary_10_1680_jemmr_23_00034
crossref_primary_10_1016_j_fuel_2024_131926
crossref_primary_10_1016_j_jhazmat_2024_135279
crossref_primary_10_1016_j_chemosphere_2023_140007
crossref_primary_10_1016_j_jwpe_2024_105715
crossref_primary_10_1016_j_cej_2024_149268
crossref_primary_10_1128_mbio_00360_23
crossref_primary_10_1016_j_jhazmat_2024_135836
crossref_primary_10_1016_j_biortech_2025_132115
crossref_primary_10_1016_j_scitotenv_2022_152950
crossref_primary_10_1016_j_biortech_2022_127385
crossref_primary_10_1016_j_watres_2024_122773
crossref_primary_10_1016_j_envres_2023_117590
crossref_primary_10_1016_j_scitotenv_2024_174085
crossref_primary_10_1007_s11783_021_1498_z
crossref_primary_10_3390_fermentation10030158
crossref_primary_10_1016_j_cej_2022_137973
crossref_primary_10_1016_j_biortech_2023_128927
crossref_primary_10_3389_fmicb_2021_611739
crossref_primary_10_1016_j_scenv_2024_100106
crossref_primary_10_3390_microbiolres14040122
crossref_primary_10_1016_j_biortech_2024_131830
crossref_primary_10_1038_s41579_021_00597_6
crossref_primary_10_1016_j_renene_2024_120181
crossref_primary_10_1016_j_watres_2021_117490
crossref_primary_10_1016_j_jclepro_2023_140544
crossref_primary_10_1016_j_cej_2023_146931
crossref_primary_10_1061_JOEEDU_EEENG_7143
crossref_primary_10_1016_j_rser_2023_113536
crossref_primary_10_1016_j_biortech_2022_127454
crossref_primary_10_1093_femsre_fuad019
crossref_primary_10_1016_j_jwpe_2025_107121
crossref_primary_10_1093_femsre_fuad013
crossref_primary_10_3390_w16142057
crossref_primary_10_1016_j_scitotenv_2022_158172
crossref_primary_10_1016_j_cej_2024_156466
crossref_primary_10_1016_j_cej_2024_155013
crossref_primary_10_1016_j_ibiod_2022_105524
crossref_primary_10_1128_MRA_00752_21
crossref_primary_10_1016_j_renene_2022_01_101
crossref_primary_10_1016_j_scitotenv_2023_167006
crossref_primary_10_1016_j_envres_2022_113006
crossref_primary_10_1016_j_fuel_2022_123604
crossref_primary_10_1016_j_scitotenv_2023_166793
crossref_primary_10_1002_anie_202402318
crossref_primary_10_1016_j_chemosphere_2021_132296
crossref_primary_10_1016_j_jenvman_2024_121867
crossref_primary_10_1016_j_watres_2024_121503
crossref_primary_10_1128_mBio_02344_21
crossref_primary_10_1002_ange_202402318
crossref_primary_10_1002_smll_202306331
crossref_primary_10_1016_j_cej_2023_144228
crossref_primary_10_1021_acssuschemeng_1c07464
crossref_primary_10_1016_j_cej_2024_150761
crossref_primary_10_1016_j_jclepro_2021_129854
crossref_primary_10_1016_j_chemosphere_2022_135606
crossref_primary_10_1016_j_jenvman_2022_114471
crossref_primary_10_1016_j_fmre_2023_12_014
crossref_primary_10_1016_j_scitotenv_2022_160813
crossref_primary_10_1021_acs_est_1c04071
crossref_primary_10_1038_s41598_021_87118_w
crossref_primary_10_1016_j_psep_2024_05_139
crossref_primary_10_1016_j_jbiosc_2023_03_009
crossref_primary_10_1002_jobm_70015
crossref_primary_10_1016_j_biombioe_2023_106783
crossref_primary_10_1016_j_jenvman_2023_117756
crossref_primary_10_1007_s10311_024_01774_8
crossref_primary_10_1002_mlf2_12037
crossref_primary_10_1016_j_chemosphere_2022_134483
crossref_primary_10_2139_ssrn_4125382
Cites_doi 10.1016/j.bioelechem.2014.11.004
10.1007/s12275-017-7104-1
10.1128/mbio.00303-19
10.1039/c7en00577f
10.1038/ismej.2016.136
10.1016/j.soilbio.2018.11.015
10.1099/ijs.0.059964-0
10.1007/s00253-018-8976-7
10.1007/bf00407413
10.1007/bf00549357
10.1128/mbio.01273-18
10.1016/j.scitotenv.2015.10.154
10.1146/annurev-micro-030117-020420
10.1126/science.1196526
10.1016/j.biortech.2005.02.011
10.1099/ijs.0.034538-0
10.1111/1462-2920.12576
10.3389/fmicb.2019.02997
10.1111/1758-2229.12093
10.1128/aem.01154-18
10.1039/c2ee22459c
10.1111/j.1574-6941.1998.tb00467.x
10.1016/j.biortech.2014.09.009
10.1093/molbev/msy096
10.1016/j.copbio.2009.10.001
10.1016/j.rser.2015.10.102
10.1111/j.1462-2920.2004.00593.x
10.1099/00207713-37-2-172
10.1016/j.biortech.2010.11.119
10.1039/c3ee42189a
10.1186/1471-2180-9-109
10.3389/fmicb.2015.00941
10.1016/s0580-9517(08)70503-8
10.1016/j.watres.2016.10.077
10.1016/j.coal.2010.01.009
10.1093/femsec/fiy222
10.1111/j.1462-2920.2004.00616.x
10.1099/00207713-48-2-357
10.1038/s41579-019-0173-x
10.1038/nrmicro2166
10.1021/es803531g
10.3389/fmicb.2016.00498
10.1021/acs.est.8b01913
10.1038/nature02321
10.1016/j.copbio.2019.03.018
10.1016/j.scitotenv.2017.10.224
10.1038/s41598-019-57206-z
10.1128/aem.00895-14
10.3389/fenrg.2019.00029
10.1007/bf00290916
10.1099/00207713-37-2-171
10.1111/j.1758-2229.2011.00305.x
10.1007/0-387-30743-5_11
10.1128/aem.03837-12
10.1007/bf00406313
10.1196/annals.1419.005
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright American Chemical Society Dec 1, 2020
Copyright_xml – notice: 2020 American Chemical Society
– notice: Copyright American Chemical Society Dec 1, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.0c05525
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Biotechnology Research Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 15354
ExternalDocumentID 33205658
10_1021_acs_est_0c05525
b042838493
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a501t-5eeafc6ffda65b2bac9d852983b1fbde44d324ef5b4094561fa5d28a527c9e0c3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Jul 10 22:49:53 EDT 2025
Fri Jul 11 11:13:08 EDT 2025
Mon Jun 30 07:01:48 EDT 2025
Thu Apr 03 07:00:58 EDT 2025
Tue Jul 01 01:45:02 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Thu Dec 03 03:12:40 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a501t-5eeafc6ffda65b2bac9d852983b1fbde44d324ef5b4094561fa5d28a527c9e0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1934-3674
0000-0001-7158-3555
OpenAccessLink http://ir.yic.ac.cn/handle/133337/26157
PMID 33205658
PQID 2469843763
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_2574324589
proquest_miscellaneous_2461863622
proquest_journals_2469843763
pubmed_primary_33205658
crossref_primary_10_1021_acs_est_0c05525
crossref_citationtrail_10_1021_acs_est_0c05525
acs_journals_10_1021_acs_est_0c05525
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Bonin A. S. (ref34/cit34) 2006; 3
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1016/j.bioelechem.2014.11.004
– ident: ref54/cit54
  doi: 10.1007/s12275-017-7104-1
– ident: ref21/cit21
  doi: 10.1128/mbio.00303-19
– ident: ref56/cit56
  doi: 10.1039/c7en00577f
– ident: ref8/cit8
  doi: 10.1038/ismej.2016.136
– ident: ref52/cit52
  doi: 10.1016/j.soilbio.2018.11.015
– ident: ref27/cit27
  doi: 10.1099/ijs.0.059964-0
– ident: ref50/cit50
  doi: 10.1007/s00253-018-8976-7
– ident: ref1/cit1
  doi: 10.1007/bf00407413
– ident: ref23/cit23
  doi: 10.1007/bf00549357
– ident: ref42/cit42
  doi: 10.1128/mbio.01273-18
– ident: ref48/cit48
  doi: 10.1016/j.scitotenv.2015.10.154
– ident: ref5/cit5
  doi: 10.1146/annurev-micro-030117-020420
– ident: ref41/cit41
  doi: 10.1126/science.1196526
– ident: ref45/cit45
  doi: 10.1016/j.biortech.2005.02.011
– ident: ref28/cit28
  doi: 10.1099/ijs.0.034538-0
– ident: ref55/cit55
  doi: 10.1111/1462-2920.12576
– ident: ref20/cit20
  doi: 10.3389/fmicb.2019.02997
– ident: ref40/cit40
  doi: 10.1111/1758-2229.12093
– ident: ref18/cit18
  doi: 10.1128/aem.01154-18
– ident: ref32/cit32
  doi: 10.1039/c2ee22459c
– ident: ref36/cit36
  doi: 10.1111/j.1574-6941.1998.tb00467.x
– ident: ref43/cit43
  doi: 10.1016/j.biortech.2014.09.009
– ident: ref26/cit26
  doi: 10.1093/molbev/msy096
– ident: ref4/cit4
  doi: 10.1016/j.copbio.2009.10.001
– ident: ref9/cit9
  doi: 10.1016/j.rser.2015.10.102
– ident: ref22/cit22
  doi: 10.1111/j.1462-2920.2004.00593.x
– ident: ref38/cit38
  doi: 10.1099/00207713-37-2-172
– ident: ref47/cit47
  doi: 10.1016/j.biortech.2010.11.119
– ident: ref12/cit12
  doi: 10.1039/c3ee42189a
– ident: ref29/cit29
  doi: 10.1186/1471-2180-9-109
– ident: ref24/cit24
  doi: 10.3389/fmicb.2015.00941
– ident: ref25/cit25
  doi: 10.1016/s0580-9517(08)70503-8
– ident: ref49/cit49
  doi: 10.1016/j.watres.2016.10.077
– ident: ref46/cit46
  doi: 10.1016/j.coal.2010.01.009
– ident: ref19/cit19
  doi: 10.1093/femsec/fiy222
– ident: ref44/cit44
  doi: 10.1111/j.1462-2920.2004.00616.x
– ident: ref35/cit35
  doi: 10.1099/00207713-48-2-357
– ident: ref7/cit7
  doi: 10.1038/s41579-019-0173-x
– ident: ref3/cit3
  doi: 10.1038/nrmicro2166
– ident: ref16/cit16
  doi: 10.1021/es803531g
– ident: ref33/cit33
  doi: 10.3389/fmicb.2016.00498
– ident: ref6/cit6
  doi: 10.1021/acs.est.8b01913
– ident: ref17/cit17
  doi: 10.1038/nature02321
– ident: ref10/cit10
  doi: 10.1016/j.copbio.2019.03.018
– ident: ref51/cit51
  doi: 10.1016/j.scitotenv.2017.10.224
– ident: ref14/cit14
  doi: 10.1038/s41598-019-57206-z
– ident: ref11/cit11
  doi: 10.1128/aem.00895-14
– ident: ref13/cit13
  doi: 10.3389/fenrg.2019.00029
– ident: ref30/cit30
  doi: 10.1007/bf00290916
– ident: ref53/cit53
  doi: 10.1099/00207713-37-2-171
– ident: ref31/cit31
  doi: 10.1111/j.1758-2229.2011.00305.x
– volume: 3
  start-page: 231
  volume-title: The Prokaryotes
  year: 2006
  ident: ref34/cit34
  doi: 10.1007/0-387-30743-5_11
– ident: ref39/cit39
  doi: 10.1128/aem.03837-12
– ident: ref37/cit37
  doi: 10.1007/bf00406313
– ident: ref2/cit2
  doi: 10.1196/annals.1419.005
SSID ssj0002308
Score 2.6622856
Snippet Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15347
SubjectTerms Activated carbon
Anaerobic digestion
coculture
Diet
Electron transfer
Electron Transport
Electrons
Energy and Climate
environmental science
fimbriae
Geobacter
Geobacter metallireducens
Metabolism
Methane
Methanobacterium
Methanogenic bacteria
methanogens
Methanosarcinales
Microorganisms
Pili
Sediments
Title Methanobacterium Capable of Direct Interspecies Electron Transfer
URI http://dx.doi.org/10.1021/acs.est.0c05525
https://www.ncbi.nlm.nih.gov/pubmed/33205658
https://www.proquest.com/docview/2469843763
https://www.proquest.com/docview/2461863622
https://www.proquest.com/docview/2574324589
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4LDDwfpSXgsTAkpA4ucQeq6oIIcECSN0iPxegRU278Os5O2nKQwXW5Bw5d76Xz_6OkAvlUdEEDy0wG2aap6EwMg4TI3gBeSapcRXdu_v85im7HcBgDhb9vYJPkyuhqggNZBSrGIDCMlmlOStcntXtPbRGFyNpNmtWwNN80KL4_PiAc0Oq-uqGFsSW3sdcb9ansyoPTeiOljxH04mM1PtP4Ma_p79FNppIM-jWS2ObLJnhDln_hD-4Q_b782tuSNroebVLunfGbamjrnss5-lr0EOnKl9MMLJBbSUDv5foLmpirh30m246gfd91oz3yNN1_7F3EzbNFkIBcTIJwRhhVW6tFjlIit_nmgHlLJWJldpkmcbYy1iQLiPEqMsK0JQJoIXiJlbpPlkZjobmkAQ0UygCFD6VGrNNIbXOQRnOuBUFj3mHXCBXykZZqtLXwWlSuofIqrJhVYdEMxGVqgEsd30zXhYPuGwHvNVYHYtJT2Yyn8-Dum6ambO4HXLevkZ1czUUMTSjqadJWI5en_5CA4XDOQSGf3pQr6d2PmlKMeQEdvQ_HhyTNeoSfH9-5oSsTMZTc4pR0ESe-fX_ATflAoQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB6VcgAOBQqFQAEjFYnLhl3vemMfOEQhVUqbXmil3BbbO5YQJUHdRBU8Da_SN-vY2d3woyAulbh6bcvrGc989tjfAOzZwIqmVeSEdFFWqjTSaOIoQa16Is8MRx_RHR_no9Ps_URMNuBH8xaGBlFRT1UI4q_YBZI3vozsZDe2sRC8uUZ5iN8uaJNWvT14RxJ9xfn-8GQwiuo8ApEWcTKPBKJ2Nneu1Lkw3GirSim4kqlJnCkxy0qCFeiE8ZsdAhROi5JLLXjPKoxtSv3egJsEfbjf3vUHH1pbTwBeNjkSVJpPWvKgPwbsvZ-tfvV-ayBtcG37d-GynZRwo-VzdzE3Xfv9N77I_3nW7sFWjatZf7kQ7sMGTrfhzk9si9uwM1w96qOqtVWrHkB_jD6AQJYtMFcvvrABQQhzhmzm2NInsHBy6p-lfsKKDevcQSx4eofnD-H0Wn5uBzansyk-BsYzS5InVeempL21NmWZC4tKKqd7KlYd2CMpFLVpqIoQ9edJ4QtJNEUtmg50G80obE3P7rOEnK1v8Lpt8HXJTLK-6m6jaqtxcJ87NPP-pQMv289kXHzESE9xtgh1EpkTxuF_qSN6ntVRSPrTR0s1bseTppwAtpBP_m0OXsCt0cn4qDg6OD58Cre5P9oIN4d2YXN-vsBnhP_m5nlYggw-Xrf2XgGgPWgd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-NISH2wGCwUTbASEPiJV3ixGn8sIeqa7UxNiHBpL4F_zlLiNFOSysEn4evwvfi7CbZABXxMolXx7Yc3_nuZ5_9O4BdE1jRlIycKFyUWZlGCnUcJahkT-SZ5ugjuien-eFZ9nosxivwvXkLQ4OoqKcqBPH9qr6wrmYYSPZ8OdnKbmxiIXhzlfIYv36hjVq1f3RAUn3J-Wj4fnAY1bkEIiXiZBYJROVM7pxVudBcKyNtIbgsUp04bTHLLEELdEL7DQ-BCqeE5YUSvGckxialfm_BbR8k9Fu8_uBda-8JxBdNngSZ5uOWQOiPAXsPaKpfPeASWBvc22gdfrQTE261fOrOZ7prvv3GGfm_z9x9uFfja9ZfLIgHsIKTDVi7xrq4AZvDq8d9VLW2btVD6J-gDySQhQsM1vPPbEBQQp8jmzq28A0snKD656kfsWLDOocQCx7f4eUjOLuRn9uE1cl0go-B8cyQ9Enluba0x1ba2lwYlIV0qidj2YFdkkJZm4iqDNF_npS-kERT1qLpQLfRjtLUNO0-W8j58gav2gYXC4aS5VV3GnW7Ggf3OUQz72c68KL9TEbGR47UBKfzUCcpcsI6_C91RM-zO4qC_nRrocrteNKUE9AWxZN_m4PncOftwah8c3R6vA13uT_hCBeIdmB1djnHpwQDZ_pZWIUMPty08v4EXSxqoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methanobacterium+Capable+of+Direct+Interspecies+Electron+Transfer&rft.jtitle=Environmental+science+%26+technology&rft.au=Zheng%2C+Shiling&rft.au=Liu%2C+Fanghua&rft.au=Wang%2C+Bingchen&rft.au=Zhang%2C+Yuechao&rft.date=2020-12-01&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=54&rft.issue=23&rft.spage=15347&rft.epage=15354&rft_id=info:doi/10.1021%2Facs.est.0c05525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_0c05525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon