Cosmogenic radionuclides and mineralogical properties of the Chelyabinsk (LL5) meteorite: What do we learn about the meteoroid?

On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of...

Full description

Saved in:
Bibliographic Details
Published inMeteoritics & planetary science Vol. 50; no. 2; pp. 273 - 286
Main Authors Povinec, Pavel P., Laubenstein, Matthias, Jull, A. J. Timothy, Ferrière, Ludovic, Brandstätter, Franz, Sýkora, Ivan, Masarik, Jozef, Beňo, Juraj, Kováčik, Andrej, Topa, Dan, Koeberl, Christian
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.02.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.
AbstractList On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long-lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of super(14)C, super(22)Na, super(26)Al, super(54)Mn, super(57)Co, super(58)Co, and super(60)Co, which indicate that the pre-atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed super(26)Al activities of the investigated samples, Monte Carlo simulations, and taking into account the super(26)Al half-life (0.717 Myr), the cosmic-ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 plus or minus 0.2 Myr. In contrast to the other radionuclides, super(14)C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of super(14)C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic super(137)Cs and primordial super(40)K in some of the Chelyabinsk fragments.
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long-lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre-atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half-life (0.717 Myr), the cosmic-ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.
Abstract On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL 5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14 C, 22 Na, 26 Al, 54 Mn, 57 Co, 58 Co, and 60 Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26 Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26 Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14 C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14 C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137 Cs and primordial 40 K in some of the Chelyabinsk fragments.
Author Brandstätter, Franz
Sýkora, Ivan
Kováčik, Andrej
Topa, Dan
Ferrière, Ludovic
Beňo, Juraj
Povinec, Pavel P.
Laubenstein, Matthias
Jull, A. J. Timothy
Masarik, Jozef
Koeberl, Christian
Author_xml – sequence: 1
  givenname: Pavel P.
  surname: Povinec
  fullname: Povinec, Pavel P.
  email: povinec@fmph.uniba.sk
  organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
– sequence: 2
  givenname: Matthias
  surname: Laubenstein
  fullname: Laubenstein, Matthias
  organization: Laboratori Nazionali del Gran'Sasso-INFN, 67100, Assergi (AQ), Italy
– sequence: 3
  givenname: A. J. Timothy
  surname: Jull
  fullname: Jull, A. J. Timothy
  organization: Department of Geosciences, University of Arizona, 85721, Tucson, Arizona, USA
– sequence: 4
  givenname: Ludovic
  surname: Ferrière
  fullname: Ferrière, Ludovic
  organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria
– sequence: 5
  givenname: Franz
  surname: Brandstätter
  fullname: Brandstätter, Franz
  organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria
– sequence: 6
  givenname: Ivan
  surname: Sýkora
  fullname: Sýkora, Ivan
  organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
– sequence: 7
  givenname: Jozef
  surname: Masarik
  fullname: Masarik, Jozef
  organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
– sequence: 8
  givenname: Juraj
  surname: Beňo
  fullname: Beňo, Juraj
  organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
– sequence: 9
  givenname: Andrej
  surname: Kováčik
  fullname: Kováčik, Andrej
  organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
– sequence: 10
  givenname: Dan
  surname: Topa
  fullname: Topa, Dan
  organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria
– sequence: 11
  givenname: Christian
  surname: Koeberl
  fullname: Koeberl, Christian
  organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria
BookMark eNp9kcFu1TAQRSNUJNrChi-wxKYgpdhxHGfYoCqCgkhLK0BdWk4y6XPr2A87UXkrfh23ARYs8GYszTmjGd2DbM95h1n2nNFjlt7rSW_jMStKBo-yfQalyAWjdC_9aV3lwCU8yQ5ivKGUC8bL_exn4-Pkr9GZngQ9GO-W3poBI9FuIJNxGLT116bXlmyD32KYTWr6kcwbJM0G7U53xsVbctS24iWZcEYfzIxvyNVGz2Tw5A6JRR0c0Z1f5gdvpbwZ3j7NHo_aRnz2ux5m396_-9p8yNvPpx-bkzbXgjLIu2KAsajrCqEXHYKEskQAKlkngHUgYIC6pCALPvCqpoUcK6BDP2qRlFrzw-xonZuO-L5gnNVkYo_Waod-iYpVUgKDuuYJffEPeuOX4NJ2iRIVq2pRikS9Wqk--BgDjmobzKTDTjGq7rNQ91mohywSzFb4zljc_YdUZycXX_44-eqYOOOPv44Ot6qSXAp1dX6qzuXF5WVz9km1_BfIBZzu
CODEN MPSCFY
CitedBy_id crossref_primary_10_1016_j_pss_2019_104709
crossref_primary_10_4236_ns_2018_1011042
crossref_primary_10_1017_S1743921316002982
crossref_primary_10_1111_maps_12444
crossref_primary_10_1130_B31476_1
crossref_primary_10_1007_s10967_023_09135_5
crossref_primary_10_1016_j_nimb_2015_02_021
crossref_primary_10_1111_maps_12511
crossref_primary_10_1111_maps_12855
crossref_primary_10_1111_maps_13435
crossref_primary_10_1111_maps_14173
crossref_primary_10_1016_j_icarus_2016_11_030
crossref_primary_10_1134_S0038094619010015
crossref_primary_10_1016_j_pss_2020_104914
crossref_primary_10_1111_maps_13012
crossref_primary_10_1016_j_asr_2024_06_019
crossref_primary_10_1007_s10967_015_4406_9
crossref_primary_10_1007_s10967_017_5168_3
crossref_primary_10_1007_s10967_020_07034_7
crossref_primary_10_1007_s10967_021_08078_z
crossref_primary_10_1007_s10967_015_4523_5
Cites_doi 10.1111/j.1945-5100.2009.tb00788.x
10.1111/maps.12380
10.12942/lrsp-2013-3
10.1016/S0969-8043(96)00097-8
10.1016/0012-821X(82)90176-5
10.1111/j.1945-5100.2000.tb01510.x
10.1016/S0168-583X(00)00103-8
10.12942/lrsp-2013-1
10.1111/j.1945-5100.2006.tb00469.x
10.1111/j.1945-5100.2009.tb00746.x
10.1016/j.ijimpeng.2008.07.053
10.1007/s10967-012-1667-4
10.1016/S0168-9002(03)01368-8
10.1134/S0016702913070070
10.1038/nature12741
10.1007/BF00227810
10.1016/j.ijms.2004.10.029
10.2307/j.ctv1v7zdmm.47
10.1038/503202a
10.1111/j.1945-5100.2011.01311.x
10.1111/j.1945-5100.1997.tb01284.x
10.1017/S0033822200040121
10.1146/annurev.ea.20.050192.001253
10.1126/science.219.4581.127
10.1111/j.1945-5100.2010.01142.x
10.1111/j.1945-5100.2003.tb00263.x
10.1016/0016-7037(90)90148-E
10.1016/0016-7037(94)90314-X
10.1111/j.1945-5100.2009.tb00718.x
10.2458/azu_js_rc.v55i2.16177
10.1007/978-3-642-57786-4
10.2478/v10155-010-0088-6
10.1007/s10967-008-0631-9
10.1134/S0016702913070100
10.1051/0004-6361:20011054
10.1007/s10967-009-0211-7
10.1016/j.apradiso.2004.03.039
10.1029/2010JA016105
10.1146/annurev.eg.18.110193.002451
10.1007/BF00671553
10.1016/j.apradiso.2009.04.014
10.1111/j.1945-5100.1993.tb00756.x
10.1111/j.1945-5100.1994.tb00777.x
10.1016/j.jenvrad.2008.08.004
10.1126/science.1242642
10.1111/j.1945-5100.2002.tb00838.x
10.1098/rsta.1988.0066
10.1007/s10967-013-2509-8
10.1111/j.1945-5100.2010.01289.x
10.1111/j.1365-246X.2004.02297.x
10.1111/maps.12405
10.1038/nature12671
10.1016/0016-7037(91)90078-J
10.2307/j.ctv1v7zdmm.44
10.1111/j.1945-5100.1986.tb00868.x
ContentType Journal Article
Copyright The Meteoritical Society, 2015.
Copyright © 2015 The Meteoritical Society
Copyright_xml – notice: The Meteoritical Society, 2015.
– notice: Copyright © 2015 The Meteoritical Society
DBID BSCLL
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.1111/maps.12419
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Technology Research Database

Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1945-5100
EndPage 286
ExternalDocumentID 3596445391
10_1111_maps_12419
MAPS12419
ark_67375_WNG_N7PQQCMK_L
Genre article
GrantInformation_xml – fundername: Slovak Grant Agencies VEGA
  funderid: 1/0783/14
– fundername: NSF equipment
– fundername: APVV
  funderid: APVV‐0516‐10; APVV‐0420‐10
– fundername: ERDF
  funderid: 26240120012; 26240120026; 26240220004
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LDC
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNP
ROL
RX1
SAMSI
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
AETEA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-a5019-b2d9f2886e9c5be97944e99071b591b959d98409723d368027f690dcfa56e98a3
IEDL.DBID DR2
ISSN 1086-9379
IngestDate Fri Aug 16 06:04:34 EDT 2024
Thu Oct 10 20:29:48 EDT 2024
Thu Sep 26 16:12:51 EDT 2024
Sat Aug 24 00:54:28 EDT 2024
Wed Oct 30 09:48:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5019-b2d9f2886e9c5be97944e99071b591b959d98409723d368027f690dcfa56e98a3
Notes ERDF - No. 26240120012; No. 26240120026; No. 26240220004
APVV - No. APVV-0516-10; No. APVV-0420-10
ArticleID:MAPS12419
Slovak Grant Agencies VEGA - No. 1/0783/14
ark:/67375/WNG-N7PQQCMK-L
NSF equipment
istex:A066A7031A3ED02F8584C0467493D4C0E309244A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/maps.12419
PQID 1656168545
PQPubID 1016381
PageCount 14
ParticipantIDs proquest_miscellaneous_1677919883
proquest_journals_1656168545
crossref_primary_10_1111_maps_12419
wiley_primary_10_1111_maps_12419_MAPS12419
istex_primary_ark_67375_WNG_N7PQQCMK_L
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Meteoritics & planetary science
PublicationTitleAlternate Meteorit Planet Sci
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Evans J. C., Reeves J. H., and Bogard D. D. 1986. Cosmogenic radionuclides and noble gases in the Wethersfield (1982) chondrite. Meteoritics 21:243-250.
Galimov E. M., Kolotov V. P., Nazarov M. A., Kostitsyn Yu A, Kubrakova I. V., Kononkova N. N., Roshchina I. A., Alexeev V. A., Kashkarov L. L., Badyukov D. D., and Sevast'yanov V. S. 2013. Analytical results for the material of the Chelyabinsk meteorite. Geochemistry International 51:522-539.
Usoskin I. G., Bazilevskaya G. A., and Kovaltsov G. A. 2011. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. Journal of Geophysics Research 116:A02104.
Brown P. G., Assink J. D., Astiz L., Blaauw R., Boslough M. B., Borovička J., Brachet N., Brown D., Campbell-Brown M., Ceranna L., Cooke W., de Groot-Hedlin C., Drob D. P., Edwards W., Evers L. G., Garces M., Gill J., Hedlin M., Kingery A., Laske G., Le Pichon A., Mialle P., Moser D. E., Saffer A., Silber E., Smets P., Spalding R. E., Spurný P., Tagliaferri E., Uren D., Weryk R. J., Whitaker R., and Krzeminski Z. 2013. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503:238-241.
Mader D. and Koeberl C. 2009. Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: Current analytical procedures at the University of Vienna Geochemistry Activation Analysis Laboratory. Applied Radiation and Isotopes 67:2100-2103.
Herzog G. F., Vogt S., Albrecht A., Xue S., Fink D., Klein J., Middleton R., Weber H. W., and Schultz L. 1997. Complex exposure histories for meteorites with "short" exposure ages. Meteoritics & Planetary Science 32:413-422.
Masarik J. and Reedy R. C. 1994. Effects of bulk composition on nuclide production processes in meteorites. Geochimica et Cosmochimica Acta 58:5307-5317.
Povinec P. P., Laubenstein M., Ferrière L., Brandstätter F., Sýkora I., Kovačik A., Jull A. J. T., Topa D., and Koeberl C. 2013. The Chelyabinsk meteoroid-What do we learn from the recovered fragments? (abstract #5196). Meteoritics & Planetary Science 48(s1):A287.
Graf T. and Marti K. 1994. Collisional records in LL-chondrites. Meteoritics 29:643-648.
Honda M., Nishiizumi K., Imamura M., Takaoka N., Nitoh O., Horie K., and Komura K. 1982. Cosmogenic nuclides in the Kirin chondrite. Earth and Planetary Science Letters 57:101-109.
Povinec P. P., Masarik J., Sýkora I., Kovacik A., Beno J., Laubenstein M., and Porubcan V. 2015. Cosmogenic radionuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations. Meteoritics & Planetary Science, doi:10.1111/maps.12380.
Artemieva N. 2013. Russian skyfall. Nature 503:202-203.
Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55:3845-3867.
Cochran T. B., Standish Norris R., and Suokko K. L. 1993. Radioactive contamination at Chelyabinsk-65, Russia. Annual Review of Energy and the Environment 18:507-528.
Jull A. J. T., Donahue D. J., Cielaszyk E., and Wlotzka F. 1993. 14C terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA). Meteoritics 28:188-195.
Galimov E. M. 2013. Chelyabinsk meteorite-an LL5 chondrite. Geochemistry International 51:278-283.
Kováčik A., Sýkora I., and Povinec P. P. 2013. Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. Journal of Radioanalytical and Nuclear Chemistry 298:665-672.
Welten K. C., Caffee M. W., Hillegonds D. J., McCoy T. J., Masarik J., and Nishiizumi K. 2011. Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: Identification of a large L/LL5 chondrite shower with a preatmospheric mass of approximately 50,000 kg. Meteoritics & Planetary Science 46:177-196.
Badyukov D. D. and Dudorov A. E. 2013. Fragments of the Chelyabinsk meteorite shower: Distribution of masses and sizes and constraints on the mass of the largest fragment. Geochemistry International 51:643-646.
Boslough M. B. E. and Crawford D. A. 2008. Low-altitude airbursts and the impact threat. International Journal of Impact Engineering 35:1441-1448.
Lal D. 1972. Hard rock cosmic ray archaeology. Space Science Reviews 14:3-102.
Kováčik A., Sýkora I., Povinec P. P., and Porubčan V. 2012. Non-destructive gamma-spectrometry analysis of cosmogenic radionuclides in fragments of the Košice meteorite. Journal of Radioanalytical and Nuclear Chemistry 293:339-345.
Wasson J. T. and Kallemeyn G. W. 1988. Compositions of chondrites. Philosophical Transactions of the Royal Society London A 325:535-544.
Usoskin I. G. 2013. History of solar activity over millennia. Living Reviews in Solar Physics 10:1-94.
Povinec P. P., Betti M., Jull A. J. T., and Vojtyla P. 2008. New isotope technologies in environmental physics. Acta Physica Slovaca 58:1-154.
Hu Q. H., Weng J. Q., and Wang J. S. 2010. Sources of anthropogenic radioactivity in the environment: A review. Journal of Environmental Radioactivity 101:426-437.
Laubenstein M., Hult M., Gasparro J., Arnold D., Neumaier S., Heusser G., Köhler M., Povinec P. P., Reyss J.-L., Schwaiger M., and Theodorsson P. 2004. Underground measurements of radioactivity. Applied Radiation and Isotopes 61:167-172.
Hua Q., Barbetti M., and Rakowski A. Z. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55:2059-2072.
Marti K. and Graf T. 1992. Cosmic-ray exposure history of ordinary chondrites. Annual Review of Earth and Planetary Sciences 20:221-243.
Nishiizumi K., Imamura M., and Honda M. 1979. Cosmic ray produced radionuclides in Antarctic meteorites. Memoirs. National Institute of Polar Research Special Issue 12:161-177.
Tagliaferri E., Spalding R., Jacobs C., and Ceplecha Z. 1994. Analysis of the Marshall Islands Fireball of February 1, 1994. Earth, Moon, and Planets 68:563-572.
Heide F. and Wlotzka F. 1995. Meteorites: Messengers from space. Berlin: Springer-Verlag.
Borovička J., Spurný P., Brown P., Wiegert P., Kalinda P., Clark D., and Shrbený L. 2013. The trajectory, structure and origin of the Chelyabinsk impactor. Nature 503:235-237.
Lavrukhina A. K. and Ustinova G. K. 1990. Meteorites as probes of cosmic ray variations. Moscow: Nauka. 262 p.
Kutschera W. 2005. Progress in isotope analysis at ultra-trace level by AMS. International Journal of Mass Spectrometry 242:145-160.
Klekociuk A., Brown P., and ReVelle D. 2005. Cosmic hole-in-one captured over Antarctica. Australian Antarctic Magazine 8:6-7.
Haack H., Grau T., Bischoff A., Hortsmann M., Wasson J., Sørensen A., Laubenstein M., Ott U., Palme H., Gellissen M., Greenwood R. C., Pearson V. K., Franchi I. A., Gabelica Z., and Schmitt-Kopplin P. 2012. Maribo-A new CM fall from Denmark. Meteoritics & Planetary Science 47:30-50.
Ferko T. E., Schultz L., Franke L., Bogard D. D., Garrison D. H., Hutchison R., and Lipschutz M. E. 2000. Exposure history of the Mocs (L6) chondrite: A study of strewn field samples. Meteoritics & Planetary Science 35:1215-1227.
Kollár D., Michel R., and Masarik J. 2006. Monte Carlo simulation of GCR neutron capture production of cosmogenic nuclides in stony meteorites and lunar surface. Meteoritics & Planetary Science 41:375-389.
Ozdín D., Plavcan J., Hornácková M., Uher P., Porubcan V., Veis P., Rakovský J., Tóth J., Konecný P., and Svoren J. 2015. Mineralogy, petrography, geochemistry and classification of the Košice meteorite. Meteoritics & Planetary Science, doi:10.1111/maps.12405.
Reedy R. C., Arnold J. R., and Lal D. 1983. Cosmic-ray record in solar system matter. Science 219:127-135.
Bhandari N., Bonino G., Cini Castagnoli G., and Taricco C. 1994. The 11 year solar cycle variation of cosmogenic isotope production rates in chondrites. Meteoritics 29:443-444.
Gattacceca J., Eisenlohr P., and Rochette P. 2004. Calibration of in situ magnetic susceptibility measurements. Geophysical Journal International 158:42-49.
Rubin A. E. 1990. Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships. Geochimica et Cosmochimica Acta 54:1217-1232.
Knie K., Faestermann T., Korschinek G., Rugel G., Ruehm W., and Wallner C. 2000. High-sensitivity AMS for heavy nuclides at the Munich Tandem accelerator. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms B 172:717-720.
Leya I., Welten K. C., Nishiizumi K., and Caffee M. W. 2009. Cosmogenic nuclides in the solar gas-rich H3-6 chondrite breccia Frontier Mountain 90174. Meteoritics & Planetary Science 44:77-85.
Arpesella C. 1996. A low background counting facility at Laboratori Nazionali del Gran Sasso. Applied Radiation and Isotopes 47:991-996.
Nishiizumi K., Caffee M. W., Huber L., Welten K. C., and Wieler R. 2013. Cosmogenic radionuclides and noble gases in Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5260). Meteoritics & Planetary Science 48:A264.
Donahue D. J., Linick T. W., and Jull A. J. T. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32:135-142.
Bhandari N., Murty S. V. S., Shukla P. N., Shukla A. D., Mahajan R. R., Sarin M. M., Srinivasan G., Suthar K. M., Sisodia M. S., Jha S., and Bischoff A. 2002. Itawa Bhopji (L3-5) chondrite regolith breccia: Fall, classification and cosmogenic records. Meteoritics & Planetary Science 37:549-564.
Farinella P., Foschini L., Froeschlé C., Gonczi R., Jopek T. J., Longo G., and Michel P. 2001. Probable asteroidal origin of the Tunguska cosmic body. Astronomy & Astrophysics 377:1081-1097.
Povinec P. P. 2008. Low-level gamma-ray spectrometry for environmental samples. Journal of Radioanalytical and Nuclear Chemistry 276:771-777.
Ivanova M., Badyukov D. D., Ryazantsev K. M., Lorenz C. A., Demidova S. I., Sadilenko D. A., Artemieva N., Korochantsev A. V., Skripnik A. Y., Ivanov A. V., and Nazarov M. A. 2013. Fall, searching and first study o
2011; 116
2009; 44
1982; 57
1990; 54
2004; 61
1993; 28
1991; 55
2010; 101
2000; 172
2008; 35
1994; 68
1994; 29
2012; 293
2001; 377
2001
2013; 55
1990
2013; 10
2013; 51
1987
2009; 282
1972; 14
2008; 276
2009; 67
2002; 37
1990; 32
2013; 48
1979; 12
2013; 503
2009
2008; 58
2008
2013; 342
2007
2006
1995
2003; 38
2005
2002
1983; 219
1988; 325
2010; 45
2003; 506
2006; 41
1993; 18
2004; 158
2005; 242
1997; 32
1986; 21
2000; 35
2005; 8
2013; 298
1994; 58
2011; 46
2015
2014
2013
1996; 47
2012; 47
1992; 20
e_1_2_7_5_1
Eugster O. (e_1_2_7_16_1) 2006
e_1_2_7_3_1
e_1_2_7_9_1
Klekociuk A. (e_1_2_7_37_1) 2005; 8
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
Jull A. J. T. (e_1_2_7_34_1) 2013
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Burr G. S. (e_1_2_7_13_1) 2009
Povinec P. P. (e_1_2_7_63_1) 2013; 48
Lavrukhina A. K. (e_1_2_7_46_1) 1990
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Bhandari N. (e_1_2_7_8_1) 1994; 29
Galimov E. M. (e_1_2_7_20_1) 2013; 51
e_1_2_7_58_1
e_1_2_7_39_1
Povinec P. P. (e_1_2_7_59_1) 1987
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
Herzog G. F. (e_1_2_7_27_1) 2005
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_29_1
Koning A. J. (e_1_2_7_40_1) 2008
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_36_1
Nishiizumi K. (e_1_2_7_54_1) 2013; 48
e_1_2_7_38_1
Ivanova M. (e_1_2_7_32_1) 2013; 48
Nishiizumi K. (e_1_2_7_53_1) 1979; 12
References_xml – year: 2009
– volume: 48
  start-page: A185
  year: 2013
  article-title: Fall, searching and first study of the Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5366)
  publication-title: Meteoritics & Planetary Science
– volume: 10
  start-page: 3
  year: 2013
  end-page: 66
  article-title: Solar modulation of cosmic rays
  publication-title: Living Reviews in Solar Physics
– volume: 293
  start-page: 339
  year: 2012
  end-page: 345
  article-title: Non‐destructive gamma‐spectrometry analysis of cosmogenic radionuclides in fragments of the Košice meteorite
  publication-title: Journal of Radioanalytical and Nuclear Chemistry
– volume: 242
  start-page: 145
  year: 2005
  end-page: 160
  article-title: Progress in isotope analysis at ultra‐trace level by AMS
  publication-title: International Journal of Mass Spectrometry
– volume: 44
  start-page: 1061
  year: 2009
  end-page: 1086
  article-title: Cosmogenic nuclides in stony meteorites revisited
  publication-title: Meteoritics & Planetary Science
– volume: 18
  start-page: 507
  year: 1993
  end-page: 528
  article-title: Radioactive contamination at Chelyabinsk‐65, Russia
  publication-title: Annual Review of Energy and the Environment
– volume: 219
  start-page: 127
  year: 1983
  end-page: 135
  article-title: Cosmic‐ray record in solar system matter
  publication-title: Science
– volume: 29
  start-page: 443
  year: 1994
  end-page: 444
  article-title: The 11 year solar cycle variation of cosmogenic isotope production rates in chondrites
  publication-title: Meteoritics
– year: 2014
  article-title: Noble gases in the Chelyabinsk chondrite (abstract #1732). 45th Lunar and Planetary Science Conference. CD‐ROM
– volume: 51
  start-page: 278
  year: 2013
  end-page: 283
  article-title: Chelyabinsk meteorite—an LL5 chondrite
  publication-title: Geochemistry International
– volume: 46
  start-page: 177
  year: 2011
  end-page: 196
  article-title: Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: Identification of a large L/LL5 chondrite shower with a preatmospheric mass of approximately 50,000 kg
  publication-title: Meteoritics & Planetary Science
– volume: 503
  start-page: 235
  year: 2013
  end-page: 237
  article-title: The trajectory, structure and origin of the Chelyabinsk impactor
  publication-title: Nature
– volume: 506
  start-page: 250
  year: 2003
  end-page: 303
  article-title: GEANT 4—A simulation toolkit
  publication-title: Nuclear Instruments and Methods in Physics, Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
– volume: 47
  start-page: 30
  year: 2012
  end-page: 50
  article-title: Maribo—A new CM fall from Denmark
  publication-title: Meteoritics & Planetary Science
– volume: 54
  start-page: 1217
  year: 1990
  end-page: 1232
  article-title: Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships
  publication-title: Geochimica et Cosmochimica Acta
– volume: 342
  start-page: 1069
  year: 2013
  end-page: 1073
  article-title: Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization
  publication-title: Science
– volume: 503
  start-page: 238
  year: 2013
  end-page: 241
  article-title: A 500‐kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors
  publication-title: Nature
– volume: 325
  start-page: 535
  year: 1988
  end-page: 544
  article-title: Compositions of chondrites
  publication-title: Philosophical Transactions of the Royal Society London A
– volume: 14
  start-page: 3
  year: 1972
  end-page: 102
  article-title: Hard rock cosmic ray archaeology
  publication-title: Space Science Reviews
– volume: 45
  start-page: 1271
  year: 2010
  end-page: 1283
  article-title: Terrestrial C and C‐ Be ages of meteorites from the Nullarbor, Australia
  publication-title: Meteoritics & Planetary Science
– volume: 51
  start-page: 522
  year: 2013
  end-page: 539
  article-title: Analytical results for the material of the Chelyabinsk meteorite
  publication-title: Geochemistry International
– volume: 57
  start-page: 101
  year: 1982
  end-page: 109
  article-title: Cosmogenic nuclides in the Kirin chondrite
  publication-title: Earth and Planetary Science Letters
– volume: 41
  start-page: 375
  year: 2006
  end-page: 389
  article-title: Monte Carlo simulation of GCR neutron capture production of cosmogenic nuclides in stony meteorites and lunar surface
  publication-title: Meteoritics & Planetary Science
– year: 2015
  article-title: Cosmogenic radionuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations
  publication-title: Meteoritics & Planetary Science
– volume: 55
  start-page: 2059
  year: 2013
  end-page: 2072
  article-title: Atmospheric radiocarbon for the period 1950–2010
  publication-title: Radiocarbon
– start-page: 375
  year: 2013
  end-page: 383
– year: 2015
  article-title: Mineralogy, petrography, geochemistry and classification of the Košice meteorite
  publication-title: Meteoritics & Planetary Science
– volume: 68
  start-page: 563
  year: 1994
  end-page: 572
  article-title: Analysis of the Marshall Islands Fireball of February 1, 1994
  publication-title: Earth, Moon, and Planets
– start-page: 115
  year: 1987
  end-page: 137
– start-page: 889
  year: 2006
  end-page: 905
– volume: 8
  start-page: 6
  year: 2005
  end-page: 7
  article-title: Cosmic hole‐in‐one captured over Antarctica
  publication-title: Australian Antarctic Magazine
– volume: 47
  start-page: 991
  year: 1996
  end-page: 996
  article-title: A low background counting facility at Laboratori Nazionali del Gran Sasso
  publication-title: Applied Radiation and Isotopes
– volume: 32
  start-page: 413
  year: 1997
  end-page: 422
  article-title: Complex exposure histories for meteorites with “short” exposure ages
  publication-title: Meteoritics & Planetary Science
– volume: 377
  start-page: 1081
  year: 2001
  end-page: 1097
  article-title: Probable asteroidal origin of the Tunguska cosmic body
  publication-title: Astronomy & Astrophysics
– volume: 282
  start-page: 805
  year: 2009
  end-page: 808
  article-title: Analysis of Al in meteorite samples by coincidence gamma‐ray spectrometry
  publication-title: Journal of Radioanalytical and Nuclear Chemistry
– start-page: 829
  year: 2006
  end-page: 851
– year: 1995
  article-title: Berlin: Springer‐Verlag
  publication-title: Meteorites: Messengers from space
– volume: 44
  start-page: 485
  year: 2009
  end-page: 503
  article-title: New model calculations for the production rates of cosmogenic nuclides in iron meteorites
  publication-title: Meteoritics & Planetary Science
– volume: 67
  start-page: 2100
  year: 2009
  end-page: 2103
  article-title: Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: Current analytical procedures at the University of Vienna Geochemistry Activation Analysis Laboratory
  publication-title: Applied Radiation and Isotopes
– volume: 55
  start-page: 3845
  year: 1991
  end-page: 3867
  article-title: Shock metamorphism of ordinary chondrites
  publication-title: Geochimica et Cosmochimica Acta
– volume: 503
  start-page: 202
  year: 2013
  end-page: 203
  article-title: Russian skyfall
  publication-title: Nature
– volume: 58
  start-page: 5307
  year: 1994
  end-page: 5317
  article-title: Effects of bulk composition on nuclide production processes in meteorites
  publication-title: Geochimica et Cosmochimica Acta
– start-page: 211
  year: 2008
  end-page: 214
– start-page: 109
  year: 2001
– year: 2007
– volume: 158
  start-page: 42
  year: 2004
  end-page: 49
  article-title: Calibration of in situ magnetic susceptibility measurements
  publication-title: Geophysical Journal International
– volume: 101
  start-page: 426
  year: 2010
  end-page: 437
  article-title: Sources of anthropogenic radioactivity in the environment: A review
  publication-title: Journal of Environmental Radioactivity
– volume: 35
  start-page: 1215
  year: 2000
  end-page: 1227
  article-title: Exposure history of the Mocs (L6) chondrite: A study of strewn field samples
  publication-title: Meteoritics & Planetary Science
– volume: 20
  start-page: 221
  year: 1992
  end-page: 243
  article-title: Cosmic‐ray exposure history of ordinary chondrites
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 32
  start-page: 135
  year: 1990
  end-page: 142
  article-title: Isotope‐ratio and background corrections for accelerator mass spectrometry radiocarbon measurements
  publication-title: Radiocarbon
– volume: 28
  start-page: 188
  year: 1993
  end-page: 195
  article-title: C terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA)
  publication-title: Meteoritics
– volume: 298
  start-page: 665
  year: 2013
  end-page: 672
  article-title: Monte Carlo and experimental efficiency calibration of gamma‐spectrometers for non‐destructive analysis of large volume samples of irregular shapes
  publication-title: Journal of Radioanalytical and Nuclear Chemistry
– volume: 276
  start-page: 771
  year: 2008
  end-page: 777
  article-title: Low‐level gamma‐ray spectrometry for environmental samples
  publication-title: Journal of Radioanalytical and Nuclear Chemistry
– volume: 61
  start-page: 167
  year: 2004
  end-page: 172
  article-title: Underground measurements of radioactivity
  publication-title: Applied Radiation and Isotopes
– volume: 29
  start-page: 643
  year: 1994
  end-page: 648
  article-title: Collisional records in LL‐chondrites
  publication-title: Meteoritics
– volume: 48
  start-page: A264
  year: 2013
  article-title: Cosmogenic radionuclides and noble gases in Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5260)
  publication-title: Meteoritics & Planetary Science
– volume: 58
  start-page: 1
  year: 2008
  end-page: 154
  article-title: New isotope technologies in environmental physics
  publication-title: Acta Physica Slovaca
– volume: 172
  start-page: 717
  year: 2000
  end-page: 720
  article-title: High‐sensitivity AMS for heavy nuclides at the Munich Tandem accelerator
  publication-title: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms B
– start-page: 347
  year: 2005
  end-page: 380
– volume: 35
  start-page: 1441
  year: 2008
  end-page: 1448
  article-title: Low‐altitude airbursts and the impact threat
  publication-title: International Journal of Impact Engineering
– year: 2002
– volume: 38
  start-page: 251
  year: 2003
  end-page: 268
  article-title: Magnetic classification of stony meteorites: 1. Ordinary chondrites
  publication-title: Meteoritics & Planetary Science
– volume: 44
  start-page: 77
  year: 2009
  end-page: 85
  article-title: Cosmogenic nuclides in the solar gas‐rich H3‐6 chondrite breccia Frontier Mountain 90174
  publication-title: Meteoritics & Planetary Science
– volume: 10
  start-page: 1
  year: 2013
  end-page: 94
  article-title: History of solar activity over millennia
  publication-title: Living Reviews in Solar Physics
– volume: 116
  start-page: A02104
  year: 2011
  article-title: Solar modulation parameter for cosmic rays since 1936 reconstructed from ground‐based neutron monitors and ionization chambers
  publication-title: Journal of Geophysics Research
– volume: 37
  start-page: 549
  year: 2002
  end-page: 564
  article-title: Itawa Bhopji (L3‐5) chondrite regolith breccia: Fall, classification and cosmogenic records
  publication-title: Meteoritics & Planetary Science
– volume: 51
  start-page: 643
  year: 2013
  end-page: 646
  article-title: Fragments of the Chelyabinsk meteorite shower: Distribution of masses and sizes and constraints on the mass of the largest fragment
  publication-title: Geochemistry International
– start-page: 656
  year: 2009
  end-page: 669
– volume: 48
  start-page: A287
  issue: s1
  year: 2013
  article-title: The Chelyabinsk meteoroid—What do we learn from the recovered fragments? (abstract #5196)
  publication-title: Meteoritics & Planetary Science
– start-page: 262
  year: 1990
– volume: 21
  start-page: 243
  year: 1986
  end-page: 250
  article-title: Cosmogenic radionuclides and noble gases in the Wethersfield (1982) chondrite
  publication-title: Meteoritics
– volume: 12
  start-page: 161
  year: 1979
  end-page: 177
  article-title: Cosmic ray produced radionuclides in Antarctic meteorites
  publication-title: Memoirs. National Institute of Polar Research Special Issue
– year: 2013
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1945-5100.2009.tb00788.x
– volume: 8
  start-page: 6
  year: 2005
  ident: e_1_2_7_37_1
  article-title: Cosmic hole‐in‐one captured over Antarctica
  publication-title: Australian Antarctic Magazine
  contributor:
    fullname: Klekociuk A.
– ident: e_1_2_7_64_1
  doi: 10.1111/maps.12380
– ident: e_1_2_7_58_1
  doi: 10.12942/lrsp-2013-3
– ident: e_1_2_7_4_1
  doi: 10.1016/S0969-8043(96)00097-8
– ident: e_1_2_7_29_1
  doi: 10.1016/0012-821X(82)90176-5
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1945-5100.2000.tb01510.x
– ident: e_1_2_7_38_1
  doi: 10.1016/S0168-583X(00)00103-8
– ident: e_1_2_7_70_1
  doi: 10.12942/lrsp-2013-1
– volume: 29
  start-page: 443
  year: 1994
  ident: e_1_2_7_8_1
  article-title: The 11 year solar cycle variation of cosmogenic isotope production rates in chondrites
  publication-title: Meteoritics
  contributor:
    fullname: Bhandari N.
– ident: e_1_2_7_25_1
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1945-5100.2006.tb00469.x
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1945-5100.2009.tb00746.x
– ident: e_1_2_7_74_1
– volume: 48
  start-page: A185
  year: 2013
  ident: e_1_2_7_32_1
  article-title: Fall, searching and first study of the Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5366)
  publication-title: Meteoritics & Planetary Science
  contributor:
    fullname: Ivanova M.
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ijimpeng.2008.07.053
– ident: e_1_2_7_41_1
  doi: 10.1007/s10967-012-1667-4
– volume: 48
  start-page: A264
  year: 2013
  ident: e_1_2_7_54_1
  article-title: Cosmogenic radionuclides and noble gases in Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5260)
  publication-title: Meteoritics & Planetary Science
  contributor:
    fullname: Nishiizumi K.
– start-page: 656
  volume-title: Encyclopedia of mass spectrometry
  year: 2009
  ident: e_1_2_7_13_1
  contributor:
    fullname: Burr G. S.
– ident: e_1_2_7_2_1
  doi: 10.1016/S0168-9002(03)01368-8
– ident: e_1_2_7_6_1
  doi: 10.1134/S0016702913070070
– ident: e_1_2_7_52_1
– start-page: 347
  volume-title: Meteorites, planets, and comets
  year: 2005
  ident: e_1_2_7_27_1
  contributor:
    fullname: Herzog G. F.
– ident: e_1_2_7_12_1
  doi: 10.1038/nature12741
– ident: e_1_2_7_44_1
  doi: 10.1007/BF00227810
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ijms.2004.10.029
– ident: e_1_2_7_33_1
  doi: 10.2307/j.ctv1v7zdmm.47
– ident: e_1_2_7_5_1
  doi: 10.1038/503202a
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1945-5100.2011.01311.x
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1945-5100.1997.tb01284.x
– ident: e_1_2_7_15_1
  doi: 10.1017/S0033822200040121
– ident: e_1_2_7_50_1
  doi: 10.1146/annurev.ea.20.050192.001253
– ident: e_1_2_7_65_1
  doi: 10.1126/science.219.4581.127
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1945-5100.2010.01142.x
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1945-5100.2003.tb00263.x
– ident: e_1_2_7_67_1
  doi: 10.1016/0016-7037(90)90148-E
– start-page: 211
  volume-title: Proceedings of the International Conference on nuclear data for science and technology, April 22–27, 2007
  year: 2008
  ident: e_1_2_7_40_1
  contributor:
    fullname: Koning A. J.
– ident: e_1_2_7_51_1
  doi: 10.1016/0016-7037(94)90314-X
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1945-5100.2009.tb00718.x
– ident: e_1_2_7_31_1
  doi: 10.2458/azu_js_rc.v55i2.16177
– volume: 48
  start-page: A287
  issue: 1
  year: 2013
  ident: e_1_2_7_63_1
  article-title: The Chelyabinsk meteoroid—What do we learn from the recovered fragments? (abstract #5196)
  publication-title: Meteoritics & Planetary Science
  contributor:
    fullname: Povinec P. P.
– ident: e_1_2_7_26_1
  doi: 10.1007/978-3-642-57786-4
– start-page: 262
  volume-title: Meteorites as probes of cosmic ray variations
  year: 1990
  ident: e_1_2_7_46_1
  contributor:
    fullname: Lavrukhina A. K.
– ident: e_1_2_7_61_1
  doi: 10.2478/v10155-010-0088-6
– ident: e_1_2_7_60_1
  doi: 10.1007/s10967-008-0631-9
– ident: e_1_2_7_21_1
  doi: 10.1134/S0016702913070100
– ident: e_1_2_7_18_1
  doi: 10.1051/0004-6361:20011054
– ident: e_1_2_7_62_1
  doi: 10.1007/s10967-009-0211-7
– ident: e_1_2_7_7_1
– ident: e_1_2_7_45_1
  doi: 10.1016/j.apradiso.2004.03.039
– ident: e_1_2_7_71_1
  doi: 10.1029/2010JA016105
– ident: e_1_2_7_14_1
  doi: 10.1146/annurev.eg.18.110193.002451
– ident: e_1_2_7_69_1
  doi: 10.1007/BF00671553
– ident: e_1_2_7_55_1
– ident: e_1_2_7_49_1
  doi: 10.1016/j.apradiso.2009.04.014
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1945-5100.1993.tb00756.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1945-5100.1994.tb00777.x
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jenvrad.2008.08.004
– ident: e_1_2_7_57_1
  doi: 10.1126/science.1242642
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1945-5100.2002.tb00838.x
– ident: e_1_2_7_75_1
– ident: e_1_2_7_72_1
  doi: 10.1098/rsta.1988.0066
– start-page: 375
  volume-title: Treatise on geochemistry,
  year: 2013
  ident: e_1_2_7_34_1
  contributor:
    fullname: Jull A. J. T.
– ident: e_1_2_7_42_1
  doi: 10.1007/s10967-013-2509-8
– volume: 12
  start-page: 161
  year: 1979
  ident: e_1_2_7_53_1
  article-title: Cosmic ray produced radionuclides in Antarctic meteorites
  publication-title: Memoirs. National Institute of Polar Research Special Issue
  contributor:
    fullname: Nishiizumi K.
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1945-5100.2010.01289.x
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-246X.2004.02297.x
– ident: e_1_2_7_56_1
  doi: 10.1111/maps.12405
– ident: e_1_2_7_10_1
  doi: 10.1038/nature12671
– volume: 51
  start-page: 278
  year: 2013
  ident: e_1_2_7_20_1
  article-title: Chelyabinsk meteorite—an LL5 chondrite
  publication-title: Geochemistry International
  doi: 10.1134/S0016702913070100
  contributor:
    fullname: Galimov E. M.
– ident: e_1_2_7_68_1
  doi: 10.1016/0016-7037(91)90078-J
– start-page: 829
  volume-title: Meteorites and the early solar system II
  year: 2006
  ident: e_1_2_7_16_1
  doi: 10.2307/j.ctv1v7zdmm.44
  contributor:
    fullname: Eugster O.
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1945-5100.1986.tb00868.x
– start-page: 115
  volume-title: Proceedings of the 20th International Cosmic Ray Conference
  year: 1987
  ident: e_1_2_7_59_1
  contributor:
    fullname: Povinec P. P.
SSID ssj0035134
Score 2.282696
Snippet On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell...
Abstract On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 273
SubjectTerms Age
Asteroid collisions
Computer simulation
Exposure
Fragments
Melts
Meteorites
Meteoroids
Stone
Title Cosmogenic radionuclides and mineralogical properties of the Chelyabinsk (LL5) meteorite: What do we learn about the meteoroid?
URI https://api.istex.fr/ark:/67375/WNG-N7PQQCMK-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmaps.12419
https://www.proquest.com/docview/1656168545
https://search.proquest.com/docview/1677919883
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8cIL32iFgQ6BJkBKtXw4jhESqgpjgrbagIm9oMifouqSVEkrGC_865ydpGw8IMGbpdwljs_n-9k-_0zIk313tEtZE-xTLd02owiEojqQqUyUZCylfgd_OksPT5J3p_R0i7zsz8K0_BCbBTfnGX68dg4uZHPByQuxbIYYnTznZxgzl8_1-sOGOyqm3ZYyYvYAYzDvuEldGs9v1UvR6Ipr2O-XoOZFwOojzsF18qWva5toshiuV3KofvxB4_i_P3ODXOugKIzavnOTbJnyFtkZNW5xvCrOYQ98uV37aG6Tn-OqKSrscHMFtdBo0LU6m2vTgCg1FHPPX92OpLB0a_y1I2uFygKCTBh_NWfnwh02W8DTyYQ-gwLxelUj5H0BjkAcdAXfDPhrLMDnS3u9Vqqa61d3yMnBm0_jw6C7vyEQFJFjICPNbZRlqeGKSsPR9ROD0Y-FkvJQcso1d_NLFsU6TjOcIFucq2tlBUWVTMR3yXZZlWaHgE0iGydxJi1qyMggrAmZttayRCiV0AF53NsxX7Y0HXk_vXFtm_u2HZA9b-KNiKgXLrGN0fzz7G0-Y0fHx-Pp-3wyILt9H8g7n8ZXIPQN04y6rz3aPEZvdFssojTV2skwxkOeZfGAPPcG_0t18uno6KMv3fsX4fvkKqI22qaO75LtVb02DxAZreRD7wG_AP1mC3Y
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6h9gAX3qihBRaBKkByVD_W9nJBUaAE6kQttGpv1j7VKLUd2YmgXPjrzKyd0HJAgpsl7_qxs7PzzezsN4S83MOjXcoab49piduMwhOKaU_GMlIySWLmdvDHk3h0En0-Y2ddbg6ehWn5IdYBN9QMt16jgmNA-oqWF2Le9ME8IennJuh7iAUM3n9Zs0eFrNtUBtTugRXmHTspJvL87nvNHm3i0H6_BjavQlZnc_bvtIVVG0dViKkms_5yIfvqxx9Ejv_9O3fJ7Q6N0kE7fe6RG6a8T7YGDcbHq-KS7lJ33YY_mgfk57Bqigrm3FTRWmiQ6VJdTLVpqCg1LaaOwrpdTOkcw_w18rXSylLAmXR4bi4uBZ43m9FXWcZe0wIge1UD6n1LkUOc6op-M9RVsqAuZdr1a1tVU_3uITnZ_3A8HHldCQdPMACPngw0t0GaxoYrJg0H7Y8MGMDEl4z7kjOuObqYSRDqME7BR7bgrmtlBYMuqQgfkY2yKs0WoTYKbBiFqbTQQwYGkI2faGttEgmlItYjL1aCzOctU0e-8nBwbHM3tj2y62S8biLqGea2JSw_nXzMJ8nh0dFwfJBnPbKzmgR5p9bwCEC_fpwyfNvz9W1QSNxlEaWpltgmSbjP0zTskTdO4n_5nHw8OPzqrh7_S-Nn5OboeJzl2afJwTa5BSCOtZnkO2RjUS_NEwBKC_nUqcMvnUMPkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUK8AONDK4xhBJoAKVXz4ThGk1DVUQZrqw6Y2AuK_CmqLkmVtGLjhX-ds5OUjQckeLOUu8Tx-Xw_2-efEXres0e7pNFejyhhtxm5xyVRnohFJAWlMXE7-ONJfHQafTgjZxvooD0LU_NDrBfcrGe48do6-EKZK06e8UXVhehkOT-3ojjs2YSuw49r8qiQNHvKANo9CMKsISe1eTy_da-Foy3bshfXsOZVxOpCzvA2-tpWts40mXdXS9GVP_7gcfzfv7mDbjVYFPfrzrONNnR-F-30K7s6XmSXeB-7cr34Ud1DPwdFlRXQ42YSl1yBRVfyfKZ0hXmucDZzBNb1UIoXdpG_tGytuDAYUCYefNPnl9yeNpvjF6MReYkzAOxFCZj3NbYM4lgV-LvG7h4L7BKmnV4tVczUm_vodPj28-DIay5w8DgB6OiJQDETJEmsmSRCM_D9SEP4o74gzBeMMMXsBJMGoQrjBGbIBibrShpOQCXh4QO0mRe53kHYRIEJozARBjREoAHX-FQZY2jEpYxIBz1r7Zguap6OtJ3f2LZNXdt20L4z8VqEl3Ob2UZJ-mXyLp3Q6cnJYHycjjpot-0DaePU8ArAvn6cEPu1p-vH4I52j4XnulhZGUqZz5Ik7KBXzuB_qU467k8_udLDfxF-gm5MD4fp6P3k-BG6CQiO1Gnku2hzWa70Y0BJS7HnnOEXas4OPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cosmogenic+radionuclides+and+mineralogical+properties+of+the+Chelyabinsk+%28LL5%29+meteorite%3A+What+do+we+learn+about+the+meteoroid%3F&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=Povinec%2C+Pavel+P.&rft.au=Laubenstein%2C+Matthias&rft.au=Jull%2C+A.+J.+Timothy&rft.au=Ferri%C3%A8re%2C+Ludovic&rft.date=2015-02-01&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=50&rft.issue=2&rft.spage=273&rft.epage=286&rft_id=info:doi/10.1111%2Fmaps.12419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_maps_12419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon