Cosmogenic radionuclides and mineralogical properties of the Chelyabinsk (LL5) meteorite: What do we learn about the meteoroid?
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of...
Saved in:
Published in | Meteoritics & planetary science Vol. 50; no. 2; pp. 273 - 286 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.02.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments. |
---|---|
AbstractList | On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long-lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of super(14)C, super(22)Na, super(26)Al, super(54)Mn, super(57)Co, super(58)Co, and super(60)Co, which indicate that the pre-atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed super(26)Al activities of the investigated samples, Monte Carlo simulations, and taking into account the super(26)Al half-life (0.717 Myr), the cosmic-ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 plus or minus 0.2 Myr. In contrast to the other radionuclides, super(14)C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of super(14)C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic super(137)Cs and primordial super(40)K in some of the Chelyabinsk fragments. On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments. On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long-lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre-atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half-life (0.717 Myr), the cosmic-ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments. Abstract On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL 5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14 C, 22 Na, 26 Al, 54 Mn, 57 Co, 58 Co, and 60 Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26 Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26 Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14 C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14 C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137 Cs and primordial 40 K in some of the Chelyabinsk fragments. |
Author | Brandstätter, Franz Sýkora, Ivan Kováčik, Andrej Topa, Dan Ferrière, Ludovic Beňo, Juraj Povinec, Pavel P. Laubenstein, Matthias Jull, A. J. Timothy Masarik, Jozef Koeberl, Christian |
Author_xml | – sequence: 1 givenname: Pavel P. surname: Povinec fullname: Povinec, Pavel P. email: povinec@fmph.uniba.sk organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia – sequence: 2 givenname: Matthias surname: Laubenstein fullname: Laubenstein, Matthias organization: Laboratori Nazionali del Gran'Sasso-INFN, 67100, Assergi (AQ), Italy – sequence: 3 givenname: A. J. Timothy surname: Jull fullname: Jull, A. J. Timothy organization: Department of Geosciences, University of Arizona, 85721, Tucson, Arizona, USA – sequence: 4 givenname: Ludovic surname: Ferrière fullname: Ferrière, Ludovic organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria – sequence: 5 givenname: Franz surname: Brandstätter fullname: Brandstätter, Franz organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria – sequence: 6 givenname: Ivan surname: Sýkora fullname: Sýkora, Ivan organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia – sequence: 7 givenname: Jozef surname: Masarik fullname: Masarik, Jozef organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia – sequence: 8 givenname: Juraj surname: Beňo fullname: Beňo, Juraj organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia – sequence: 9 givenname: Andrej surname: Kováčik fullname: Kováčik, Andrej organization: Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia – sequence: 10 givenname: Dan surname: Topa fullname: Topa, Dan organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria – sequence: 11 givenname: Christian surname: Koeberl fullname: Koeberl, Christian organization: Natural History Museum, Burgring 7, A-1010, Vienna, Austria |
BookMark | eNp9kcFu1TAQRSNUJNrChi-wxKYgpdhxHGfYoCqCgkhLK0BdWk4y6XPr2A87UXkrfh23ARYs8GYszTmjGd2DbM95h1n2nNFjlt7rSW_jMStKBo-yfQalyAWjdC_9aV3lwCU8yQ5ivKGUC8bL_exn4-Pkr9GZngQ9GO-W3poBI9FuIJNxGLT116bXlmyD32KYTWr6kcwbJM0G7U53xsVbctS24iWZcEYfzIxvyNVGz2Tw5A6JRR0c0Z1f5gdvpbwZ3j7NHo_aRnz2ux5m396_-9p8yNvPpx-bkzbXgjLIu2KAsajrCqEXHYKEskQAKlkngHUgYIC6pCALPvCqpoUcK6BDP2qRlFrzw-xonZuO-L5gnNVkYo_Waod-iYpVUgKDuuYJffEPeuOX4NJ2iRIVq2pRikS9Wqk--BgDjmobzKTDTjGq7rNQ91mohywSzFb4zljc_YdUZycXX_44-eqYOOOPv44Ot6qSXAp1dX6qzuXF5WVz9km1_BfIBZzu |
CODEN | MPSCFY |
CitedBy_id | crossref_primary_10_1016_j_pss_2019_104709 crossref_primary_10_4236_ns_2018_1011042 crossref_primary_10_1017_S1743921316002982 crossref_primary_10_1111_maps_12444 crossref_primary_10_1130_B31476_1 crossref_primary_10_1007_s10967_023_09135_5 crossref_primary_10_1016_j_nimb_2015_02_021 crossref_primary_10_1111_maps_12511 crossref_primary_10_1111_maps_12855 crossref_primary_10_1111_maps_13435 crossref_primary_10_1111_maps_14173 crossref_primary_10_1016_j_icarus_2016_11_030 crossref_primary_10_1134_S0038094619010015 crossref_primary_10_1016_j_pss_2020_104914 crossref_primary_10_1111_maps_13012 crossref_primary_10_1016_j_asr_2024_06_019 crossref_primary_10_1007_s10967_015_4406_9 crossref_primary_10_1007_s10967_017_5168_3 crossref_primary_10_1007_s10967_020_07034_7 crossref_primary_10_1007_s10967_021_08078_z crossref_primary_10_1007_s10967_015_4523_5 |
Cites_doi | 10.1111/j.1945-5100.2009.tb00788.x 10.1111/maps.12380 10.12942/lrsp-2013-3 10.1016/S0969-8043(96)00097-8 10.1016/0012-821X(82)90176-5 10.1111/j.1945-5100.2000.tb01510.x 10.1016/S0168-583X(00)00103-8 10.12942/lrsp-2013-1 10.1111/j.1945-5100.2006.tb00469.x 10.1111/j.1945-5100.2009.tb00746.x 10.1016/j.ijimpeng.2008.07.053 10.1007/s10967-012-1667-4 10.1016/S0168-9002(03)01368-8 10.1134/S0016702913070070 10.1038/nature12741 10.1007/BF00227810 10.1016/j.ijms.2004.10.029 10.2307/j.ctv1v7zdmm.47 10.1038/503202a 10.1111/j.1945-5100.2011.01311.x 10.1111/j.1945-5100.1997.tb01284.x 10.1017/S0033822200040121 10.1146/annurev.ea.20.050192.001253 10.1126/science.219.4581.127 10.1111/j.1945-5100.2010.01142.x 10.1111/j.1945-5100.2003.tb00263.x 10.1016/0016-7037(90)90148-E 10.1016/0016-7037(94)90314-X 10.1111/j.1945-5100.2009.tb00718.x 10.2458/azu_js_rc.v55i2.16177 10.1007/978-3-642-57786-4 10.2478/v10155-010-0088-6 10.1007/s10967-008-0631-9 10.1134/S0016702913070100 10.1051/0004-6361:20011054 10.1007/s10967-009-0211-7 10.1016/j.apradiso.2004.03.039 10.1029/2010JA016105 10.1146/annurev.eg.18.110193.002451 10.1007/BF00671553 10.1016/j.apradiso.2009.04.014 10.1111/j.1945-5100.1993.tb00756.x 10.1111/j.1945-5100.1994.tb00777.x 10.1016/j.jenvrad.2008.08.004 10.1126/science.1242642 10.1111/j.1945-5100.2002.tb00838.x 10.1098/rsta.1988.0066 10.1007/s10967-013-2509-8 10.1111/j.1945-5100.2010.01289.x 10.1111/j.1365-246X.2004.02297.x 10.1111/maps.12405 10.1038/nature12671 10.1016/0016-7037(91)90078-J 10.2307/j.ctv1v7zdmm.44 10.1111/j.1945-5100.1986.tb00868.x |
ContentType | Journal Article |
Copyright | The Meteoritical Society, 2015. Copyright © 2015 The Meteoritical Society |
Copyright_xml | – notice: The Meteoritical Society, 2015. – notice: Copyright © 2015 The Meteoritical Society |
DBID | BSCLL AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.1111/maps.12419 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Technology Research Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1945-5100 |
EndPage | 286 |
ExternalDocumentID | 3596445391 10_1111_maps_12419 MAPS12419 ark_67375_WNG_N7PQQCMK_L |
Genre | article |
GrantInformation_xml | – fundername: Slovak Grant Agencies VEGA funderid: 1/0783/14 – fundername: NSF equipment – fundername: APVV funderid: APVV‐0516‐10; APVV‐0420‐10 – fundername: ERDF funderid: 26240120012; 26240120026; 26240220004 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 2WC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS EJD ESX F00 F01 F04 F5P FEDTE FRP G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LDC LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR RNP ROL RX1 SAMSI SUPJJ UB1 V8K VOH W8V W99 WBKPD WH7 WIH WIK WIN WOHZO WUPDE WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~WT AETEA AAYXX CITATION 7TG 8FD H8D KL. L7M |
ID | FETCH-LOGICAL-a5019-b2d9f2886e9c5be97944e99071b591b959d98409723d368027f690dcfa56e98a3 |
IEDL.DBID | DR2 |
ISSN | 1086-9379 |
IngestDate | Fri Aug 16 06:04:34 EDT 2024 Thu Oct 10 20:29:48 EDT 2024 Thu Sep 26 16:12:51 EDT 2024 Sat Aug 24 00:54:28 EDT 2024 Wed Oct 30 09:48:18 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5019-b2d9f2886e9c5be97944e99071b591b959d98409723d368027f690dcfa56e98a3 |
Notes | ERDF - No. 26240120012; No. 26240120026; No. 26240220004 APVV - No. APVV-0516-10; No. APVV-0420-10 ArticleID:MAPS12419 Slovak Grant Agencies VEGA - No. 1/0783/14 ark:/67375/WNG-N7PQQCMK-L NSF equipment istex:A066A7031A3ED02F8584C0467493D4C0E309244A ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/maps.12419 |
PQID | 1656168545 |
PQPubID | 1016381 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1677919883 proquest_journals_1656168545 crossref_primary_10_1111_maps_12419 wiley_primary_10_1111_maps_12419_MAPS12419 istex_primary_ark_67375_WNG_N7PQQCMK_L |
PublicationCentury | 2000 |
PublicationDate | February 2015 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Meteoritics & planetary science |
PublicationTitleAlternate | Meteorit Planet Sci |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Evans J. C., Reeves J. H., and Bogard D. D. 1986. Cosmogenic radionuclides and noble gases in the Wethersfield (1982) chondrite. Meteoritics 21:243-250. Galimov E. M., Kolotov V. P., Nazarov M. A., Kostitsyn Yu A, Kubrakova I. V., Kononkova N. N., Roshchina I. A., Alexeev V. A., Kashkarov L. L., Badyukov D. D., and Sevast'yanov V. S. 2013. Analytical results for the material of the Chelyabinsk meteorite. Geochemistry International 51:522-539. Usoskin I. G., Bazilevskaya G. A., and Kovaltsov G. A. 2011. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. Journal of Geophysics Research 116:A02104. Brown P. G., Assink J. D., Astiz L., Blaauw R., Boslough M. B., Borovička J., Brachet N., Brown D., Campbell-Brown M., Ceranna L., Cooke W., de Groot-Hedlin C., Drob D. P., Edwards W., Evers L. G., Garces M., Gill J., Hedlin M., Kingery A., Laske G., Le Pichon A., Mialle P., Moser D. E., Saffer A., Silber E., Smets P., Spalding R. E., Spurný P., Tagliaferri E., Uren D., Weryk R. J., Whitaker R., and Krzeminski Z. 2013. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503:238-241. Mader D. and Koeberl C. 2009. Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: Current analytical procedures at the University of Vienna Geochemistry Activation Analysis Laboratory. Applied Radiation and Isotopes 67:2100-2103. Herzog G. F., Vogt S., Albrecht A., Xue S., Fink D., Klein J., Middleton R., Weber H. W., and Schultz L. 1997. Complex exposure histories for meteorites with "short" exposure ages. Meteoritics & Planetary Science 32:413-422. Masarik J. and Reedy R. C. 1994. Effects of bulk composition on nuclide production processes in meteorites. Geochimica et Cosmochimica Acta 58:5307-5317. Povinec P. P., Laubenstein M., Ferrière L., Brandstätter F., Sýkora I., Kovačik A., Jull A. J. T., Topa D., and Koeberl C. 2013. The Chelyabinsk meteoroid-What do we learn from the recovered fragments? (abstract #5196). Meteoritics & Planetary Science 48(s1):A287. Graf T. and Marti K. 1994. Collisional records in LL-chondrites. Meteoritics 29:643-648. Honda M., Nishiizumi K., Imamura M., Takaoka N., Nitoh O., Horie K., and Komura K. 1982. Cosmogenic nuclides in the Kirin chondrite. Earth and Planetary Science Letters 57:101-109. Povinec P. P., Masarik J., Sýkora I., Kovacik A., Beno J., Laubenstein M., and Porubcan V. 2015. Cosmogenic radionuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations. Meteoritics & Planetary Science, doi:10.1111/maps.12380. Artemieva N. 2013. Russian skyfall. Nature 503:202-203. Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55:3845-3867. Cochran T. B., Standish Norris R., and Suokko K. L. 1993. Radioactive contamination at Chelyabinsk-65, Russia. Annual Review of Energy and the Environment 18:507-528. Jull A. J. T., Donahue D. J., Cielaszyk E., and Wlotzka F. 1993. 14C terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA). Meteoritics 28:188-195. Galimov E. M. 2013. Chelyabinsk meteorite-an LL5 chondrite. Geochemistry International 51:278-283. Kováčik A., Sýkora I., and Povinec P. P. 2013. Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. Journal of Radioanalytical and Nuclear Chemistry 298:665-672. Welten K. C., Caffee M. W., Hillegonds D. J., McCoy T. J., Masarik J., and Nishiizumi K. 2011. Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: Identification of a large L/LL5 chondrite shower with a preatmospheric mass of approximately 50,000 kg. Meteoritics & Planetary Science 46:177-196. Badyukov D. D. and Dudorov A. E. 2013. Fragments of the Chelyabinsk meteorite shower: Distribution of masses and sizes and constraints on the mass of the largest fragment. Geochemistry International 51:643-646. Boslough M. B. E. and Crawford D. A. 2008. Low-altitude airbursts and the impact threat. International Journal of Impact Engineering 35:1441-1448. Lal D. 1972. Hard rock cosmic ray archaeology. Space Science Reviews 14:3-102. Kováčik A., Sýkora I., Povinec P. P., and Porubčan V. 2012. Non-destructive gamma-spectrometry analysis of cosmogenic radionuclides in fragments of the Košice meteorite. Journal of Radioanalytical and Nuclear Chemistry 293:339-345. Wasson J. T. and Kallemeyn G. W. 1988. Compositions of chondrites. Philosophical Transactions of the Royal Society London A 325:535-544. Usoskin I. G. 2013. History of solar activity over millennia. Living Reviews in Solar Physics 10:1-94. Povinec P. P., Betti M., Jull A. J. T., and Vojtyla P. 2008. New isotope technologies in environmental physics. Acta Physica Slovaca 58:1-154. Hu Q. H., Weng J. Q., and Wang J. S. 2010. Sources of anthropogenic radioactivity in the environment: A review. Journal of Environmental Radioactivity 101:426-437. Laubenstein M., Hult M., Gasparro J., Arnold D., Neumaier S., Heusser G., Köhler M., Povinec P. P., Reyss J.-L., Schwaiger M., and Theodorsson P. 2004. Underground measurements of radioactivity. Applied Radiation and Isotopes 61:167-172. Hua Q., Barbetti M., and Rakowski A. Z. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55:2059-2072. Marti K. and Graf T. 1992. Cosmic-ray exposure history of ordinary chondrites. Annual Review of Earth and Planetary Sciences 20:221-243. Nishiizumi K., Imamura M., and Honda M. 1979. Cosmic ray produced radionuclides in Antarctic meteorites. Memoirs. National Institute of Polar Research Special Issue 12:161-177. Tagliaferri E., Spalding R., Jacobs C., and Ceplecha Z. 1994. Analysis of the Marshall Islands Fireball of February 1, 1994. Earth, Moon, and Planets 68:563-572. Heide F. and Wlotzka F. 1995. Meteorites: Messengers from space. Berlin: Springer-Verlag. Borovička J., Spurný P., Brown P., Wiegert P., Kalinda P., Clark D., and Shrbený L. 2013. The trajectory, structure and origin of the Chelyabinsk impactor. Nature 503:235-237. Lavrukhina A. K. and Ustinova G. K. 1990. Meteorites as probes of cosmic ray variations. Moscow: Nauka. 262 p. Kutschera W. 2005. Progress in isotope analysis at ultra-trace level by AMS. International Journal of Mass Spectrometry 242:145-160. Klekociuk A., Brown P., and ReVelle D. 2005. Cosmic hole-in-one captured over Antarctica. Australian Antarctic Magazine 8:6-7. Haack H., Grau T., Bischoff A., Hortsmann M., Wasson J., Sørensen A., Laubenstein M., Ott U., Palme H., Gellissen M., Greenwood R. C., Pearson V. K., Franchi I. A., Gabelica Z., and Schmitt-Kopplin P. 2012. Maribo-A new CM fall from Denmark. Meteoritics & Planetary Science 47:30-50. Ferko T. E., Schultz L., Franke L., Bogard D. D., Garrison D. H., Hutchison R., and Lipschutz M. E. 2000. Exposure history of the Mocs (L6) chondrite: A study of strewn field samples. Meteoritics & Planetary Science 35:1215-1227. Kollár D., Michel R., and Masarik J. 2006. Monte Carlo simulation of GCR neutron capture production of cosmogenic nuclides in stony meteorites and lunar surface. Meteoritics & Planetary Science 41:375-389. Ozdín D., Plavcan J., Hornácková M., Uher P., Porubcan V., Veis P., Rakovský J., Tóth J., Konecný P., and Svoren J. 2015. Mineralogy, petrography, geochemistry and classification of the Košice meteorite. Meteoritics & Planetary Science, doi:10.1111/maps.12405. Reedy R. C., Arnold J. R., and Lal D. 1983. Cosmic-ray record in solar system matter. Science 219:127-135. Bhandari N., Bonino G., Cini Castagnoli G., and Taricco C. 1994. The 11 year solar cycle variation of cosmogenic isotope production rates in chondrites. Meteoritics 29:443-444. Gattacceca J., Eisenlohr P., and Rochette P. 2004. Calibration of in situ magnetic susceptibility measurements. Geophysical Journal International 158:42-49. Rubin A. E. 1990. Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships. Geochimica et Cosmochimica Acta 54:1217-1232. Knie K., Faestermann T., Korschinek G., Rugel G., Ruehm W., and Wallner C. 2000. High-sensitivity AMS for heavy nuclides at the Munich Tandem accelerator. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms B 172:717-720. Leya I., Welten K. C., Nishiizumi K., and Caffee M. W. 2009. Cosmogenic nuclides in the solar gas-rich H3-6 chondrite breccia Frontier Mountain 90174. Meteoritics & Planetary Science 44:77-85. Arpesella C. 1996. A low background counting facility at Laboratori Nazionali del Gran Sasso. Applied Radiation and Isotopes 47:991-996. Nishiizumi K., Caffee M. W., Huber L., Welten K. C., and Wieler R. 2013. Cosmogenic radionuclides and noble gases in Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5260). Meteoritics & Planetary Science 48:A264. Donahue D. J., Linick T. W., and Jull A. J. T. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32:135-142. Bhandari N., Murty S. V. S., Shukla P. N., Shukla A. D., Mahajan R. R., Sarin M. M., Srinivasan G., Suthar K. M., Sisodia M. S., Jha S., and Bischoff A. 2002. Itawa Bhopji (L3-5) chondrite regolith breccia: Fall, classification and cosmogenic records. Meteoritics & Planetary Science 37:549-564. Farinella P., Foschini L., Froeschlé C., Gonczi R., Jopek T. J., Longo G., and Michel P. 2001. Probable asteroidal origin of the Tunguska cosmic body. Astronomy & Astrophysics 377:1081-1097. Povinec P. P. 2008. Low-level gamma-ray spectrometry for environmental samples. Journal of Radioanalytical and Nuclear Chemistry 276:771-777. Ivanova M., Badyukov D. D., Ryazantsev K. M., Lorenz C. A., Demidova S. I., Sadilenko D. A., Artemieva N., Korochantsev A. V., Skripnik A. Y., Ivanov A. V., and Nazarov M. A. 2013. Fall, searching and first study o 2011; 116 2009; 44 1982; 57 1990; 54 2004; 61 1993; 28 1991; 55 2010; 101 2000; 172 2008; 35 1994; 68 1994; 29 2012; 293 2001; 377 2001 2013; 55 1990 2013; 10 2013; 51 1987 2009; 282 1972; 14 2008; 276 2009; 67 2002; 37 1990; 32 2013; 48 1979; 12 2013; 503 2009 2008; 58 2008 2013; 342 2007 2006 1995 2003; 38 2005 2002 1983; 219 1988; 325 2010; 45 2003; 506 2006; 41 1993; 18 2004; 158 2005; 242 1997; 32 1986; 21 2000; 35 2005; 8 2013; 298 1994; 58 2011; 46 2015 2014 2013 1996; 47 2012; 47 1992; 20 e_1_2_7_5_1 Eugster O. (e_1_2_7_16_1) 2006 e_1_2_7_3_1 e_1_2_7_9_1 Klekociuk A. (e_1_2_7_37_1) 2005; 8 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 Jull A. J. T. (e_1_2_7_34_1) 2013 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Burr G. S. (e_1_2_7_13_1) 2009 Povinec P. P. (e_1_2_7_63_1) 2013; 48 Lavrukhina A. K. (e_1_2_7_46_1) 1990 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Bhandari N. (e_1_2_7_8_1) 1994; 29 Galimov E. M. (e_1_2_7_20_1) 2013; 51 e_1_2_7_58_1 e_1_2_7_39_1 Povinec P. P. (e_1_2_7_59_1) 1987 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 Herzog G. F. (e_1_2_7_27_1) 2005 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_29_1 Koning A. J. (e_1_2_7_40_1) 2008 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_36_1 Nishiizumi K. (e_1_2_7_54_1) 2013; 48 e_1_2_7_38_1 Ivanova M. (e_1_2_7_32_1) 2013; 48 Nishiizumi K. (e_1_2_7_53_1) 1979; 12 |
References_xml | – year: 2009 – volume: 48 start-page: A185 year: 2013 article-title: Fall, searching and first study of the Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5366) publication-title: Meteoritics & Planetary Science – volume: 10 start-page: 3 year: 2013 end-page: 66 article-title: Solar modulation of cosmic rays publication-title: Living Reviews in Solar Physics – volume: 293 start-page: 339 year: 2012 end-page: 345 article-title: Non‐destructive gamma‐spectrometry analysis of cosmogenic radionuclides in fragments of the Košice meteorite publication-title: Journal of Radioanalytical and Nuclear Chemistry – volume: 242 start-page: 145 year: 2005 end-page: 160 article-title: Progress in isotope analysis at ultra‐trace level by AMS publication-title: International Journal of Mass Spectrometry – volume: 44 start-page: 1061 year: 2009 end-page: 1086 article-title: Cosmogenic nuclides in stony meteorites revisited publication-title: Meteoritics & Planetary Science – volume: 18 start-page: 507 year: 1993 end-page: 528 article-title: Radioactive contamination at Chelyabinsk‐65, Russia publication-title: Annual Review of Energy and the Environment – volume: 219 start-page: 127 year: 1983 end-page: 135 article-title: Cosmic‐ray record in solar system matter publication-title: Science – volume: 29 start-page: 443 year: 1994 end-page: 444 article-title: The 11 year solar cycle variation of cosmogenic isotope production rates in chondrites publication-title: Meteoritics – year: 2014 article-title: Noble gases in the Chelyabinsk chondrite (abstract #1732). 45th Lunar and Planetary Science Conference. CD‐ROM – volume: 51 start-page: 278 year: 2013 end-page: 283 article-title: Chelyabinsk meteorite—an LL5 chondrite publication-title: Geochemistry International – volume: 46 start-page: 177 year: 2011 end-page: 196 article-title: Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: Identification of a large L/LL5 chondrite shower with a preatmospheric mass of approximately 50,000 kg publication-title: Meteoritics & Planetary Science – volume: 503 start-page: 235 year: 2013 end-page: 237 article-title: The trajectory, structure and origin of the Chelyabinsk impactor publication-title: Nature – volume: 506 start-page: 250 year: 2003 end-page: 303 article-title: GEANT 4—A simulation toolkit publication-title: Nuclear Instruments and Methods in Physics, Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment – volume: 47 start-page: 30 year: 2012 end-page: 50 article-title: Maribo—A new CM fall from Denmark publication-title: Meteoritics & Planetary Science – volume: 54 start-page: 1217 year: 1990 end-page: 1232 article-title: Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships publication-title: Geochimica et Cosmochimica Acta – volume: 342 start-page: 1069 year: 2013 end-page: 1073 article-title: Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization publication-title: Science – volume: 503 start-page: 238 year: 2013 end-page: 241 article-title: A 500‐kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors publication-title: Nature – volume: 325 start-page: 535 year: 1988 end-page: 544 article-title: Compositions of chondrites publication-title: Philosophical Transactions of the Royal Society London A – volume: 14 start-page: 3 year: 1972 end-page: 102 article-title: Hard rock cosmic ray archaeology publication-title: Space Science Reviews – volume: 45 start-page: 1271 year: 2010 end-page: 1283 article-title: Terrestrial C and C‐ Be ages of meteorites from the Nullarbor, Australia publication-title: Meteoritics & Planetary Science – volume: 51 start-page: 522 year: 2013 end-page: 539 article-title: Analytical results for the material of the Chelyabinsk meteorite publication-title: Geochemistry International – volume: 57 start-page: 101 year: 1982 end-page: 109 article-title: Cosmogenic nuclides in the Kirin chondrite publication-title: Earth and Planetary Science Letters – volume: 41 start-page: 375 year: 2006 end-page: 389 article-title: Monte Carlo simulation of GCR neutron capture production of cosmogenic nuclides in stony meteorites and lunar surface publication-title: Meteoritics & Planetary Science – year: 2015 article-title: Cosmogenic radionuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations publication-title: Meteoritics & Planetary Science – volume: 55 start-page: 2059 year: 2013 end-page: 2072 article-title: Atmospheric radiocarbon for the period 1950–2010 publication-title: Radiocarbon – start-page: 375 year: 2013 end-page: 383 – year: 2015 article-title: Mineralogy, petrography, geochemistry and classification of the Košice meteorite publication-title: Meteoritics & Planetary Science – volume: 68 start-page: 563 year: 1994 end-page: 572 article-title: Analysis of the Marshall Islands Fireball of February 1, 1994 publication-title: Earth, Moon, and Planets – start-page: 115 year: 1987 end-page: 137 – start-page: 889 year: 2006 end-page: 905 – volume: 8 start-page: 6 year: 2005 end-page: 7 article-title: Cosmic hole‐in‐one captured over Antarctica publication-title: Australian Antarctic Magazine – volume: 47 start-page: 991 year: 1996 end-page: 996 article-title: A low background counting facility at Laboratori Nazionali del Gran Sasso publication-title: Applied Radiation and Isotopes – volume: 32 start-page: 413 year: 1997 end-page: 422 article-title: Complex exposure histories for meteorites with “short” exposure ages publication-title: Meteoritics & Planetary Science – volume: 377 start-page: 1081 year: 2001 end-page: 1097 article-title: Probable asteroidal origin of the Tunguska cosmic body publication-title: Astronomy & Astrophysics – volume: 282 start-page: 805 year: 2009 end-page: 808 article-title: Analysis of Al in meteorite samples by coincidence gamma‐ray spectrometry publication-title: Journal of Radioanalytical and Nuclear Chemistry – start-page: 829 year: 2006 end-page: 851 – year: 1995 article-title: Berlin: Springer‐Verlag publication-title: Meteorites: Messengers from space – volume: 44 start-page: 485 year: 2009 end-page: 503 article-title: New model calculations for the production rates of cosmogenic nuclides in iron meteorites publication-title: Meteoritics & Planetary Science – volume: 67 start-page: 2100 year: 2009 end-page: 2103 article-title: Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: Current analytical procedures at the University of Vienna Geochemistry Activation Analysis Laboratory publication-title: Applied Radiation and Isotopes – volume: 55 start-page: 3845 year: 1991 end-page: 3867 article-title: Shock metamorphism of ordinary chondrites publication-title: Geochimica et Cosmochimica Acta – volume: 503 start-page: 202 year: 2013 end-page: 203 article-title: Russian skyfall publication-title: Nature – volume: 58 start-page: 5307 year: 1994 end-page: 5317 article-title: Effects of bulk composition on nuclide production processes in meteorites publication-title: Geochimica et Cosmochimica Acta – start-page: 211 year: 2008 end-page: 214 – start-page: 109 year: 2001 – year: 2007 – volume: 158 start-page: 42 year: 2004 end-page: 49 article-title: Calibration of in situ magnetic susceptibility measurements publication-title: Geophysical Journal International – volume: 101 start-page: 426 year: 2010 end-page: 437 article-title: Sources of anthropogenic radioactivity in the environment: A review publication-title: Journal of Environmental Radioactivity – volume: 35 start-page: 1215 year: 2000 end-page: 1227 article-title: Exposure history of the Mocs (L6) chondrite: A study of strewn field samples publication-title: Meteoritics & Planetary Science – volume: 20 start-page: 221 year: 1992 end-page: 243 article-title: Cosmic‐ray exposure history of ordinary chondrites publication-title: Annual Review of Earth and Planetary Sciences – volume: 32 start-page: 135 year: 1990 end-page: 142 article-title: Isotope‐ratio and background corrections for accelerator mass spectrometry radiocarbon measurements publication-title: Radiocarbon – volume: 28 start-page: 188 year: 1993 end-page: 195 article-title: C terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA) publication-title: Meteoritics – volume: 298 start-page: 665 year: 2013 end-page: 672 article-title: Monte Carlo and experimental efficiency calibration of gamma‐spectrometers for non‐destructive analysis of large volume samples of irregular shapes publication-title: Journal of Radioanalytical and Nuclear Chemistry – volume: 276 start-page: 771 year: 2008 end-page: 777 article-title: Low‐level gamma‐ray spectrometry for environmental samples publication-title: Journal of Radioanalytical and Nuclear Chemistry – volume: 61 start-page: 167 year: 2004 end-page: 172 article-title: Underground measurements of radioactivity publication-title: Applied Radiation and Isotopes – volume: 29 start-page: 643 year: 1994 end-page: 648 article-title: Collisional records in LL‐chondrites publication-title: Meteoritics – volume: 48 start-page: A264 year: 2013 article-title: Cosmogenic radionuclides and noble gases in Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5260) publication-title: Meteoritics & Planetary Science – volume: 58 start-page: 1 year: 2008 end-page: 154 article-title: New isotope technologies in environmental physics publication-title: Acta Physica Slovaca – volume: 172 start-page: 717 year: 2000 end-page: 720 article-title: High‐sensitivity AMS for heavy nuclides at the Munich Tandem accelerator publication-title: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms B – start-page: 347 year: 2005 end-page: 380 – volume: 35 start-page: 1441 year: 2008 end-page: 1448 article-title: Low‐altitude airbursts and the impact threat publication-title: International Journal of Impact Engineering – year: 2002 – volume: 38 start-page: 251 year: 2003 end-page: 268 article-title: Magnetic classification of stony meteorites: 1. Ordinary chondrites publication-title: Meteoritics & Planetary Science – volume: 44 start-page: 77 year: 2009 end-page: 85 article-title: Cosmogenic nuclides in the solar gas‐rich H3‐6 chondrite breccia Frontier Mountain 90174 publication-title: Meteoritics & Planetary Science – volume: 10 start-page: 1 year: 2013 end-page: 94 article-title: History of solar activity over millennia publication-title: Living Reviews in Solar Physics – volume: 116 start-page: A02104 year: 2011 article-title: Solar modulation parameter for cosmic rays since 1936 reconstructed from ground‐based neutron monitors and ionization chambers publication-title: Journal of Geophysics Research – volume: 37 start-page: 549 year: 2002 end-page: 564 article-title: Itawa Bhopji (L3‐5) chondrite regolith breccia: Fall, classification and cosmogenic records publication-title: Meteoritics & Planetary Science – volume: 51 start-page: 643 year: 2013 end-page: 646 article-title: Fragments of the Chelyabinsk meteorite shower: Distribution of masses and sizes and constraints on the mass of the largest fragment publication-title: Geochemistry International – start-page: 656 year: 2009 end-page: 669 – volume: 48 start-page: A287 issue: s1 year: 2013 article-title: The Chelyabinsk meteoroid—What do we learn from the recovered fragments? (abstract #5196) publication-title: Meteoritics & Planetary Science – start-page: 262 year: 1990 – volume: 21 start-page: 243 year: 1986 end-page: 250 article-title: Cosmogenic radionuclides and noble gases in the Wethersfield (1982) chondrite publication-title: Meteoritics – volume: 12 start-page: 161 year: 1979 end-page: 177 article-title: Cosmic ray produced radionuclides in Antarctic meteorites publication-title: Memoirs. National Institute of Polar Research Special Issue – year: 2013 – ident: e_1_2_7_47_1 doi: 10.1111/j.1945-5100.2009.tb00788.x – volume: 8 start-page: 6 year: 2005 ident: e_1_2_7_37_1 article-title: Cosmic hole‐in‐one captured over Antarctica publication-title: Australian Antarctic Magazine contributor: fullname: Klekociuk A. – ident: e_1_2_7_64_1 doi: 10.1111/maps.12380 – ident: e_1_2_7_58_1 doi: 10.12942/lrsp-2013-3 – ident: e_1_2_7_4_1 doi: 10.1016/S0969-8043(96)00097-8 – ident: e_1_2_7_29_1 doi: 10.1016/0012-821X(82)90176-5 – ident: e_1_2_7_19_1 doi: 10.1111/j.1945-5100.2000.tb01510.x – ident: e_1_2_7_38_1 doi: 10.1016/S0168-583X(00)00103-8 – ident: e_1_2_7_70_1 doi: 10.12942/lrsp-2013-1 – volume: 29 start-page: 443 year: 1994 ident: e_1_2_7_8_1 article-title: The 11 year solar cycle variation of cosmogenic isotope production rates in chondrites publication-title: Meteoritics contributor: fullname: Bhandari N. – ident: e_1_2_7_25_1 – ident: e_1_2_7_39_1 doi: 10.1111/j.1945-5100.2006.tb00469.x – ident: e_1_2_7_3_1 doi: 10.1111/j.1945-5100.2009.tb00746.x – ident: e_1_2_7_74_1 – volume: 48 start-page: A185 year: 2013 ident: e_1_2_7_32_1 article-title: Fall, searching and first study of the Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5366) publication-title: Meteoritics & Planetary Science contributor: fullname: Ivanova M. – ident: e_1_2_7_11_1 doi: 10.1016/j.ijimpeng.2008.07.053 – ident: e_1_2_7_41_1 doi: 10.1007/s10967-012-1667-4 – volume: 48 start-page: A264 year: 2013 ident: e_1_2_7_54_1 article-title: Cosmogenic radionuclides and noble gases in Chelyabinsk meteorite. 76th Meteoritical Society meeting, Edmonton, Canada (abstract #5260) publication-title: Meteoritics & Planetary Science contributor: fullname: Nishiizumi K. – start-page: 656 volume-title: Encyclopedia of mass spectrometry year: 2009 ident: e_1_2_7_13_1 contributor: fullname: Burr G. S. – ident: e_1_2_7_2_1 doi: 10.1016/S0168-9002(03)01368-8 – ident: e_1_2_7_6_1 doi: 10.1134/S0016702913070070 – ident: e_1_2_7_52_1 – start-page: 347 volume-title: Meteorites, planets, and comets year: 2005 ident: e_1_2_7_27_1 contributor: fullname: Herzog G. F. – ident: e_1_2_7_12_1 doi: 10.1038/nature12741 – ident: e_1_2_7_44_1 doi: 10.1007/BF00227810 – ident: e_1_2_7_43_1 doi: 10.1016/j.ijms.2004.10.029 – ident: e_1_2_7_33_1 doi: 10.2307/j.ctv1v7zdmm.47 – ident: e_1_2_7_5_1 doi: 10.1038/503202a – ident: e_1_2_7_24_1 doi: 10.1111/j.1945-5100.2011.01311.x – ident: e_1_2_7_28_1 doi: 10.1111/j.1945-5100.1997.tb01284.x – ident: e_1_2_7_15_1 doi: 10.1017/S0033822200040121 – ident: e_1_2_7_50_1 doi: 10.1146/annurev.ea.20.050192.001253 – ident: e_1_2_7_65_1 doi: 10.1126/science.219.4581.127 – ident: e_1_2_7_73_1 doi: 10.1111/j.1945-5100.2010.01142.x – ident: e_1_2_7_66_1 doi: 10.1111/j.1945-5100.2003.tb00263.x – ident: e_1_2_7_67_1 doi: 10.1016/0016-7037(90)90148-E – start-page: 211 volume-title: Proceedings of the International Conference on nuclear data for science and technology, April 22–27, 2007 year: 2008 ident: e_1_2_7_40_1 contributor: fullname: Koning A. J. – ident: e_1_2_7_51_1 doi: 10.1016/0016-7037(94)90314-X – ident: e_1_2_7_48_1 doi: 10.1111/j.1945-5100.2009.tb00718.x – ident: e_1_2_7_31_1 doi: 10.2458/azu_js_rc.v55i2.16177 – volume: 48 start-page: A287 issue: 1 year: 2013 ident: e_1_2_7_63_1 article-title: The Chelyabinsk meteoroid—What do we learn from the recovered fragments? (abstract #5196) publication-title: Meteoritics & Planetary Science contributor: fullname: Povinec P. P. – ident: e_1_2_7_26_1 doi: 10.1007/978-3-642-57786-4 – start-page: 262 volume-title: Meteorites as probes of cosmic ray variations year: 1990 ident: e_1_2_7_46_1 contributor: fullname: Lavrukhina A. K. – ident: e_1_2_7_61_1 doi: 10.2478/v10155-010-0088-6 – ident: e_1_2_7_60_1 doi: 10.1007/s10967-008-0631-9 – ident: e_1_2_7_21_1 doi: 10.1134/S0016702913070100 – ident: e_1_2_7_18_1 doi: 10.1051/0004-6361:20011054 – ident: e_1_2_7_62_1 doi: 10.1007/s10967-009-0211-7 – ident: e_1_2_7_7_1 – ident: e_1_2_7_45_1 doi: 10.1016/j.apradiso.2004.03.039 – ident: e_1_2_7_71_1 doi: 10.1029/2010JA016105 – ident: e_1_2_7_14_1 doi: 10.1146/annurev.eg.18.110193.002451 – ident: e_1_2_7_69_1 doi: 10.1007/BF00671553 – ident: e_1_2_7_55_1 – ident: e_1_2_7_49_1 doi: 10.1016/j.apradiso.2009.04.014 – ident: e_1_2_7_35_1 doi: 10.1111/j.1945-5100.1993.tb00756.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1945-5100.1994.tb00777.x – ident: e_1_2_7_30_1 doi: 10.1016/j.jenvrad.2008.08.004 – ident: e_1_2_7_57_1 doi: 10.1126/science.1242642 – ident: e_1_2_7_9_1 doi: 10.1111/j.1945-5100.2002.tb00838.x – ident: e_1_2_7_75_1 – ident: e_1_2_7_72_1 doi: 10.1098/rsta.1988.0066 – start-page: 375 volume-title: Treatise on geochemistry, year: 2013 ident: e_1_2_7_34_1 contributor: fullname: Jull A. J. T. – ident: e_1_2_7_42_1 doi: 10.1007/s10967-013-2509-8 – volume: 12 start-page: 161 year: 1979 ident: e_1_2_7_53_1 article-title: Cosmic ray produced radionuclides in Antarctic meteorites publication-title: Memoirs. National Institute of Polar Research Special Issue contributor: fullname: Nishiizumi K. – ident: e_1_2_7_36_1 doi: 10.1111/j.1945-5100.2010.01289.x – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-246X.2004.02297.x – ident: e_1_2_7_56_1 doi: 10.1111/maps.12405 – ident: e_1_2_7_10_1 doi: 10.1038/nature12671 – volume: 51 start-page: 278 year: 2013 ident: e_1_2_7_20_1 article-title: Chelyabinsk meteorite—an LL5 chondrite publication-title: Geochemistry International doi: 10.1134/S0016702913070100 contributor: fullname: Galimov E. M. – ident: e_1_2_7_68_1 doi: 10.1016/0016-7037(91)90078-J – start-page: 829 volume-title: Meteorites and the early solar system II year: 2006 ident: e_1_2_7_16_1 doi: 10.2307/j.ctv1v7zdmm.44 contributor: fullname: Eugster O. – ident: e_1_2_7_17_1 doi: 10.1111/j.1945-5100.1986.tb00868.x – start-page: 115 volume-title: Proceedings of the 20th International Cosmic Ray Conference year: 1987 ident: e_1_2_7_59_1 contributor: fullname: Povinec P. P. |
SSID | ssj0035134 |
Score | 2.282696 |
Snippet | On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell... Abstract On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 273 |
SubjectTerms | Age Asteroid collisions Computer simulation Exposure Fragments Melts Meteorites Meteoroids Stone |
Title | Cosmogenic radionuclides and mineralogical properties of the Chelyabinsk (LL5) meteorite: What do we learn about the meteoroid? |
URI | https://api.istex.fr/ark:/67375/WNG-N7PQQCMK-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmaps.12419 https://www.proquest.com/docview/1656168545 https://search.proquest.com/docview/1677919883 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8cIL32iFgQ6BJkBKtXw4jhESqgpjgrbagIm9oMifouqSVEkrGC_865ydpGw8IMGbpdwljs_n-9k-_0zIk313tEtZE-xTLd02owiEojqQqUyUZCylfgd_OksPT5J3p_R0i7zsz8K0_BCbBTfnGX68dg4uZHPByQuxbIYYnTznZxgzl8_1-sOGOyqm3ZYyYvYAYzDvuEldGs9v1UvR6Ipr2O-XoOZFwOojzsF18qWva5toshiuV3KofvxB4_i_P3ODXOugKIzavnOTbJnyFtkZNW5xvCrOYQ98uV37aG6Tn-OqKSrscHMFtdBo0LU6m2vTgCg1FHPPX92OpLB0a_y1I2uFygKCTBh_NWfnwh02W8DTyYQ-gwLxelUj5H0BjkAcdAXfDPhrLMDnS3u9Vqqa61d3yMnBm0_jw6C7vyEQFJFjICPNbZRlqeGKSsPR9ROD0Y-FkvJQcso1d_NLFsU6TjOcIFucq2tlBUWVTMR3yXZZlWaHgE0iGydxJi1qyMggrAmZttayRCiV0AF53NsxX7Y0HXk_vXFtm_u2HZA9b-KNiKgXLrGN0fzz7G0-Y0fHx-Pp-3wyILt9H8g7n8ZXIPQN04y6rz3aPEZvdFssojTV2skwxkOeZfGAPPcG_0t18uno6KMv3fsX4fvkKqI22qaO75LtVb02DxAZreRD7wG_AP1mC3Y |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6h9gAX3qihBRaBKkByVD_W9nJBUaAE6kQttGpv1j7VKLUd2YmgXPjrzKyd0HJAgpsl7_qxs7PzzezsN4S83MOjXcoab49piduMwhOKaU_GMlIySWLmdvDHk3h0En0-Y2ddbg6ehWn5IdYBN9QMt16jgmNA-oqWF2Le9ME8IennJuh7iAUM3n9Zs0eFrNtUBtTugRXmHTspJvL87nvNHm3i0H6_BjavQlZnc_bvtIVVG0dViKkms_5yIfvqxx9Ejv_9O3fJ7Q6N0kE7fe6RG6a8T7YGDcbHq-KS7lJ33YY_mgfk57Bqigrm3FTRWmiQ6VJdTLVpqCg1LaaOwrpdTOkcw_w18rXSylLAmXR4bi4uBZ43m9FXWcZe0wIge1UD6n1LkUOc6op-M9RVsqAuZdr1a1tVU_3uITnZ_3A8HHldCQdPMACPngw0t0GaxoYrJg0H7Y8MGMDEl4z7kjOuObqYSRDqME7BR7bgrmtlBYMuqQgfkY2yKs0WoTYKbBiFqbTQQwYGkI2faGttEgmlItYjL1aCzOctU0e-8nBwbHM3tj2y62S8biLqGea2JSw_nXzMJ8nh0dFwfJBnPbKzmgR5p9bwCEC_fpwyfNvz9W1QSNxlEaWpltgmSbjP0zTskTdO4n_5nHw8OPzqrh7_S-Nn5OboeJzl2afJwTa5BSCOtZnkO2RjUS_NEwBKC_nUqcMvnUMPkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUK8AONDK4xhBJoAKVXz4ThGk1DVUQZrqw6Y2AuK_CmqLkmVtGLjhX-ds5OUjQckeLOUu8Tx-Xw_2-efEXres0e7pNFejyhhtxm5xyVRnohFJAWlMXE7-ONJfHQafTgjZxvooD0LU_NDrBfcrGe48do6-EKZK06e8UXVhehkOT-3ojjs2YSuw49r8qiQNHvKANo9CMKsISe1eTy_da-Foy3bshfXsOZVxOpCzvA2-tpWts40mXdXS9GVP_7gcfzfv7mDbjVYFPfrzrONNnR-F-30K7s6XmSXeB-7cr34Ud1DPwdFlRXQ42YSl1yBRVfyfKZ0hXmucDZzBNb1UIoXdpG_tGytuDAYUCYefNPnl9yeNpvjF6MReYkzAOxFCZj3NbYM4lgV-LvG7h4L7BKmnV4tVczUm_vodPj28-DIay5w8DgB6OiJQDETJEmsmSRCM_D9SEP4o74gzBeMMMXsBJMGoQrjBGbIBibrShpOQCXh4QO0mRe53kHYRIEJozARBjREoAHX-FQZY2jEpYxIBz1r7Zguap6OtJ3f2LZNXdt20L4z8VqEl3Ob2UZJ-mXyLp3Q6cnJYHycjjpot-0DaePU8ArAvn6cEPu1p-vH4I52j4XnulhZGUqZz5Ik7KBXzuB_qU467k8_udLDfxF-gm5MD4fp6P3k-BG6CQiO1Gnku2hzWa70Y0BJS7HnnOEXas4OPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cosmogenic+radionuclides+and+mineralogical+properties+of+the+Chelyabinsk+%28LL5%29+meteorite%3A+What+do+we+learn+about+the+meteoroid%3F&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=Povinec%2C+Pavel+P.&rft.au=Laubenstein%2C+Matthias&rft.au=Jull%2C+A.+J.+Timothy&rft.au=Ferri%C3%A8re%2C+Ludovic&rft.date=2015-02-01&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=50&rft.issue=2&rft.spage=273&rft.epage=286&rft_id=info:doi/10.1111%2Fmaps.12419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_maps_12419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon |