Geological mapping strategy using visible near-infrared–shortwave infrared hyperspectral remote sensing: Application to the Oman ophiolite (Sumail Massif)
An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field measurements (GER 3700). An ASD FieldSpec3 spectrometer was also used in order to constrain the spectral signatures of the principal lithologi...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 10; no. 2; pp. Q02004 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Geophysical Union
01.02.2009
Blackwell Publishing Ltd AGU and the Geochemical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field measurements (GER 3700). An ASD FieldSpec3 spectrometer was also used in order to constrain the spectral signatures of the principal lithologies cropping out in the surveyed area. Our objective was to identify and map the various igneous lithologies by a direct comparison at high spectral resolution between field and airborne spectra despite strong variations in outcropping conditions such as (1) lighting, (2) surface roughness geometry, (3) blocks coated with red/brown patina and exfoliation products, or (4) deep hydrothermal weathering. On the basis of spectral signatures, we are able to distinguish three end‐members of olivine‐orthopyroxene bearing assemblages in the mantle sequence: (1) harzburgites, (2) dunites, and (3) a harzburgite with interstitial carbonate. Because plagioclase is spectrally featureless in the wavelength range studied it cannot be detected. In the crustal sequence, we therefore identified four end‐members with variable abundance of clinopyroxene: (1) massive gabbros, (2) amphibolized (upper) gabbros associated with intrusive dykes, (3) wehrlite with high serpentine content, and (4) gabbronorite (a lithology not previously recognized in the studied area). With the exception of wehrlite, spectra of olivine‐rich end‐members display characteristic Mg‐OH narrow absorption features caused by their high serpentine content. We take advantage of this observation to split the data into two subsets, corresponding to the mantle and crustal sequences, respectively. Pixels of an image often correspond to heterogeneous areas in the field and a direct comparison between airborne and in situ spectra is not straightforward. However, comparing spectra of pixels associated with the most homogeneous areas in the field with the spectra acquired in situ at the same location, we found a systematic change both in mean intensity and overall spectral shape. Dividing each spectrum by its low‐pass trend removes the effects caused by surface light scattering associated with each scale of analysis and results in an exceptional match between field and airborne spectra. However, the albedo information is lost and as a consequence, rock types only characterized by albedo change cannot be discriminated. A spectrum of a mixture of powdered minerals is usually seen as a linear combination of mineral spectra proportional to their abundance. However, this is no longer the case when minerals occur in complex arrangements in rock types. We thus develop a synthetic spectral library of all possible combinations of rock types covering the surface area of a pixel and use a simple distance calculation to identify the best match between each pixel and modeled spectra. This procedure allows the determination of the fractional cover of each rock type in a given pixel and to establish maps for each spectral end‐member. The final product is a geological map, derived from the combination of end‐member fractional cover maps, and is broadly consistent with the existing geological maps. Beyond this general agreement which demonstrates the potential of this new approach for geological mapping, imaging spectrometry allows (1) to map in detail the outline of the Moho north of Maqsad and (2) to identify a new crustal sequence enriched in silica south of Muqzah, revealing the presence of orthopyroxene, the nature and distribution of which are of relevance to the petrological and tectonic understanding of the Oman ophiolite evolution. |
---|---|
AbstractList | An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field measurements (GER 3700). An ASD FieldSpec3 spectrometer was also used in order to constrain the spectral signatures of the principal lithologies cropping out in the surveyed area. Our objective was to identify and map the various igneous lithologies by a direct comparison at high spectral resolution between field and airborne spectra despite strong variations in outcropping conditions such as (1) lighting, (2) surface roughness geometry, (3) blocks coated with red/brown patina and exfoliation products, or (4) deep hydrothermal weathering. On the basis of spectral signatures, we are able to distinguish three end-members of olivine-orthopyroxene bearing assemblages in the mantle sequence: (1) harzburgites, (2) dunites, and (3) a harzburgite with interstitial carbonate. Because plagioclase is spectrally featureless in the wavelength range studied it cannot be detected. In the crustal sequence, we therefore identified four end-members with variable abundance of clinopyroxene: (1) massive gabbros, (2) amphibolized (upper) gabbros associated with intrusive dykes, (3) wehrlite with high serpentine content, and (4) gabbronorite (a lithology not previously recognized in the studied area). With the exception of wehrlite, spectra of olivine-rich end-members display characteristic Mg-OH narrow absorption features caused by their high serpentine content. We take advantage of this observation to split the data into two subsets, corresponding to the mantle and crustal sequences, respectively. Pixels of an image often correspond to heterogeneous areas in the field and a direct comparison between airborne and in situ spectra is not straightforward. However, comparing spectra of pixels associated with the most homogeneous areas in the field with the spectra acquired in situ at the same location, we found a systematic change both in mean intensity and overall spectral shape. Dividing each spectrum by its low-pass trend removes the effects caused by surface light scattering associated with each scale of analysis and results in an exceptional match between field and airborne spectra. However, the albedo information is lost and as a consequence, rock types only characterized by albedo change cannot be discriminated. A spectrum of a mixture of powdered minerals is usually seen as a linear combination of mineral spectra proportional to their abundance. However, this is no longer the case when minerals occur in complex arrangements in rock types. We thus develop a synthetic spectral library of all possible combinations of rock types covering the surface area of a pixel and use a simple distance calculation to identify the best match between each pixel and modeled spectra. This procedure allows the determination of the fractional cover of each rock type in a given pixel and to establish maps for each spectral end-member. The final product is a geological map, derived from the combination of end-member fractional cover maps, and is broadly consistent with the existing geological maps. Beyond this general agreement which demonstrates the potential of this new approach for geological mapping, imaging spectrometry allows (1) to map in detail the outline of the Moho north of Maqsad and (2) to identify a new crustal sequence enriched in silica south of Muqzah, revealing the presence of orthopyroxene, the nature and distribution of which are of relevance to the petrological and tectonic understanding of the Oman ophiolite evolution. |
Author | Clénet, H. Girardeau, J. Amri, I. Ceuleneer, G. Carrère, V. Roy, R. Pinet, P. Daydou, Y. Launeau, P. |
Author_xml | – sequence: 1 givenname: R. surname: Roy fullname: Roy, R. email: regis.roy@univ-nantes.fr organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France – sequence: 2 givenname: P. surname: Launeau fullname: Launeau, P. organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France – sequence: 3 givenname: V. surname: Carrère fullname: Carrère, V. organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France – sequence: 4 givenname: P. surname: Pinet fullname: Pinet, P. organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France – sequence: 5 givenname: G. surname: Ceuleneer fullname: Ceuleneer, G. organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France – sequence: 6 givenname: H. surname: Clénet fullname: Clénet, H. organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France – sequence: 7 givenname: Y. surname: Daydou fullname: Daydou, Y. organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France – sequence: 8 givenname: J. surname: Girardeau fullname: Girardeau, J. organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France – sequence: 9 givenname: I. surname: Amri fullname: Amri, I. organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France |
BackLink | https://hal.science/hal-00404925$$DView record in HAL |
BookMark | eNqF0c1u1DAQB_AIFYm2cOOOj61Eij0bx1luq1WbVloolK-j5TiTjcGJUzvZsjfegStPx5OQVWBVLnCyPfrN3yPNUXTQuhaj6CmjZ4zC_AVQmuVLSoHx5EF0yDjwGCiIg3v3R9FRCJ8pZQnn2WH0I0dn3dpoZUmjus60axJ6r3pcb8kQds-NCaawSFpUPjZt5ZXH8ue376F2vr9TGyR_iqTeduhDh3pMsMRj43okAdtdzkuy6Do7ftQb15Lekb5Gct2olriuNs6akZ68GxplLHmlQjDV6ePoYaVswCe_z-Pow8X5--VlvLrOr5aLVaw4ZRAL5Ap1RnGeFtWcC8w047riZQVzkWVQlJoXrEq1EFBqZAVAJlKAhM_KFDI1O45Op9xaWdl50yi_lU4ZeblYyV2N0oQmc-AbNtqTyXbe3Q4YetmYoNFa1aIbgmRpAiBGzv9POSQJMGDpSJ9PVHsXgsdqPwajcrdbeX-3I4eJ3xmL239amef5OUsojE3x1GRCj1_3Tcp_kamYCS4_vc4lfbt6c3NBP8qb0T-bvFoPe_3XGL8AzUXCaQ |
CitedBy_id | crossref_primary_10_1038_s41598_019_41494_6 crossref_primary_10_1016_j_rse_2010_08_019 crossref_primary_10_1016_j_icarus_2011_03_002 crossref_primary_10_1002_adom_202200111 crossref_primary_10_1016_j_gexplo_2016_09_008 crossref_primary_10_1007_s12040_023_02095_0 crossref_primary_10_1016_j_enggeo_2017_04_009 crossref_primary_10_1002_jgre_20112 crossref_primary_10_1016_j_jag_2015_12_004 crossref_primary_10_1144_SP541_2022_314 crossref_primary_10_1016_j_cageo_2016_12_007 crossref_primary_10_1016_j_lithos_2009_09_002 crossref_primary_10_1016_j_lithos_2020_105870 crossref_primary_10_1117_1_3598315 crossref_primary_10_1016_j_rse_2009_11_006 crossref_primary_10_1029_2022GC010730 crossref_primary_10_3390_rs61110860 crossref_primary_10_1016_j_rse_2022_113211 crossref_primary_10_1016_j_crte_2010_10_001 |
Cites_doi | 10.1029/2005GC001214 10.1016/j.crte.2006.09.012 10.1016/0034‐4257(93)90014‐O 10.1016/S0034‐4257(99)00006‐1 10.1029/2001GC000289 10.1144/gsjgs.144.4.0587 10.1190/1.1440721 10.2113/173.6.491 10.1038/379149a0 10.1080/01431160050030510 10.1029/JB086iB04p02756 10.1016/j.icarus.2004.08.010 10.1029/JB086iB04p02495 10.1029/JB094iB10p13997 10.1029/JB089iB07p06329 10.1029/JB086iB04p02777 10.1126/science.196.4297.1446 10.1016/S0924‐2716(02)00060‐6 10.1029/JB086iB04p02763 10.1029/JB086iB04p02527 10.1016/0040‐1951(88)90252‐1 10.1016/j.rse.2003.08.009 10.1016/0040-1951(88)90243-0 10.1029/JB086iB04p02545 10.1016/S0169‐1317(99)00047‐2 10.1016/j.rse.2005.07.010 10.1029/JB086iB04p02573 10.1029/JB086iB09p07967 10.3133/ofr93592 10.1080/01431160310001609699 10.1029/JB086iB04p03039 10.1180/minmag.1988.052.366.15 10.1126/science.228.4704.1147 10.1190/1.1441202 10.1177/030913338200600301 10.1029/2002GC000354 10.1016/0040‐1951(88)90254‐5 10.1016/0034‐4257(95)00156‐5 10.1029/JB091iB08p08098 10.1016/0012‐821X(95)00233‐3 10.1017/CBO9780511524998 10.1029/JB095iB05p06955 10.1016/0040‐1951(88)90238‐7 10.1029/JB086iB04p02497 10.1029/JB079i011p01615 |
ContentType | Journal Article |
Copyright | 2008 American Geophysical Union Copyright 2009 by the American Geophysical Union. Copyright |
Copyright_xml | – notice: 2008 American Geophysical Union – notice: Copyright 2009 by the American Geophysical Union. – notice: Copyright |
DBID | BSCLL AAYXX CITATION 8FD FR3 H8D KR7 L7M 1XC VOOES |
DOI | 10.1029/2008GC002154 |
DatabaseName | Istex CrossRef Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_00404925v1 10_1029_2008GC002154 GGGE1402 ark_67375_WNG_0QLPRF0V_R 2008GC002154 |
Genre | article |
GroupedDBID | 02 05W 0R 1OC 24P 3V. 50Y 5GY 8-1 88I 8FH 8G5 8R4 8R5 A00 AAESR AAIHA AAPBV AAZKR ABCUV ABHUG ABUWG ACGFS ACGOD ACPOU ACXQS ADAWD ADBBV ADDAD ADEOM ADXAS ADZMN AENEX AEUQT AFBPY AFPWT AGJLS ALMA_UNASSIGNED_HOLDINGS ALUQN ASPBG AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BHPHI BMXJE BPHCQ BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD FEDTE G-S GUQSH HCIFZ HVGLF HZ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P MBDVC MEWTI MRJOP MSFUL MSSTM MXFUL MXSTM MY O9- OA P-X P2W R.K RIG ROL SUPJJ UB1 WBKPD WIN WYJ ZZTAW 0R~ 31~ 8CJ 8FE AAHHS ACAHQ ACBWZ ACCFJ ADIYS ADKYN ADMGS ADOZA ADZOD AEEZP AEQDE AFGKR AFKRA AIURR AIWBW AJBDE AMYDB AZQEC BKSAR BSCLL CCPQU D1J DWQXO GNUQQ GODZA GROUPED_DOAJ HZ~ LK5 M7R MY~ M~E OK1 PCBAR PQQKQ PROAC Q2X ~02 ~OA AAYXX CITATION 8FD FR3 H8D KR7 L7M 1XC VOOES |
ID | FETCH-LOGICAL-a5012-7e5aec80e96bf957e8c15cf5df297882bdc5b1f6c772dce1b2287622453d628a3 |
ISSN | 1525-2027 |
IngestDate | Tue Oct 15 15:56:37 EDT 2024 Fri Jun 28 07:05:59 EDT 2024 Fri Jun 28 07:09:42 EDT 2024 Fri Aug 23 03:26:18 EDT 2024 Sat Aug 24 00:54:31 EDT 2024 Wed Oct 30 09:54:47 EDT 2024 Tue Jan 05 21:14:21 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ophiolite remote sensing mapping spectral distance weathering hyperspectral |
Language | English |
License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5012-7e5aec80e96bf957e8c15cf5df297882bdc5b1f6c772dce1b2287622453d628a3 |
Notes | ark:/67375/WNG-0QLPRF0V-R Tab-delimited Table 1. istex:5561D6864BE18CE0ED74D7CBA343C5A5287E6CC4 ArticleID:2008GC002154 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0002-1933-5631 |
OpenAccessLink | https://hal.science/hal-00404925 |
PQID | 1524421216 |
PQPubID | 23500 |
PageCount | 23 |
ParticipantIDs | hal_primary_oai_HAL_hal_00404925v1 agu_primary_2008GC002154 istex_primary_ark_67375_WNG_0QLPRF0V_R crossref_primary_10_1029_2008GC002154 proquest_miscellaneous_1524421216 proquest_miscellaneous_1642274045 wiley_primary_10_1029_2008GC002154_GGGE1402 |
PublicationCentury | 2000 |
PublicationDate | February 2009 |
PublicationDateYYYYMMDD | 2009-02-01 |
PublicationDate_xml | – month: 02 year: 2009 text: February 2009 |
PublicationDecade | 2000 |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationTitleAlternate | Geochem. Geophys. Geosyst |
PublicationYear | 2009 |
Publisher | American Geophysical Union Blackwell Publishing Ltd AGU and the Geochemical Society |
Publisher_xml | – name: American Geophysical Union – name: Blackwell Publishing Ltd – name: AGU and the Geochemical Society |
References | Combe, J.-P., P. Launeau, P. Pinet, D. Despan, E. Harris, G. Ceuleneer, and C. Sotin (2006), Mapping of an ophiolite complex by high-resolution visible-infrared spectrometry, Geochem. Geophys. Geosyst., 7, Q08001, doi:10.1029/2005GC001214. Juteau, T., M. Ernewein, I. Reuber, H. Whitechurch, and R. Dahl (1988), Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman, Tectonophysics, 151, 107-135. Chabrillat, S., P. C. Pinet, G. Ceuleneer, P. E. Johnson, and J. F. Mustard (2000), Ronda peridotite massif: Methodology for its geological mapping and lithological discrimination from airborne hyperspectral data, Int. J. Remote Sens., 21(12), 2363-2388, doi:10.1080/01431160050030510. Abrams, M. J., D. A. Rothery, and A. Pontual (1988), Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images, Tectonophysics, 151, 387-401, doi:10.1016/0040-1951(88)90254-5. Potter, R. M., and G. R. Rossman (1977), Desert varnish: The importance of clay minerals, Science, 196, 1446-1448, doi:10.1126/science.196.4297.1446. Hunt, G. R., and J. W. Salisbury (1971), Visible and near infrared reflectance spectra of minerals and rocks: 2 Carbonates, Mod. Geol., 2, 23-30. Bakker, W. H., and K. S. Schmidt (2002), Hyperspectral edge filtering for measuring homogeneity of surface cover types, ISPRS J. Photogramm. Remote Sens., 56, 246-256, doi:10.1016/S0924-2716(02)00060-6. Python, M., and G. Ceuleneer (2003), Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite, Geochem. Geophys. Geosyst., 4(7), 8612, doi:10.1029/2002GC000354. Méléder, V., L. Barillé, P. Launeau, V. Carrère, and Y. Rince (2003), Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures, Remote Sens. Environ., 88, 386-400, doi:10.1016/j.rse.2003.08.009. Pinet, P. C., C. Kaufmann, and J. Hill (2006a), Imaging spectroscopy of changing Earth's surface: A major step toward the quantitative monitoring of land degradation and desertification, C. R. Acad. Sci., 338, 1042-1048, doi:10.1016/j.crte.2006.09.012. Hunt, G. R., J. W. Salisbury, and C. H. Lenhoff (1971), Visible and near-infrared spectra of minerals and rocks: 3 Oxides and hydroxides, Mod. Geol., 2, 195-205. Tilton, G. R., C. A. Hopson, and J. E. Wright (1981), Uranium-Lead isotopic ages of the Samail ophiolite, Oman with applications to Tethyan ocean ridge tectonics, J. Geophys. Res., 86(B4), 2763-2775, doi:10.1029/JB086iB04p02763. Goetz, A. F. H., G. Vane, J. E. Solomon, and B. N. Rock (1985), Imaging spectrometry for Earth remote sensing, Science, 228(4704), 1147-1153, doi:10.1126/science.228.4704.1147. Hopson, C. A., R. G. Coleman, R. T. Gregory, J. S. Pallister, and E. H. Bailey (1981), Geologic section through the Samail ophiolite and associated rocks along a Muscat-Ibra transect, south-eastern Oman Mountains, J. Geophys. Res., 86(B4), 2527-2544, doi:10.1029/JB086iB04p02527. Ceuleneer, G., M. Monnereau, and I. Amri (1996), Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates, Nature, 379, 149-153, doi:10.1038/379149a0. Coleman, R. G. (1981), Tectonic setting for ophiolite obduction in Oman, J. Geophys. Res., 86(B4), 2497-2508, doi:10.1029/JB086iB04p02497. Gao, B.-C., K. B. Heidebrecht, and A. F. H. Goetz (1993), Derivation of scaled surface reflectances from AVIRIS data, Remote Sens. Environ., 44, 165-178, doi:10.1016/0034-4257(93)90014-O. Coleman, R. G., and C. A. Hopson (1981), Introduction to the Oman ophiolite, J. Geophys. Res., 86(B4), 2495-2496, doi:10.1029/JB086iB04p02495. Boardman, J. W. (1989), Inversion of imaging spectrometry data using singular value decomposition, Proc. IGARSS, 4, 2069-2072. Rothery, D. A. (1987), Improved discrimination of rock units using Landsat Thematic Mapper Imagery of the Oman ophiolite, J. Geol. Soc., 144, 587-597, doi:10.1144/gsjgs.144.4.0587. Sunshine, J. M., C. M. Pieters, and S. F. Pratt (1990), Deconvolution of mineral absorption bands: An improved approach, J. Geophys. Res., 95, 6955-6966, doi:10.1029/JB095iB05p06955. Friedl, M. A., F. W. Davis, J. Michaelsen, and M. A. Moritz (1995), Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE, Remote Sens. Environ., 54, 233-246, doi:10.1016/0034-4257(95)00156-5. Lanphere, M. A. (1981), K-Ar ages of metamorphic rocks at the base of the Samail ophiolite, Oman, J. Geophys. Res., 86(B4), 2777-2782, doi:10.1029/JB086iB04p02777. Montigny, R., O. Le Mer, R. Thuizat, and H. Whitechurch (1988), K-Ar and 40Ar/39Ar study of metamorphic rocks associated with the Oman ophiolite: Tectonic implications, Tectonophysics, 151, 345-362, doi:10.1016/0040-1951(88)90252-1. Hunt, G. R. (1977), Spectral signatures of particulate minerals in the visible and near infrared, Geophysics, 42, 501-513, doi:10.1190/1.1440721. Combe, J.-P., P. Launeau, V. Carrère, D. Despan, V. Méléder, L. Barillé, and C. Sotin (2005), Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images, Remote Sens. Environ., 98(4), 371-387, doi:10.1016/j.rse.2005.07.010. Hapke, B. (1993), Introduction to the Theory of Reflectance and Emittance Spectroscopy, 456 pp., Cambridge Univ. Press, New York. Vane, G., M. Crisp, H. Enmark, S. Macenka, and J. Solomon (1984), Airborne visible/infrared imaging spectrometer: An advanced tool for Earth remote sensing, Proc. IEEE, SP215, 751-757. Boudier, F., and R. G. Coleman (1981), Cross section through the peridotite in the Samail ophiolite, southeastern Oman Mountains, J. Geophys. Res., 86, 2573-2592, doi:10.1029/JB086iB04p02573. King, T. V. V., and R. N. Clark (1989), Spectral characteristics of chlorites and Mg-serpentines using high-resolution spectroscopy, J. Geophys. Res., 94, 13,997-14,008, doi:10.1029/JB094iB10p13997. Ceuleneer, G., A. Nicolas, and F. Boudier (1988), Mantle flow pattern at an oceanic spreading centre: The Oman peridotite record, Tectonophysics, 151, 1-26, doi:10.1016/0040-1951(88)90238-7. Chen, J. M. (1999), Spatial scaling of a remotely sensed surface parameter by contexture, Remote Sens. Environ., 69, 30-42, doi:10.1016/S0034-4257(99)00006-1. Tippit, P. R., E. A. Pessagno, and J. D. Smewing (1981), The biostratigraphy of sediments in the volcanic unit of the Samail ophiolite, J. Geophys. Res., 86(B4), 2756-2762, doi:10.1029/JB086iB04p02756. Launeau, P., J. Girardeau, C. Sotin, and J. M. Tubia (2004), Comparison between field measurements and airborne visible and infrared mapping spectrometry (AVIRIS and HyMap) of the Ronda peridotite massif (south-west Spain), Int. J. Remote Sens., 25(14), 2773-2792, doi:10.1080/01431160310001609699. Amri, I., M. Benoit, and G. Ceuleneer (1996), Tectonic setting for the genesis of oceanic plagiogranites: Evidence from a paleo-spreading structure in the Oman ophiolite, Earth Planet. Sci. Lett., 139, 177-194, doi:10.1016/0012-821X(95)00233-3. Braun, M. G., and P. B. Kelemen (2002), Dunite distribution in the Oman ophiolite: Implications for melt flux through porous dunite conduits, Geochem. Geophys. Geosyst., 3(11), 8603, doi:10.1029/2001GC000289. Hunt, G. R., and J. W. Salisbury (1970), Visible and near-infrared spectra of minerals and rocks: 1 Silicate minerals, Mod. Geol., 1, 283-300. Singer, R. B. (1981), Near-infrared spectral reflectance of mineral mixtures - systematic combinations of pyroxenes, olivine, and iron oxides, J. Geophys. Res., 86, 7967-7982, doi:10.1029/JB086iB09p07967. Clark, R. N., and T. L. Roush (1984), Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications, J. Geophys. Res., 89, 6329-6340, doi:10.1029/JB089iB07p06329. Hapke, B. (1981), Bidirectional reflectance spectroscopy: 1. Theory, J. Geophys. Res., 86, 3039-3054, doi:10.1029/JB086iB04p03039. Cord, A., P. C. Pinet, Y. Daydou, and S. D. Chevrel (2005), Experimental determination of the surface photometric contribution in the spectral reflectance deconvolution processes for a simulated Martian crater-like regolithic target, Icarus, 175(1), 78-91, doi:10.1016/j.icarus.2004.08.010. Pinet, P. C., et al. (2006b), Mantle rock surface mineralogy mapping in arid environment from imaging spectroscopy: The case of the Maqsad peridotitic massif in Oman and implications for the spectroscopic study of exposed mafic units on Mars, Lunar Planet. Sci., [CD-ROM], XXXVII, 1346. Launeau, P., C. Sotin, and J. Girardeau (2002), Cartography of the Ronda peridotite (Spain) by hyperspectral remote sensing, Bull. Soc. Geol. Fr., 173(6), 491-508, doi:10.2113/173.6.491. Christensen, N. I., and J. D. Smewing (1981), Geology and seismic structure of the northern section of the Oman ophiolite, J. Geophys. Res., 86(B4), 2545-2555, doi:10.1029/JB086iB04p02545. Hunt, G. R., and R. C. Evarts (1981), The use of near-infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks, Geophysics, 46, 316-321, doi:10.1190/1.1441202. Stanger, G., J. Laver, and C. Neal (1988), Black carbonaceous calcite associated with serpentinite from Oman, Mineral. Mag., 52, 403-408, doi:10.1180/minmag.1988.052.366.15. Dorn, R. I., and T. M. Oberlander (1982), Rock varnish, Prog. Phys, Geogr., 6, 317-367, doi:10.1177/030913338200600301. Adams, J. B., M. O. Smith, and P. E. Johnson (1986), Spectral mixture modelling - A new analysis of rock and soil types at the Viking Lander 1 site, J. Geophys. Res., 91, 8098-8112, doi:10.1029/JB091iB08p08098. Nash, D. B., and J. E. Conel (1974), Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite, J. Geophys. Res., 79, 1615-1621, doi:10.1029/JB079i011p01615. Post, J. L., and L. Borer (2000), High-resolution infrared spectra, physical properties, and micromorphology of serpentines, Appl. Clay Sci., 16, 73-85, doi:10.1016/S0169-1317(99)00047-2. 1990; 95 2005; 175 1987; 144 2002; 56 2004; 25 1981; 46 1974 1970; 1 2006; 338 1981; 86 2004; 33 2000; 16 1984; SP215 1990 1982; 6 1986 2003; 4 1996; 379 1971; 2 1998; 99 1996; 139 2003; 88 2002; 02‐1 1986; 91 1989; 4 1974; 79 2006; XXXVII 2002; 173 1986; 11 2000; 21 1993; 44 1984; 89 1999; 69 1995; 54 1998 2006; 7 2002; 3 1977; 42 1995 1994 2005 1993 1999; 3 1985; 228 2003 1988; 52 1999 1993; 93‐592 1989; 94 2005; 98 1988; 151 1977; 196 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_10_1 e_1_2_9_35_1 Hunt G. R. (e_1_2_9_38_1) 1970; 1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Roberts D. A. (e_1_2_9_61_1) 2004 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 Hunt G. R. (e_1_2_9_39_1) 1971; 2 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 Pinet P. C. (e_1_2_9_55_1) 2006 e_1_2_9_6_1 e_1_2_9_4_1 Boardman J. W. (e_1_2_9_7_1) 1989; 4 e_1_2_9_60_1 e_1_2_9_2_1 Clark R. N. (e_1_2_9_18_1) 2002 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Boardman J. W. (e_1_2_9_8_1) 1998 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 Vane G. (e_1_2_9_68_1) 1984; 215 Mustard J. F. (e_1_2_9_50_1) 1999 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_3_1 Hunt G. R. (e_1_2_9_40_1) 1971; 2 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 56 start-page: 246 year: 2002 end-page: 256 article-title: Hyperspectral edge filtering for measuring homogeneity of surface cover types publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 79 start-page: 1615 year: 1974 end-page: 1621 article-title: Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite publication-title: J. Geophys. Res. – volume: 86 start-page: 3039 year: 1981 end-page: 3054 article-title: Bidirectional reflectance spectroscopy: 1. Theory publication-title: J. Geophys. Res. – volume: 7 year: 2006 article-title: Mapping of an ophiolite complex by high‐resolution visible‐infrared spectrometry publication-title: Geochem. Geophys. Geosyst. – volume: 25 start-page: 2773 issue: 14 year: 2004 end-page: 2792 article-title: Comparison between field measurements and airborne visible and infrared mapping spectrometry (AVIRIS and HyMap) of the Ronda peridotite massif (south–west Spain) publication-title: Int. J. Remote Sens. – year: 2005 – volume: 86 start-page: 2763 issue: B4 year: 1981 end-page: 2775 article-title: Uranium‐Lead isotopic ages of the Samail ophiolite, Oman with applications to Tethyan ocean ridge tectonics publication-title: J. Geophys. Res. – volume: 99 year: 1998 – volume: 21 start-page: 2363 issue: 12 year: 2000 end-page: 2388 article-title: Ronda peridotite massif: Methodology for its geological mapping and lithological discrimination from airborne hyperspectral data publication-title: Int. J. Remote Sens. – volume: 93‐592 year: 1993 – volume: 228 start-page: 1147 issue: 4704 year: 1985 end-page: 1153 article-title: Imaging spectrometry for Earth remote sensing publication-title: Science – volume: 11 year: 1986 – volume: 86 start-page: 2527 issue: B4 year: 1981 end-page: 2544 article-title: Geologic section through the Samail ophiolite and associated rocks along a Muscat‐Ibra transect, south‐eastern Oman Mountains publication-title: J. Geophys. Res. – volume: 4 issue: 7 year: 2003 article-title: Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite publication-title: Geochem. Geophys. Geosyst. – volume: 151 start-page: 107 year: 1988 end-page: 135 article-title: Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman publication-title: Tectonophysics – volume: 151 start-page: 345 year: 1988 end-page: 362 article-title: K‐Ar and Ar/ Ar study of metamorphic rocks associated with the Oman ophiolite: Tectonic implications publication-title: Tectonophysics – year: 1990 – volume: 44 start-page: 165 year: 1993 end-page: 178 article-title: Derivation of scaled surface reflectances from AVIRIS data publication-title: Remote Sens. Environ. – year: 1994 – year: 1998 – volume: 338 start-page: 1042 year: 2006 end-page: 1048 article-title: Imaging spectroscopy of changing Earth's surface: A major step toward the quantitative monitoring of land degradation and desertification publication-title: C. R. Acad. Sci. – volume: 52 start-page: 403 year: 1988 end-page: 408 article-title: Black carbonaceous calcite associated with serpentinite from Oman publication-title: Mineral. Mag. – volume: 46 start-page: 316 year: 1981 end-page: 321 article-title: The use of near‐infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks publication-title: Geophysics – year: 1986 – volume: 3 start-page: 251 year: 1999 end-page: 306 – volume: 196 start-page: 1446 year: 1977 end-page: 1448 article-title: Desert varnish: The importance of clay minerals publication-title: Science – volume: 3 issue: 11 year: 2002 article-title: Dunite distribution in the Oman ophiolite: Implications for melt flux through porous dunite conduits publication-title: Geochem. Geophys. Geosyst. – volume: 175 start-page: 78 issue: 1 year: 2005 end-page: 91 article-title: Experimental determination of the surface photometric contribution in the spectral reflectance deconvolution processes for a simulated Martian crater‐like regolithic target publication-title: Icarus – volume: 1 start-page: 283 year: 1970 end-page: 300 article-title: Visible and near‐infrared spectra of minerals and rocks: 1 Silicate minerals publication-title: Mod. Geol. – volume: 95 start-page: 6955 year: 1990 end-page: 6966 article-title: Deconvolution of mineral absorption bands: An improved approach publication-title: J. Geophys. Res. – volume: 88 start-page: 386 year: 2003 end-page: 400 article-title: Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures publication-title: Remote Sens. Environ. – volume: 151 start-page: 387 year: 1988 end-page: 401 article-title: Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images publication-title: Tectonophysics – year: 1993 – volume: 02‐1 start-page: 43 year: 2002 end-page: 63 – volume: 173 start-page: 491 issue: 6 year: 2002 end-page: 508 article-title: Cartography of the Ronda peridotite (Spain) by hyperspectral remote sensing publication-title: Bull. Soc. Geol. Fr. – volume: 86 start-page: 2756 issue: B4 year: 1981 end-page: 2762 article-title: The biostratigraphy of sediments in the volcanic unit of the Samail ophiolite publication-title: J. Geophys. Res. – volume: SP215 start-page: 751 year: 1984 end-page: 757 article-title: Airborne visible/infrared imaging spectrometer: An advanced tool for Earth remote sensing publication-title: Proc. IEEE – volume: 91 start-page: 8098 year: 1986 end-page: 8112 article-title: Spectral mixture modelling ‐ A new analysis of rock and soil types at the Viking Lander 1 site publication-title: J. Geophys. Res. – volume: 139 start-page: 177 year: 1996 end-page: 194 article-title: Tectonic setting for the genesis of oceanic plagiogranites: Evidence from a paleo‐spreading structure in the Oman ophiolite publication-title: Earth Planet. Sci. Lett. – volume: 89 start-page: 6329 year: 1984 end-page: 6340 article-title: Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications publication-title: J. Geophys. Res. – volume: 42 start-page: 501 year: 1977 end-page: 513 article-title: Spectral signatures of particulate minerals in the visible and near infrared publication-title: Geophysics – volume: 86 start-page: 2573 year: 1981 end-page: 2592 article-title: Cross section through the peridotite in the Samail ophiolite, southeastern Oman Mountains publication-title: J. Geophys. Res. – volume: 379 start-page: 149 year: 1996 end-page: 153 article-title: Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates publication-title: Nature – volume: 86 start-page: 2777 issue: B4 year: 1981 end-page: 2782 article-title: K‐Ar ages of metamorphic rocks at the base of the Samail ophiolite, Oman publication-title: J. Geophys. Res. – year: 2003 – volume: 98 start-page: 371 issue: 4 year: 2005 end-page: 387 article-title: Mapping microphytobenthos biomass by non‐linear inversion of visible‐infrared hyperspectral images publication-title: Remote Sens. Environ. – volume: 86 start-page: 2497 issue: B4 year: 1981 end-page: 2508 article-title: Tectonic setting for ophiolite obduction in Oman publication-title: J. Geophys. Res. – volume: 94 start-page: 13,997 year: 1989 end-page: 14,008 article-title: Spectral characteristics of chlorites and Mg‐serpentines using high‐resolution spectroscopy publication-title: J. Geophys. Res. – volume: 86 start-page: 7967 year: 1981 end-page: 7982 article-title: Near‐infrared spectral reflectance of mineral mixtures ‐ systematic combinations of pyroxenes, olivine, and iron oxides publication-title: J. Geophys. Res. – volume: 86 start-page: 2495 issue: B4 year: 1981 end-page: 2496 article-title: Introduction to the Oman ophiolite publication-title: J. Geophys. Res. – volume: XXXVII start-page: 1346 year: 2006 article-title: Mantle rock surface mineralogy mapping in arid environment from imaging spectroscopy: The case of the Maqsad peridotitic massif in Oman and implications for the spectroscopic study of exposed mafic units on Mars publication-title: Lunar Planet. Sci. – volume: 69 start-page: 30 year: 1999 end-page: 42 article-title: Spatial scaling of a remotely sensed surface parameter by contexture publication-title: Remote Sens. Environ. – volume: 144 start-page: 587 year: 1987 end-page: 597 article-title: Improved discrimination of rock units using Landsat Thematic Mapper Imagery of the Oman ophiolite publication-title: J. Geol. Soc. – volume: 54 start-page: 233 year: 1995 end-page: 246 article-title: Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE publication-title: Remote Sens. Environ. – volume: 2 start-page: 195 year: 1971 end-page: 205 article-title: Visible and near‐infrared spectra of minerals and rocks: 3 Oxides and hydroxides publication-title: Mod. Geol. – volume: 151 start-page: 1 year: 1988 end-page: 26 article-title: Mantle flow pattern at an oceanic spreading centre: The Oman peridotite record publication-title: Tectonophysics – volume: 16 start-page: 73 year: 2000 end-page: 85 article-title: High‐resolution infrared spectra, physical properties, and micromorphology of serpentines publication-title: Appl. Clay Sci. – volume: 86 start-page: 2545 issue: B4 year: 1981 end-page: 2555 article-title: Geology and seismic structure of the northern section of the Oman ophiolite publication-title: J. Geophys. Res. – year: 1995 – year: 1974 – volume: 4 start-page: 2069 year: 1989 end-page: 2072 article-title: Inversion of imaging spectrometry data using singular value decomposition publication-title: Proc. IGARSS – volume: 6 start-page: 317 year: 1982 end-page: 367 article-title: Rock varnish, Prog. Phys publication-title: Geogr. – volume: 33 start-page: 155 year: 2004 end-page: 181 – volume: 2 start-page: 23 year: 1971 end-page: 30 article-title: Visible and near infrared reflectance spectra of minerals and rocks: 2 Carbonates publication-title: Mod. Geol. – year: 1999 – ident: e_1_2_9_23_1 doi: 10.1029/2005GC001214 – ident: e_1_2_9_56_1 – ident: e_1_2_9_54_1 doi: 10.1016/j.crte.2006.09.012 – ident: e_1_2_9_30_1 doi: 10.1016/0034‐4257(93)90014‐O – ident: e_1_2_9_14_1 doi: 10.1016/S0034‐4257(99)00006‐1 – ident: e_1_2_9_10_1 doi: 10.1029/2001GC000289 – ident: e_1_2_9_62_1 doi: 10.1144/gsjgs.144.4.0587 – start-page: 155 volume-title: Infrared Spectroscopy in Geochemistry, Exploration and Remote Sensing year: 2004 ident: e_1_2_9_61_1 contributor: fullname: Roberts D. A. – ident: e_1_2_9_36_1 doi: 10.1190/1.1440721 – ident: e_1_2_9_45_1 doi: 10.2113/173.6.491 – ident: e_1_2_9_12_1 doi: 10.1038/379149a0 – ident: e_1_2_9_13_1 doi: 10.1080/01431160050030510 – ident: e_1_2_9_47_1 – ident: e_1_2_9_67_1 doi: 10.1029/JB086iB04p02756 – ident: e_1_2_9_25_1 doi: 10.1016/j.icarus.2004.08.010 – ident: e_1_2_9_4_1 – ident: e_1_2_9_69_1 – ident: e_1_2_9_21_1 doi: 10.1029/JB086iB04p02495 – volume: 1 start-page: 283 year: 1970 ident: e_1_2_9_38_1 article-title: Visible and near‐infrared spectra of minerals and rocks: 1 Silicate minerals publication-title: Mod. Geol. contributor: fullname: Hunt G. R. – ident: e_1_2_9_43_1 doi: 10.1029/JB094iB10p13997 – ident: e_1_2_9_24_1 – ident: e_1_2_9_16_1 doi: 10.1029/JB089iB07p06329 – ident: e_1_2_9_60_1 – ident: e_1_2_9_27_1 – ident: e_1_2_9_44_1 doi: 10.1029/JB086iB04p02777 – volume: 2 start-page: 23 year: 1971 ident: e_1_2_9_39_1 article-title: Visible and near infrared reflectance spectra of minerals and rocks: 2 Carbonates publication-title: Mod. Geol. contributor: fullname: Hunt G. R. – ident: e_1_2_9_58_1 doi: 10.1126/science.196.4297.1446 – ident: e_1_2_9_6_1 doi: 10.1016/S0924‐2716(02)00060‐6 – ident: e_1_2_9_66_1 doi: 10.1029/JB086iB04p02763 – ident: e_1_2_9_35_1 doi: 10.1029/JB086iB04p02527 – ident: e_1_2_9_49_1 doi: 10.1016/0040‐1951(88)90252‐1 – ident: e_1_2_9_52_1 – ident: e_1_2_9_41_1 – ident: e_1_2_9_48_1 doi: 10.1016/j.rse.2003.08.009 – ident: e_1_2_9_42_1 doi: 10.1016/0040-1951(88)90243-0 – ident: e_1_2_9_15_1 doi: 10.1029/JB086iB04p02545 – ident: e_1_2_9_57_1 doi: 10.1016/S0169‐1317(99)00047‐2 – ident: e_1_2_9_22_1 doi: 10.1016/j.rse.2005.07.010 – ident: e_1_2_9_9_1 doi: 10.1029/JB086iB04p02573 – ident: e_1_2_9_63_1 doi: 10.1029/JB086iB09p07967 – ident: e_1_2_9_17_1 doi: 10.3133/ofr93592 – ident: e_1_2_9_46_1 doi: 10.1080/01431160310001609699 – ident: e_1_2_9_33_1 doi: 10.1029/JB086iB04p03039 – ident: e_1_2_9_64_1 doi: 10.1180/minmag.1988.052.366.15 – ident: e_1_2_9_32_1 doi: 10.1126/science.228.4704.1147 – ident: e_1_2_9_37_1 doi: 10.1190/1.1441202 – ident: e_1_2_9_28_1 doi: 10.1177/030913338200600301 – ident: e_1_2_9_31_1 – volume: 2 start-page: 195 year: 1971 ident: e_1_2_9_40_1 article-title: Visible and near‐infrared spectra of minerals and rocks: 3 Oxides and hydroxides publication-title: Mod. Geol. contributor: fullname: Hunt G. R. – ident: e_1_2_9_59_1 doi: 10.1029/2002GC000354 – ident: e_1_2_9_2_1 doi: 10.1016/0040‐1951(88)90254‐5 – ident: e_1_2_9_29_1 doi: 10.1016/0034‐4257(95)00156‐5 – ident: e_1_2_9_3_1 doi: 10.1029/JB091iB08p08098 – ident: e_1_2_9_19_1 – start-page: 1346 year: 2006 ident: e_1_2_9_55_1 article-title: Mantle rock surface mineralogy mapping in arid environment from imaging spectroscopy: The case of the Maqsad peridotitic massif in Oman and implications for the spectroscopic study of exposed mafic units on Mars publication-title: Lunar Planet. Sci. contributor: fullname: Pinet P. C. – volume-title: Proceedings of the 8th JPL Airborne Earth Science Workshop year: 1998 ident: e_1_2_9_8_1 contributor: fullname: Boardman J. W. – volume: 215 start-page: 751 year: 1984 ident: e_1_2_9_68_1 article-title: Airborne visible/infrared imaging spectrometer: An advanced tool for Earth remote sensing publication-title: Proc. IEEE contributor: fullname: Vane G. – volume: 4 start-page: 2069 year: 1989 ident: e_1_2_9_7_1 article-title: Inversion of imaging spectrometry data using singular value decomposition publication-title: Proc. IGARSS contributor: fullname: Boardman J. W. – ident: e_1_2_9_5_1 doi: 10.1016/0012‐821X(95)00233‐3 – ident: e_1_2_9_26_1 – ident: e_1_2_9_34_1 doi: 10.1017/CBO9780511524998 – ident: e_1_2_9_65_1 doi: 10.1029/JB095iB05p06955 – start-page: 43 volume-title: Proceedings of the 10th Airborne Earth Science Workshop year: 2002 ident: e_1_2_9_18_1 contributor: fullname: Clark R. N. – start-page: 251 volume-title: Remote Sensing for the Earth Sciences year: 1999 ident: e_1_2_9_50_1 contributor: fullname: Mustard J. F. – ident: e_1_2_9_11_1 doi: 10.1016/0040‐1951(88)90238‐7 – ident: e_1_2_9_20_1 doi: 10.1029/JB086iB04p02497 – ident: e_1_2_9_51_1 doi: 10.1029/JB079i011p01615 – ident: e_1_2_9_53_1 |
SSID | ssj0014558 |
Score | 2.0709264 |
Snippet | An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field... |
SourceID | hal proquest crossref wiley istex agu |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | Q02004 |
SubjectTerms | Earth Sciences Gabbro Geological mapping hyperspectral Igneous petrology Lithology mapping Marine Geology and Geophysics Massifs Mineralogy and Petrology Minerals ophiolite Ophiolites Pixels Planetary Sciences Remote sensing Rock Sciences of the Universe Solid Surface Planets Spectra spectral distance weathering |
Title | Geological mapping strategy using visible near-infrared–shortwave infrared hyperspectral remote sensing: Application to the Oman ophiolite (Sumail Massif) |
URI | https://api.istex.fr/ark:/67375/WNG-0QLPRF0V-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2008GC002154 https://search.proquest.com/docview/1524421216 https://search.proquest.com/docview/1642274045 https://hal.science/hal-00404925 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEE81vLQgQKAowd547ZhbFKWOUFNKaEtvlh_rJkCTKImBckD9CUjc-Wkc-kuY2fVuHKgqysWKxxM_NJ_n5ZlZQh43eYp2htdB9UV1J0qTesxi2I1bcTNLhWsL7B3ub7u9PefVAT-oVH6VqpbyRdxIvp7ZV_I_UgUayBW7ZC8gWXNSIMBvkC9sQcKw_ScZB8KorqNoOlWpATn74biWyyQAto5jb9QYAG3qGuDSM6w714TmfAhO-Gdch0gfqg0hPlVtmDM5-h8kKmpzrHZXDdLt5Ydv7b6-lstcTIcjLKmTruvb_Cgafaz1wUEfZTrn8N7ce6IXm0M5H4qJyrLMiz01Y3oucxaB0U4DlTscNEwlUZTDw-XSGzbETjRTJQAtlWLfN0d2wKtelJh1wsPXNdJLHc0AS5YaKdAQZ9C0YrdKAGYlE28M4F_2w2I4fhVrQoKOdIecpZ3UtQGGj5_HKV2EIAi6EMGCi7DOQBGiBu5_65qvXA6X68eamy8aM-DkL8onRsfpMF9xnC4NsWx3HTXBl5XYqBxhSRdp9xq5WsQ2tK2Aep1UxPgGuaxAenyT_FzClRZwpRquVMKVFnClCNfTk-8ajacnPwxEqSbSFYhSBVFaQPQlLQGULiYUAEoRoNQAlD5T8KQKns9vkb3N7m6nVy-WB6lHHNyquid4JJKWJXw3znzuiVZi8yTjacZ8DwLHOE14bGduAgFkmgg7ZgxNP3N4M3VZK2reJmvjyVhsEGoJXLXN9SF4iB1biBZEOc3YSvH_qeNlVbIBEginagBMWBZOlTzRYjHHZWEH8__gewQyMyw41b3X3gqRhoYUZ4R-sqvkqRSpYYtmH7Dy0uPhu-0gtN5s7Qw2rf1wUCUPtcxDeFPxI180FpN8HgKYHKzysN1zeFyHMQ8uyqukJgFz7q2HGsZ3LsR9l1xZvr73yNpilov74MEv4gfyNfgNPEXqCQ |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geological+mapping+strategy+using+visible+near%E2%80%90infrared%E2%80%93shortwave+infrared+hyperspectral+remote+sensing%3A+Application+to+the+Oman+ophiolite+%28Sumail+Massif%29&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Roy%2C+R.&rft.au=Launeau%2C+P.&rft.au=Carr%C3%A8re%2C+V.&rft.au=Pinet%2C+P.&rft.date=2009-02-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2008GC002154&rft.externalDBID=10.1029%252F2008GC002154&rft.externalDocID=GGGE1402 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |