Geological mapping strategy using visible near-infrared–shortwave infrared hyperspectral remote sensing: Application to the Oman ophiolite (Sumail Massif)

An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field measurements (GER 3700). An ASD FieldSpec3 spectrometer was also used in order to constrain the spectral signatures of the principal lithologi...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 10; no. 2; pp. Q02004 - n/a
Main Authors Roy, R., Launeau, P., Carrère, V., Pinet, P., Ceuleneer, G., Clénet, H., Daydou, Y., Girardeau, J., Amri, I.
Format Journal Article
LanguageEnglish
Published American Geophysical Union 01.02.2009
Blackwell Publishing Ltd
AGU and the Geochemical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field measurements (GER 3700). An ASD FieldSpec3 spectrometer was also used in order to constrain the spectral signatures of the principal lithologies cropping out in the surveyed area. Our objective was to identify and map the various igneous lithologies by a direct comparison at high spectral resolution between field and airborne spectra despite strong variations in outcropping conditions such as (1) lighting, (2) surface roughness geometry, (3) blocks coated with red/brown patina and exfoliation products, or (4) deep hydrothermal weathering. On the basis of spectral signatures, we are able to distinguish three end‐members of olivine‐orthopyroxene bearing assemblages in the mantle sequence: (1) harzburgites, (2) dunites, and (3) a harzburgite with interstitial carbonate. Because plagioclase is spectrally featureless in the wavelength range studied it cannot be detected. In the crustal sequence, we therefore identified four end‐members with variable abundance of clinopyroxene: (1) massive gabbros, (2) amphibolized (upper) gabbros associated with intrusive dykes, (3) wehrlite with high serpentine content, and (4) gabbronorite (a lithology not previously recognized in the studied area). With the exception of wehrlite, spectra of olivine‐rich end‐members display characteristic Mg‐OH narrow absorption features caused by their high serpentine content. We take advantage of this observation to split the data into two subsets, corresponding to the mantle and crustal sequences, respectively. Pixels of an image often correspond to heterogeneous areas in the field and a direct comparison between airborne and in situ spectra is not straightforward. However, comparing spectra of pixels associated with the most homogeneous areas in the field with the spectra acquired in situ at the same location, we found a systematic change both in mean intensity and overall spectral shape. Dividing each spectrum by its low‐pass trend removes the effects caused by surface light scattering associated with each scale of analysis and results in an exceptional match between field and airborne spectra. However, the albedo information is lost and as a consequence, rock types only characterized by albedo change cannot be discriminated. A spectrum of a mixture of powdered minerals is usually seen as a linear combination of mineral spectra proportional to their abundance. However, this is no longer the case when minerals occur in complex arrangements in rock types. We thus develop a synthetic spectral library of all possible combinations of rock types covering the surface area of a pixel and use a simple distance calculation to identify the best match between each pixel and modeled spectra. This procedure allows the determination of the fractional cover of each rock type in a given pixel and to establish maps for each spectral end‐member. The final product is a geological map, derived from the combination of end‐member fractional cover maps, and is broadly consistent with the existing geological maps. Beyond this general agreement which demonstrates the potential of this new approach for geological mapping, imaging spectrometry allows (1) to map in detail the outline of the Moho north of Maqsad and (2) to identify a new crustal sequence enriched in silica south of Muqzah, revealing the presence of orthopyroxene, the nature and distribution of which are of relevance to the petrological and tectonic understanding of the Oman ophiolite evolution.
AbstractList An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field measurements (GER 3700). An ASD FieldSpec3 spectrometer was also used in order to constrain the spectral signatures of the principal lithologies cropping out in the surveyed area. Our objective was to identify and map the various igneous lithologies by a direct comparison at high spectral resolution between field and airborne spectra despite strong variations in outcropping conditions such as (1) lighting, (2) surface roughness geometry, (3) blocks coated with red/brown patina and exfoliation products, or (4) deep hydrothermal weathering. On the basis of spectral signatures, we are able to distinguish three end-members of olivine-orthopyroxene bearing assemblages in the mantle sequence: (1) harzburgites, (2) dunites, and (3) a harzburgite with interstitial carbonate. Because plagioclase is spectrally featureless in the wavelength range studied it cannot be detected. In the crustal sequence, we therefore identified four end-members with variable abundance of clinopyroxene: (1) massive gabbros, (2) amphibolized (upper) gabbros associated with intrusive dykes, (3) wehrlite with high serpentine content, and (4) gabbronorite (a lithology not previously recognized in the studied area). With the exception of wehrlite, spectra of olivine-rich end-members display characteristic Mg-OH narrow absorption features caused by their high serpentine content. We take advantage of this observation to split the data into two subsets, corresponding to the mantle and crustal sequences, respectively. Pixels of an image often correspond to heterogeneous areas in the field and a direct comparison between airborne and in situ spectra is not straightforward. However, comparing spectra of pixels associated with the most homogeneous areas in the field with the spectra acquired in situ at the same location, we found a systematic change both in mean intensity and overall spectral shape. Dividing each spectrum by its low-pass trend removes the effects caused by surface light scattering associated with each scale of analysis and results in an exceptional match between field and airborne spectra. However, the albedo information is lost and as a consequence, rock types only characterized by albedo change cannot be discriminated. A spectrum of a mixture of powdered minerals is usually seen as a linear combination of mineral spectra proportional to their abundance. However, this is no longer the case when minerals occur in complex arrangements in rock types. We thus develop a synthetic spectral library of all possible combinations of rock types covering the surface area of a pixel and use a simple distance calculation to identify the best match between each pixel and modeled spectra. This procedure allows the determination of the fractional cover of each rock type in a given pixel and to establish maps for each spectral end-member. The final product is a geological map, derived from the combination of end-member fractional cover maps, and is broadly consistent with the existing geological maps. Beyond this general agreement which demonstrates the potential of this new approach for geological mapping, imaging spectrometry allows (1) to map in detail the outline of the Moho north of Maqsad and (2) to identify a new crustal sequence enriched in silica south of Muqzah, revealing the presence of orthopyroxene, the nature and distribution of which are of relevance to the petrological and tectonic understanding of the Oman ophiolite evolution.
Author Clénet, H.
Girardeau, J.
Amri, I.
Ceuleneer, G.
Carrère, V.
Roy, R.
Pinet, P.
Daydou, Y.
Launeau, P.
Author_xml – sequence: 1
  givenname: R.
  surname: Roy
  fullname: Roy, R.
  email: regis.roy@univ-nantes.fr
  organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France
– sequence: 2
  givenname: P.
  surname: Launeau
  fullname: Launeau, P.
  organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France
– sequence: 3
  givenname: V.
  surname: Carrère
  fullname: Carrère, V.
  organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France
– sequence: 4
  givenname: P.
  surname: Pinet
  fullname: Pinet, P.
  organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France
– sequence: 5
  givenname: G.
  surname: Ceuleneer
  fullname: Ceuleneer, G.
  organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France
– sequence: 6
  givenname: H.
  surname: Clénet
  fullname: Clénet, H.
  organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France
– sequence: 7
  givenname: Y.
  surname: Daydou
  fullname: Daydou, Y.
  organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France
– sequence: 8
  givenname: J.
  surname: Girardeau
  fullname: Girardeau, J.
  organization: Laboratoire de Planétologie et Géodynamique, Université de Nantes, UMR6112, CNRS, 2 Chemin de la Houssinière,BP 92208,, F-44322, Nantes, France
– sequence: 9
  givenname: I.
  surname: Amri
  fullname: Amri, I.
  organization: "Dynamique Terrestre et Planétaire," Observatoire Midi-Pyrénées, Université Paul Sabatier, UMR5562, CNRS, 14 Avenue Edouard-Belin,, F-31400, Toulouse, France
BackLink https://hal.science/hal-00404925$$DView record in HAL
BookMark eNqF0c1u1DAQB_AIFYm2cOOOj61Eij0bx1luq1WbVloolK-j5TiTjcGJUzvZsjfegStPx5OQVWBVLnCyPfrN3yPNUXTQuhaj6CmjZ4zC_AVQmuVLSoHx5EF0yDjwGCiIg3v3R9FRCJ8pZQnn2WH0I0dn3dpoZUmjus60axJ6r3pcb8kQds-NCaawSFpUPjZt5ZXH8ue376F2vr9TGyR_iqTeduhDh3pMsMRj43okAdtdzkuy6Do7ftQb15Lekb5Gct2olriuNs6akZ68GxplLHmlQjDV6ePoYaVswCe_z-Pow8X5--VlvLrOr5aLVaw4ZRAL5Ap1RnGeFtWcC8w047riZQVzkWVQlJoXrEq1EFBqZAVAJlKAhM_KFDI1O45Op9xaWdl50yi_lU4ZeblYyV2N0oQmc-AbNtqTyXbe3Q4YetmYoNFa1aIbgmRpAiBGzv9POSQJMGDpSJ9PVHsXgsdqPwajcrdbeX-3I4eJ3xmL239amef5OUsojE3x1GRCj1_3Tcp_kamYCS4_vc4lfbt6c3NBP8qb0T-bvFoPe_3XGL8AzUXCaQ
CitedBy_id crossref_primary_10_1038_s41598_019_41494_6
crossref_primary_10_1016_j_rse_2010_08_019
crossref_primary_10_1016_j_icarus_2011_03_002
crossref_primary_10_1002_adom_202200111
crossref_primary_10_1016_j_gexplo_2016_09_008
crossref_primary_10_1007_s12040_023_02095_0
crossref_primary_10_1016_j_enggeo_2017_04_009
crossref_primary_10_1002_jgre_20112
crossref_primary_10_1016_j_jag_2015_12_004
crossref_primary_10_1144_SP541_2022_314
crossref_primary_10_1016_j_cageo_2016_12_007
crossref_primary_10_1016_j_lithos_2009_09_002
crossref_primary_10_1016_j_lithos_2020_105870
crossref_primary_10_1117_1_3598315
crossref_primary_10_1016_j_rse_2009_11_006
crossref_primary_10_1029_2022GC010730
crossref_primary_10_3390_rs61110860
crossref_primary_10_1016_j_rse_2022_113211
crossref_primary_10_1016_j_crte_2010_10_001
Cites_doi 10.1029/2005GC001214
10.1016/j.crte.2006.09.012
10.1016/0034‐4257(93)90014‐O
10.1016/S0034‐4257(99)00006‐1
10.1029/2001GC000289
10.1144/gsjgs.144.4.0587
10.1190/1.1440721
10.2113/173.6.491
10.1038/379149a0
10.1080/01431160050030510
10.1029/JB086iB04p02756
10.1016/j.icarus.2004.08.010
10.1029/JB086iB04p02495
10.1029/JB094iB10p13997
10.1029/JB089iB07p06329
10.1029/JB086iB04p02777
10.1126/science.196.4297.1446
10.1016/S0924‐2716(02)00060‐6
10.1029/JB086iB04p02763
10.1029/JB086iB04p02527
10.1016/0040‐1951(88)90252‐1
10.1016/j.rse.2003.08.009
10.1016/0040-1951(88)90243-0
10.1029/JB086iB04p02545
10.1016/S0169‐1317(99)00047‐2
10.1016/j.rse.2005.07.010
10.1029/JB086iB04p02573
10.1029/JB086iB09p07967
10.3133/ofr93592
10.1080/01431160310001609699
10.1029/JB086iB04p03039
10.1180/minmag.1988.052.366.15
10.1126/science.228.4704.1147
10.1190/1.1441202
10.1177/030913338200600301
10.1029/2002GC000354
10.1016/0040‐1951(88)90254‐5
10.1016/0034‐4257(95)00156‐5
10.1029/JB091iB08p08098
10.1016/0012‐821X(95)00233‐3
10.1017/CBO9780511524998
10.1029/JB095iB05p06955
10.1016/0040‐1951(88)90238‐7
10.1029/JB086iB04p02497
10.1029/JB079i011p01615
ContentType Journal Article
Copyright 2008 American Geophysical Union
Copyright 2009 by the American Geophysical Union.
Copyright
Copyright_xml – notice: 2008 American Geophysical Union
– notice: Copyright 2009 by the American Geophysical Union.
– notice: Copyright
DBID BSCLL
AAYXX
CITATION
8FD
FR3
H8D
KR7
L7M
1XC
VOOES
DOI 10.1029/2008GC002154
DatabaseName Istex
CrossRef
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage n/a
ExternalDocumentID oai_HAL_hal_00404925v1
10_1029_2008GC002154
GGGE1402
ark_67375_WNG_0QLPRF0V_R
2008GC002154
Genre article
GroupedDBID 02
05W
0R
1OC
24P
3V.
50Y
5GY
8-1
88I
8FH
8G5
8R4
8R5
A00
AAESR
AAIHA
AAPBV
AAZKR
ABCUV
ABHUG
ABUWG
ACGFS
ACGOD
ACPOU
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFPWT
AGJLS
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BMXJE
BPHCQ
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
FEDTE
G-S
GUQSH
HCIFZ
HVGLF
HZ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MBDVC
MEWTI
MRJOP
MSFUL
MSSTM
MXFUL
MXSTM
MY
O9-
OA
P-X
P2W
R.K
RIG
ROL
SUPJJ
UB1
WBKPD
WIN
WYJ
ZZTAW
0R~
31~
8CJ
8FE
AAHHS
ACAHQ
ACBWZ
ACCFJ
ADIYS
ADKYN
ADMGS
ADOZA
ADZOD
AEEZP
AEQDE
AFGKR
AFKRA
AIURR
AIWBW
AJBDE
AMYDB
AZQEC
BKSAR
BSCLL
CCPQU
D1J
DWQXO
GNUQQ
GODZA
GROUPED_DOAJ
HZ~
LK5
M7R
MY~
M~E
OK1
PCBAR
PQQKQ
PROAC
Q2X
~02
~OA
AAYXX
CITATION
8FD
FR3
H8D
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-a5012-7e5aec80e96bf957e8c15cf5df297882bdc5b1f6c772dce1b2287622453d628a3
ISSN 1525-2027
IngestDate Tue Oct 15 15:56:37 EDT 2024
Fri Jun 28 07:05:59 EDT 2024
Fri Jun 28 07:09:42 EDT 2024
Fri Aug 23 03:26:18 EDT 2024
Sat Aug 24 00:54:31 EDT 2024
Wed Oct 30 09:54:47 EDT 2024
Tue Jan 05 21:14:21 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ophiolite
remote sensing
mapping
spectral distance
weathering
hyperspectral
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5012-7e5aec80e96bf957e8c15cf5df297882bdc5b1f6c772dce1b2287622453d628a3
Notes ark:/67375/WNG-0QLPRF0V-R
Tab-delimited Table 1.
istex:5561D6864BE18CE0ED74D7CBA343C5A5287E6CC4
ArticleID:2008GC002154
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-1933-5631
OpenAccessLink https://hal.science/hal-00404925
PQID 1524421216
PQPubID 23500
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_00404925v1
agu_primary_2008GC002154
istex_primary_ark_67375_WNG_0QLPRF0V_R
crossref_primary_10_1029_2008GC002154
proquest_miscellaneous_1524421216
proquest_miscellaneous_1642274045
wiley_primary_10_1029_2008GC002154_GGGE1402
PublicationCentury 2000
PublicationDate February 2009
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 02
  year: 2009
  text: February 2009
PublicationDecade 2000
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationTitleAlternate Geochem. Geophys. Geosyst
PublicationYear 2009
Publisher American Geophysical Union
Blackwell Publishing Ltd
AGU and the Geochemical Society
Publisher_xml – name: American Geophysical Union
– name: Blackwell Publishing Ltd
– name: AGU and the Geochemical Society
References Combe, J.-P., P. Launeau, P. Pinet, D. Despan, E. Harris, G. Ceuleneer, and C. Sotin (2006), Mapping of an ophiolite complex by high-resolution visible-infrared spectrometry, Geochem. Geophys. Geosyst., 7, Q08001, doi:10.1029/2005GC001214.
Juteau, T., M. Ernewein, I. Reuber, H. Whitechurch, and R. Dahl (1988), Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman, Tectonophysics, 151, 107-135.
Chabrillat, S., P. C. Pinet, G. Ceuleneer, P. E. Johnson, and J. F. Mustard (2000), Ronda peridotite massif: Methodology for its geological mapping and lithological discrimination from airborne hyperspectral data, Int. J. Remote Sens., 21(12), 2363-2388, doi:10.1080/01431160050030510.
Abrams, M. J., D. A. Rothery, and A. Pontual (1988), Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images, Tectonophysics, 151, 387-401, doi:10.1016/0040-1951(88)90254-5.
Potter, R. M., and G. R. Rossman (1977), Desert varnish: The importance of clay minerals, Science, 196, 1446-1448, doi:10.1126/science.196.4297.1446.
Hunt, G. R., and J. W. Salisbury (1971), Visible and near infrared reflectance spectra of minerals and rocks: 2 Carbonates, Mod. Geol., 2, 23-30.
Bakker, W. H., and K. S. Schmidt (2002), Hyperspectral edge filtering for measuring homogeneity of surface cover types, ISPRS J. Photogramm. Remote Sens., 56, 246-256, doi:10.1016/S0924-2716(02)00060-6.
Python, M., and G. Ceuleneer (2003), Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite, Geochem. Geophys. Geosyst., 4(7), 8612, doi:10.1029/2002GC000354.
Méléder, V., L. Barillé, P. Launeau, V. Carrère, and Y. Rince (2003), Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures, Remote Sens. Environ., 88, 386-400, doi:10.1016/j.rse.2003.08.009.
Pinet, P. C., C. Kaufmann, and J. Hill (2006a), Imaging spectroscopy of changing Earth's surface: A major step toward the quantitative monitoring of land degradation and desertification, C. R. Acad. Sci., 338, 1042-1048, doi:10.1016/j.crte.2006.09.012.
Hunt, G. R., J. W. Salisbury, and C. H. Lenhoff (1971), Visible and near-infrared spectra of minerals and rocks: 3 Oxides and hydroxides, Mod. Geol., 2, 195-205.
Tilton, G. R., C. A. Hopson, and J. E. Wright (1981), Uranium-Lead isotopic ages of the Samail ophiolite, Oman with applications to Tethyan ocean ridge tectonics, J. Geophys. Res., 86(B4), 2763-2775, doi:10.1029/JB086iB04p02763.
Goetz, A. F. H., G. Vane, J. E. Solomon, and B. N. Rock (1985), Imaging spectrometry for Earth remote sensing, Science, 228(4704), 1147-1153, doi:10.1126/science.228.4704.1147.
Hopson, C. A., R. G. Coleman, R. T. Gregory, J. S. Pallister, and E. H. Bailey (1981), Geologic section through the Samail ophiolite and associated rocks along a Muscat-Ibra transect, south-eastern Oman Mountains, J. Geophys. Res., 86(B4), 2527-2544, doi:10.1029/JB086iB04p02527.
Ceuleneer, G., M. Monnereau, and I. Amri (1996), Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates, Nature, 379, 149-153, doi:10.1038/379149a0.
Coleman, R. G. (1981), Tectonic setting for ophiolite obduction in Oman, J. Geophys. Res., 86(B4), 2497-2508, doi:10.1029/JB086iB04p02497.
Gao, B.-C., K. B. Heidebrecht, and A. F. H. Goetz (1993), Derivation of scaled surface reflectances from AVIRIS data, Remote Sens. Environ., 44, 165-178, doi:10.1016/0034-4257(93)90014-O.
Coleman, R. G., and C. A. Hopson (1981), Introduction to the Oman ophiolite, J. Geophys. Res., 86(B4), 2495-2496, doi:10.1029/JB086iB04p02495.
Boardman, J. W. (1989), Inversion of imaging spectrometry data using singular value decomposition, Proc. IGARSS, 4, 2069-2072.
Rothery, D. A. (1987), Improved discrimination of rock units using Landsat Thematic Mapper Imagery of the Oman ophiolite, J. Geol. Soc., 144, 587-597, doi:10.1144/gsjgs.144.4.0587.
Sunshine, J. M., C. M. Pieters, and S. F. Pratt (1990), Deconvolution of mineral absorption bands: An improved approach, J. Geophys. Res., 95, 6955-6966, doi:10.1029/JB095iB05p06955.
Friedl, M. A., F. W. Davis, J. Michaelsen, and M. A. Moritz (1995), Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE, Remote Sens. Environ., 54, 233-246, doi:10.1016/0034-4257(95)00156-5.
Lanphere, M. A. (1981), K-Ar ages of metamorphic rocks at the base of the Samail ophiolite, Oman, J. Geophys. Res., 86(B4), 2777-2782, doi:10.1029/JB086iB04p02777.
Montigny, R., O. Le Mer, R. Thuizat, and H. Whitechurch (1988), K-Ar and 40Ar/39Ar study of metamorphic rocks associated with the Oman ophiolite: Tectonic implications, Tectonophysics, 151, 345-362, doi:10.1016/0040-1951(88)90252-1.
Hunt, G. R. (1977), Spectral signatures of particulate minerals in the visible and near infrared, Geophysics, 42, 501-513, doi:10.1190/1.1440721.
Combe, J.-P., P. Launeau, V. Carrère, D. Despan, V. Méléder, L. Barillé, and C. Sotin (2005), Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images, Remote Sens. Environ., 98(4), 371-387, doi:10.1016/j.rse.2005.07.010.
Hapke, B. (1993), Introduction to the Theory of Reflectance and Emittance Spectroscopy, 456 pp., Cambridge Univ. Press, New York.
Vane, G., M. Crisp, H. Enmark, S. Macenka, and J. Solomon (1984), Airborne visible/infrared imaging spectrometer: An advanced tool for Earth remote sensing, Proc. IEEE, SP215, 751-757.
Boudier, F., and R. G. Coleman (1981), Cross section through the peridotite in the Samail ophiolite, southeastern Oman Mountains, J. Geophys. Res., 86, 2573-2592, doi:10.1029/JB086iB04p02573.
King, T. V. V., and R. N. Clark (1989), Spectral characteristics of chlorites and Mg-serpentines using high-resolution spectroscopy, J. Geophys. Res., 94, 13,997-14,008, doi:10.1029/JB094iB10p13997.
Ceuleneer, G., A. Nicolas, and F. Boudier (1988), Mantle flow pattern at an oceanic spreading centre: The Oman peridotite record, Tectonophysics, 151, 1-26, doi:10.1016/0040-1951(88)90238-7.
Chen, J. M. (1999), Spatial scaling of a remotely sensed surface parameter by contexture, Remote Sens. Environ., 69, 30-42, doi:10.1016/S0034-4257(99)00006-1.
Tippit, P. R., E. A. Pessagno, and J. D. Smewing (1981), The biostratigraphy of sediments in the volcanic unit of the Samail ophiolite, J. Geophys. Res., 86(B4), 2756-2762, doi:10.1029/JB086iB04p02756.
Launeau, P., J. Girardeau, C. Sotin, and J. M. Tubia (2004), Comparison between field measurements and airborne visible and infrared mapping spectrometry (AVIRIS and HyMap) of the Ronda peridotite massif (south-west Spain), Int. J. Remote Sens., 25(14), 2773-2792, doi:10.1080/01431160310001609699.
Amri, I., M. Benoit, and G. Ceuleneer (1996), Tectonic setting for the genesis of oceanic plagiogranites: Evidence from a paleo-spreading structure in the Oman ophiolite, Earth Planet. Sci. Lett., 139, 177-194, doi:10.1016/0012-821X(95)00233-3.
Braun, M. G., and P. B. Kelemen (2002), Dunite distribution in the Oman ophiolite: Implications for melt flux through porous dunite conduits, Geochem. Geophys. Geosyst., 3(11), 8603, doi:10.1029/2001GC000289.
Hunt, G. R., and J. W. Salisbury (1970), Visible and near-infrared spectra of minerals and rocks: 1 Silicate minerals, Mod. Geol., 1, 283-300.
Singer, R. B. (1981), Near-infrared spectral reflectance of mineral mixtures - systematic combinations of pyroxenes, olivine, and iron oxides, J. Geophys. Res., 86, 7967-7982, doi:10.1029/JB086iB09p07967.
Clark, R. N., and T. L. Roush (1984), Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications, J. Geophys. Res., 89, 6329-6340, doi:10.1029/JB089iB07p06329.
Hapke, B. (1981), Bidirectional reflectance spectroscopy: 1. Theory, J. Geophys. Res., 86, 3039-3054, doi:10.1029/JB086iB04p03039.
Cord, A., P. C. Pinet, Y. Daydou, and S. D. Chevrel (2005), Experimental determination of the surface photometric contribution in the spectral reflectance deconvolution processes for a simulated Martian crater-like regolithic target, Icarus, 175(1), 78-91, doi:10.1016/j.icarus.2004.08.010.
Pinet, P. C., et al. (2006b), Mantle rock surface mineralogy mapping in arid environment from imaging spectroscopy: The case of the Maqsad peridotitic massif in Oman and implications for the spectroscopic study of exposed mafic units on Mars, Lunar Planet. Sci., [CD-ROM], XXXVII, 1346.
Launeau, P., C. Sotin, and J. Girardeau (2002), Cartography of the Ronda peridotite (Spain) by hyperspectral remote sensing, Bull. Soc. Geol. Fr., 173(6), 491-508, doi:10.2113/173.6.491.
Christensen, N. I., and J. D. Smewing (1981), Geology and seismic structure of the northern section of the Oman ophiolite, J. Geophys. Res., 86(B4), 2545-2555, doi:10.1029/JB086iB04p02545.
Hunt, G. R., and R. C. Evarts (1981), The use of near-infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks, Geophysics, 46, 316-321, doi:10.1190/1.1441202.
Stanger, G., J. Laver, and C. Neal (1988), Black carbonaceous calcite associated with serpentinite from Oman, Mineral. Mag., 52, 403-408, doi:10.1180/minmag.1988.052.366.15.
Dorn, R. I., and T. M. Oberlander (1982), Rock varnish, Prog. Phys, Geogr., 6, 317-367, doi:10.1177/030913338200600301.
Adams, J. B., M. O. Smith, and P. E. Johnson (1986), Spectral mixture modelling - A new analysis of rock and soil types at the Viking Lander 1 site, J. Geophys. Res., 91, 8098-8112, doi:10.1029/JB091iB08p08098.
Nash, D. B., and J. E. Conel (1974), Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite, J. Geophys. Res., 79, 1615-1621, doi:10.1029/JB079i011p01615.
Post, J. L., and L. Borer (2000), High-resolution infrared spectra, physical properties, and micromorphology of serpentines, Appl. Clay Sci., 16, 73-85, doi:10.1016/S0169-1317(99)00047-2.
1990; 95
2005; 175
1987; 144
2002; 56
2004; 25
1981; 46
1974
1970; 1
2006; 338
1981; 86
2004; 33
2000; 16
1984; SP215
1990
1982; 6
1986
2003; 4
1996; 379
1971; 2
1998; 99
1996; 139
2003; 88
2002; 02‐1
1986; 91
1989; 4
1974; 79
2006; XXXVII
2002; 173
1986; 11
2000; 21
1993; 44
1984; 89
1999; 69
1995; 54
1998
2006; 7
2002; 3
1977; 42
1995
1994
2005
1993
1999; 3
1985; 228
2003
1988; 52
1999
1993; 93‐592
1989; 94
2005; 98
1988; 151
1977; 196
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_35_1
Hunt G. R. (e_1_2_9_38_1) 1970; 1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Roberts D. A. (e_1_2_9_61_1) 2004
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
Hunt G. R. (e_1_2_9_39_1) 1971; 2
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
Pinet P. C. (e_1_2_9_55_1) 2006
e_1_2_9_6_1
e_1_2_9_4_1
Boardman J. W. (e_1_2_9_7_1) 1989; 4
e_1_2_9_60_1
e_1_2_9_2_1
Clark R. N. (e_1_2_9_18_1) 2002
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Boardman J. W. (e_1_2_9_8_1) 1998
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
Vane G. (e_1_2_9_68_1) 1984; 215
Mustard J. F. (e_1_2_9_50_1) 1999
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_3_1
Hunt G. R. (e_1_2_9_40_1) 1971; 2
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 56
  start-page: 246
  year: 2002
  end-page: 256
  article-title: Hyperspectral edge filtering for measuring homogeneity of surface cover types
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 79
  start-page: 1615
  year: 1974
  end-page: 1621
  article-title: Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite
  publication-title: J. Geophys. Res.
– volume: 86
  start-page: 3039
  year: 1981
  end-page: 3054
  article-title: Bidirectional reflectance spectroscopy: 1. Theory
  publication-title: J. Geophys. Res.
– volume: 7
  year: 2006
  article-title: Mapping of an ophiolite complex by high‐resolution visible‐infrared spectrometry
  publication-title: Geochem. Geophys. Geosyst.
– volume: 25
  start-page: 2773
  issue: 14
  year: 2004
  end-page: 2792
  article-title: Comparison between field measurements and airborne visible and infrared mapping spectrometry (AVIRIS and HyMap) of the Ronda peridotite massif (south–west Spain)
  publication-title: Int. J. Remote Sens.
– year: 2005
– volume: 86
  start-page: 2763
  issue: B4
  year: 1981
  end-page: 2775
  article-title: Uranium‐Lead isotopic ages of the Samail ophiolite, Oman with applications to Tethyan ocean ridge tectonics
  publication-title: J. Geophys. Res.
– volume: 99
  year: 1998
– volume: 21
  start-page: 2363
  issue: 12
  year: 2000
  end-page: 2388
  article-title: Ronda peridotite massif: Methodology for its geological mapping and lithological discrimination from airborne hyperspectral data
  publication-title: Int. J. Remote Sens.
– volume: 93‐592
  year: 1993
– volume: 228
  start-page: 1147
  issue: 4704
  year: 1985
  end-page: 1153
  article-title: Imaging spectrometry for Earth remote sensing
  publication-title: Science
– volume: 11
  year: 1986
– volume: 86
  start-page: 2527
  issue: B4
  year: 1981
  end-page: 2544
  article-title: Geologic section through the Samail ophiolite and associated rocks along a Muscat‐Ibra transect, south‐eastern Oman Mountains
  publication-title: J. Geophys. Res.
– volume: 4
  issue: 7
  year: 2003
  article-title: Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite
  publication-title: Geochem. Geophys. Geosyst.
– volume: 151
  start-page: 107
  year: 1988
  end-page: 135
  article-title: Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman
  publication-title: Tectonophysics
– volume: 151
  start-page: 345
  year: 1988
  end-page: 362
  article-title: K‐Ar and Ar/ Ar study of metamorphic rocks associated with the Oman ophiolite: Tectonic implications
  publication-title: Tectonophysics
– year: 1990
– volume: 44
  start-page: 165
  year: 1993
  end-page: 178
  article-title: Derivation of scaled surface reflectances from AVIRIS data
  publication-title: Remote Sens. Environ.
– year: 1994
– year: 1998
– volume: 338
  start-page: 1042
  year: 2006
  end-page: 1048
  article-title: Imaging spectroscopy of changing Earth's surface: A major step toward the quantitative monitoring of land degradation and desertification
  publication-title: C. R. Acad. Sci.
– volume: 52
  start-page: 403
  year: 1988
  end-page: 408
  article-title: Black carbonaceous calcite associated with serpentinite from Oman
  publication-title: Mineral. Mag.
– volume: 46
  start-page: 316
  year: 1981
  end-page: 321
  article-title: The use of near‐infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks
  publication-title: Geophysics
– year: 1986
– volume: 3
  start-page: 251
  year: 1999
  end-page: 306
– volume: 196
  start-page: 1446
  year: 1977
  end-page: 1448
  article-title: Desert varnish: The importance of clay minerals
  publication-title: Science
– volume: 3
  issue: 11
  year: 2002
  article-title: Dunite distribution in the Oman ophiolite: Implications for melt flux through porous dunite conduits
  publication-title: Geochem. Geophys. Geosyst.
– volume: 175
  start-page: 78
  issue: 1
  year: 2005
  end-page: 91
  article-title: Experimental determination of the surface photometric contribution in the spectral reflectance deconvolution processes for a simulated Martian crater‐like regolithic target
  publication-title: Icarus
– volume: 1
  start-page: 283
  year: 1970
  end-page: 300
  article-title: Visible and near‐infrared spectra of minerals and rocks: 1 Silicate minerals
  publication-title: Mod. Geol.
– volume: 95
  start-page: 6955
  year: 1990
  end-page: 6966
  article-title: Deconvolution of mineral absorption bands: An improved approach
  publication-title: J. Geophys. Res.
– volume: 88
  start-page: 386
  year: 2003
  end-page: 400
  article-title: Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures
  publication-title: Remote Sens. Environ.
– volume: 151
  start-page: 387
  year: 1988
  end-page: 401
  article-title: Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images
  publication-title: Tectonophysics
– year: 1993
– volume: 02‐1
  start-page: 43
  year: 2002
  end-page: 63
– volume: 173
  start-page: 491
  issue: 6
  year: 2002
  end-page: 508
  article-title: Cartography of the Ronda peridotite (Spain) by hyperspectral remote sensing
  publication-title: Bull. Soc. Geol. Fr.
– volume: 86
  start-page: 2756
  issue: B4
  year: 1981
  end-page: 2762
  article-title: The biostratigraphy of sediments in the volcanic unit of the Samail ophiolite
  publication-title: J. Geophys. Res.
– volume: SP215
  start-page: 751
  year: 1984
  end-page: 757
  article-title: Airborne visible/infrared imaging spectrometer: An advanced tool for Earth remote sensing
  publication-title: Proc. IEEE
– volume: 91
  start-page: 8098
  year: 1986
  end-page: 8112
  article-title: Spectral mixture modelling ‐ A new analysis of rock and soil types at the Viking Lander 1 site
  publication-title: J. Geophys. Res.
– volume: 139
  start-page: 177
  year: 1996
  end-page: 194
  article-title: Tectonic setting for the genesis of oceanic plagiogranites: Evidence from a paleo‐spreading structure in the Oman ophiolite
  publication-title: Earth Planet. Sci. Lett.
– volume: 89
  start-page: 6329
  year: 1984
  end-page: 6340
  article-title: Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications
  publication-title: J. Geophys. Res.
– volume: 42
  start-page: 501
  year: 1977
  end-page: 513
  article-title: Spectral signatures of particulate minerals in the visible and near infrared
  publication-title: Geophysics
– volume: 86
  start-page: 2573
  year: 1981
  end-page: 2592
  article-title: Cross section through the peridotite in the Samail ophiolite, southeastern Oman Mountains
  publication-title: J. Geophys. Res.
– volume: 379
  start-page: 149
  year: 1996
  end-page: 153
  article-title: Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates
  publication-title: Nature
– volume: 86
  start-page: 2777
  issue: B4
  year: 1981
  end-page: 2782
  article-title: K‐Ar ages of metamorphic rocks at the base of the Samail ophiolite, Oman
  publication-title: J. Geophys. Res.
– year: 2003
– volume: 98
  start-page: 371
  issue: 4
  year: 2005
  end-page: 387
  article-title: Mapping microphytobenthos biomass by non‐linear inversion of visible‐infrared hyperspectral images
  publication-title: Remote Sens. Environ.
– volume: 86
  start-page: 2497
  issue: B4
  year: 1981
  end-page: 2508
  article-title: Tectonic setting for ophiolite obduction in Oman
  publication-title: J. Geophys. Res.
– volume: 94
  start-page: 13,997
  year: 1989
  end-page: 14,008
  article-title: Spectral characteristics of chlorites and Mg‐serpentines using high‐resolution spectroscopy
  publication-title: J. Geophys. Res.
– volume: 86
  start-page: 7967
  year: 1981
  end-page: 7982
  article-title: Near‐infrared spectral reflectance of mineral mixtures ‐ systematic combinations of pyroxenes, olivine, and iron oxides
  publication-title: J. Geophys. Res.
– volume: 86
  start-page: 2495
  issue: B4
  year: 1981
  end-page: 2496
  article-title: Introduction to the Oman ophiolite
  publication-title: J. Geophys. Res.
– volume: XXXVII
  start-page: 1346
  year: 2006
  article-title: Mantle rock surface mineralogy mapping in arid environment from imaging spectroscopy: The case of the Maqsad peridotitic massif in Oman and implications for the spectroscopic study of exposed mafic units on Mars
  publication-title: Lunar Planet. Sci.
– volume: 69
  start-page: 30
  year: 1999
  end-page: 42
  article-title: Spatial scaling of a remotely sensed surface parameter by contexture
  publication-title: Remote Sens. Environ.
– volume: 144
  start-page: 587
  year: 1987
  end-page: 597
  article-title: Improved discrimination of rock units using Landsat Thematic Mapper Imagery of the Oman ophiolite
  publication-title: J. Geol. Soc.
– volume: 54
  start-page: 233
  year: 1995
  end-page: 246
  article-title: Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 195
  year: 1971
  end-page: 205
  article-title: Visible and near‐infrared spectra of minerals and rocks: 3 Oxides and hydroxides
  publication-title: Mod. Geol.
– volume: 151
  start-page: 1
  year: 1988
  end-page: 26
  article-title: Mantle flow pattern at an oceanic spreading centre: The Oman peridotite record
  publication-title: Tectonophysics
– volume: 16
  start-page: 73
  year: 2000
  end-page: 85
  article-title: High‐resolution infrared spectra, physical properties, and micromorphology of serpentines
  publication-title: Appl. Clay Sci.
– volume: 86
  start-page: 2545
  issue: B4
  year: 1981
  end-page: 2555
  article-title: Geology and seismic structure of the northern section of the Oman ophiolite
  publication-title: J. Geophys. Res.
– year: 1995
– year: 1974
– volume: 4
  start-page: 2069
  year: 1989
  end-page: 2072
  article-title: Inversion of imaging spectrometry data using singular value decomposition
  publication-title: Proc. IGARSS
– volume: 6
  start-page: 317
  year: 1982
  end-page: 367
  article-title: Rock varnish, Prog. Phys
  publication-title: Geogr.
– volume: 33
  start-page: 155
  year: 2004
  end-page: 181
– volume: 2
  start-page: 23
  year: 1971
  end-page: 30
  article-title: Visible and near infrared reflectance spectra of minerals and rocks: 2 Carbonates
  publication-title: Mod. Geol.
– year: 1999
– ident: e_1_2_9_23_1
  doi: 10.1029/2005GC001214
– ident: e_1_2_9_56_1
– ident: e_1_2_9_54_1
  doi: 10.1016/j.crte.2006.09.012
– ident: e_1_2_9_30_1
  doi: 10.1016/0034‐4257(93)90014‐O
– ident: e_1_2_9_14_1
  doi: 10.1016/S0034‐4257(99)00006‐1
– ident: e_1_2_9_10_1
  doi: 10.1029/2001GC000289
– ident: e_1_2_9_62_1
  doi: 10.1144/gsjgs.144.4.0587
– start-page: 155
  volume-title: Infrared Spectroscopy in Geochemistry, Exploration and Remote Sensing
  year: 2004
  ident: e_1_2_9_61_1
  contributor:
    fullname: Roberts D. A.
– ident: e_1_2_9_36_1
  doi: 10.1190/1.1440721
– ident: e_1_2_9_45_1
  doi: 10.2113/173.6.491
– ident: e_1_2_9_12_1
  doi: 10.1038/379149a0
– ident: e_1_2_9_13_1
  doi: 10.1080/01431160050030510
– ident: e_1_2_9_47_1
– ident: e_1_2_9_67_1
  doi: 10.1029/JB086iB04p02756
– ident: e_1_2_9_25_1
  doi: 10.1016/j.icarus.2004.08.010
– ident: e_1_2_9_4_1
– ident: e_1_2_9_69_1
– ident: e_1_2_9_21_1
  doi: 10.1029/JB086iB04p02495
– volume: 1
  start-page: 283
  year: 1970
  ident: e_1_2_9_38_1
  article-title: Visible and near‐infrared spectra of minerals and rocks: 1 Silicate minerals
  publication-title: Mod. Geol.
  contributor:
    fullname: Hunt G. R.
– ident: e_1_2_9_43_1
  doi: 10.1029/JB094iB10p13997
– ident: e_1_2_9_24_1
– ident: e_1_2_9_16_1
  doi: 10.1029/JB089iB07p06329
– ident: e_1_2_9_60_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_44_1
  doi: 10.1029/JB086iB04p02777
– volume: 2
  start-page: 23
  year: 1971
  ident: e_1_2_9_39_1
  article-title: Visible and near infrared reflectance spectra of minerals and rocks: 2 Carbonates
  publication-title: Mod. Geol.
  contributor:
    fullname: Hunt G. R.
– ident: e_1_2_9_58_1
  doi: 10.1126/science.196.4297.1446
– ident: e_1_2_9_6_1
  doi: 10.1016/S0924‐2716(02)00060‐6
– ident: e_1_2_9_66_1
  doi: 10.1029/JB086iB04p02763
– ident: e_1_2_9_35_1
  doi: 10.1029/JB086iB04p02527
– ident: e_1_2_9_49_1
  doi: 10.1016/0040‐1951(88)90252‐1
– ident: e_1_2_9_52_1
– ident: e_1_2_9_41_1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.rse.2003.08.009
– ident: e_1_2_9_42_1
  doi: 10.1016/0040-1951(88)90243-0
– ident: e_1_2_9_15_1
  doi: 10.1029/JB086iB04p02545
– ident: e_1_2_9_57_1
  doi: 10.1016/S0169‐1317(99)00047‐2
– ident: e_1_2_9_22_1
  doi: 10.1016/j.rse.2005.07.010
– ident: e_1_2_9_9_1
  doi: 10.1029/JB086iB04p02573
– ident: e_1_2_9_63_1
  doi: 10.1029/JB086iB09p07967
– ident: e_1_2_9_17_1
  doi: 10.3133/ofr93592
– ident: e_1_2_9_46_1
  doi: 10.1080/01431160310001609699
– ident: e_1_2_9_33_1
  doi: 10.1029/JB086iB04p03039
– ident: e_1_2_9_64_1
  doi: 10.1180/minmag.1988.052.366.15
– ident: e_1_2_9_32_1
  doi: 10.1126/science.228.4704.1147
– ident: e_1_2_9_37_1
  doi: 10.1190/1.1441202
– ident: e_1_2_9_28_1
  doi: 10.1177/030913338200600301
– ident: e_1_2_9_31_1
– volume: 2
  start-page: 195
  year: 1971
  ident: e_1_2_9_40_1
  article-title: Visible and near‐infrared spectra of minerals and rocks: 3 Oxides and hydroxides
  publication-title: Mod. Geol.
  contributor:
    fullname: Hunt G. R.
– ident: e_1_2_9_59_1
  doi: 10.1029/2002GC000354
– ident: e_1_2_9_2_1
  doi: 10.1016/0040‐1951(88)90254‐5
– ident: e_1_2_9_29_1
  doi: 10.1016/0034‐4257(95)00156‐5
– ident: e_1_2_9_3_1
  doi: 10.1029/JB091iB08p08098
– ident: e_1_2_9_19_1
– start-page: 1346
  year: 2006
  ident: e_1_2_9_55_1
  article-title: Mantle rock surface mineralogy mapping in arid environment from imaging spectroscopy: The case of the Maqsad peridotitic massif in Oman and implications for the spectroscopic study of exposed mafic units on Mars
  publication-title: Lunar Planet. Sci.
  contributor:
    fullname: Pinet P. C.
– volume-title: Proceedings of the 8th JPL Airborne Earth Science Workshop
  year: 1998
  ident: e_1_2_9_8_1
  contributor:
    fullname: Boardman J. W.
– volume: 215
  start-page: 751
  year: 1984
  ident: e_1_2_9_68_1
  article-title: Airborne visible/infrared imaging spectrometer: An advanced tool for Earth remote sensing
  publication-title: Proc. IEEE
  contributor:
    fullname: Vane G.
– volume: 4
  start-page: 2069
  year: 1989
  ident: e_1_2_9_7_1
  article-title: Inversion of imaging spectrometry data using singular value decomposition
  publication-title: Proc. IGARSS
  contributor:
    fullname: Boardman J. W.
– ident: e_1_2_9_5_1
  doi: 10.1016/0012‐821X(95)00233‐3
– ident: e_1_2_9_26_1
– ident: e_1_2_9_34_1
  doi: 10.1017/CBO9780511524998
– ident: e_1_2_9_65_1
  doi: 10.1029/JB095iB05p06955
– start-page: 43
  volume-title: Proceedings of the 10th Airborne Earth Science Workshop
  year: 2002
  ident: e_1_2_9_18_1
  contributor:
    fullname: Clark R. N.
– start-page: 251
  volume-title: Remote Sensing for the Earth Sciences
  year: 1999
  ident: e_1_2_9_50_1
  contributor:
    fullname: Mustard J. F.
– ident: e_1_2_9_11_1
  doi: 10.1016/0040‐1951(88)90238‐7
– ident: e_1_2_9_20_1
  doi: 10.1029/JB086iB04p02497
– ident: e_1_2_9_51_1
  doi: 10.1029/JB079i011p01615
– ident: e_1_2_9_53_1
SSID ssj0014558
Score 2.0709264
Snippet An airborne hyperspectral survey of the Oman ophiolite (Sumail Massif) has been conducted using the HyMap airborne imaging spectrometer with associated field...
SourceID hal
proquest
crossref
wiley
istex
agu
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage Q02004
SubjectTerms Earth Sciences
Gabbro
Geological mapping
hyperspectral
Igneous petrology
Lithology
mapping
Marine Geology and Geophysics
Massifs
Mineralogy and Petrology
Minerals
ophiolite
Ophiolites
Pixels
Planetary Sciences
Remote sensing
Rock
Sciences of the Universe
Solid Surface Planets
Spectra
spectral distance
weathering
Title Geological mapping strategy using visible near-infrared–shortwave infrared hyperspectral remote sensing: Application to the Oman ophiolite (Sumail Massif)
URI https://api.istex.fr/ark:/67375/WNG-0QLPRF0V-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2008GC002154
https://search.proquest.com/docview/1524421216
https://search.proquest.com/docview/1642274045
https://hal.science/hal-00404925
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEE81vLQgQKAowd547ZhbFKWOUFNKaEtvlh_rJkCTKImBckD9CUjc-Wkc-kuY2fVuHKgqysWKxxM_NJ_n5ZlZQh43eYp2htdB9UV1J0qTesxi2I1bcTNLhWsL7B3ub7u9PefVAT-oVH6VqpbyRdxIvp7ZV_I_UgUayBW7ZC8gWXNSIMBvkC9sQcKw_ScZB8KorqNoOlWpATn74biWyyQAto5jb9QYAG3qGuDSM6w714TmfAhO-Gdch0gfqg0hPlVtmDM5-h8kKmpzrHZXDdLt5Ydv7b6-lstcTIcjLKmTruvb_Cgafaz1wUEfZTrn8N7ce6IXm0M5H4qJyrLMiz01Y3oucxaB0U4DlTscNEwlUZTDw-XSGzbETjRTJQAtlWLfN0d2wKtelJh1wsPXNdJLHc0AS5YaKdAQZ9C0YrdKAGYlE28M4F_2w2I4fhVrQoKOdIecpZ3UtQGGj5_HKV2EIAi6EMGCi7DOQBGiBu5_65qvXA6X68eamy8aM-DkL8onRsfpMF9xnC4NsWx3HTXBl5XYqBxhSRdp9xq5WsQ2tK2Aep1UxPgGuaxAenyT_FzClRZwpRquVMKVFnClCNfTk-8ajacnPwxEqSbSFYhSBVFaQPQlLQGULiYUAEoRoNQAlD5T8KQKns9vkb3N7m6nVy-WB6lHHNyquid4JJKWJXw3znzuiVZi8yTjacZ8DwLHOE14bGduAgFkmgg7ZgxNP3N4M3VZK2reJmvjyVhsEGoJXLXN9SF4iB1biBZEOc3YSvH_qeNlVbIBEginagBMWBZOlTzRYjHHZWEH8__gewQyMyw41b3X3gqRhoYUZ4R-sqvkqRSpYYtmH7Dy0uPhu-0gtN5s7Qw2rf1wUCUPtcxDeFPxI180FpN8HgKYHKzysN1zeFyHMQ8uyqukJgFz7q2HGsZ3LsR9l1xZvr73yNpilov74MEv4gfyNfgNPEXqCQ
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geological+mapping+strategy+using+visible+near%E2%80%90infrared%E2%80%93shortwave+infrared+hyperspectral+remote+sensing%3A+Application+to+the+Oman+ophiolite+%28Sumail+Massif%29&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Roy%2C+R.&rft.au=Launeau%2C+P.&rft.au=Carr%C3%A8re%2C+V.&rft.au=Pinet%2C+P.&rft.date=2009-02-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2008GC002154&rft.externalDBID=10.1029%252F2008GC002154&rft.externalDocID=GGGE1402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon