A Review on the Effect of Metal Oxide Nanoparticles on Tribological Properties of Biolubricants

This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly i...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 9; no. 11; pp. 12436 - 12456
Main Authors Uniyal, Purva, Gaur, Piyush, Yadav, Jitendra, Khan, Tabrej, Ahmed, Omar Shabbir
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly in lubrication. Nanobiolubricants offer promising avenues for enhancing tribological properties. This review focuses on oxide nanoparticles, such as zinc oxide (ZnO), aluminum oxide (Al2O3), copper oxide (CuO), titanium dioxide (TiO2), zirconium dioxide (ZrO2), and graphene oxide (GO) nanoparticles, for their ability to enhance lubricant performance. The impact of nanoparticle concentration on biolubricant properties, including viscosity, viscosity index, flash point temperature, and pour point temperature, is analyzed. The review also addresses potential obstacles and limitations in nanoparticle incorporation, aiming to propose effective strategies for maximizing their benefits. The findings underscore the potential of nanobiolubricants to improve operational efficiency and component lifespan. This review aims to provide valuable insights for researchers, engineers, and professionals in exploring and leveraging nanotechnology’s potential in the lubrication industry. This review paper explores the basics of tribology along with its significance, green principles, mechanisms, and energy savings because of friction, wear, and lubrication. Condition monitoring techniques are also explored to achieve brief knowledge about maintaining reliability and safety of the industrial components. Recent advances in tribology including superconductivity, biotribology, high-temperature tribology, tribological simulation, hybrid polymer composite’s tribology, and cryogenic tribology are investigated, which gives a thorough idea about the subject.
AbstractList This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly in lubrication. Nanobiolubricants offer promising avenues for enhancing tribological properties. This review focuses on oxide nanoparticles, such as zinc oxide (ZnO), aluminum oxide (Al2O3), copper oxide (CuO), titanium dioxide (TiO2), zirconium dioxide (ZrO2), and graphene oxide (GO) nanoparticles, for their ability to enhance lubricant performance. The impact of nanoparticle concentration on biolubricant properties, including viscosity, viscosity index, flash point temperature, and pour point temperature, is analyzed. The review also addresses potential obstacles and limitations in nanoparticle incorporation, aiming to propose effective strategies for maximizing their benefits. The findings underscore the potential of nanobiolubricants to improve operational efficiency and component lifespan. This review aims to provide valuable insights for researchers, engineers, and professionals in exploring and leveraging nanotechnology’s potential in the lubrication industry. This review paper explores the basics of tribology along with its significance, green principles, mechanisms, and energy savings because of friction, wear, and lubrication. Condition monitoring techniques are also explored to achieve brief knowledge about maintaining reliability and safety of the industrial components. Recent advances in tribology including superconductivity, biotribology, high-temperature tribology, tribological simulation, hybrid polymer composite’s tribology, and cryogenic tribology are investigated, which gives a thorough idea about the subject.
This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly in lubrication. Nanobiolubricants offer promising avenues for enhancing tribological properties. This review focuses on oxide nanoparticles, such as zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), copper oxide (CuO), titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2 ), and graphene oxide (GO) nanoparticles, for their ability to enhance lubricant performance. The impact of nanoparticle concentration on biolubricant properties, including viscosity, viscosity index, flash point temperature, and pour point temperature, is analyzed. The review also addresses potential obstacles and limitations in nanoparticle incorporation, aiming to propose effective strategies for maximizing their benefits. The findings underscore the potential of nanobiolubricants to improve operational efficiency and component lifespan. This review aims to provide valuable insights for researchers, engineers, and professionals in exploring and leveraging nanotechnology’s potential in the lubrication industry. This review paper explores the basics of tribology along with its significance, green principles, mechanisms, and energy savings because of friction, wear, and lubrication. Condition monitoring techniques are also explored to achieve brief knowledge about maintaining reliability and safety of the industrial components. Recent advances in tribology including superconductivity, biotribology, high-temperature tribology, tribological simulation, hybrid polymer composite’s tribology, and cryogenic tribology are investigated, which gives a thorough idea about the subject.
This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly in lubrication. Nanobiolubricants offer promising avenues for enhancing tribological properties. This review focuses on oxide nanoparticles, such as zinc oxide (ZnO), aluminum oxide (Al O ), copper oxide (CuO), titanium dioxide (TiO ), zirconium dioxide (ZrO ), and graphene oxide (GO) nanoparticles, for their ability to enhance lubricant performance. The impact of nanoparticle concentration on biolubricant properties, including viscosity, viscosity index, flash point temperature, and pour point temperature, is analyzed. The review also addresses potential obstacles and limitations in nanoparticle incorporation, aiming to propose effective strategies for maximizing their benefits. The findings underscore the potential of nanobiolubricants to improve operational efficiency and component lifespan. This review aims to provide valuable insights for researchers, engineers, and professionals in exploring and leveraging nanotechnology's potential in the lubrication industry. This review paper explores the basics of tribology along with its significance, green principles, mechanisms, and energy savings because of friction, wear, and lubrication. Condition monitoring techniques are also explored to achieve brief knowledge about maintaining reliability and safety of the industrial components. Recent advances in tribology including superconductivity, biotribology, high-temperature tribology, tribological simulation, hybrid polymer composite's tribology, and cryogenic tribology are investigated, which gives a thorough idea about the subject.
This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly in lubrication. Nanobiolubricants offer promising avenues for enhancing tribological properties. This review focuses on oxide nanoparticles, such as zinc oxide (ZnO), aluminum oxide (Al2O3), copper oxide (CuO), titanium dioxide (TiO2), zirconium dioxide (ZrO2), and graphene oxide (GO) nanoparticles, for their ability to enhance lubricant performance. The impact of nanoparticle concentration on biolubricant properties, including viscosity, viscosity index, flash point temperature, and pour point temperature, is analyzed. The review also addresses potential obstacles and limitations in nanoparticle incorporation, aiming to propose effective strategies for maximizing their benefits. The findings underscore the potential of nanobiolubricants to improve operational efficiency and component lifespan. This review aims to provide valuable insights for researchers, engineers, and professionals in exploring and leveraging nanotechnology's potential in the lubrication industry. This review paper explores the basics of tribology along with its significance, green principles, mechanisms, and energy savings because of friction, wear, and lubrication. Condition monitoring techniques are also explored to achieve brief knowledge about maintaining reliability and safety of the industrial components. Recent advances in tribology including superconductivity, biotribology, high-temperature tribology, tribological simulation, hybrid polymer composite's tribology, and cryogenic tribology are investigated, which gives a thorough idea about the subject.This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly in lubrication. Nanobiolubricants offer promising avenues for enhancing tribological properties. This review focuses on oxide nanoparticles, such as zinc oxide (ZnO), aluminum oxide (Al2O3), copper oxide (CuO), titanium dioxide (TiO2), zirconium dioxide (ZrO2), and graphene oxide (GO) nanoparticles, for their ability to enhance lubricant performance. The impact of nanoparticle concentration on biolubricant properties, including viscosity, viscosity index, flash point temperature, and pour point temperature, is analyzed. The review also addresses potential obstacles and limitations in nanoparticle incorporation, aiming to propose effective strategies for maximizing their benefits. The findings underscore the potential of nanobiolubricants to improve operational efficiency and component lifespan. This review aims to provide valuable insights for researchers, engineers, and professionals in exploring and leveraging nanotechnology's potential in the lubrication industry. This review paper explores the basics of tribology along with its significance, green principles, mechanisms, and energy savings because of friction, wear, and lubrication. Condition monitoring techniques are also explored to achieve brief knowledge about maintaining reliability and safety of the industrial components. Recent advances in tribology including superconductivity, biotribology, high-temperature tribology, tribological simulation, hybrid polymer composite's tribology, and cryogenic tribology are investigated, which gives a thorough idea about the subject.
Author Gaur, Piyush
Uniyal, Purva
Yadav, Jitendra
Khan, Tabrej
Ahmed, Omar Shabbir
AuthorAffiliation Mechanical Engineering Cluster, School of Advanced Engineering
Department of Engineering Management, College of Engineering
AuthorAffiliation_xml – name: Mechanical Engineering Cluster, School of Advanced Engineering
– name: Department of Engineering Management, College of Engineering
Author_xml – sequence: 1
  givenname: Purva
  surname: Uniyal
  fullname: Uniyal, Purva
  organization: Mechanical Engineering Cluster, School of Advanced Engineering
– sequence: 2
  givenname: Piyush
  orcidid: 0000-0002-6826-6855
  surname: Gaur
  fullname: Gaur, Piyush
  email: oahmed@psu.edu.sa
  organization: Mechanical Engineering Cluster, School of Advanced Engineering
– sequence: 3
  givenname: Jitendra
  surname: Yadav
  fullname: Yadav, Jitendra
  organization: Mechanical Engineering Cluster, School of Advanced Engineering
– sequence: 4
  givenname: Tabrej
  surname: Khan
  fullname: Khan, Tabrej
  organization: Department of Engineering Management, College of Engineering
– sequence: 5
  givenname: Omar Shabbir
  surname: Ahmed
  fullname: Ahmed, Omar Shabbir
  organization: Department of Engineering Management, College of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38524498$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vEzEQxS1UREvpnRPaIwdS_LVe7wmVqkClQhEqZ2vWHqeONutgOwX-exySoBYJTrb83vs9SzNPycEUJyTkOaOnjHL2GmyOS5zDqbBU865_RI647OiMCSkO7t0PyUnOC0opU5prrp6QQ6FbLmWvj4g5a77gXcDvTZyacovNhfdoSxN98xELjM31j-Cw-QRTXEEqwY6YN9abFIY4xnmw1fM5xRVWcSP55m2I43pIVZlKfkYeexgznuzOY_L13cXN-YfZ1fX7y_Ozqxm0lJYZOk4dKO3ADcwzjko6B5300mmqhPcgB6qVH-TABHMgFONWtU4L4ANgL47J5ZbrIizMKoUlpJ8mQjC_H2Kam933jQRtKbdS2I5LrvRAO0TRg0TErrdtZb3ZslbrYYnO4lQSjA-gD5Up3Jp5vDOM9m3bdroSXu4IKX5bYy5mGbLFcYQJ4zob3uu262UnebW-uF_2p2U_ompQW4NNMeeE3thQoIS46Q5jLTWbdTD7dTC7dahB-ldwz_5P5NU2UhWziOs01Zn92_4Lh3rKsA
CitedBy_id crossref_primary_10_1134_S1027451024701775
crossref_primary_10_1007_s42247_024_00923_7
crossref_primary_10_1021_acssusresmgt_4c00411
crossref_primary_10_1021_acsomega_4c06845
Cites_doi 10.1002/advs.202003739
10.3390/lubricants10040070
10.1533/9780857090836.3.651
10.1177/16878140211060956
10.1016/j.rser.2014.01.062
10.24874/ti.871.04.20.07
10.1021/acs.iecr.1c03974
10.1016/j.molliq.2017.04.016
10.1016/j.jics.2022.100820
10.1016/j.jallcom.2008.07.223
10.2474/trol.14.60
10.1016/j.fuel.2020.119148
10.1002/9781119544678
10.1016/j.wear.2006.08.021
10.3390/pr8111395
10.1016/B978-0-12-819767-7.00002-5
10.1002/cssc.201901838
10.3390/lubricants11020056
10.1088/1757-899X/530/1/012003
10.1016/j.triboint.2013.08.016
10.1038/s41598-020-62830-1
10.1016/B978-075065154-7/50118-2
10.21608/ejchem.2021.77715.3797
10.1016/j.triboint.2013.03.021
10.5937/fme2101036T
10.1016/j.triboint.2023.108836
10.1016/j.triboint.2015.03.035
10.1533/9780857091444.65
10.1016/j.apacoust.2021.108282
10.1016/j.triboint.2018.04.004
10.1016/j.triboint.2023.108434
10.1016/j.fuel.2009.05.016
10.1177/1045389X9000100201
10.1177/1350650120925590
10.1016/j.biombioe.2022.106456
10.1002/9780470017029.ch2
10.1016/j.matpr.2021.01.378
10.1016/j.matpr.2017.02.259
10.1016/j.jclepro.2019.118255
10.1016/j.arabjc.2017.05.011
10.1016/j.triboint.2019.106114
10.1088/0022-3727/40/18/S07
10.24874/ti.2018.40.04.08
10.1016/j.colsurfa.2023.132248
10.1016/j.ceramint.2022.07.220
10.1016/j.triboint.2019.02.031
10.1109/41.873214
10.3390/e12051021
10.1016/j.surfin.2021.101127
10.1533/9780857097385.2.556
10.54741/asejar.1.6.4
10.1016/j.wear.2023.204648
10.1016/j.mtcomm.2020.101271
10.24874/ti.2019.41.03.06
10.1186/2228-5547-4-28
10.1016/j.jallcom.2022.165082
10.1039/D2RA01587K
10.1016/j.triboint.2020.106728
10.1016/j.triboint.2020.106847
10.1016/j.wear.2021.203768
10.1016/j.triboint.2021.107032
10.1016/j.fuel.2016.10.066
10.1023/b105569_16
10.1016/j.ceramint.2013.12.050
10.3390/lubricants7010007
10.9790/264X-0602012732
10.1016/j.matpr.2020.02.612
10.1007/978-3-319-41129-3_2
10.1016/j.fuel.2022.124565
10.15251/DJNB.2022.171.47
10.1016/j.mset.2020.02.001
10.3390/ma14195588
10.1177/1350650120927170
10.1016/j.triboint.2022.107845
10.1016/j.matpr.2020.02.452
10.1016/j.matpr.2022.02.071
10.1016/j.matpr.2020.04.813
10.1016/j.infrared.2016.12.023
10.1016/j.matpr.2021.05.447
10.1533/9780857096326.24
10.1016/j.indcrop.2018.06.014
10.1016/j.triboint.2020.106569
10.1016/j.triboint.2023.108552
10.1088/0957-0233/14/11/015
10.1016/j.wear.2007.01.022
10.1039/D1NA00880C
10.1016/j.wear.2015.02.038
10.1016/j.mtcomm.2023.105854
10.1109/ICMIAM54662.2021.9715207
10.1016/j.jmst.2021.07.027
10.1016/j.solener.2021.05.032
10.1016/j.wear.2017.02.031
10.1002/smll.201903018
10.17977/um016v4i22020p091
10.1007/978-0-387-92897-5_958
10.3390/polym13234195
10.1515/secm-2017-0068
10.1016/j.arabjc.2022.104400
10.1007/s40090-014-0007-7
10.1016/j.fuel.2021.120596
10.1007/978-981-15-1532-3
10.1016/j.indcrop.2023.116429
10.1016/B978-081551490-9.50015-3
10.1016/B978-075067328-0/50054-9
10.1007/s40544-020-0393-0
10.1016/j.jclepro.2018.04.062
10.1016/j.wear.2021.203669
10.1016/j.porgcoat.2023.107475
10.1016/j.matpr.2019.08.150
10.1007/978-1-4614-1945-7_10
10.1016/j.triboint.2023.108398
10.1007/s10973-021-10812-4
10.1016/B978-012639855-7/50055-7
10.3390/pr8030257
10.1049/mnl.2018.5395
10.1016/j.matpr.2020.07.437
10.1080/17597269.2015.1081763
10.1007/978-3-540-36807-6
10.1016/j.matpr.2020.05.032
10.1016/j.ceramint.2014.03.181
10.1016/B978-0-08-100614-6.00002-0
10.1016/j.indcrop.2022.116122
10.1016/j.matpr.2020.08.521
10.1016/j.ceramint.2022.11.222
10.1016/B978-0-12-821082-6.00002-9
10.1016/j.ijhydene.2020.05.259
10.3389/fmech.2019.00002
10.1016/j.matpr.2023.02.071
10.1016/j.triboint.2016.08.011
10.1016/j.aiepr.2018.05.001
10.1016/j.jclepro.2022.134454
10.1016/j.apsusc.2011.01.084
10.1016/j.cossms.2014.02.002
10.1016/j.fuel.2022.123870
10.1007/s40544-013-0012-4
10.1016/j.carbon.2019.11.077
10.1016/j.triboint.2019.105941
10.1016/j.enconman.2010.07.052
10.3390/lubricants7090076
10.1016/j.wear.2022.204311
10.1016/S0167-8922(00)80163-7
10.1039/c2fd20103h
10.1016/j.triboint.2021.107296
10.1016/j.jcis.2020.08.093
10.1016/j.triboint.2011.11.022
10.1016/j.wear.2021.204072
10.1016/C2019-0-00474-8
10.1016/0969-8043(95)00131-X
10.1108/00368799910268066
10.1088/1757-899X/701/1/012034
10.1016/j.nanoen.2021.106092
10.1016/j.wear.2018.12.085
10.1016/j.foodhyd.2022.108262
10.1088/1755-1315/868/1/012037
10.1016/j.eswa.2006.09.029
10.1016/j.wear.2007.11.013
10.1016/j.envres.2021.111858
10.1006/jsvi.2002.5062
10.1016/j.fuel.2020.118762
10.1016/j.measurement.2016.06.006
10.3390/lubricants11030122
10.1016/j.molliq.2019.110905
10.1016/S0167-8922(02)80011-6
10.1007/s00170-016-9082-6
10.3390/lubricants10120364
10.1016/B978-0-12-803581-8.03565-7
10.1007/4-431-27901-6_2
10.1016/j.fuel.2020.117578
10.1016/j.matpr.2023.05.526
10.1016/j.wear.2022.204463
10.1177/1350650120930911
10.1016/j.ejpe.2020.09.003
10.1243/PIME_PROC_1981_195_016_02
10.1007/s11051-010-9970-x
10.1016/j.applthermaleng.2015.12.011
10.5772/intechopen.75425
10.1007/978-981-15-0434-1_11
10.3390/lubricants10080196
10.1016/j.cis.2022.102790
10.3390/membranes12111043
10.1007/978-0-387-92897-5_148
10.1016/j.ijbiomac.2018.11.195
10.3390/ma13163489
10.1016/j.wear.2020.203228
10.1016/j.colsurfa.2015.10.062
10.1016/j.polymdegradstab.2014.03.010
10.1016/j.wear.2022.204237
10.1007/s11249-021-01427-9
10.1016/j.compositesb.2020.108450
10.1088/1757-899X/981/4/042027
10.1049/mnl.2018.5595
10.1142/p836
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acsomega.3c08279
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 12456
ExternalDocumentID oai_doaj_org_article_4a8c02c43c724268b07ee39a4eee79c5
PMC10955578
38524498
10_1021_acsomega_3c08279
c793167411
Genre Journal Article
Review
GroupedDBID 53G
AAFWJ
ABFRP
ABUCX
ACS
ADBBV
AFEFF
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
AAHBH
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a500t-ed20da68dadb1f12e64dda74f4d8063ffa4b086fb4b131da3612c65d83a2bae93
IEDL.DBID N~.
ISSN 2470-1343
IngestDate Wed Aug 27 01:17:50 EDT 2025
Thu Aug 21 18:35:43 EDT 2025
Thu Jul 10 18:25:04 EDT 2025
Mon Jul 21 05:56:52 EDT 2025
Tue Jul 01 00:50:02 EDT 2025
Thu Apr 24 23:11:35 EDT 2025
Wed Mar 20 03:15:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2024 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a500t-ed20da68dadb1f12e64dda74f4d8063ffa4b086fb4b131da3612c65d83a2bae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6826-6855
OpenAccessLink http://dx.doi.org/10.1021/acsomega.3c08279
PMID 38524498
PQID 2985794742
PQPubID 23479
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_4a8c02c43c724268b07ee39a4eee79c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10955578
proquest_miscellaneous_2985794742
pubmed_primary_38524498
crossref_citationtrail_10_1021_acsomega_3c08279
crossref_primary_10_1021_acsomega_3c08279
acs_journals_10_1021_acsomega_3c08279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Mar-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-Mar-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
Bhushan B. (ref5/cit5) 1999
ref10/cit10
ref35/cit35
ref93/cit93
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
Bartz W. J. (ref28/cit28) 1988
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
Barale S. P. (ref40/cit40) 2017; 8
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref203/cit203
Simescu-lazar F. (ref134/cit134) 2023; 11
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
Myshkin N. K. (ref75/cit75) 2015; 37
ref163/cit163
ref66/cit66
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref194/cit194
ref98/cit98
ref153/cit153
Gnecco E. (ref22/cit22) 2007
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref78/cit78
ref36/cit36
Srivastava S. P. (ref18/cit18) 2009
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref208/cit208
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
Dowson D. (ref26/cit26) 2014
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
Li B. (ref42/cit42) 2000; 47
ref38/cit38
ref199/cit199
ref90/cit90
ref64/cit64
ref6/cit6
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref202/cit202
ref168/cit168
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref24/cit24
ref141/cit141
ref50/cit50
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
Bhaumik S. (ref195/cit195) 2015; 37
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
Baskar S. (ref206/cit206) 2015; 37
ref73/cit73
ref69/cit69
ref165/cit165
Bandes A. (ref51/cit51) 2013; 26
Raymond R. S. B. (ref39/cit39) 2004
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref6/cit6
  doi: 10.1002/advs.202003739
– ident: ref17/cit17
  doi: 10.3390/lubricants10040070
– ident: ref182/cit182
  doi: 10.1533/9780857090836.3.651
– ident: ref49/cit49
  doi: 10.1177/16878140211060956
– ident: ref91/cit91
  doi: 10.1016/j.rser.2014.01.062
– ident: ref204/cit204
  doi: 10.24874/ti.871.04.20.07
– ident: ref116/cit116
  doi: 10.1021/acs.iecr.1c03974
– ident: ref202/cit202
  doi: 10.1016/j.molliq.2017.04.016
– ident: ref122/cit122
  doi: 10.1016/j.jics.2022.100820
– ident: ref165/cit165
  doi: 10.1016/j.jallcom.2008.07.223
– ident: ref8/cit8
  doi: 10.2474/trol.14.60
– ident: ref151/cit151
  doi: 10.1016/j.fuel.2020.119148
– ident: ref38/cit38
  doi: 10.1002/9781119544678
– ident: ref193/cit193
  doi: 10.1016/j.wear.2006.08.021
– ident: ref158/cit158
  doi: 10.3390/pr8111395
– ident: ref76/cit76
  doi: 10.1016/B978-0-12-819767-7.00002-5
– ident: ref123/cit123
  doi: 10.1002/cssc.201901838
– volume: 11
  start-page: 56
  issue: 2
  year: 2023
  ident: ref134/cit134
  publication-title: Lubricants
  doi: 10.3390/lubricants11020056
– ident: ref9/cit9
  doi: 10.1088/1757-899X/530/1/012003
– ident: ref143/cit143
  doi: 10.1016/j.triboint.2013.08.016
– ident: ref190/cit190
  doi: 10.1038/s41598-020-62830-1
– volume: 37
  start-page: 196
  issue: 2
  year: 2015
  ident: ref195/cit195
  publication-title: Tribol. Ind.
– ident: ref113/cit113
  doi: 10.1016/B978-075065154-7/50118-2
– ident: ref106/cit106
  doi: 10.21608/ejchem.2021.77715.3797
– ident: ref27/cit27
  doi: 10.1016/j.triboint.2013.03.021
– ident: ref163/cit163
  doi: 10.5937/fme2101036T
– ident: ref85/cit85
  doi: 10.1016/j.triboint.2023.108836
– ident: ref145/cit145
  doi: 10.1016/j.triboint.2015.03.035
– ident: ref184/cit184
  doi: 10.1533/9780857091444.65
– ident: ref52/cit52
  doi: 10.1016/j.apacoust.2021.108282
– ident: ref197/cit197
  doi: 10.1016/j.triboint.2018.04.004
– ident: ref3/cit3
  doi: 10.1016/j.triboint.2023.108434
– ident: ref117/cit117
  doi: 10.1016/j.fuel.2009.05.016
– ident: ref16/cit16
  doi: 10.1177/1045389X9000100201
– ident: ref168/cit168
  doi: 10.1177/1350650120925590
– ident: ref118/cit118
  doi: 10.1016/j.biombioe.2022.106456
– ident: ref21/cit21
  doi: 10.1002/9780470017029.ch2
– ident: ref208/cit208
  doi: 10.1016/j.matpr.2021.01.378
– ident: ref34/cit34
  doi: 10.1016/j.matpr.2017.02.259
– ident: ref92/cit92
  doi: 10.1016/j.jclepro.2019.118255
– ident: ref101/cit101
  doi: 10.1016/j.arabjc.2017.05.011
– ident: ref161/cit161
  doi: 10.1016/j.triboint.2019.106114
– ident: ref20/cit20
  doi: 10.1088/0022-3727/40/18/S07
– ident: ref13/cit13
  doi: 10.24874/ti.2018.40.04.08
– ident: ref169/cit169
  doi: 10.1016/j.colsurfa.2023.132248
– volume: 8
  start-page: 243
  issue: 4
  year: 2017
  ident: ref40/cit40
  publication-title: Int. J. Sci. Eng. Res.
– ident: ref105/cit105
  doi: 10.1016/j.ceramint.2022.07.220
– ident: ref205/cit205
  doi: 10.1016/j.triboint.2019.02.031
– volume: 47
  start-page: 1060
  issue: 5
  year: 2000
  ident: ref42/cit42
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/41.873214
– ident: ref19/cit19
  doi: 10.3390/e12051021
– ident: ref209/cit209
  doi: 10.1016/j.surfin.2021.101127
– ident: ref130/cit130
  doi: 10.1533/9780857097385.2.556
– ident: ref173/cit173
  doi: 10.54741/asejar.1.6.4
– ident: ref89/cit89
  doi: 10.1016/j.wear.2023.204648
– ident: ref177/cit177
  doi: 10.1016/j.mtcomm.2020.101271
– ident: ref140/cit140
  doi: 10.24874/ti.2019.41.03.06
– ident: ref192/cit192
  doi: 10.1186/2228-5547-4-28
– ident: ref67/cit67
  doi: 10.1016/j.jallcom.2022.165082
– ident: ref156/cit156
  doi: 10.1039/D2RA01587K
– ident: ref32/cit32
  doi: 10.1016/j.triboint.2020.106728
– ident: ref69/cit69
  doi: 10.1016/j.triboint.2020.106847
– ident: ref30/cit30
  doi: 10.1016/j.wear.2021.203768
– ident: ref88/cit88
  doi: 10.1016/j.triboint.2021.107032
– ident: ref138/cit138
  doi: 10.1016/j.fuel.2016.10.066
– ident: ref44/cit44
  doi: 10.1023/b105569_16
– ident: ref148/cit148
  doi: 10.1016/j.ceramint.2013.12.050
– ident: ref104/cit104
  doi: 10.3390/lubricants7010007
– ident: ref131/cit131
  doi: 10.9790/264X-0602012732
– ident: ref207/cit207
  doi: 10.1016/j.matpr.2020.02.612
– ident: ref103/cit103
  doi: 10.1007/978-3-319-41129-3_2
– ident: ref170/cit170
  doi: 10.1016/j.fuel.2022.124565
– ident: ref200/cit200
  doi: 10.15251/DJNB.2022.171.47
– ident: ref150/cit150
  doi: 10.1016/j.mset.2020.02.001
– ident: ref84/cit84
  doi: 10.3390/ma14195588
– ident: ref115/cit115
  doi: 10.1177/1350650120927170
– ident: ref66/cit66
  doi: 10.1016/j.triboint.2022.107845
– ident: ref79/cit79
  doi: 10.1016/j.matpr.2020.02.452
– ident: ref171/cit171
  doi: 10.1016/j.matpr.2022.02.071
– ident: ref102/cit102
  doi: 10.1016/j.arabjc.2017.05.011
– ident: ref187/cit187
  doi: 10.1016/j.matpr.2020.04.813
– ident: ref48/cit48
  doi: 10.1016/j.infrared.2016.12.023
– ident: ref55/cit55
  doi: 10.1016/j.matpr.2021.05.447
– ident: ref11/cit11
  doi: 10.1533/9780857096326.24
– ident: ref97/cit97
  doi: 10.1016/j.indcrop.2018.06.014
– ident: ref81/cit81
  doi: 10.1016/j.triboint.2020.106569
– ident: ref86/cit86
  doi: 10.1016/j.triboint.2023.108552
– ident: ref46/cit46
  doi: 10.1088/0957-0233/14/11/015
– volume: 26
  start-page: 27
  issue: 4
  year: 2013
  ident: ref51/cit51
  publication-title: Asset Manag. Maint. J.
– ident: ref144/cit144
  doi: 10.1016/j.wear.2007.01.022
– ident: ref152/cit152
  doi: 10.1039/D1NA00880C
– ident: ref194/cit194
  doi: 10.1016/j.wear.2015.02.038
– ident: ref7/cit7
  doi: 10.1016/j.mtcomm.2023.105854
– ident: ref141/cit141
  doi: 10.1109/ICMIAM54662.2021.9715207
– ident: ref72/cit72
  doi: 10.1016/j.jmst.2021.07.027
– ident: ref47/cit47
  doi: 10.1016/j.solener.2021.05.032
– ident: ref201/cit201
  doi: 10.1016/j.wear.2017.02.031
– ident: ref60/cit60
  doi: 10.1002/smll.201903018
– ident: ref98/cit98
  doi: 10.17977/um016v4i22020p091
– ident: ref109/cit109
  doi: 10.1007/978-0-387-92897-5_958
– ident: ref80/cit80
  doi: 10.3390/polym13234195
– ident: ref83/cit83
  doi: 10.1515/secm-2017-0068
– ident: ref94/cit94
  doi: 10.1016/j.arabjc.2022.104400
– ident: ref14/cit14
  doi: 10.1007/s40090-014-0007-7
– ident: ref139/cit139
  doi: 10.1016/j.fuel.2021.120596
– ident: ref36/cit36
  doi: 10.1007/978-981-15-1532-3
– ident: ref107/cit107
  doi: 10.1016/j.indcrop.2023.116429
– ident: ref181/cit181
  doi: 10.1016/B978-081551490-9.50015-3
– ident: ref180/cit180
  doi: 10.1016/B978-075067328-0/50054-9
– ident: ref58/cit58
  doi: 10.1007/s40544-020-0393-0
– ident: ref119/cit119
  doi: 10.1016/j.jclepro.2018.04.062
– ident: ref71/cit71
  doi: 10.1016/j.wear.2021.203669
– volume-title: Energieeinsparung durch tribologische Massnahmen
  year: 1988
  ident: ref28/cit28
– ident: ref132/cit132
– ident: ref93/cit93
  doi: 10.1016/j.porgcoat.2023.107475
– ident: ref31/cit31
– ident: ref125/cit125
  doi: 10.1016/j.matpr.2019.08.150
– ident: ref23/cit23
  doi: 10.1007/978-1-4614-1945-7_10
– ident: ref124/cit124
  doi: 10.1016/j.triboint.2023.108398
– ident: ref155/cit155
  doi: 10.1007/s10973-021-10812-4
– ident: ref146/cit146
  doi: 10.1016/B978-012639855-7/50055-7
– ident: ref90/cit90
  doi: 10.3390/pr8030257
– ident: ref199/cit199
  doi: 10.1049/mnl.2018.5395
– ident: ref157/cit157
  doi: 10.1016/j.matpr.2020.07.437
– ident: ref126/cit126
  doi: 10.1080/17597269.2015.1081763
– volume-title: Fundamentals of Friction and Wear
  year: 2007
  ident: ref22/cit22
  doi: 10.1007/978-3-540-36807-6
– ident: ref189/cit189
  doi: 10.1016/j.matpr.2020.05.032
– ident: ref203/cit203
  doi: 10.1016/j.ceramint.2014.03.181
– ident: ref120/cit120
  doi: 10.1016/B978-0-08-100614-6.00002-0
– ident: ref111/cit111
  doi: 10.1016/j.indcrop.2022.116122
– ident: ref1/cit1
  doi: 10.1016/j.matpr.2020.08.521
– ident: ref112/cit112
– ident: ref191/cit191
  doi: 10.1016/j.ceramint.2022.11.222
– ident: ref4/cit4
  doi: 10.1016/B978-0-12-821082-6.00002-9
– volume: 37
  start-page: 449
  issue: 4
  year: 2015
  ident: ref206/cit206
  publication-title: Tribol. Ind.
– ident: ref188/cit188
  doi: 10.1016/j.ijhydene.2020.05.259
– ident: ref61/cit61
  doi: 10.3389/fmech.2019.00002
– ident: ref56/cit56
  doi: 10.1016/j.apacoust.2021.108282
– ident: ref121/cit121
  doi: 10.1016/j.matpr.2023.02.071
– ident: ref198/cit198
  doi: 10.1016/j.triboint.2016.08.011
– ident: ref82/cit82
  doi: 10.1016/j.aiepr.2018.05.001
– ident: ref12/cit12
  doi: 10.1016/j.jclepro.2022.134454
– ident: ref196/cit196
  doi: 10.1016/j.apsusc.2011.01.084
– ident: ref136/cit136
  doi: 10.1016/j.cossms.2014.02.002
– ident: ref129/cit129
  doi: 10.1016/j.fuel.2022.123870
– ident: ref33/cit33
  doi: 10.1007/s40544-013-0012-4
– ident: ref59/cit59
  doi: 10.1016/j.carbon.2019.11.077
– ident: ref142/cit142
  doi: 10.1016/j.triboint.2019.105941
– ident: ref164/cit164
  doi: 10.1016/j.enconman.2010.07.052
– ident: ref167/cit167
  doi: 10.3390/lubricants7090076
– ident: ref175/cit175
  doi: 10.1016/j.wear.2022.204311
– ident: ref128/cit128
  doi: 10.1016/j.rser.2014.01.062
– ident: ref185/cit185
  doi: 10.1016/S0167-8922(00)80163-7
– ident: ref63/cit63
  doi: 10.1039/c2fd20103h
– volume-title: Elasto-Hydrodynamic Lubrication: International Series on Materials Science and Technology
  year: 2014
  ident: ref26/cit26
– ident: ref87/cit87
– ident: ref70/cit70
  doi: 10.1016/j.triboint.2021.107296
– ident: ref135/cit135
  doi: 10.1016/j.jcis.2020.08.093
– ident: ref29/cit29
  doi: 10.1016/j.triboint.2011.11.022
– ident: ref78/cit78
  doi: 10.1016/j.wear.2021.204072
– ident: ref37/cit37
  doi: 10.1016/C2019-0-00474-8
– ident: ref186/cit186
  doi: 10.1016/0969-8043(95)00131-X
– ident: ref45/cit45
  doi: 10.1108/00368799910268066
– ident: ref149/cit149
  doi: 10.1088/1757-899X/701/1/012034
– ident: ref57/cit57
  doi: 10.1016/j.nanoen.2021.106092
– volume-title: Principles and applications of tribology
  year: 1999
  ident: ref5/cit5
– ident: ref64/cit64
  doi: 10.1016/j.wear.2018.12.085
– ident: ref96/cit96
  doi: 10.1016/j.foodhyd.2022.108262
– ident: ref133/cit133
  doi: 10.1088/1755-1315/868/1/012037
– ident: ref43/cit43
  doi: 10.1016/j.eswa.2006.09.029
– volume: 37
  start-page: 284
  issue: 3
  year: 2015
  ident: ref75/cit75
  publication-title: Tribol. Ind.
– ident: ref166/cit166
  doi: 10.1016/j.wear.2007.11.013
– ident: ref154/cit154
  doi: 10.1016/j.envres.2021.111858
– ident: ref41/cit41
  doi: 10.1006/jsvi.2002.5062
– ident: ref153/cit153
  doi: 10.1016/j.fuel.2020.118762
– ident: ref53/cit53
  doi: 10.1016/j.measurement.2016.06.006
– ident: ref68/cit68
  doi: 10.3390/lubricants11030122
– ident: ref147/cit147
  doi: 10.1016/j.molliq.2019.110905
– ident: ref24/cit24
  doi: 10.1016/S0167-8922(02)80011-6
– ident: ref54/cit54
  doi: 10.1007/s00170-016-9082-6
– ident: ref137/cit137
  doi: 10.3390/lubricants10120364
– ident: ref183/cit183
  doi: 10.1016/B978-0-12-803581-8.03565-7
– ident: ref25/cit25
  doi: 10.1007/4-431-27901-6_2
– volume-title: Predictive Maintenance of Pumps Using Condition Monitoring
  year: 2004
  ident: ref39/cit39
– ident: ref110/cit110
  doi: 10.1016/j.fuel.2020.117578
– ident: ref99/cit99
  doi: 10.1016/j.matpr.2023.05.526
– ident: ref172/cit172
  doi: 10.1016/j.wear.2022.204463
– ident: ref2/cit2
  doi: 10.1177/1350650120930911
– ident: ref10/cit10
  doi: 10.1016/j.ejpe.2020.09.003
– volume-title: Advances in lubricant additives and tribology
  year: 2009
  ident: ref18/cit18
– ident: ref35/cit35
  doi: 10.1243/PIME_PROC_1981_195_016_02
– ident: ref162/cit162
  doi: 10.1007/s11051-010-9970-x
– ident: ref114/cit114
  doi: 10.1016/j.applthermaleng.2015.12.011
– ident: ref159/cit159
  doi: 10.5772/intechopen.75425
– ident: ref127/cit127
  doi: 10.1007/978-981-15-0434-1_11
– ident: ref174/cit174
  doi: 10.3390/lubricants10080196
– ident: ref77/cit77
  doi: 10.1016/j.cis.2022.102790
– ident: ref160/cit160
  doi: 10.3390/membranes12111043
– ident: ref178/cit178
  doi: 10.1007/978-0-387-92897-5_148
– ident: ref95/cit95
  doi: 10.1016/j.ijbiomac.2018.11.195
– ident: ref74/cit74
  doi: 10.3390/ma13163489
– ident: ref65/cit65
  doi: 10.1016/j.wear.2020.203228
– ident: ref62/cit62
  doi: 10.1016/j.colsurfa.2015.10.062
– ident: ref100/cit100
  doi: 10.1016/j.polymdegradstab.2014.03.010
– ident: ref176/cit176
  doi: 10.1016/j.wear.2022.204237
– ident: ref73/cit73
  doi: 10.1007/s11249-021-01427-9
– ident: ref15/cit15
  doi: 10.1016/j.compositesb.2020.108450
– ident: ref50/cit50
  doi: 10.1088/1757-899X/981/4/042027
– ident: ref108/cit108
  doi: 10.1049/mnl.2018.5595
– ident: ref179/cit179
  doi: 10.1142/p836
SSID ssj0001682826
Score 2.3642151
SecondaryResourceType review_article
Snippet This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction...
This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12436
SubjectTerms Review
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT90wDI42LttlAvarbKAgbYcdutemaZseAYEQEtsOQ-IWOYm7IbF24r0n7c-fnbZP702IXbimiRo5jv05tj4L8cGXGeTM2apcAApQUKcOgk8DUIAbKAwKkaz68kt1fqUvrsvrtVZfXBM20AMPgptpMD5TXhe-Zm9iXFYjFg1oRKwbH9lLyeetBVPxdaWiSEJNeUnyYzPw8_4X_oDPhSevx5VbT2lowxtF0v77kOa_BZNrHuhsW7wYoaM8Gra8I55gtyuenUwd214KeySHp37Zd5KAnRyoiWXfykskkC2__rkJKMmgUqQ8FsTxVGYPmWyg_Mav83dMs8rruFXl0kVbuZi_Eldnp99PztOxgULKfQ4WKQaVBahMgODyNldY6RCg1q0OhqBJ24J2FNK0Tru8yAMUBHd8VQZTgHKATfFabHV9h2-FrBrTtnUgewBeV96AAVeBVz5rkFsCJuIjidOOF2BuY25b5XYSux3FnojZJHDrRxZyboZx-8CKT6sVvwcGjgfmHvMZruYxd3YcII2yo2Dt_zQqEYeTBlg6QE6gQIf9cm5VY0qyX7VWiXgzaMTqV4UpCSk1JhFmQ1c29rL5pbv5Gfm8c6YBJMu59xi7fyeeK8JdXCaXN-_F1uJuifuEmxbuIF6Rv_DlGaQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Review on the Effect of Metal Oxide Nanoparticles on Tribological Properties of Biolubricants
URI http://dx.doi.org/10.1021/acsomega.3c08279
https://www.ncbi.nlm.nih.gov/pubmed/38524498
https://www.proquest.com/docview/2985794742
https://pubmed.ncbi.nlm.nih.gov/PMC10955578
https://doaj.org/article/4a8c02c43c724268b07ee39a4eee79c5
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOCCWp6hsDISHDikjR9xnGNZtaqQtiBBpd6s8SO0EiSo2ZU49bczdpItW1VVLzkkdhKNxzPfzFjfEPLBlQWwyNnKrQcMUILMLXiXe8AA12MY5BNZ9eJEHZ_KL2fl2TVNzs0KPmf74Prud_gJe8Khu6rqh-QRV1rHTXhytXedT1EYO6TualxWRc6EFGNV8raXRF_k-g1flCj7b8OZN49L_ud_jrbJ0xE40oNhpXfIg9A-I4_nU7-258Qc0CHRT7uWIqyjAzEx7Rq6CAix6de_Fz5QNKcYJ4_H4eLQyB0yWUD6LebmLyPJapwXG1WubLKUy_4FOT06_DE_zsf2CXnscrDMg-eFB6U9eMsaxoOS3kMlG-k1ApOmAWkxoGmstEwwDwLBjlOl1wK4hVCLl2Sr7drwmlBV66apPFoDcFI5DRqsAsddUYfYEDAjH1GcZlT_3qTKNmdmErsZxZ6R_Ungxo0c5LEVxq87Znxaz_gz8G_cMfZzXMP1uMicnW6gOplRsEaCdgV3UrgqohNtiyoEUYMMIVS1KzPyftIAgwsYyyfQhm7VG17rEq1XJXlGXg0asf6U0CXipFpnRG_oysa_bD5pL84TmzeLJIBoN9_cU4a75AlHYBXPwbH6LdlaXq7COwRGSzvDwGD-fZbSCnhdXB3O0h75B2CPD74
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigXxJuUl5HgwCFt_EjiHEtFtUB34dBKvVnjR6ASJFWzK3HitzPOY8uiquKa2I41Hs9843G-AXjj8gx55GwV1iMFKEGlFr1LPVKA6ykM8j1Z9XxRzE7Vp7P8bAv49C8MTaKjkbo-iX_FLsD36Vn7M3zDPenIa5XVLbhNWCSPe3Hxe-_qWKWgEKIvsiZUmaVcKjkmJ68bJLok1224pJ65_zq4-e-tyb_c0NE9uDviR3YwLPh92ArNA9g5nMq2PQRzwIbzftY2jNAdG_iJWVuzeSCkzb78OveBkVWlcHm8FRebRgqRyRCyr_GI_jJyrcZ-sV7lyvYGc9k9gtOjDyeHs3SsopDGYgfLNHiReSy0R295zUUolPdYqlp5TfikrlFZimtqqyyX3KMkzOOK3GuJwmKo5GPYbtomPAVWVLquS09GAZ0qnEaNtkAnXFaFWBcwgbckTjPugs70CW7BzSR2M4o9gf1J4MaNVOSxIsaPG3q8W_e4GGg4bmj7Pq7hul0k0O4fkEqZUbBGoXaZcEq6MoIUbbMyBFmhCiGUlcsTeD1pgKEFjFkUbEK76oyodE5GrFQigSeDRqw_JXVOcKnSCegNXdmYy-ab5vx7T-rNIxcgmc_d_5ThK9iZncyPzfHHxedncEcQ1opX43j1HLaXl6vwgrDS0r7sd8cfniISRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwELZKkYALKntYjQQHDmnjJYlzbAtPZemjByr1Zo2X0EolqZr3JE78dmayPHioqrgmtmONZ8bfeJxvGHvj8wwEcbZKFwADlKhTB8GnATDADRgGhZ6s-nBeHBzrTyf5yQbLp39hcBIdjtT1SXyy6otQjwwDYgeftz_id9hWHneusrrBbiIaycge57-2_xytFBhG9IXWpC6zVCitxgTlVYPQtuS7tW2pZ--_CnL-e3Pyr61otsXujhiS7w6Lfo9txOY-u70_lW57wOwuH878edtwRHh84Cjmbc0PI6Jt_vXnWYgcPSuGzOPNOGpKNCKTM-RHdEx_SXyr1I9qVi5d7zQX3UN2PPvwbf8gHSsppFTwYJHGILMAhQkQnKiFjIUOAUpd62AQo9Q1aIexTe20E0oEUIh7fJEHo0A6iJV6xDabtolPGC8qU9dlQMcAXhfegAFXgJc-qyLVBkzYWxSnHS2hs32SWwo7id2OYk_YziRw60c6cqqKcX5Nj3erHhcDFcc1bfdoDVftiES7f4BqZUfBWg3GZ9Jr5UsCKsZlZYyqAh1jLCufJ-z1pAEWF5AyKdDEdtlZWZkcHVmpZcIeDxqx-pQyOUKmyiTMrOnK2lzW3zRnpz2xtyA-QHShT_9Thq_YraP3M_vl4_zzM3ZHItyi23Gies42F5fL-ALh0sK97I3jN30PE1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+the+Effect+of+Metal+Oxide+Nanoparticles+on+Tribological+Properties+of+Biolubricants&rft.jtitle=ACS+omega&rft.au=Uniyal%2C+Purva&rft.au=Gaur%2C+Piyush&rft.au=Yadav%2C+Jitendra&rft.au=Khan%2C+Tabrej&rft.date=2024-03-19&rft.eissn=2470-1343&rft.volume=9&rft.issue=11&rft.spage=12436&rft_id=info:doi/10.1021%2Facsomega.3c08279&rft_id=info%3Apmid%2F38524498&rft.externalDocID=38524498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon