Graph Comparison of Molecular Crystals in Band Gap Prediction Using Neural Networks

In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations,...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 8; no. 42; pp. 39481 - 39489
Main Authors Taniguchi, Takuya, Hosokawa, Mayuko, Asahi, Toru
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.10.2023
Online AccessGet full text

Cover

Loading…
Abstract In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap.
AbstractList In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap.
In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap.
In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap.In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap.
Author Taniguchi, Takuya
Asahi, Toru
Hosokawa, Mayuko
AuthorAffiliation Center for Data Science
Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering
Waseda University
AuthorAffiliation_xml – name: Waseda University
– name: Center for Data Science
– name: Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering
Author_xml – sequence: 1
  givenname: Takuya
  orcidid: 0000-0002-7885-2962
  surname: Taniguchi
  fullname: Taniguchi, Takuya
  email: takuya.taniguchi@aoni.waseda.jp
  organization: Center for Data Science
– sequence: 2
  givenname: Mayuko
  surname: Hosokawa
  fullname: Hosokawa, Mayuko
  organization: Waseda University
– sequence: 3
  givenname: Toru
  surname: Asahi
  fullname: Asahi, Toru
  organization: Waseda University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37901497$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1UREvpnRPKkQNbxnbijxOCFSyVyocEPVuOM9l6SexgJ6D-9xh2W7UHTmN53vt5PO8pOQoxICHPKZxTYPS1dTmOuLXn3EHDWP2InLBaworymh_dOx-Ts5x3AECFYoqJJ-SYSw201vKEfNskO11X6zhONvkcQxX76lMc0C2DTdU63eTZDrnyoXpnQ1dt7FR9Tdh5N_sivso-bKvPuCQ7lDL_julHfkYe98WDZ4d6Sq4-vP--_ri6_LK5WL-9XNkGYF65ngvNO9b10DLdcgZQC1CCcdbSzjWtYrIFyeoea6mRC6oldKA6jaUhFD8lF3tuF-3OTMmPNt2YaL35dxHT1tg0ezegAcYcat3IhsoaUSrdSlkWRBtBW-ixsN7sWdPSjtg5DHP50gPow07w12YbfxkKAmgZvBBeHggp_lwwz2b02eEw2IBxyYYpVVPVcNkUKeylLsWcE_Z371Awf7M1t9maQ7bF8uL-fHeG2ySL4NVeUKxmF5cUyur_z_sDJNawhg
CitedBy_id crossref_primary_10_1002_aenm_202304492
crossref_primary_10_1039_D3CE01263H
crossref_primary_10_1016_j_molstruc_2024_139220
Cites_doi 10.1021/acs.jpca.0c05006
10.1093/nar/gkr900
10.1021/acs.chemrev.1c00021
10.1038/s41524-021-00650-1
10.1039/D1CP05192J
10.1063/1.5019779
10.1038/s43588-022-00349-3
10.1103/PhysRevLett.77.3865
10.1038/s41467-021-26226-7
10.1039/D0SC05765G
10.1039/D1CE00383F
10.1038/s41524-021-00554-0
10.3390/nano12040704
10.1016/j.patter.2021.100361
10.1016/j.physrep.2021.08.002
10.1107/S2052520616003954
10.1039/D0CP01474E
10.1039/D1CE00208B
10.1038/s43246-021-00194-3
10.1021/ci100050t
10.1021/acsnano.0c05267
10.1038/s41524-017-0056-5
10.1039/C7SC04665K
10.1038/s41524-019-0221-0
10.1002/qute.201900023
10.1039/D3DD00034F
10.1002/adfm.201000159
10.1103/PhysRevB.50.17953
10.1021/acs.chemmater.9b01294
10.1103/PhysRevB.87.184115
10.1103/PhysRevB.59.1758
10.1103/PhysRevLett.120.145301
10.1186/s13321-018-0279-6
10.1103/PhysRevMaterials.4.063801
10.1038/s41586-018-0337-2
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
2023 The Authors. Published by American Chemical Society.
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: 2023 The Authors. Published by American Chemical Society.
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
DBID N~.
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1021/acsomega.3c05224
DatabaseName American Chemical Society (ACS) Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 39489
ExternalDocumentID oai_doaj_org_article_022ce99575174ee789b774701561b0fe
10_1021_acsomega_3c05224
37901497
g12492580
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: 22K14747
– fundername: ;
  grantid: 2021C-404
– fundername: ;
  grantid: 2020C-530
– fundername: ;
  grantid: 2022C-313
GroupedDBID 53G
ABFRP
ABUCX
ACS
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
AAFWJ
AAHBH
AFPKN
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a500t-cf3693d2df0b29b320046086232b1dc5b827b0724fe479e361970d08d9e27b683
IEDL.DBID RPM
ISSN 2470-1343
IngestDate Tue Oct 22 15:10:35 EDT 2024
Tue Sep 17 21:29:35 EDT 2024
Sat Oct 26 02:05:47 EDT 2024
Fri Aug 23 01:22:29 EDT 2024
Tue Oct 29 09:18:01 EDT 2024
Wed Oct 25 10:56:26 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License 2023 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a500t-cf3693d2df0b29b320046086232b1dc5b827b0724fe479e361970d08d9e27b683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7885-2962
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601046/
PMID 37901497
PQID 2884185375
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_022ce99575174ee789b774701561b0fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10601046
proquest_miscellaneous_2884185375
crossref_primary_10_1021_acsomega_3c05224
pubmed_primary_37901497
acs_journals_10_1021_acsomega_3c05224
PublicationCentury 2000
PublicationDate 2023-10-24
PublicationDateYYYYMMDD 2023-10-24
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1021/acs.jpca.0c05006
– ident: ref23/cit23
  doi: 10.1093/nar/gkr900
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.1c00021
– ident: ref13/cit13
  doi: 10.1038/s41524-021-00650-1
– ident: ref31/cit31
  doi: 10.1039/D1CP05192J
– ident: ref6/cit6
  doi: 10.1063/1.5019779
– ident: ref18/cit18
  doi: 10.1038/s43588-022-00349-3
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref9/cit9
  doi: 10.1038/s41467-021-26226-7
– ident: ref26/cit26
  doi: 10.1039/D0SC05765G
– ident: ref30/cit30
  doi: 10.1039/D1CE00383F
– ident: ref16/cit16
  doi: 10.1038/s41524-021-00554-0
– ident: ref17/cit17
  doi: 10.3390/nano12040704
– ident: ref14/cit14
  doi: 10.1016/j.patter.2021.100361
– ident: ref20/cit20
  doi: 10.1016/j.physrep.2021.08.002
– ident: ref22/cit22
  doi: 10.1107/S2052520616003954
– ident: ref11/cit11
  doi: 10.1039/D0CP01474E
– ident: ref21/cit21
  doi: 10.1039/D1CE00208B
– ident: ref12/cit12
  doi: 10.1038/s43246-021-00194-3
– ident: ref4/cit4
  doi: 10.1021/ci100050t
– ident: ref15/cit15
  doi: 10.1021/acsnano.0c05267
– ident: ref1/cit1
  doi: 10.1038/s41524-017-0056-5
– ident: ref28/cit28
  doi: 10.1039/C7SC04665K
– ident: ref3/cit3
  doi: 10.1038/s41524-019-0221-0
– ident: ref24/cit24
  doi: 10.1002/qute.201900023
– ident: ref27/cit27
  doi: 10.1039/D3DD00034F
– ident: ref32/cit32
  doi: 10.1002/adfm.201000159
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.50.17953
– ident: ref8/cit8
  doi: 10.1021/acs.chemmater.9b01294
– ident: ref25/cit25
  doi: 10.1103/PhysRevB.87.184115
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.59.1758
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.120.145301
– ident: ref29/cit29
  doi: 10.1186/s13321-018-0279-6
– ident: ref10/cit10
  doi: 10.1103/PhysRevMaterials.4.063801
– ident: ref2/cit2
  doi: 10.1038/s41586-018-0337-2
SSID ssj0001682826
Score 2.3231597
Snippet In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph...
In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 39481
SummonAdditionalLinks – databaseName: ACS Journals: American Chemical Society Web Editions
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOBS3jS8ZCQ4cMjiV2L72Ea0FVIrpFKpN8uvQAVkq83uAX49HifZsqVCvcZRnMyM5W8y4-9D6K23PsQEi0ulrSyFaKtSC1WXHuRFKLEVVXBQ-Oi4PjwVn86qs0uanKsVfEY_WN_Pf8avdsY9SWBB3EZ3mCQaZBp2m5PL_yl1yh2yuhoTkpSUCz5WJa97COxFvt_YizJl_3U482q75F_7z_79Qcioz7SF0HbyfbZaupn__S-p4w0-7QHaHmEo3h3i5iG6FbtH6G4zqb89RicHwGSNm7VMIZ63-GjS0sXN4leClT96fN7hPdsFfGAv8OcFVH3A0zh3ImBg_kizHA-t5v0TdLr_8UtzWI4CDCXoJCxL3_Ja88BCSxzTjudsGnIgzhwNvnKKSUckE20UUkeekjFJAlFBxzRQK_4UbXXzLu4gDMBNeSJCSuBSjmQTrkxIVEWqbaWC8gV6l6xhxgXUm1wbZ9RMJjKjiQr0fnKZuRj4OP5z7x74dH0fMGnnC8kHZlyYJmEYH7WG8pMUMUqlXULEEk6YU0faWKA3U0SY5AIop9guzle9YUoB8w-XVYGeDRGynopLKE9rWSC1ETsb77I50p1_y-zelOQcuX5-Q4u8QPdYAl6wnzLxEm0tF6v4KgGlpXudV8gf9ZYLXw
  priority: 102
  providerName: American Chemical Society
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLu0F0S9Iv-RK5cAh4NhObB-7q8KqEqgSIHGzHNsBJJpFm-XAv2fGSVa7FWovvcaRbM2MMm8y4_cI-eadDxFgca6NU7mUTZkbqavco7xIwVxZaLwofHpWzS7lz6vyak3qC2fCenrg3nBHkGN8NAbbA0rGqLSpAbEovAFc1KyJ6evLzFoxlf6uVFBJ8LEvCXnsyPlu_jteu0PhGWAOidnIdxvZKJH2P4c0_xyYXMtAxztke4CO9Ht_5NfkRWzfkJfTUbHtLTk_QfZpOl1JC9J5Q09H_Vs6XTwCFLzr6G1LJ64N9MTd018L7NSgd2iaHqDI1gG7nPXj4d07cnn842I6ywfRhBy1DZa5b0RlROChYTU3tUgVMNYtgtdF8GWtuaqZ4rKJUpkooIBSLDAdTISFSov3ZKudt3GPUARb2jMZoOiCusYBFgT0qGNhXKmD9hnZBxPaIeg7m_rZvLCjqe1g6owcjEa29z2Hxl_enaAXVu8h-3V6ADFhh5iw_4qJjHwdfWjBBdgCcW2cP3SWa41sPUKVGdntfbraSihsKRuVEb3h7Y2zbK60tzeJkbtgqa6tPvyP038kr1DTHhMkl5_I1nLxED8D8lnWX1KQPwFSyv3v
  priority: 102
  providerName: Directory of Open Access Journals
Title Graph Comparison of Molecular Crystals in Band Gap Prediction Using Neural Networks
URI http://dx.doi.org/10.1021/acsomega.3c05224
https://www.ncbi.nlm.nih.gov/pubmed/37901497
https://www.proquest.com/docview/2884185375
https://pubmed.ncbi.nlm.nih.gov/PMC10601046
https://doaj.org/article/022ce99575174ee789b774701561b0fe
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVJLu2l9LtO0kWF9tCDd2VJtqRjY5qEwi6BNJCbkWU5Xcjay3pz6CW_PTNae8mWkkMuPlgSEjMD855mNEPIV2dd5QEWx9pYFUtZp7GROosdthdJmE0TjQ-Fp7Ps_Er-uk6v90g2vIUJSfuunI-b28W4mf8JuZXLhZsMeWKTi2mesEAjssk-2QcLfcTRw81KBiyCDzFJ8GET67p24W_sWDgGeEOiJ3LdjicKBfv_hzL_TZZ85H1OX5NXPWykPzbHe0P2fPOWvMiHbm3vyOUZVp6m-batIG1rOh1639J89Rdg4G1H5w09sU1Fz-ySXqwwSoOaoSFzgGKlDthltkkN796Tq9Ofv_PzuG-YEGNfg3XsapEZUfGqZiU3pQjsFzmL4GVSubTUXJVMcVl7qYwXQJ4Uq5iujIeBTIsP5KBpG_-JUARa2jFZAeECTmMBBwJy1D4xNtWVdhH5BiIseoPvihDL5kkxiLroRR2R74OQi-WmfsYTc09QC9t5WPk6_GhXN0Wv_wIwh_PGYLhISe-VNiUgWIUvwpOS1T4iXwYdFqACDH_Yxrd3XcG1xko9QqUR-bjR6XYroTCcbFRE9I62d86yOwLGGapxD8Z4-PylR-QldrFHl8jlMTlYr-78Z8A663IEWD-_HIWbAvjO7sejYOwPygQBUw
link.rule.ids 230,315,730,783,787,867,888,2109,2774,27090,27094,27938,27939,53806,53808,57072,57096,57122,57146
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOZQL5bOkfBkJDhySdRwnto80ol2gu6pEK3qzbMcpK7rJarN7gF-P7cSrboWQ4Bo7sqM31rzJjN8A8FZLXRlLi2PGJY0JqfOYE1bE2rUXSZHMU-YuCk-mxfiCfL7ML3dAEe7C-KJ9rWZJcz1Pmtl3X1u5mOtRqBMbnU3KFPkwohjdAXftgUXFjSjd_1spbByBQ1bSerGR1F07N1cyyTSyjIM4X6S7LV_kJfv_xDNvl0ve8D_H--Bb2HlfdvIjWa9Uon_dEnX89097AO4PlBR-6Mcfgh3TPAJ7ZegE9xh8PXGq1rDctCyEbQ0noa8uLJc_LcW87uCsgUeyqeCJXMCzpcsAOdShr0qATgXErjLty867J-Di-ON5OY6HZgyx65mwinWdFTyrcFUjhbnKfGTt4qEMq7TSuWKYKkQxqQ2h3GQ2MKOoQqzixg4ULHsKdpu2Mc8AdCSOaUQqG8zZeElajmlZKTMplzmrmI7AOwuOGA5TJ3yeHKcigCgGECPwPsAnFr02x1_mHjl8N_OcqrZ_0C6vxACAsHxGG85dKooSYyjjyrJj6m6bpwrVJgJvgnUIC4FLrcjGtOtOYMacClBG8wgc9NayWSqjLlXNaQTYlh1t7WV7xFqHV_oO1nD4_6--Bnvj88mpOP00_fIc3MOWoznXi8kLsLtars1Ly6lW6pU_QL8BEgUgZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMClPEvD00hw4JDEcZzYPtLAtjx2tRJUqsTB8itlRTe72uwe4NdjO8mqWyEOvcaO7GjGmu_LfJ4B4I2W2lgHi2PGJY0JqYuYE1bG2rcXyZAsMuYvCo8n5ckp-XxWnPWqyraXVTZazZLmYp40s59BW7mc63TQiaXTcZWhQCPKdGnq9Ca45Q4tYpeYevi_UjougYfMpItkqdTtYm7PZZJr5FAH8fFItzvxKJTt_xfWvCqZvBSDRvfAj2H3nfTkV7JZq0T_uVLY8Xqfdx_s99AUvu_mPAA3bPMQ3KmGjnCPwLdjX90aVtvWhXBRw_HQXxdWq98Oal60cNbAI9kYeCyXcLrymSBvfRjUCdBXA3GrTDr5efsYnI4-fq9O4r4pQ-x7J6xjXeclzw02NVKYqzwwbM-LcqwyowvFMFWIYlJbQrnNHUGjyCBmuHUDJcsPwF6zaOwhgB7MMY2IcaTO8SbpsKZDp8xmXBbMMB2Bt85Aoj9UrQj5cpyJwZCiN2QE3g0mFMuuRsd_5h55G2_n-era4cFidS56IwiHa7Tl3KekKLGWMq4cSqb-1nmmUG0j8HrwEOFM4FMssrGLTSswY74aUE6LCDzpPGa7VE59yprTCLAdX9rZy-6I85BQ8XvwiKfXf_UVuD39MBJfP02-PAN3sYNqPgJj8hzsrVcb-8JBq7V6Gc7QXyHsIuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Comparison+of+Molecular+Crystals+in+Band+Gap+Prediction+Using+Neural+Networks&rft.jtitle=ACS+omega&rft.au=Taniguchi%2C+Takuya&rft.au=Hosokawa%2C+Mayuko&rft.au=Asahi%2C+Toru&rft.date=2023-10-24&rft.pub=American+Chemical+Society&rft.eissn=2470-1343&rft.volume=8&rft.issue=42&rft.spage=39481&rft.epage=39489&rft_id=info:doi/10.1021%2Facsomega.3c05224&rft.externalDBID=PMC10601046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon