Graph Comparison of Molecular Crystals in Band Gap Prediction Using Neural Networks
In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations,...
Saved in:
Published in | ACS omega Vol. 8; no. 42; pp. 39481 - 39489 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.10.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap. |
---|---|
AbstractList | In material informatics,
the representation of the material structure
is fundamentally essential to obtaining better prediction results,
and graph representation has attracted much attention in recent years.
Molecular crystals can be graphically represented in molecular and
crystal representations, but a comparison of which representation
is more effective has not been examined. In this study, we compared
the prediction accuracy between molecular and crystal graphs for band
gap prediction. The results showed that the prediction accuracies
using crystal graphs were better than those obtained using molecular
graphs. While this result is not surprising, error analysis quantitatively
evaluated that the error of the crystal graph was 0.4 times that of
the molecular graph with moderate correlation. The novelty of this
study lies in the comparison of molecular crystal representations
and in the quantitative evaluation of the contribution of crystal
structures to the band gap. In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap. In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap.In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph representation has attracted much attention in recent years. Molecular crystals can be graphically represented in molecular and crystal representations, but a comparison of which representation is more effective has not been examined. In this study, we compared the prediction accuracy between molecular and crystal graphs for band gap prediction. The results showed that the prediction accuracies using crystal graphs were better than those obtained using molecular graphs. While this result is not surprising, error analysis quantitatively evaluated that the error of the crystal graph was 0.4 times that of the molecular graph with moderate correlation. The novelty of this study lies in the comparison of molecular crystal representations and in the quantitative evaluation of the contribution of crystal structures to the band gap. |
Author | Taniguchi, Takuya Asahi, Toru Hosokawa, Mayuko |
AuthorAffiliation | Center for Data Science Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering Waseda University |
AuthorAffiliation_xml | – name: Waseda University – name: Center for Data Science – name: Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering |
Author_xml | – sequence: 1 givenname: Takuya orcidid: 0000-0002-7885-2962 surname: Taniguchi fullname: Taniguchi, Takuya email: takuya.taniguchi@aoni.waseda.jp organization: Center for Data Science – sequence: 2 givenname: Mayuko surname: Hosokawa fullname: Hosokawa, Mayuko organization: Waseda University – sequence: 3 givenname: Toru surname: Asahi fullname: Asahi, Toru organization: Waseda University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37901497$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1UREvpnRPKkQNbxnbijxOCFSyVyocEPVuOM9l6SexgJ6D-9xh2W7UHTmN53vt5PO8pOQoxICHPKZxTYPS1dTmOuLXn3EHDWP2InLBaworymh_dOx-Ts5x3AECFYoqJJ-SYSw201vKEfNskO11X6zhONvkcQxX76lMc0C2DTdU63eTZDrnyoXpnQ1dt7FR9Tdh5N_sivso-bKvPuCQ7lDL_julHfkYe98WDZ4d6Sq4-vP--_ri6_LK5WL-9XNkGYF65ngvNO9b10DLdcgZQC1CCcdbSzjWtYrIFyeoea6mRC6oldKA6jaUhFD8lF3tuF-3OTMmPNt2YaL35dxHT1tg0ezegAcYcat3IhsoaUSrdSlkWRBtBW-ixsN7sWdPSjtg5DHP50gPow07w12YbfxkKAmgZvBBeHggp_lwwz2b02eEw2IBxyYYpVVPVcNkUKeylLsWcE_Z371Awf7M1t9maQ7bF8uL-fHeG2ySL4NVeUKxmF5cUyur_z_sDJNawhg |
CitedBy_id | crossref_primary_10_1002_aenm_202304492 crossref_primary_10_1039_D3CE01263H crossref_primary_10_1016_j_molstruc_2024_139220 |
Cites_doi | 10.1021/acs.jpca.0c05006 10.1093/nar/gkr900 10.1021/acs.chemrev.1c00021 10.1038/s41524-021-00650-1 10.1039/D1CP05192J 10.1063/1.5019779 10.1038/s43588-022-00349-3 10.1103/PhysRevLett.77.3865 10.1038/s41467-021-26226-7 10.1039/D0SC05765G 10.1039/D1CE00383F 10.1038/s41524-021-00554-0 10.3390/nano12040704 10.1016/j.patter.2021.100361 10.1016/j.physrep.2021.08.002 10.1107/S2052520616003954 10.1039/D0CP01474E 10.1039/D1CE00208B 10.1038/s43246-021-00194-3 10.1021/ci100050t 10.1021/acsnano.0c05267 10.1038/s41524-017-0056-5 10.1039/C7SC04665K 10.1038/s41524-019-0221-0 10.1002/qute.201900023 10.1039/D3DD00034F 10.1002/adfm.201000159 10.1103/PhysRevB.50.17953 10.1021/acs.chemmater.9b01294 10.1103/PhysRevB.87.184115 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.120.145301 10.1186/s13321-018-0279-6 10.1103/PhysRevMaterials.4.063801 10.1038/s41586-018-0337-2 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society. 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society. – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | N~. NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1021/acsomega.3c05224 |
DatabaseName | American Chemical Society (ACS) Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 39489 |
ExternalDocumentID | oai_doaj_org_article_022ce99575174ee789b774701561b0fe 10_1021_acsomega_3c05224 37901497 g12492580 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: NA – fundername: ; grantid: 22K14747 – fundername: ; grantid: 2021C-404 – fundername: ; grantid: 2020C-530 – fundername: ; grantid: 2022C-313 |
GroupedDBID | 53G ABFRP ABUCX ACS ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE M~E N~. OK1 RPM VF5 AAFWJ AAHBH AFPKN NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a500t-cf3693d2df0b29b320046086232b1dc5b827b0724fe479e361970d08d9e27b683 |
IEDL.DBID | RPM |
ISSN | 2470-1343 |
IngestDate | Tue Oct 22 15:10:35 EDT 2024 Tue Sep 17 21:29:35 EDT 2024 Sat Oct 26 02:05:47 EDT 2024 Fri Aug 23 01:22:29 EDT 2024 Tue Oct 29 09:18:01 EDT 2024 Wed Oct 25 10:56:26 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | 2023 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a500t-cf3693d2df0b29b320046086232b1dc5b827b0724fe479e361970d08d9e27b683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7885-2962 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601046/ |
PMID | 37901497 |
PQID | 2884185375 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_022ce99575174ee789b774701561b0fe pubmedcentral_primary_oai_pubmedcentral_nih_gov_10601046 proquest_miscellaneous_2884185375 crossref_primary_10_1021_acsomega_3c05224 pubmed_primary_37901497 acs_journals_10_1021_acsomega_3c05224 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-24 |
PublicationDateYYYYMMDD | 2023-10-24 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1021/acs.jpca.0c05006 – ident: ref23/cit23 doi: 10.1093/nar/gkr900 – ident: ref5/cit5 doi: 10.1021/acs.chemrev.1c00021 – ident: ref13/cit13 doi: 10.1038/s41524-021-00650-1 – ident: ref31/cit31 doi: 10.1039/D1CP05192J – ident: ref6/cit6 doi: 10.1063/1.5019779 – ident: ref18/cit18 doi: 10.1038/s43588-022-00349-3 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.77.3865 – ident: ref9/cit9 doi: 10.1038/s41467-021-26226-7 – ident: ref26/cit26 doi: 10.1039/D0SC05765G – ident: ref30/cit30 doi: 10.1039/D1CE00383F – ident: ref16/cit16 doi: 10.1038/s41524-021-00554-0 – ident: ref17/cit17 doi: 10.3390/nano12040704 – ident: ref14/cit14 doi: 10.1016/j.patter.2021.100361 – ident: ref20/cit20 doi: 10.1016/j.physrep.2021.08.002 – ident: ref22/cit22 doi: 10.1107/S2052520616003954 – ident: ref11/cit11 doi: 10.1039/D0CP01474E – ident: ref21/cit21 doi: 10.1039/D1CE00208B – ident: ref12/cit12 doi: 10.1038/s43246-021-00194-3 – ident: ref4/cit4 doi: 10.1021/ci100050t – ident: ref15/cit15 doi: 10.1021/acsnano.0c05267 – ident: ref1/cit1 doi: 10.1038/s41524-017-0056-5 – ident: ref28/cit28 doi: 10.1039/C7SC04665K – ident: ref3/cit3 doi: 10.1038/s41524-019-0221-0 – ident: ref24/cit24 doi: 10.1002/qute.201900023 – ident: ref27/cit27 doi: 10.1039/D3DD00034F – ident: ref32/cit32 doi: 10.1002/adfm.201000159 – ident: ref33/cit33 doi: 10.1103/PhysRevB.50.17953 – ident: ref8/cit8 doi: 10.1021/acs.chemmater.9b01294 – ident: ref25/cit25 doi: 10.1103/PhysRevB.87.184115 – ident: ref34/cit34 doi: 10.1103/PhysRevB.59.1758 – ident: ref7/cit7 doi: 10.1103/PhysRevLett.120.145301 – ident: ref29/cit29 doi: 10.1186/s13321-018-0279-6 – ident: ref10/cit10 doi: 10.1103/PhysRevMaterials.4.063801 – ident: ref2/cit2 doi: 10.1038/s41586-018-0337-2 |
SSID | ssj0001682826 |
Score | 2.3231597 |
Snippet | In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph... In material informatics, the representation of the material structure is fundamentally essential to obtaining better prediction results, and graph... |
SourceID | doaj pubmedcentral proquest crossref pubmed acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 39481 |
SummonAdditionalLinks | – databaseName: ACS Journals: American Chemical Society Web Editions dbid: ACS link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOBS3jS8ZCQ4cMjiV2L72Ea0FVIrpFKpN8uvQAVkq83uAX49HifZsqVCvcZRnMyM5W8y4-9D6K23PsQEi0ulrSyFaKtSC1WXHuRFKLEVVXBQ-Oi4PjwVn86qs0uanKsVfEY_WN_Pf8avdsY9SWBB3EZ3mCQaZBp2m5PL_yl1yh2yuhoTkpSUCz5WJa97COxFvt_YizJl_3U482q75F_7z_79Qcioz7SF0HbyfbZaupn__S-p4w0-7QHaHmEo3h3i5iG6FbtH6G4zqb89RicHwGSNm7VMIZ63-GjS0sXN4leClT96fN7hPdsFfGAv8OcFVH3A0zh3ImBg_kizHA-t5v0TdLr_8UtzWI4CDCXoJCxL3_Ja88BCSxzTjudsGnIgzhwNvnKKSUckE20UUkeekjFJAlFBxzRQK_4UbXXzLu4gDMBNeSJCSuBSjmQTrkxIVEWqbaWC8gV6l6xhxgXUm1wbZ9RMJjKjiQr0fnKZuRj4OP5z7x74dH0fMGnnC8kHZlyYJmEYH7WG8pMUMUqlXULEEk6YU0faWKA3U0SY5AIop9guzle9YUoB8w-XVYGeDRGynopLKE9rWSC1ETsb77I50p1_y-zelOQcuX5-Q4u8QPdYAl6wnzLxEm0tF6v4KgGlpXudV8gf9ZYLXw priority: 102 providerName: American Chemical Society – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLu0F0S9Iv-RK5cAh4NhObB-7q8KqEqgSIHGzHNsBJJpFm-XAv2fGSVa7FWovvcaRbM2MMm8y4_cI-eadDxFgca6NU7mUTZkbqavco7xIwVxZaLwofHpWzS7lz6vyak3qC2fCenrg3nBHkGN8NAbbA0rGqLSpAbEovAFc1KyJ6evLzFoxlf6uVFBJ8LEvCXnsyPlu_jteu0PhGWAOidnIdxvZKJH2P4c0_xyYXMtAxztke4CO9Ht_5NfkRWzfkJfTUbHtLTk_QfZpOl1JC9J5Q09H_Vs6XTwCFLzr6G1LJ64N9MTd018L7NSgd2iaHqDI1gG7nPXj4d07cnn842I6ywfRhBy1DZa5b0RlROChYTU3tUgVMNYtgtdF8GWtuaqZ4rKJUpkooIBSLDAdTISFSov3ZKudt3GPUARb2jMZoOiCusYBFgT0qGNhXKmD9hnZBxPaIeg7m_rZvLCjqe1g6owcjEa29z2Hxl_enaAXVu8h-3V6ADFhh5iw_4qJjHwdfWjBBdgCcW2cP3SWa41sPUKVGdntfbraSihsKRuVEb3h7Y2zbK60tzeJkbtgqa6tPvyP038kr1DTHhMkl5_I1nLxED8D8lnWX1KQPwFSyv3v priority: 102 providerName: Directory of Open Access Journals |
Title | Graph Comparison of Molecular Crystals in Band Gap Prediction Using Neural Networks |
URI | http://dx.doi.org/10.1021/acsomega.3c05224 https://www.ncbi.nlm.nih.gov/pubmed/37901497 https://www.proquest.com/docview/2884185375 https://pubmed.ncbi.nlm.nih.gov/PMC10601046 https://doaj.org/article/022ce99575174ee789b774701561b0fe |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVJLu2l9LtO0kWF9tCDd2VJtqRjY5qEwi6BNJCbkWU5Xcjay3pz6CW_PTNae8mWkkMuPlgSEjMD855mNEPIV2dd5QEWx9pYFUtZp7GROosdthdJmE0TjQ-Fp7Ps_Er-uk6v90g2vIUJSfuunI-b28W4mf8JuZXLhZsMeWKTi2mesEAjssk-2QcLfcTRw81KBiyCDzFJ8GET67p24W_sWDgGeEOiJ3LdjicKBfv_hzL_TZZ85H1OX5NXPWykPzbHe0P2fPOWvMiHbm3vyOUZVp6m-batIG1rOh1639J89Rdg4G1H5w09sU1Fz-ySXqwwSoOaoSFzgGKlDthltkkN796Tq9Ofv_PzuG-YEGNfg3XsapEZUfGqZiU3pQjsFzmL4GVSubTUXJVMcVl7qYwXQJ4Uq5iujIeBTIsP5KBpG_-JUARa2jFZAeECTmMBBwJy1D4xNtWVdhH5BiIseoPvihDL5kkxiLroRR2R74OQi-WmfsYTc09QC9t5WPk6_GhXN0Wv_wIwh_PGYLhISe-VNiUgWIUvwpOS1T4iXwYdFqACDH_Yxrd3XcG1xko9QqUR-bjR6XYroTCcbFRE9I62d86yOwLGGapxD8Z4-PylR-QldrFHl8jlMTlYr-78Z8A663IEWD-_HIWbAvjO7sejYOwPygQBUw |
link.rule.ids | 230,315,730,783,787,867,888,2109,2774,27090,27094,27938,27939,53806,53808,57072,57096,57122,57146 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOZQL5bOkfBkJDhySdRwnto80ol2gu6pEK3qzbMcpK7rJarN7gF-P7cSrboWQ4Bo7sqM31rzJjN8A8FZLXRlLi2PGJY0JqfOYE1bE2rUXSZHMU-YuCk-mxfiCfL7ML3dAEe7C-KJ9rWZJcz1Pmtl3X1u5mOtRqBMbnU3KFPkwohjdAXftgUXFjSjd_1spbByBQ1bSerGR1F07N1cyyTSyjIM4X6S7LV_kJfv_xDNvl0ve8D_H--Bb2HlfdvIjWa9Uon_dEnX89097AO4PlBR-6Mcfgh3TPAJ7ZegE9xh8PXGq1rDctCyEbQ0noa8uLJc_LcW87uCsgUeyqeCJXMCzpcsAOdShr0qATgXErjLty867J-Di-ON5OY6HZgyx65mwinWdFTyrcFUjhbnKfGTt4qEMq7TSuWKYKkQxqQ2h3GQ2MKOoQqzixg4ULHsKdpu2Mc8AdCSOaUQqG8zZeElajmlZKTMplzmrmI7AOwuOGA5TJ3yeHKcigCgGECPwPsAnFr02x1_mHjl8N_OcqrZ_0C6vxACAsHxGG85dKooSYyjjyrJj6m6bpwrVJgJvgnUIC4FLrcjGtOtOYMacClBG8wgc9NayWSqjLlXNaQTYlh1t7WV7xFqHV_oO1nD4_6--Bnvj88mpOP00_fIc3MOWoznXi8kLsLtars1Ly6lW6pU_QL8BEgUgZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMClPEvD00hw4JDEcZzYPtLAtjx2tRJUqsTB8itlRTe72uwe4NdjO8mqWyEOvcaO7GjGmu_LfJ4B4I2W2lgHi2PGJY0JqYuYE1bG2rcXyZAsMuYvCo8n5ckp-XxWnPWqyraXVTZazZLmYp40s59BW7mc63TQiaXTcZWhQCPKdGnq9Ca45Q4tYpeYevi_UjougYfMpItkqdTtYm7PZZJr5FAH8fFItzvxKJTt_xfWvCqZvBSDRvfAj2H3nfTkV7JZq0T_uVLY8Xqfdx_s99AUvu_mPAA3bPMQ3KmGjnCPwLdjX90aVtvWhXBRw_HQXxdWq98Oal60cNbAI9kYeCyXcLrymSBvfRjUCdBXA3GrTDr5efsYnI4-fq9O4r4pQ-x7J6xjXeclzw02NVKYqzwwbM-LcqwyowvFMFWIYlJbQrnNHUGjyCBmuHUDJcsPwF6zaOwhgB7MMY2IcaTO8SbpsKZDp8xmXBbMMB2Bt85Aoj9UrQj5cpyJwZCiN2QE3g0mFMuuRsd_5h55G2_n-era4cFidS56IwiHa7Tl3KekKLGWMq4cSqb-1nmmUG0j8HrwEOFM4FMssrGLTSswY74aUE6LCDzpPGa7VE59yprTCLAdX9rZy-6I85BQ8XvwiKfXf_UVuD39MBJfP02-PAN3sYNqPgJj8hzsrVcb-8JBq7V6Gc7QXyHsIuY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Comparison+of+Molecular+Crystals+in+Band+Gap+Prediction+Using+Neural+Networks&rft.jtitle=ACS+omega&rft.au=Taniguchi%2C+Takuya&rft.au=Hosokawa%2C+Mayuko&rft.au=Asahi%2C+Toru&rft.date=2023-10-24&rft.pub=American+Chemical+Society&rft.eissn=2470-1343&rft.volume=8&rft.issue=42&rft.spage=39481&rft.epage=39489&rft_id=info:doi/10.1021%2Facsomega.3c05224&rft.externalDBID=PMC10601046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |