The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eo...
Saved in:
Published in | Climate of the past Vol. 16; no. 6; pp. 2573 - 2597 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
23.12.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. |
---|---|
AbstractList | The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene-Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO 2 and CH 4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘ C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500 –1200 ppm CO 2 ) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘ C W −1 m 2 ; 3.21 ∘ C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘ C W −1 m 2 ; 3.17 ∘ C per CO 2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene-Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO.sub.2 and CH.sub.4 (i.e. 1120 ppm and â¼2700 ppb, respectively, or 4 x PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42-38 Ma; â¼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 x PIC forcing is a good analogue for that of the late Eocene (38-34 Ma; â¼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5-7 .sup." C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. â¼500-1200 ppm CO.sub.2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 x PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 .sup." C W.sup.-1 m.sup.2 ; 3.21 .sup." C warming between 38 Ma 2 x PIC and 4 x PIC) compared to that of the present-day climate (0.80 .sup." C W.sup.-1 m.sup.2 ; 3.17 .sup." C per CO.sub.2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene-Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene.With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information.Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character.Equilibrium climate sensitivity is reduced (0.62 ∘C W-1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W-1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. |
Audience | Academic |
Author | Kliphuis, Michael A. Dijkstra, Henk A. Sluijs, Appy von der Heydt, Anna S. Baatsen, Michiel Bijl, Peter K. Huber, Matthew |
Author_xml | – sequence: 1 givenname: Michiel orcidid: 0000-0002-0123-7005 surname: Baatsen fullname: Baatsen, Michiel – sequence: 2 givenname: Anna S. orcidid: 0000-0002-5557-3282 surname: von der Heydt fullname: von der Heydt, Anna S. – sequence: 3 givenname: Matthew orcidid: 0000-0002-2771-9977 surname: Huber fullname: Huber, Matthew – sequence: 4 givenname: Michael A. surname: Kliphuis fullname: Kliphuis, Michael A. – sequence: 5 givenname: Peter K. orcidid: 0000-0002-1710-4012 surname: Bijl fullname: Bijl, Peter K. – sequence: 6 givenname: Appy orcidid: 0000-0003-2382-0215 surname: Sluijs fullname: Sluijs, Appy – sequence: 7 givenname: Henk A. surname: Dijkstra fullname: Dijkstra, Henk A. |
BookMark | eNp1kc1v1DAQxS1UJNqFM9dInDhk67EdJz5WqwW2KkKi5Ww5_ki9SuLFdiT47_GyFbAI5IOt8e-9mdG7QhdzmC1CrwGvGxDsWh9q4DVpWloTTPAzdAkdsFpQSi7-eL9AVyntMWYdiOYS3T482mryxoy2yqEaVbbVNmg722qI1s6PYUm20qOfjj9TMHYcramW5OehykW72d5_rGBdhniJnjs1Jvvq6V6hL--2D5sP9d2n97vNzV2tGoxzzTvBWU-UY1h1TSc61QugrSKMk54KTTHtXCF7bMBxTk2vHe9UZwA70VNLV2h38jVB7eUhltHidxmUlz8LIQ5Sxez1aGULwJ2G3mECjGGsrBAAirXOGQbGFa83J69DDF8Xm7LchyXOZXxJWEswYyD4b2pQxdTPLuSo9OSTljeccUaAlxVWaP0PqhxjJ69LWM6X-png7ZmgMNl-y4NaUpK7-8_n7PWJ1TGkFK37tThgecxf6oMELo_5y2P-RdH8pdA-q-xLk6j8-F_dD8gTsFc |
CitedBy_id | crossref_primary_10_1029_2022PA004496 crossref_primary_10_1086_718086 crossref_primary_10_5194_cp_18_341_2022 crossref_primary_10_1093_jcbiol_ruac053 crossref_primary_10_1098_rspa_2022_0483 crossref_primary_10_5194_cp_19_123_2023 crossref_primary_10_5194_cp_19_533_2023 crossref_primary_10_1016_j_epsl_2024_118981 crossref_primary_10_1126_sciadv_adk1189 crossref_primary_10_5194_cp_19_2551_2023 crossref_primary_10_1029_2023GL104847 crossref_primary_10_1038_s41561_021_00859_1 crossref_primary_10_5194_cp_18_2669_2022 crossref_primary_10_5194_cp_18_657_2022 crossref_primary_10_1016_j_marpetgeo_2023_106305 crossref_primary_10_1038_s41561_023_01234_y crossref_primary_10_1038_s41561_021_00788_z crossref_primary_10_1007_s10347_023_00677_4 crossref_primary_10_1126_sciadv_abm3875 crossref_primary_10_1029_2022PA004415 crossref_primary_10_1029_2022PA004532 crossref_primary_10_1126_science_adg1366 crossref_primary_10_5194_cp_20_1627_2024 crossref_primary_10_1029_2021PA004364 crossref_primary_10_1016_j_geobios_2024_08_008 crossref_primary_10_5194_cp_20_77_2024 crossref_primary_10_5194_cp_20_1327_2024 crossref_primary_10_1029_2022JB024736 crossref_primary_10_5194_esd_15_41_2024 crossref_primary_10_1126_sciadv_adn6056 crossref_primary_10_1029_2022PA004529 crossref_primary_10_5194_cp_21_95_2025 crossref_primary_10_1029_2023GL106088 crossref_primary_10_1016_j_gloplacha_2023_104352 crossref_primary_10_1029_2021PA004329 crossref_primary_10_1029_2022JD036510 |
Cites_doi | 10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2 10.1029/2005GC001054 10.5194/cp-10-419-2014 10.1038/nature03135 10.1016/j.epsl.2012.06.024 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2 10.1002/2013PA002593 10.1038/ngeo1807 10.5194/cp-16-847-2020 10.1126/science.1166368 10.5194/cp-16-1667-2020 10.1111/j.1472-4669.2012.00320.x 10.1073/pnas.1102409108 10.1175/1520-0477(2001)082<2357:TCCSM>2.3.CO;2 10.1175/2009JCLI3002.1 10.1016/j.palaeo.2006.11.005 10.1175/2009JCLI3109.1 10.1175/2011JCLI4083.1 10.1130/G24332A.1 10.1371/journal.pone.0126946 10.1029/2019GC008182 10.1016/j.earscirev.2017.07.012 10.1029/2019GL083574 10.1126/sciadv.aax1874 10.1130/2008.2435(05) 10.1175/JCLI-D-11-00091.1 10.2475/02.2009.01 10.1029/2004PA001014 10.1130/2008.2435(03) 10.2307/3515411 10.1016/j.palaeo.2017.02.037 10.1029/2004PA001022 10.1038/nature17423 10.1175/JCLI3747.1 10.1016/j.epsl.2013.12.014 10.1038/35097000 10.1002/2014PA002648 10.1130/0016-7606(1998)110<0759:LEEOTV>2.3.CO;2 10.5194/cp-16-555-2020 10.5194/gmd-12-3149-2019 10.1126/science.1193654 10.1098/rsta.2013.0093 10.1175/JCLI-D-12-00236.1 10.1126/science.1059412 10.1016/j.gca.2007.12.010 10.1038/nature08069 10.1007/BF01277509 10.1029/2007PA001495 10.5194/cp-14-789-2018 10.1029/2009GC002450 10.1038/s41586-018-0272-2 10.5194/cp-12-1635-2016 10.1029/2011MS000045 10.1130/B25281.1 10.1175/BAMS-D-12-00121.1 10.1038/nature08399 10.1038/nature04668 10.1669/0883-1351(2004)019<0129:PEULAI>2.0.CO;2 10.1029/2003PA000934 10.1002/grl.50941 10.1130/B31482.1 10.1098/rstb.1993.0109 10.1130/G19800.1 10.1002/ggge.20106 10.1016/j.gloplacha.2014.04.004 10.1073/pnas.1714744115 10.1038/ngeo2888 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 10.1029/2008PA001683 10.1130/G24584A.1 10.1016/j.gca.2010.05.027 10.1130/0016-7606(1998)110<0664:PEOEAO>2.3.CO;2 10.1029/2003PA000937 10.5194/cp-7-603-2011 10.1029/94RG01872 10.1016/j.palaeo.2012.09.035 10.1002/2016GL071930 10.1029/2001GL012943 10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2 10.1038/nature07337 10.1016/S0921-8181(00)00056-4 10.1038/nature01290 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2 10.5194/cp-10-451-2014 10.5194/cp-12-807-2016 10.1175/JCLI-D-11-00290.1 10.1130/G23175A.1 10.1029/2020PA003889 10.1016/j.orggeochem.2012.09.006 10.1038/nature13704 10.1073/pnas.1303365110 10.1038/s41561-018-0069-9 10.5194/gmd-7-2077-2014 10.1175/JCLI-D-11-00622.1 10.1029/JC095iC06p09377 10.1016/j.gca.2012.08.011 10.1098/rsta.2014.0419 10.1016/S1463-5003(02)00016-1 10.1029/93PA03266 10.1038/nature13597 10.5194/cp-12-1181-2016 10.1073/pnas.232693599 10.1029/2008GL036703 10.1038/nature08163 10.1038/ngeo1186 10.1029/2018PA003380 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2 10.1016/j.palaeo.2004.11.013 10.1029/2003GL018747 10.1038/nature06588 10.1029/2012MS000166 10.1111/j.1469-8137.2005.01316.x 10.1073/pnas.1321441111 10.1175/2007JCLI1508.1 10.1016/j.epsl.2016.10.045 10.5194/cp-8-1717-2012 10.1007/s12549-011-0056-2 10.1002/2015PA002888 10.1029/2008JC005030 10.1002/2014PA002723 10.1130/G32886.1 10.1073/pnas.1220872110 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W H96 H97 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.5194/cp-16-2573-2020 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Continental Europe Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Geography |
EISSN | 1814-9332 |
EndPage | 2597 |
ExternalDocumentID | oai_doaj_org_article_7116fc1bf0214400ae9911a47ffd41df A646421691 10_5194_cp_16_2573_2020 |
GeographicLocations | Southern Ocean |
GeographicLocations_xml | – name: Southern Ocean |
GroupedDBID | 29B 2WC 2XV 4P2 5GY 5VS 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP ISR ITC K6- KQ8 LK5 M7R OK1 OVT P2P PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC Q2X RKB RNS TR2 ~02 BBORY PMFND 7TG 7TN 7UA AZQEC C1K DWQXO F1W H96 H97 KL. L.G PKEHL PQEST PQUKI PUEGO |
ID | FETCH-LOGICAL-a500t-68964b2af40a85898ab9137a2462b39c3038f500b0d1f663dbcf68a8d10f9b3e3 |
IEDL.DBID | BENPR |
ISSN | 1814-9332 1814-9324 |
IngestDate | Wed Aug 27 01:19:38 EDT 2025 Mon Jun 30 13:29:26 EDT 2025 Tue Jun 17 21:38:13 EDT 2025 Tue Jun 10 20:21:50 EDT 2025 Fri Jun 27 04:47:57 EDT 2025 Tue Jul 01 03:45:21 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a500t-68964b2af40a85898ab9137a2462b39c3038f500b0d1f663dbcf68a8d10f9b3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5557-3282 0000-0002-2771-9977 0000-0002-0123-7005 0000-0002-1710-4012 0000-0003-2382-0215 |
OpenAccessLink | https://www.proquest.com/docview/2472044196?pq-origsite=%requestingapplication% |
PQID | 2472044196 |
PQPubID | 105735 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7116fc1bf0214400ae9911a47ffd41df proquest_journals_2472044196 gale_infotracmisc_A646421691 gale_infotracacademiconefile_A646421691 gale_incontextgauss_ISR_A646421691 crossref_primary_10_5194_cp_16_2573_2020 crossref_citationtrail_10_5194_cp_16_2573_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-23 |
PublicationDateYYYYMMDD | 2020-12-23 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Climate of the past |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref42 doi: 10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2 – ident: ref21 doi: 10.1029/2005GC001054 – ident: ref80 doi: 10.5194/cp-10-419-2014 – ident: ref22 doi: 10.1038/nature03135 – ident: ref52 doi: 10.1016/j.epsl.2012.06.024 – ident: ref39 doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2 – ident: ref74 doi: 10.1002/2013PA002593 – ident: ref104 doi: 10.1038/ngeo1807 – ident: ref112 doi: 10.5194/cp-16-847-2020 – ident: ref79 doi: 10.1126/science.1166368 – ident: ref26 doi: 10.5194/cp-16-1667-2020 – ident: ref95 doi: 10.1111/j.1472-4669.2012.00320.x – ident: ref9 doi: 10.1073/pnas.1102409108 – ident: ref15 doi: 10.1175/1520-0477(2001)082<2357:TCCSM>2.3.CO;2 – ident: ref10 doi: 10.1175/2009JCLI3002.1 – ident: ref118 doi: 10.1016/j.palaeo.2006.11.005 – ident: ref108 doi: 10.1175/2009JCLI3109.1 – ident: ref40 doi: 10.1175/2011JCLI4083.1 – ident: ref97 doi: 10.1130/G24332A.1 – ident: ref119 doi: 10.1371/journal.pone.0126946 – ident: ref55 doi: 10.1029/2019GC008182 – ident: ref84 doi: 10.1016/j.earscirev.2017.07.012 – ident: ref107 – ident: ref37 doi: 10.1029/2019GL083574 – ident: ref128 doi: 10.1126/sciadv.aax1874 – ident: ref92 doi: 10.1130/2008.2435(05) – ident: ref28 doi: 10.1175/JCLI-D-11-00091.1 – ident: ref7 doi: 10.2475/02.2009.01 – ident: ref58 doi: 10.1029/2004PA001014 – ident: ref18 doi: 10.1130/2008.2435(03) – ident: ref45 doi: 10.2307/3515411 – ident: ref50 doi: 10.1016/j.palaeo.2017.02.037 – ident: ref110 doi: 10.1029/2004PA001022 – ident: ref2 doi: 10.1038/nature17423 – ident: ref3 – ident: ref69 doi: 10.1175/JCLI3747.1 – ident: ref17 doi: 10.1016/j.epsl.2013.12.014 – ident: ref89 doi: 10.1038/35097000 – ident: ref96 doi: 10.1002/2014PA002648 – ident: ref105 doi: 10.1130/0016-7606(1998)110<0759:LEEOTV>2.3.CO;2 – ident: ref67 doi: 10.5194/cp-16-555-2020 – ident: ref53 doi: 10.5194/gmd-12-3149-2019 – ident: ref12 doi: 10.1126/science.1193654 – ident: ref68 doi: 10.1098/rsta.2013.0093 – ident: ref83 doi: 10.1175/JCLI-D-12-00236.1 – ident: ref126 doi: 10.1126/science.1059412 – ident: ref70 doi: 10.1016/j.gca.2007.12.010 – ident: ref32 doi: 10.1038/nature08069 – ident: ref124 doi: 10.1007/BF01277509 – ident: ref103 doi: 10.1029/2007PA001495 – ident: ref61 doi: 10.5194/cp-14-789-2018 – ident: ref85 doi: 10.1029/2009GC002450 – ident: ref25 doi: 10.1038/s41586-018-0272-2 – ident: ref6 doi: 10.5194/cp-12-1635-2016 – ident: ref76 doi: 10.1029/2011MS000045 – ident: ref94 doi: 10.1130/B25281.1 – ident: ref60 doi: 10.1175/BAMS-D-12-00121.1 – ident: ref11 doi: 10.1038/nature08399 – ident: ref102 doi: 10.1038/nature04668 – ident: ref5 – ident: ref43 doi: 10.1669/0883-1351(2004)019<0129:PEULAI>2.0.CO;2 – ident: ref72 doi: 10.1029/2003PA000934 – ident: ref49 doi: 10.1002/grl.50941 – ident: ref88 doi: 10.1130/B31482.1 – ident: ref121 doi: 10.1098/rstb.1993.0109 – ident: ref16 doi: 10.1130/G19800.1 – ident: ref87 doi: 10.1002/ggge.20106 – ident: ref100 doi: 10.1016/j.gloplacha.2014.04.004 – ident: ref36 doi: 10.1073/pnas.1714744115 – ident: ref33 doi: 10.1038/ngeo2888 – ident: ref109 doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 – ident: ref86 – ident: ref24 doi: 10.1029/2008PA001683 – ident: ref77 doi: 10.1130/G24584A.1 – ident: ref71 doi: 10.1016/j.gca.2010.05.027 – ident: ref122 doi: 10.1130/0016-7606(1998)110<0664:PEOEAO>2.3.CO;2 – ident: ref117 doi: 10.1029/2003PA000937 – ident: ref56 doi: 10.5194/cp-7-603-2011 – ident: ref75 doi: 10.1029/94RG01872 – ident: ref93 doi: 10.1016/j.palaeo.2012.09.035 – ident: ref35 doi: 10.1002/2016GL071930 – ident: ref57 doi: 10.1029/2001GL012943 – ident: ref34 doi: 10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2 – ident: ref30 doi: 10.1038/nature07337 – ident: ref99 doi: 10.1016/S0921-8181(00)00056-4 – ident: ref29 doi: 10.1038/nature01290 – ident: ref116 doi: 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2 – ident: ref38 doi: 10.5194/cp-10-451-2014 – ident: ref101 doi: 10.5194/cp-12-807-2016 – ident: ref14 doi: 10.1175/JCLI-D-11-00290.1 – ident: ref90 doi: 10.1130/G23175A.1 – ident: ref114 doi: 10.1029/2020PA003889 – ident: ref98 doi: 10.1016/j.orggeochem.2012.09.006 – ident: ref78 doi: 10.1038/nature13704 – ident: ref19 doi: 10.1073/pnas.1303365110 – ident: ref23 doi: 10.1038/s41561-018-0069-9 – ident: ref48 doi: 10.5194/gmd-7-2077-2014 – ident: ref64 doi: 10.1175/JCLI-D-11-00622.1 – ident: ref113 doi: 10.1029/JC095iC06p09377 – ident: ref91 doi: 10.1016/j.gca.2012.08.011 – ident: ref65 doi: 10.1098/rsta.2014.0419 – ident: ref106 doi: 10.1016/S1463-5003(02)00016-1 – ident: ref125 doi: 10.1029/93PA03266 – ident: ref41 doi: 10.1038/nature13597 – ident: ref82 doi: 10.5194/cp-12-1181-2016 – ident: ref73 doi: 10.1073/pnas.232693599 – ident: ref1 doi: 10.1029/2008GL036703 – ident: ref111 doi: 10.1038/nature08163 – ident: ref4 – ident: ref8 doi: 10.1038/ngeo1186 – ident: ref66 doi: 10.1029/2018PA003380 – ident: ref54 doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2 – ident: ref59 – ident: ref51 doi: 10.1016/j.palaeo.2004.11.013 – ident: ref44 doi: 10.1029/2003GL018747 – ident: ref127 doi: 10.1038/nature06588 – ident: ref47 doi: 10.1029/2012MS000166 – ident: ref115 doi: 10.1111/j.1469-8137.2005.01316.x – ident: ref31 doi: 10.1073/pnas.1321441111 – ident: ref27 doi: 10.1175/2007JCLI1508.1 – ident: ref20 doi: 10.1016/j.epsl.2016.10.045 – ident: ref81 doi: 10.5194/cp-8-1717-2012 – ident: ref123 doi: 10.1007/s12549-011-0056-2 – ident: ref120 doi: 10.1002/2015PA002888 – ident: ref63 doi: 10.1029/2008JC005030 – ident: ref62 doi: 10.1002/2014PA002723 – ident: ref46 doi: 10.1130/G32886.1 – ident: ref13 doi: 10.1073/pnas.1220872110 |
SSID | ssj0048195 |
Score | 2.4710186 |
Snippet | The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2573 |
SubjectTerms | Air pollution Antarctic glaciation Atmosphere Atmospheric aerosols Atmospheric carbon dioxide Atmospheric models Balancing Boundary conditions Carbon dioxide Climate Climate change Climate models Climate sensitivity Comparative analysis Cooling Eocene Equator Fluxes Gases General circulation models Geography Glaciation Glaciology Greenhouse effect Greenhouse gases Heat distribution Ice sheets Latitude Modelling Oligocene Polar environments Polar regions Radiative forcing Runoff Sea surface Sea surface temperature Simulation Surface temperature Temperature Temperature gradients Topography Vegetation Water vapor Water vapour Wet climates |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUQp15QS0HdliKrqoCLwd51HO8xREGAFA6kSNwsf6aV0k1Ekv_PjHeDyCHqpYc97O5YWo_Hnjfe8RtCfmoIGXpBCxa44kym2jPHPWc2eVWFvrU64gHn8YO6fZL3z73nd6W-MCespQduFXfVF0IlL1zK5F6c2wiIRljZTylIERKuvuDzNsFUuwZL_DuEoZYWkgFCkS2pD6AVeeUXTCgGllqBhWCZ73f-KNP271qcs8e5-UgOOqhIB-0nfiJ7sTkkxRhQ7vwlb4bTMzqc_QHIme8-k3sYc_o37zjQ1ZzOAEbSEfinJtIpptf8hig_Up-bgCDWwJnFQDH1fUoBCNLhaDKm4hK6cESebka_hresq5XAsKTBiildK-lKmyS3uqdrbV0tqr4tpSpdVXvwVDqBpONBJEAZwfmktNVB8FS7KlbHZL-ZN_ELocnpqF3QcEkJg2Wd507YhMQxeMy1IJcbjRnfEYljPYuZgYACVWz8wghlUMUGVVyQi7cGi5ZDY7foNQ7BmxiSX-cHYBKmMwnzL5MoyA8cQIP0Fg3mz0zterk0d5NHM1AST_aqWhTkvBNKc_h6b7vjCKADZMTakjzZkoT557dfb-zEdPN_aUqJxX8kLG9f_0ePvpEPqB1MoymrE7K_elnH7wCGVu402_0rmEUBIg priority: 102 providerName: Directory of Open Access Journals |
Title | The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5 |
URI | https://www.proquest.com/docview/2472044196 https://doaj.org/article/7116fc1bf0214400ae9911a47ffd41df |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELUgPcAFQQERKJWFEHBxa-86jveE2ihVqZQKtVTqzfJnWinshiQ98O-ZcZxCDuWwh-zOStnx7Ph5dvweIR81LBkGQQsWuOJMpsYzxz1nNnlVh6G1OuIG58m5Or2SZ9eD61JwW5a2yk1OzIk6dB5r5IeVRDkVCQHzdf6LoWoUfl0tEhqPyQ6kYK17ZOd4fP79YpOLJX4lwiWXFpIBUpFrch9ALfLQz5lQDCK2hkhBue9_5qVM3_9Qks4zz8lz8qxARnq0HuMX5FFsd8mTol5-83uX9CeAfLtFLpDTT3Q0uwUYmn-9JGcQB_RnrkLQVUdnAC3pGOasNtIpttzcwMo_Up9vAUPUxZnFQLEdfkoBHNLR-HJCxQE8zitydTL-MTplRT-BoczBiindKOkqmyS3eqAbbV0j6qGtpKpc3XiYvXQCS8eDSIA8gvNJaauD4Klxdaxfk17btfENocnpqF3QcEgJA2id507YhGQyuPW1Tw423jO-kIujxsXMwCID3W383Ahl0N0G3d0nX-5vmK95NR42PcbhuDdDQux8oltMTXm_zFAIlbxwKXPAcW4jAF9h5TClIEVIffIBB9Mg5UWLPTVTe7dcmm-XF-ZISdztqxrRJ5-LUerg33tbtiiAD5Ala8tyb8sS3km_fXkTM6bkhKX5G8Fv_3_5HXmKz41NM1W9R3qrxV18D9Bn5fZLfO_n0sEfxJH-tA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9FAuCAqIQIEV4nXZdtfebNYHhNqQKmmbCPUh9bbsw5sihTjkIdQ_xW9kxrELOZRbDz7YHlvJ7OzMt-uZbwh5q2HJ0ApasMAVZzJmnjnuObPRqzS0rdU5FjgPhqp3IY8uW5cb5HddC4NplbVPLB11KDzuke8lEtupSDCYz9OfDLtG4dfVuoXGyiyO8-tfsGSbf-p_gfF9lySH3fNOj1VdBRiS_y-Y0pmSLrFRcqtbOtPWZSJt20SqxKWZB5-uI0g6HkSEeBycj0pbHQSPmUvzFN57j2zKVPGkQTYPusOvp7Xvl_hVCpd4WkgGyEiuyIQAJck9P2VCMZghKVgmthf_Jw6W7QJuCwplpDt8SB5UEJXur2zqEdnIJ9tkq-qWfnW9TZoDQNrFrNyQp-9pZ_wdYG959pgcgd3RH-WuB10UdAxQlnYhRk5yOsIUn6tiOc-pLx8BQezDM84DxfT7EQUwSjvdswEVu_B3npCLO9HsU9KYFJP8GaHR6Vy7oOGQEgzGOs-dsBHJa7DUtkl2a-0ZX5GZY0-NsYFFDarb-KkRyqC6Daq7ST7ePDBd8XjcLnqAw3EjhgTc5YViNjLVfDZtIVT0wsWSc45zmwPQFla2YwxShNgkb3AwDVJsTDCHZ2SX87npn52afSWxulhlokk-VEKxgF_vbVUSATpAVq41yZ01SfABfv12bTOm8kFz83fGPP__7ddkq3c-ODEn_eHxC3IfdYAJO0m6QxqL2TJ_CbBr4V5Vtk7Jt7ueXn8AEis5ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuCAqIQIEV4nXZxmtvNusDQm2aqmlJVLVU6m3ZZ4oU4pCHUP8av44Zxy7kUG49-GB7bCWz81zPzEfIWwUpQ9srznwiEyZi7phNXMJMdDLzHWNUwAbnwVAenouji_bFBvld98JgWWVtE0tD7QuHe-StVCCcigCBacWqLOJk_-Dz9CdDBCn80lrDaaxE5Dhc_YL0bf6pvw9r_S5ND3pfu4esQhhgCASwYFLlUtjURJEY1Va5MjbnWcekQqY2yx3YdxWB0iaeR_DN3roolVGeJzG3WcjgvXfIZgezogbZ3OsNT05rPyDwCxWme4oLBlGSWA0WgohJtNyUcclAWzKQUoQa_8cnltABNzmI0usdPCQPqnCV7q7k6xHZCJMtcq9CTr-82iLNAUTdxazcnKfvaXf8HULg8uwxOQIZpD_KHRC6KOgYwlraA385CXSE5T6XxXIeqCsfAULE5BkHT7EUf0QhMKXd3tmA8h34O0_I-a1w9ilpTIpJeEZotCoo6xUcQoDwGOsSy03EQTbYdtskOzX3tKsGmyO-xlhDgoPs1m6qudTIbo3sbpKP1w9MVzM9bibdw-W4JsNh3OWFYjbSlW7rDucyOm5jOX8uSUyAoJsb0YnRC-5jk7zBxdQ4bmOCgjsyy_lc989O9a4U2Gksc94kHyqiWMCvd6ZqjwAe4ISuNcrtNUqwB279di0zurJHc_1Xe57___ZrchfUSn_pD49fkPvIAqzdSbNt0ljMluElRGAL-6oSdUq-3bZ2_QHwZz3Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+middle+to+late+Eocene+greenhouse+climate+modelled+using+the+CESM+1.0.5&rft.jtitle=Climate+of+the+past&rft.au=Baatsen%2C+Michiel&rft.au=von+der+Heydt%2C+Anna+S&rft.au=Huber%2C+Matthew&rft.au=Kliphuis%2C+Michael+A&rft.date=2020-12-23&rft.pub=Copernicus+GmbH&rft.issn=1814-9332&rft.volume=16&rft.issue=6&rft.spage=2573&rft_id=info:doi/10.5194%2Fcp-16-2573-2020&rft.externalDocID=A646421691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon |