The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5

The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eo...

Full description

Saved in:
Bibliographic Details
Published inClimate of the past Vol. 16; no. 6; pp. 2573 - 2597
Main Authors Baatsen, Michiel, von der Heydt, Anna S., Huber, Matthew, Kliphuis, Michael A., Bijl, Peter K., Sluijs, Appy, Dijkstra, Henk A.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 23.12.2020
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates.
AbstractList The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates.
The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene-Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene.
The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO 2 and CH 4 (i.e. 1120 ppm and ∼2700  ppb, respectively, or 4  ×  PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼  Bartonian) proxies. Being generally cooler, the simulated climate under 2  ×  PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼  Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7  ∘ C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500 –1200 ppm CO 2 ) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2  ×  PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62  ∘ C W −1  m 2 ; 3.21  ∘ C warming between 38 Ma 2  ×  PIC and 4  ×  PIC) compared to that of the present-day climate (0.80  ∘ C W −1  m 2 ; 3.17  ∘ C per CO 2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates.
The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene-Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO.sub.2 and CH.sub.4 (i.e. 1120 ppm and â¼2700 ppb, respectively, or 4 x PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42-38 Ma; â¼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 x PIC forcing is a good analogue for that of the late Eocene (38-34 Ma; â¼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5-7 .sup." C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. â¼500-1200 ppm CO.sub.2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 x PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 .sup." C W.sup.-1 m.sup.2 ; 3.21 .sup." C warming between 38 Ma 2 x PIC and 4 x PIC) compared to that of the present-day climate (0.80 .sup." C W.sup.-1 m.sup.2 ; 3.17 .sup." C per CO.sub.2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene-Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates.
The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene.With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information.Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character.Equilibrium climate sensitivity is reduced (0.62 ∘C W-1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W-1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates.
Audience Academic
Author Kliphuis, Michael A.
Dijkstra, Henk A.
Sluijs, Appy
von der Heydt, Anna S.
Baatsen, Michiel
Bijl, Peter K.
Huber, Matthew
Author_xml – sequence: 1
  givenname: Michiel
  orcidid: 0000-0002-0123-7005
  surname: Baatsen
  fullname: Baatsen, Michiel
– sequence: 2
  givenname: Anna S.
  orcidid: 0000-0002-5557-3282
  surname: von der Heydt
  fullname: von der Heydt, Anna S.
– sequence: 3
  givenname: Matthew
  orcidid: 0000-0002-2771-9977
  surname: Huber
  fullname: Huber, Matthew
– sequence: 4
  givenname: Michael A.
  surname: Kliphuis
  fullname: Kliphuis, Michael A.
– sequence: 5
  givenname: Peter K.
  orcidid: 0000-0002-1710-4012
  surname: Bijl
  fullname: Bijl, Peter K.
– sequence: 6
  givenname: Appy
  orcidid: 0000-0003-2382-0215
  surname: Sluijs
  fullname: Sluijs, Appy
– sequence: 7
  givenname: Henk A.
  surname: Dijkstra
  fullname: Dijkstra, Henk A.
BookMark eNp1kc1v1DAQxS1UJNqFM9dInDhk67EdJz5WqwW2KkKi5Ww5_ki9SuLFdiT47_GyFbAI5IOt8e-9mdG7QhdzmC1CrwGvGxDsWh9q4DVpWloTTPAzdAkdsFpQSi7-eL9AVyntMWYdiOYS3T482mryxoy2yqEaVbbVNmg722qI1s6PYUm20qOfjj9TMHYcramW5OehykW72d5_rGBdhniJnjs1Jvvq6V6hL--2D5sP9d2n97vNzV2tGoxzzTvBWU-UY1h1TSc61QugrSKMk54KTTHtXCF7bMBxTk2vHe9UZwA70VNLV2h38jVB7eUhltHidxmUlz8LIQ5Sxez1aGULwJ2G3mECjGGsrBAAirXOGQbGFa83J69DDF8Xm7LchyXOZXxJWEswYyD4b2pQxdTPLuSo9OSTljeccUaAlxVWaP0PqhxjJ69LWM6X-png7ZmgMNl-y4NaUpK7-8_n7PWJ1TGkFK37tThgecxf6oMELo_5y2P-RdH8pdA-q-xLk6j8-F_dD8gTsFc
CitedBy_id crossref_primary_10_1029_2022PA004496
crossref_primary_10_1086_718086
crossref_primary_10_5194_cp_18_341_2022
crossref_primary_10_1093_jcbiol_ruac053
crossref_primary_10_1098_rspa_2022_0483
crossref_primary_10_5194_cp_19_123_2023
crossref_primary_10_5194_cp_19_533_2023
crossref_primary_10_1016_j_epsl_2024_118981
crossref_primary_10_1126_sciadv_adk1189
crossref_primary_10_5194_cp_19_2551_2023
crossref_primary_10_1029_2023GL104847
crossref_primary_10_1038_s41561_021_00859_1
crossref_primary_10_5194_cp_18_2669_2022
crossref_primary_10_5194_cp_18_657_2022
crossref_primary_10_1016_j_marpetgeo_2023_106305
crossref_primary_10_1038_s41561_023_01234_y
crossref_primary_10_1038_s41561_021_00788_z
crossref_primary_10_1007_s10347_023_00677_4
crossref_primary_10_1126_sciadv_abm3875
crossref_primary_10_1029_2022PA004415
crossref_primary_10_1029_2022PA004532
crossref_primary_10_1126_science_adg1366
crossref_primary_10_5194_cp_20_1627_2024
crossref_primary_10_1029_2021PA004364
crossref_primary_10_1016_j_geobios_2024_08_008
crossref_primary_10_5194_cp_20_77_2024
crossref_primary_10_5194_cp_20_1327_2024
crossref_primary_10_1029_2022JB024736
crossref_primary_10_5194_esd_15_41_2024
crossref_primary_10_1126_sciadv_adn6056
crossref_primary_10_1029_2022PA004529
crossref_primary_10_5194_cp_21_95_2025
crossref_primary_10_1029_2023GL106088
crossref_primary_10_1016_j_gloplacha_2023_104352
crossref_primary_10_1029_2021PA004329
crossref_primary_10_1029_2022JD036510
Cites_doi 10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2
10.1029/2005GC001054
10.5194/cp-10-419-2014
10.1038/nature03135
10.1016/j.epsl.2012.06.024
10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
10.1002/2013PA002593
10.1038/ngeo1807
10.5194/cp-16-847-2020
10.1126/science.1166368
10.5194/cp-16-1667-2020
10.1111/j.1472-4669.2012.00320.x
10.1073/pnas.1102409108
10.1175/1520-0477(2001)082<2357:TCCSM>2.3.CO;2
10.1175/2009JCLI3002.1
10.1016/j.palaeo.2006.11.005
10.1175/2009JCLI3109.1
10.1175/2011JCLI4083.1
10.1130/G24332A.1
10.1371/journal.pone.0126946
10.1029/2019GC008182
10.1016/j.earscirev.2017.07.012
10.1029/2019GL083574
10.1126/sciadv.aax1874
10.1130/2008.2435(05)
10.1175/JCLI-D-11-00091.1
10.2475/02.2009.01
10.1029/2004PA001014
10.1130/2008.2435(03)
10.2307/3515411
10.1016/j.palaeo.2017.02.037
10.1029/2004PA001022
10.1038/nature17423
10.1175/JCLI3747.1
10.1016/j.epsl.2013.12.014
10.1038/35097000
10.1002/2014PA002648
10.1130/0016-7606(1998)110<0759:LEEOTV>2.3.CO;2
10.5194/cp-16-555-2020
10.5194/gmd-12-3149-2019
10.1126/science.1193654
10.1098/rsta.2013.0093
10.1175/JCLI-D-12-00236.1
10.1126/science.1059412
10.1016/j.gca.2007.12.010
10.1038/nature08069
10.1007/BF01277509
10.1029/2007PA001495
10.5194/cp-14-789-2018
10.1029/2009GC002450
10.1038/s41586-018-0272-2
10.5194/cp-12-1635-2016
10.1029/2011MS000045
10.1130/B25281.1
10.1175/BAMS-D-12-00121.1
10.1038/nature08399
10.1038/nature04668
10.1669/0883-1351(2004)019<0129:PEULAI>2.0.CO;2
10.1029/2003PA000934
10.1002/grl.50941
10.1130/B31482.1
10.1098/rstb.1993.0109
10.1130/G19800.1
10.1002/ggge.20106
10.1016/j.gloplacha.2014.04.004
10.1073/pnas.1714744115
10.1038/ngeo2888
10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
10.1029/2008PA001683
10.1130/G24584A.1
10.1016/j.gca.2010.05.027
10.1130/0016-7606(1998)110<0664:PEOEAO>2.3.CO;2
10.1029/2003PA000937
10.5194/cp-7-603-2011
10.1029/94RG01872
10.1016/j.palaeo.2012.09.035
10.1002/2016GL071930
10.1029/2001GL012943
10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2
10.1038/nature07337
10.1016/S0921-8181(00)00056-4
10.1038/nature01290
10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
10.5194/cp-10-451-2014
10.5194/cp-12-807-2016
10.1175/JCLI-D-11-00290.1
10.1130/G23175A.1
10.1029/2020PA003889
10.1016/j.orggeochem.2012.09.006
10.1038/nature13704
10.1073/pnas.1303365110
10.1038/s41561-018-0069-9
10.5194/gmd-7-2077-2014
10.1175/JCLI-D-11-00622.1
10.1029/JC095iC06p09377
10.1016/j.gca.2012.08.011
10.1098/rsta.2014.0419
10.1016/S1463-5003(02)00016-1
10.1029/93PA03266
10.1038/nature13597
10.5194/cp-12-1181-2016
10.1073/pnas.232693599
10.1029/2008GL036703
10.1038/nature08163
10.1038/ngeo1186
10.1029/2018PA003380
10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
10.1016/j.palaeo.2004.11.013
10.1029/2003GL018747
10.1038/nature06588
10.1029/2012MS000166
10.1111/j.1469-8137.2005.01316.x
10.1073/pnas.1321441111
10.1175/2007JCLI1508.1
10.1016/j.epsl.2016.10.045
10.5194/cp-8-1717-2012
10.1007/s12549-011-0056-2
10.1002/2015PA002888
10.1029/2008JC005030
10.1002/2014PA002723
10.1130/G32886.1
10.1073/pnas.1220872110
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
H97
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.5194/cp-16-2573-2020
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef




Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Geography
EISSN 1814-9332
EndPage 2597
ExternalDocumentID oai_doaj_org_article_7116fc1bf0214400ae9911a47ffd41df
A646421691
10_5194_cp_16_2573_2020
GeographicLocations Southern Ocean
GeographicLocations_xml – name: Southern Ocean
GroupedDBID 29B
2WC
2XV
4P2
5GY
5VS
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IEP
ISR
ITC
K6-
KQ8
LK5
M7R
OK1
OVT
P2P
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
Q2X
RKB
RNS
TR2
~02
BBORY
PMFND
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
H96
H97
KL.
L.G
PKEHL
PQEST
PQUKI
PUEGO
ID FETCH-LOGICAL-a500t-68964b2af40a85898ab9137a2462b39c3038f500b0d1f663dbcf68a8d10f9b3e3
IEDL.DBID BENPR
ISSN 1814-9332
1814-9324
IngestDate Wed Aug 27 01:19:38 EDT 2025
Mon Jun 30 13:29:26 EDT 2025
Tue Jun 17 21:38:13 EDT 2025
Tue Jun 10 20:21:50 EDT 2025
Fri Jun 27 04:47:57 EDT 2025
Tue Jul 01 03:45:21 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a500t-68964b2af40a85898ab9137a2462b39c3038f500b0d1f663dbcf68a8d10f9b3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5557-3282
0000-0002-2771-9977
0000-0002-0123-7005
0000-0002-1710-4012
0000-0003-2382-0215
OpenAccessLink https://www.proquest.com/docview/2472044196?pq-origsite=%requestingapplication%
PQID 2472044196
PQPubID 105735
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_7116fc1bf0214400ae9911a47ffd41df
proquest_journals_2472044196
gale_infotracmisc_A646421691
gale_infotracacademiconefile_A646421691
gale_incontextgauss_ISR_A646421691
crossref_primary_10_5194_cp_16_2573_2020
crossref_citationtrail_10_5194_cp_16_2573_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-23
PublicationDateYYYYMMDD 2020-12-23
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-23
  day: 23
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Climate of the past
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref42
  doi: 10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2
– ident: ref21
  doi: 10.1029/2005GC001054
– ident: ref80
  doi: 10.5194/cp-10-419-2014
– ident: ref22
  doi: 10.1038/nature03135
– ident: ref52
  doi: 10.1016/j.epsl.2012.06.024
– ident: ref39
  doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
– ident: ref74
  doi: 10.1002/2013PA002593
– ident: ref104
  doi: 10.1038/ngeo1807
– ident: ref112
  doi: 10.5194/cp-16-847-2020
– ident: ref79
  doi: 10.1126/science.1166368
– ident: ref26
  doi: 10.5194/cp-16-1667-2020
– ident: ref95
  doi: 10.1111/j.1472-4669.2012.00320.x
– ident: ref9
  doi: 10.1073/pnas.1102409108
– ident: ref15
  doi: 10.1175/1520-0477(2001)082<2357:TCCSM>2.3.CO;2
– ident: ref10
  doi: 10.1175/2009JCLI3002.1
– ident: ref118
  doi: 10.1016/j.palaeo.2006.11.005
– ident: ref108
  doi: 10.1175/2009JCLI3109.1
– ident: ref40
  doi: 10.1175/2011JCLI4083.1
– ident: ref97
  doi: 10.1130/G24332A.1
– ident: ref119
  doi: 10.1371/journal.pone.0126946
– ident: ref55
  doi: 10.1029/2019GC008182
– ident: ref84
  doi: 10.1016/j.earscirev.2017.07.012
– ident: ref107
– ident: ref37
  doi: 10.1029/2019GL083574
– ident: ref128
  doi: 10.1126/sciadv.aax1874
– ident: ref92
  doi: 10.1130/2008.2435(05)
– ident: ref28
  doi: 10.1175/JCLI-D-11-00091.1
– ident: ref7
  doi: 10.2475/02.2009.01
– ident: ref58
  doi: 10.1029/2004PA001014
– ident: ref18
  doi: 10.1130/2008.2435(03)
– ident: ref45
  doi: 10.2307/3515411
– ident: ref50
  doi: 10.1016/j.palaeo.2017.02.037
– ident: ref110
  doi: 10.1029/2004PA001022
– ident: ref2
  doi: 10.1038/nature17423
– ident: ref3
– ident: ref69
  doi: 10.1175/JCLI3747.1
– ident: ref17
  doi: 10.1016/j.epsl.2013.12.014
– ident: ref89
  doi: 10.1038/35097000
– ident: ref96
  doi: 10.1002/2014PA002648
– ident: ref105
  doi: 10.1130/0016-7606(1998)110<0759:LEEOTV>2.3.CO;2
– ident: ref67
  doi: 10.5194/cp-16-555-2020
– ident: ref53
  doi: 10.5194/gmd-12-3149-2019
– ident: ref12
  doi: 10.1126/science.1193654
– ident: ref68
  doi: 10.1098/rsta.2013.0093
– ident: ref83
  doi: 10.1175/JCLI-D-12-00236.1
– ident: ref126
  doi: 10.1126/science.1059412
– ident: ref70
  doi: 10.1016/j.gca.2007.12.010
– ident: ref32
  doi: 10.1038/nature08069
– ident: ref124
  doi: 10.1007/BF01277509
– ident: ref103
  doi: 10.1029/2007PA001495
– ident: ref61
  doi: 10.5194/cp-14-789-2018
– ident: ref85
  doi: 10.1029/2009GC002450
– ident: ref25
  doi: 10.1038/s41586-018-0272-2
– ident: ref6
  doi: 10.5194/cp-12-1635-2016
– ident: ref76
  doi: 10.1029/2011MS000045
– ident: ref94
  doi: 10.1130/B25281.1
– ident: ref60
  doi: 10.1175/BAMS-D-12-00121.1
– ident: ref11
  doi: 10.1038/nature08399
– ident: ref102
  doi: 10.1038/nature04668
– ident: ref5
– ident: ref43
  doi: 10.1669/0883-1351(2004)019<0129:PEULAI>2.0.CO;2
– ident: ref72
  doi: 10.1029/2003PA000934
– ident: ref49
  doi: 10.1002/grl.50941
– ident: ref88
  doi: 10.1130/B31482.1
– ident: ref121
  doi: 10.1098/rstb.1993.0109
– ident: ref16
  doi: 10.1130/G19800.1
– ident: ref87
  doi: 10.1002/ggge.20106
– ident: ref100
  doi: 10.1016/j.gloplacha.2014.04.004
– ident: ref36
  doi: 10.1073/pnas.1714744115
– ident: ref33
  doi: 10.1038/ngeo2888
– ident: ref109
  doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
– ident: ref86
– ident: ref24
  doi: 10.1029/2008PA001683
– ident: ref77
  doi: 10.1130/G24584A.1
– ident: ref71
  doi: 10.1016/j.gca.2010.05.027
– ident: ref122
  doi: 10.1130/0016-7606(1998)110<0664:PEOEAO>2.3.CO;2
– ident: ref117
  doi: 10.1029/2003PA000937
– ident: ref56
  doi: 10.5194/cp-7-603-2011
– ident: ref75
  doi: 10.1029/94RG01872
– ident: ref93
  doi: 10.1016/j.palaeo.2012.09.035
– ident: ref35
  doi: 10.1002/2016GL071930
– ident: ref57
  doi: 10.1029/2001GL012943
– ident: ref34
  doi: 10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2
– ident: ref30
  doi: 10.1038/nature07337
– ident: ref99
  doi: 10.1016/S0921-8181(00)00056-4
– ident: ref29
  doi: 10.1038/nature01290
– ident: ref116
  doi: 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
– ident: ref38
  doi: 10.5194/cp-10-451-2014
– ident: ref101
  doi: 10.5194/cp-12-807-2016
– ident: ref14
  doi: 10.1175/JCLI-D-11-00290.1
– ident: ref90
  doi: 10.1130/G23175A.1
– ident: ref114
  doi: 10.1029/2020PA003889
– ident: ref98
  doi: 10.1016/j.orggeochem.2012.09.006
– ident: ref78
  doi: 10.1038/nature13704
– ident: ref19
  doi: 10.1073/pnas.1303365110
– ident: ref23
  doi: 10.1038/s41561-018-0069-9
– ident: ref48
  doi: 10.5194/gmd-7-2077-2014
– ident: ref64
  doi: 10.1175/JCLI-D-11-00622.1
– ident: ref113
  doi: 10.1029/JC095iC06p09377
– ident: ref91
  doi: 10.1016/j.gca.2012.08.011
– ident: ref65
  doi: 10.1098/rsta.2014.0419
– ident: ref106
  doi: 10.1016/S1463-5003(02)00016-1
– ident: ref125
  doi: 10.1029/93PA03266
– ident: ref41
  doi: 10.1038/nature13597
– ident: ref82
  doi: 10.5194/cp-12-1181-2016
– ident: ref73
  doi: 10.1073/pnas.232693599
– ident: ref1
  doi: 10.1029/2008GL036703
– ident: ref111
  doi: 10.1038/nature08163
– ident: ref4
– ident: ref8
  doi: 10.1038/ngeo1186
– ident: ref66
  doi: 10.1029/2018PA003380
– ident: ref54
  doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
– ident: ref59
– ident: ref51
  doi: 10.1016/j.palaeo.2004.11.013
– ident: ref44
  doi: 10.1029/2003GL018747
– ident: ref127
  doi: 10.1038/nature06588
– ident: ref47
  doi: 10.1029/2012MS000166
– ident: ref115
  doi: 10.1111/j.1469-8137.2005.01316.x
– ident: ref31
  doi: 10.1073/pnas.1321441111
– ident: ref27
  doi: 10.1175/2007JCLI1508.1
– ident: ref20
  doi: 10.1016/j.epsl.2016.10.045
– ident: ref81
  doi: 10.5194/cp-8-1717-2012
– ident: ref123
  doi: 10.1007/s12549-011-0056-2
– ident: ref120
  doi: 10.1002/2015PA002888
– ident: ref63
  doi: 10.1029/2008JC005030
– ident: ref62
  doi: 10.1002/2014PA002723
– ident: ref46
  doi: 10.1130/G32886.1
– ident: ref13
  doi: 10.1073/pnas.1220872110
SSID ssj0048195
Score 2.4710186
Snippet The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2573
SubjectTerms Air pollution
Antarctic glaciation
Atmosphere
Atmospheric aerosols
Atmospheric carbon dioxide
Atmospheric models
Balancing
Boundary conditions
Carbon dioxide
Climate
Climate change
Climate models
Climate sensitivity
Comparative analysis
Cooling
Eocene
Equator
Fluxes
Gases
General circulation models
Geography
Glaciation
Glaciology
Greenhouse effect
Greenhouse gases
Heat distribution
Ice sheets
Latitude
Modelling
Oligocene
Polar environments
Polar regions
Radiative forcing
Runoff
Sea surface
Sea surface temperature
Simulation
Surface temperature
Temperature
Temperature gradients
Topography
Vegetation
Water vapor
Water vapour
Wet climates
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUQp15QS0HdliKrqoCLwd51HO8xREGAFA6kSNwsf6aV0k1Ekv_PjHeDyCHqpYc97O5YWo_Hnjfe8RtCfmoIGXpBCxa44kym2jPHPWc2eVWFvrU64gHn8YO6fZL3z73nd6W-MCespQduFXfVF0IlL1zK5F6c2wiIRljZTylIERKuvuDzNsFUuwZL_DuEoZYWkgFCkS2pD6AVeeUXTCgGllqBhWCZ73f-KNP271qcs8e5-UgOOqhIB-0nfiJ7sTkkxRhQ7vwlb4bTMzqc_QHIme8-k3sYc_o37zjQ1ZzOAEbSEfinJtIpptf8hig_Up-bgCDWwJnFQDH1fUoBCNLhaDKm4hK6cESebka_hresq5XAsKTBiildK-lKmyS3uqdrbV0tqr4tpSpdVXvwVDqBpONBJEAZwfmktNVB8FS7KlbHZL-ZN_ELocnpqF3QcEkJg2Wd507YhMQxeMy1IJcbjRnfEYljPYuZgYACVWz8wghlUMUGVVyQi7cGi5ZDY7foNQ7BmxiSX-cHYBKmMwnzL5MoyA8cQIP0Fg3mz0zterk0d5NHM1AST_aqWhTkvBNKc_h6b7vjCKADZMTakjzZkoT557dfb-zEdPN_aUqJxX8kLG9f_0ePvpEPqB1MoymrE7K_elnH7wCGVu402_0rmEUBIg
  priority: 102
  providerName: Directory of Open Access Journals
Title The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
URI https://www.proquest.com/docview/2472044196
https://doaj.org/article/7116fc1bf0214400ae9911a47ffd41df
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELUgPcAFQQERKJWFEHBxa-86jveE2ihVqZQKtVTqzfJnWinshiQ98O-ZcZxCDuWwh-zOStnx7Ph5dvweIR81LBkGQQsWuOJMpsYzxz1nNnlVh6G1OuIG58m5Or2SZ9eD61JwW5a2yk1OzIk6dB5r5IeVRDkVCQHzdf6LoWoUfl0tEhqPyQ6kYK17ZOd4fP79YpOLJX4lwiWXFpIBUpFrch9ALfLQz5lQDCK2hkhBue9_5qVM3_9Qks4zz8lz8qxARnq0HuMX5FFsd8mTol5-83uX9CeAfLtFLpDTT3Q0uwUYmn-9JGcQB_RnrkLQVUdnAC3pGOasNtIpttzcwMo_Up9vAUPUxZnFQLEdfkoBHNLR-HJCxQE8zitydTL-MTplRT-BoczBiindKOkqmyS3eqAbbV0j6qGtpKpc3XiYvXQCS8eDSIA8gvNJaauD4Klxdaxfk17btfENocnpqF3QcEgJA2id507YhGQyuPW1Tw423jO-kIujxsXMwCID3W383Ahl0N0G3d0nX-5vmK95NR42PcbhuDdDQux8oltMTXm_zFAIlbxwKXPAcW4jAF9h5TClIEVIffIBB9Mg5UWLPTVTe7dcmm-XF-ZISdztqxrRJ5-LUerg33tbtiiAD5Ala8tyb8sS3km_fXkTM6bkhKX5G8Fv_3_5HXmKz41NM1W9R3qrxV18D9Bn5fZLfO_n0sEfxJH-tA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9FAuCAqIQIEV4nXZdtfebNYHhNqQKmmbCPUh9bbsw5sihTjkIdQ_xW9kxrELOZRbDz7YHlvJ7OzMt-uZbwh5q2HJ0ApasMAVZzJmnjnuObPRqzS0rdU5FjgPhqp3IY8uW5cb5HddC4NplbVPLB11KDzuke8lEtupSDCYz9OfDLtG4dfVuoXGyiyO8-tfsGSbf-p_gfF9lySH3fNOj1VdBRiS_y-Y0pmSLrFRcqtbOtPWZSJt20SqxKWZB5-uI0g6HkSEeBycj0pbHQSPmUvzFN57j2zKVPGkQTYPusOvp7Xvl_hVCpd4WkgGyEiuyIQAJck9P2VCMZghKVgmthf_Jw6W7QJuCwplpDt8SB5UEJXur2zqEdnIJ9tkq-qWfnW9TZoDQNrFrNyQp-9pZ_wdYG959pgcgd3RH-WuB10UdAxQlnYhRk5yOsIUn6tiOc-pLx8BQezDM84DxfT7EQUwSjvdswEVu_B3npCLO9HsU9KYFJP8GaHR6Vy7oOGQEgzGOs-dsBHJa7DUtkl2a-0ZX5GZY0-NsYFFDarb-KkRyqC6Daq7ST7ePDBd8XjcLnqAw3EjhgTc5YViNjLVfDZtIVT0wsWSc45zmwPQFla2YwxShNgkb3AwDVJsTDCHZ2SX87npn52afSWxulhlokk-VEKxgF_vbVUSATpAVq41yZ01SfABfv12bTOm8kFz83fGPP__7ddkq3c-ODEn_eHxC3IfdYAJO0m6QxqL2TJ_CbBr4V5Vtk7Jt7ueXn8AEis5ow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuCAqIQIEV4nXZxmtvNusDQm2aqmlJVLVU6m3ZZ4oU4pCHUP8av44Zxy7kUG49-GB7bCWz81zPzEfIWwUpQ9srznwiEyZi7phNXMJMdDLzHWNUwAbnwVAenouji_bFBvld98JgWWVtE0tD7QuHe-StVCCcigCBacWqLOJk_-Dz9CdDBCn80lrDaaxE5Dhc_YL0bf6pvw9r_S5ND3pfu4esQhhgCASwYFLlUtjURJEY1Va5MjbnWcekQqY2yx3YdxWB0iaeR_DN3roolVGeJzG3WcjgvXfIZgezogbZ3OsNT05rPyDwCxWme4oLBlGSWA0WgohJtNyUcclAWzKQUoQa_8cnltABNzmI0usdPCQPqnCV7q7k6xHZCJMtcq9CTr-82iLNAUTdxazcnKfvaXf8HULg8uwxOQIZpD_KHRC6KOgYwlraA385CXSE5T6XxXIeqCsfAULE5BkHT7EUf0QhMKXd3tmA8h34O0_I-a1w9ilpTIpJeEZotCoo6xUcQoDwGOsSy03EQTbYdtskOzX3tKsGmyO-xlhDgoPs1m6qudTIbo3sbpKP1w9MVzM9bibdw-W4JsNh3OWFYjbSlW7rDucyOm5jOX8uSUyAoJsb0YnRC-5jk7zBxdQ4bmOCgjsyy_lc989O9a4U2Gksc94kHyqiWMCvd6ZqjwAe4ISuNcrtNUqwB279di0zurJHc_1Xe57___ZrchfUSn_pD49fkPvIAqzdSbNt0ljMluElRGAL-6oSdUq-3bZ2_QHwZz3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+middle+to+late+Eocene+greenhouse+climate+modelled+using+the+CESM+1.0.5&rft.jtitle=Climate+of+the+past&rft.au=Baatsen%2C+Michiel&rft.au=von+der+Heydt%2C+Anna+S&rft.au=Huber%2C+Matthew&rft.au=Kliphuis%2C+Michael+A&rft.date=2020-12-23&rft.pub=Copernicus+GmbH&rft.issn=1814-9332&rft.volume=16&rft.issue=6&rft.spage=2573&rft_id=info:doi/10.5194%2Fcp-16-2573-2020&rft.externalDocID=A646421691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon