Novel Penicillin-Based Sulfone-Siderophore Conjugates for Restoring β‑Lactam Antibiotic Efficacy

Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 9; no. 24; pp. 26484 - 26494
Main Authors Rodríguez, Diana, Lence, Emilio, Vázquez-Ucha, Juan C., Beceiro, Alejandro, González-Bello, Concepción
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.06.2024
Online AccessGet full text
ISSN2470-1343
2470-1343
DOI10.1021/acsomega.4c02984

Cover

Loading…
Abstract Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone 1, to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2–8) were synthesized and assayed in vitro. The results on the ability of derivatives 2–8 to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2, a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.
AbstractList Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone 1 , to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2 – 8 ) were synthesized and assayed in vitro. The results on the ability of derivatives 2 – 8 to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2 , a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.
Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone 1, to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2–8) were synthesized and assayed in vitro. The results on the ability of derivatives 2–8 to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2, a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.
Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone , to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds - ) were synthesized and assayed in vitro. The results on the ability of derivatives - to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound , a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.
Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone 1, to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2-8) were synthesized and assayed in vitro. The results on the ability of derivatives 2-8 to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2, a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of β-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of β-lactamase inhibitors, such as penicillin-based sulfone 1, to restore β-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2-8) were synthesized and assayed in vitro. The results on the ability of derivatives 2-8 to recover β-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various β-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2, a novel β-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.
Author Beceiro, Alejandro
Vázquez-Ucha, Juan C.
González-Bello, Concepción
Rodríguez, Diana
Lence, Emilio
AuthorAffiliation Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica
Servicio de Microbiología, Complexo Hospitalario Universitario da Coruña (CHUAC)
AuthorAffiliation_xml – name: Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica
– name: Servicio de Microbiología, Complexo Hospitalario Universitario da Coruña (CHUAC)
Author_xml – sequence: 1
  givenname: Diana
  surname: Rodríguez
  fullname: Rodríguez, Diana
  organization: Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica
– sequence: 2
  givenname: Emilio
  orcidid: 0000-0001-9489-9421
  surname: Lence
  fullname: Lence, Emilio
  organization: Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica
– sequence: 3
  givenname: Juan C.
  surname: Vázquez-Ucha
  fullname: Vázquez-Ucha, Juan C.
  organization: Servicio de Microbiología, Complexo Hospitalario Universitario da Coruña (CHUAC)
– sequence: 4
  givenname: Alejandro
  orcidid: 0000-0002-6340-7815
  surname: Beceiro
  fullname: Beceiro, Alejandro
  organization: Servicio de Microbiología, Complexo Hospitalario Universitario da Coruña (CHUAC)
– sequence: 5
  givenname: Concepción
  orcidid: 0000-0001-6439-553X
  surname: González-Bello
  fullname: González-Bello, Concepción
  email: concepcion.gonzalez.bello@usc.es
  organization: Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38911797$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxiNURP_QOyeUIwdSxk4cJyfUrgpUWgGicLZsZ5J65diLnVTqjVfgVfogPARPgsvuohYJTrY83_f7Rp45zPacd5hlzwicEKDkldTRjzjIk0oDbZvqUXZAKw4FKaty7959PzuOcQUApG5oQ-sn2X7ZtITwlh9k-r2_Rpt_RGe0sda44kxG7PLL2fYprrg0HQa_vvIB84V3q3mQE8a89yH_hHHywbgh_3H789v3pdSTHPNTNxll_GR0ft73Rkt98zR73Esb8Xh7HmVf3px_Xrwrlh_eXixOl4VkAFPBoFatZk1NkdGOIC-hajuiewpNxTTvNagSSgYd5z0gVaqtdc25VsCVqnh5lF1suJ2XK7EOZpThRnhpxO8HHwYhQ2rMooCmZoiMNFxjcqq26hhFRKVYD1zWifV6w1rPasROo5uCtA-gDyvOXInBXwtCSEugKRPhxZYQ_Nc5_ZUYTdRorXTo5yhK4ISRqqVtkj6_H_YnZTemJKg3Ah18jAF7oc0kJ-Pvso0VBMTdSojdSojtSiQj_GXcsf9jebmxpIpY-Tm4NLN_y38BvNjNHw
CitedBy_id crossref_primary_10_1139_cjm_2024_0032
crossref_primary_10_1080_14787210_2024_2441891
crossref_primary_10_1002_cphc_202401057
Cites_doi 10.1007/s40265-021-01580-4
10.1021/acs.jmedchem.0c00127
10.1021/acsinfecdis.5b00007
10.1021/acsinfecdis.0c00798
10.1007/s40121-023-00773-6
10.1073/pnas.2305465120
10.1016/S1473-3099(20)30796-9
10.1093/cid/ciab757
10.1016/j.drudis.2023.103753
10.1021/acs.jmedchem.1c00369
10.1038/s41467-023-40828-3
10.1038/s41467-021-23191-z
10.1128/AAC.02171-20
10.1128/AAC.00592-18
10.1093/cid/ciz825
10.1016/j.ejmech.2022.114206
10.1021/acs.jmedchem.9b01279
10.1039/p19900000089
10.1111/1751-7915.12117
10.1038/s41579-019-0288-0
10.37201/req/s02.03.2022
10.1128/aac.01172-01117
10.1128/JCM.00951-20
10.1038/nbt.4193
10.1093/jac/dkw105
10.1021/acs.accounts.5b00301
10.1039/D2MD00465H
10.1016/S0040-4039(00)84819-4
10.2174/0929867043364847
10.1016/j.bmcl.2023.129282
10.1515/9783110527872-013
10.1006/jmbi.1996.0897
10.1021/ja104092z
10.1074/jbc.M806833200
10.1021/acsinfecdis.0c00568
10.1016/j.cbpa.2022.102160
10.1038/s41579-019-0284-4
10.1016/j.chembiol.2009.04.010
10.1128/aac.02247-12
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acsomega.4c02984
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 26494
ExternalDocumentID oai_doaj_org_article_0865ee5187ce473b94d52eeebb5f07a6
PMC11191083
38911797
10_1021_acsomega_4c02984
a338566501
Genre Journal Article
GroupedDBID 53G
AAFWJ
AAHBH
ABFRP
ABUCX
ACS
ADBBV
AFEFF
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a500t-506b9c5862e52d1e73049d1cf20845c7fc0b30350d77f0e2bb96c677cb07bb473
IEDL.DBID ACS
ISSN 2470-1343
IngestDate Wed Aug 27 01:00:35 EDT 2025
Thu Aug 21 18:33:46 EDT 2025
Fri Jul 11 08:39:56 EDT 2025
Wed Feb 19 02:09:27 EST 2025
Tue Jul 01 00:50:09 EDT 2025
Thu Apr 24 23:03:36 EDT 2025
Tue Jun 25 16:50:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2024 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a500t-506b9c5862e52d1e73049d1cf20845c7fc0b30350d77f0e2bb96c677cb07bb473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6439-553X
0000-0002-6340-7815
0000-0001-9489-9421
OpenAccessLink https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1021/acsomega.4c02984
PMID 38911797
PQID 3071514929
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0865ee5187ce473b94d52eeebb5f07a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11191083
proquest_miscellaneous_3071514929
pubmed_primary_38911797
crossref_citationtrail_10_1021_acsomega_4c02984
crossref_primary_10_1021_acsomega_4c02984
acs_journals_10_1021_acsomega_4c02984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-18
PublicationDateYYYYMMDD 2024-06-18
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
CLSI (ref32/cit32) 2023
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
Case D. (ref39/cit39) 2021
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
DeLano W. L. (ref43/cit43) 2008
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1007/s40265-021-01580-4
– ident: ref23/cit23
  doi: 10.1021/acs.jmedchem.0c00127
– ident: ref37/cit37
  doi: 10.1021/acsinfecdis.5b00007
– ident: ref41/cit41
  doi: 10.1021/acsinfecdis.0c00798
– ident: ref18/cit18
  doi: 10.1007/s40121-023-00773-6
– ident: ref3/cit3
  doi: 10.1073/pnas.2305465120
– ident: ref12/cit12
  doi: 10.1016/S1473-3099(20)30796-9
– ident: ref15/cit15
  doi: 10.1093/cid/ciab757
– ident: ref1/cit1
  doi: 10.1016/j.drudis.2023.103753
– ident: ref24/cit24
  doi: 10.1021/acs.jmedchem.1c00369
– ident: ref19/cit19
  doi: 10.1038/s41467-023-40828-3
– ident: ref27/cit27
  doi: 10.1038/s41467-021-23191-z
– ident: ref13/cit13
  doi: 10.1128/AAC.02171-20
– ident: ref35/cit35
  doi: 10.1128/AAC.00592-18
– ident: ref8/cit8
  doi: 10.1093/cid/ciz825
– ident: ref22/cit22
– ident: ref42/cit42
  doi: 10.1016/j.ejmech.2022.114206
– ident: ref6/cit6
  doi: 10.1021/acs.jmedchem.9b01279
– ident: ref31/cit31
  doi: 10.1039/p19900000089
– ident: ref29/cit29
  doi: 10.1111/1751-7915.12117
– ident: ref4/cit4
  doi: 10.1038/s41579-019-0288-0
– ident: ref17/cit17
  doi: 10.37201/req/s02.03.2022
– ident: ref33/cit33
  doi: 10.1128/aac.01172-01117
– volume-title: Performance Standards for Antimicrobial Susceptibility Testing
  year: 2023
  ident: ref32/cit32
– ident: ref16/cit16
  doi: 10.1128/JCM.00951-20
– ident: ref2/cit2
  doi: 10.1038/nbt.4193
– ident: ref34/cit34
  doi: 10.1093/jac/dkw105
– ident: ref30/cit30
  doi: 10.1021/acs.accounts.5b00301
– ident: ref7/cit7
  doi: 10.1039/D2MD00465H
– ident: ref25/cit25
  doi: 10.1016/S0040-4039(00)84819-4
– ident: ref20/cit20
  doi: 10.2174/0929867043364847
– ident: ref9/cit9
  doi: 10.1016/j.bmcl.2023.129282
– ident: ref11/cit11
  doi: 10.1515/9783110527872-013
– ident: ref36/cit36
  doi: 10.1006/jmbi.1996.0897
– ident: ref26/cit26
  doi: 10.1021/ja104092z
– ident: ref21/cit21
  doi: 10.1074/jbc.M806833200
– ident: ref28/cit28
  doi: 10.1021/acsinfecdis.0c00568
– ident: ref5/cit5
  doi: 10.1016/j.cbpa.2022.102160
– volume-title: The PyMOL Molecular Graphics System
  year: 2008
  ident: ref43/cit43
– volume-title: Amber 20 and AmberTools21
  year: 2021
  ident: ref39/cit39
– ident: ref10/cit10
  doi: 10.1038/s41579-019-0284-4
– ident: ref40/cit40
  doi: 10.1016/j.chembiol.2009.04.010
– ident: ref38/cit38
  doi: 10.1128/aac.02247-12
SSID ssj0001682826
Score 2.2936227
Snippet Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such,...
Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26484
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BB_LNQkJHgwCFs4thxcmxXrSoEFaJU6i2yxxNatE2qZrcSN16BV-FBeAiehJn8rHYRKheuiS2PxmPPZ8_4GyFeKh9yYwNEWQZFpL1KI5c7jDD1NglJCBXy2-H3h9nBsX57Yk7WSn1xTlhPD9wrbkqQ2yCaJLeA2qa-0MEoRPTeVLF1Hdk2-by1w1R3u5LRSUKNcUnyY1MHbXOOn90bDcw6rtkbQbvhjTrS_r8hzT8TJtc80P4dcXuAjnKnF_muuIH1PXFzNlZsuy_gsLnCufyA9RnwNUod7ZKPCvJoOa-aGqMjfnLXXJw2lyhnTf1lyVdorSTYKj92BWbIjcmfP359-_7OwcKdy52aX5Q0NJ7cY6oJB18fiOP9vU-zg2goohBxrYNFZOLMF2Do4IJGhQQtx9VCApWKc23AVhD7lMOLwdoqRuV9kUFmLfjYek8afyi2apLxsZAVVlC4FGIMXvsq96lNbRECYaw80UZNxCtSaTksgrbs4tsqKUfVl4PqJ2I6Kr2EgYmcC2LMr-nxetXjomfhuKbtLs_jqh3zZ3cfyKrKwarKf1nVRLwYraCkSeQgiquxWbYl7YkEkjShyol41FvFaiiO-dIGZyci37CXDVk2_9Rnpx2nd8JEewSHn_wP6Z-KW4qwF2e0Jfm22FpcLvEZYaeFf94tk9-9Mh1I
  priority: 102
  providerName: Directory of Open Access Journals
Title Novel Penicillin-Based Sulfone-Siderophore Conjugates for Restoring β‑Lactam Antibiotic Efficacy
URI http://dx.doi.org/10.1021/acsomega.4c02984
https://www.ncbi.nlm.nih.gov/pubmed/38911797
https://www.proquest.com/docview/3071514929
https://pubmed.ncbi.nlm.nih.gov/PMC11191083
https://doaj.org/article/0865ee5187ce473b94d52eeebb5f07a6
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHOBS_mn4qYwEBw7Zxo4dJ8ftaqsK0RViqdRb5J8JLWyTqkmQ4FDxCrwKD8JD8CSMs9ktW6qqFx8SO_HP2PN5xv6GkFfcuFQqZ8MksVkoDI9DnWoIITaKOeZcAf7u8N4k2d0Xbw_kwTlNzkUPPmdb2tbVMXzSA2E9Xbi4SW7xJFWeJ384mp7bUxLcO3TR1bhQUchiEfdeycs-4nWRrVd0UUfZfxnOvHhc8h_9s3N3Hsio7mgL_bGTL4O2MQP7_X9Sx2s07R5Z72EoHc7l5j65AeUDcnu0iP72kNhJ9RVm9D2UR9abZMpwG_Wdo9N2VlQlhFN_fa86OaxOgY6q8nPrzXE1RQhMP3TBalAl0t-__vz4-U7bRh_TYelvp1T4Pzr2tBXafntE9nfGH0e7YR-QIfRxE5pQRonJrMRNEEjuGCjvo3PMFjxKhbSqsJGJvavSKVVEwI3JEpsoZU2kjBEqfkzWSqzjBqEFFDbTsY3AGWGK1MQqVplziNdSJiQPyGvsnbyfUHXe-co5yxddlvddFpCtxRDmtmc198E1ZleUeLMscTJn9Lgi77aXimU-z8XdPcBRzPupneOmUAJIlioL2EaTCSc5ABgji0jpJCAvFzKV4yB6h4wuoWrrHNdXBFwCEWpAnsxlbPkr7z_GxVIFJF2RvpW6rL4pjw47fnDmSfsQWj-9Zh8-I3c4QjV_AI6lz8lac9rCC4Rajdns5thmZ6jAdO9sjOnkbPAXjaQsPA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKOZQL_z_h10hw4JBt7NhxctyuWi2wXaFuK_UWxfaEFrZJ1SRIcOIVeBUehIfgSRhnky1bVRVcnfhvPPZ89tjfEPKKaxtLZY0fRSbxheahn8UZ-BBqxSyzNgf3dnh3Go0PxLtDebhGWP8WBhtRYUlV68Q_Zxdgm5hWnsDHbCCMYw0X18h1xCLc0eUPR7PzY5UItxBtkDUuVOCzUISdc_KyQpxJMtWKSWqZ-y-DmxdvTf5lhnZukb1lB9rbJ58HTa0H5tsFbsf_6uFtcrMDpXS40KI7ZA2Ku2Rj1MeCu0fMtPwCc_oBimPjDmgKfwutn6WzZp6XBfgz95ivPD0qz4COyuJT4w7nKoqAmO61oWvQQNJfP39__zHJTJ2d0GHh3qqUWB_ddiQWmfl6nxzsbO-Pxn4XnsF3URRqXwaRTozELRFIbhko57GzzOQ8iIU0KjeBDp3j0iqVB8C1TiITKWV0oLQWKnxA1gts4yNCc8hNkoUmAKuFzmMdqlAl1iJ6i5mQ3COvUTppN72qtPWcc5b2Iks7kXlksx_J1HQc5y7UxvyKHG-WOU4X_B5X_LvllGP5n2PmbhNwJNNuoqe4RZQAksXKAPZRJ8JKDgBayzxQWeSRl71qpTiIzj2TFVA2VYqrLcIvgXjVIw8XqrasynmTcelUHolXlHClLatfiuOjli2cOQo_BNqP_1GGL8jGeH93kk7eTt8_ITc4gjh3NY7FT8l6fdbAMwRhtX7eTrs_v6oxXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKkYAL_4XwGyQ4cMg2Tuw4OW6XrgqUVcVS1FsU2xNa2CarJkGCE6_Aq_AgPARPwkw2WdiqquDqxH_jseezx_6GsaeBtrFU1nhRZBJP6CD0sjgDD0KtuOXW5kBvh99Mop198epAHqwx2b-FwUZUWFLVOvFpVs9t3jEM8E1ML4_hQzYQhpjDxQV2kbx2RJk_HE3_HK1EuI1oA60FQvkeD0XYOSjPKoTMkqlWzFLL3n8W5Dx9c_IvUzS-xt4vO9HeQPk0aGo9MF9P8Tv-dy-vs6sdOHWHC226wdaguMkuj_qYcLeYmZSfYebuQXFk6KCm8LbQClp32szysgBvSo_6yvlheQLuqCw-NnRIV7kIjN23bQgbNJTuzx-_vn3fzUydHbvDgt6slFifu01kFpn5cpvtj7ffjXa8LkyDR9EUak_6kU6MxK0RyMByUOS5s9zkgR8LaVRufB2SA9MqlfsQaJ1EJlLKaF9pLVS4wdYLbONd5uaQmyQLjQ9WC53HOlShSqxFFBdzIQOHPUPppN00q9LWgx7wtBdZ2onMYZv9aKam4zqnkBuzc3I8X-aYL3g-zvl3ixRk-R8xdLcJOJppN-FT3CpKAMljZQD7qBNhZQAAWsvcV1nksCe9eqU4iOSmyQoomyrFVRdhmEDc6rA7C3VbVkVeZVxClcPiFUVcacvql-LosGUN50Tlh4D73j_K8DG7tPdinO6-nLy-z64EiOXohhyPH7D1-qSBh4jFav2onXm_AVqcM98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Penicillin-Based+Sulfone-Siderophore+Conjugates+for+Restoring+%CE%B2%E2%80%91Lactam+Antibiotic+Efficacy&rft.jtitle=ACS+omega&rft.au=Rodri%CC%81guez%2C+Diana&rft.au=Lence%2C+Emilio&rft.au=Va%CC%81zquez-Ucha%2C+Juan+C.&rft.au=Beceiro%2C+Alejandro&rft.date=2024-06-18&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=9&rft.issue=24&rft.spage=26484&rft.epage=26494&rft_id=info:doi/10.1021%2Facsomega.4c02984&rft.externalDocID=a338566501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon