Suppressed Auger Recombination in “Giant” Nanocrystals Boosts Optical Gain Performance

Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonrad...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 9; no. 10; pp. 3482 - 3488
Main Authors García-Santamaría, Florencio, Chen, Yongfen, Vela, Javier, Schaller, Richard D, Hollingsworth, Jennifer A, Klimov, Victor I
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.10.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency (“blinking”) of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called “giant” nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles.
AbstractList Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency (“blinking”) of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called “giant” nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles.
Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron–hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency (“blinking”) of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called “giant” nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles.
Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ("blinking") of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called "giant" nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles.Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ("blinking") of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called "giant" nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles.
Author García-Santamaría, Florencio
Chen, Yongfen
Hollingsworth, Jennifer A
Klimov, Victor I
Vela, Javier
Schaller, Richard D
Author_xml – sequence: 1
  givenname: Florencio
  surname: García-Santamaría
  fullname: García-Santamaría, Florencio
– sequence: 2
  givenname: Yongfen
  surname: Chen
  fullname: Chen, Yongfen
– sequence: 3
  givenname: Javier
  surname: Vela
  fullname: Vela, Javier
– sequence: 4
  givenname: Richard D
  surname: Schaller
  fullname: Schaller, Richard D
– sequence: 5
  givenname: Jennifer A
  surname: Hollingsworth
  fullname: Hollingsworth, Jennifer A
– sequence: 6
  givenname: Victor I
  surname: Klimov
  fullname: Klimov, Victor I
  email: klimov@lanl.gov
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22069586$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19505082$$D View this record in MEDLINE/PubMed
BookMark eNpt0ctuFiEUB3BiauxFF76AmY0xLj7LZYBhY1Ib_TRprPGycUMYOFNpZmAKjEl3fRB9uT6JaD8_L-kKEn6cA_-zj3ZCDIDQQ4KfEUzJYRgVJqIj7g7aI5zhlVCK7mz3XbuL9nM-xxgrxvE9tEsUxxx3dA99_rDMc4KcwTVHyxmk5j3YOPU-mOJjaHxorq--rb0J5frqe_PWhGjTZS5mzM2LGHPJzelcvDVjszYVv4M0xDSZYOE-ujtUBg826wH69Orlx-PXq5PT9Zvjo5OV4RiXFcMUlGSOCDdQJ4lVIIASZQbp-p7bwRFowRlJq1CCM8lw37ctIdII7np2gJ7f1J2XfgJnIZRkRj0nP5l0qaPx-t-T4L_os_hV005JSdpa4MmmQIoXC-SiJ58tjKMJEJesJWOkFaRVVT76u9W2x-88K3i8ASbXTIZUg_B56yjFQvFOVPf0xtkUc04w_CmF9c-Z6u1Mqz38z1pffk2n_saPt97YvMLYrM_jkkLN_xb3A-NVsn4
CitedBy_id crossref_primary_10_1088_0957_4484_22_42_425202
crossref_primary_10_1016_j_jcis_2013_01_008
crossref_primary_10_1021_acs_jpclett_3c01630
crossref_primary_10_1021_acs_nanolett_4c02077
crossref_primary_10_1021_acs_nanolett_7b03272
crossref_primary_10_1557_mrs_2013_182
crossref_primary_10_1021_jp311975h
crossref_primary_10_1557_mrs_2013_180
crossref_primary_10_1021_jp107531h
crossref_primary_10_1021_acs_jpclett_7b02367
crossref_primary_10_1002_adfm_202103413
crossref_primary_10_1021_nl1028057
crossref_primary_10_1021_nn5031274
crossref_primary_10_1002_aenm_201701432
crossref_primary_10_1021_nl203620f
crossref_primary_10_1021_acs_nanolett_3c02770
crossref_primary_10_1021_acsnano_6b02635
crossref_primary_10_1039_D1RA07556J
crossref_primary_10_1021_acs_nanolett_7b04495
crossref_primary_10_1038_nnano_2016_140
crossref_primary_10_1021_acs_jpclett_3c01627
crossref_primary_10_1088_1361_648X_acf4dc
crossref_primary_10_1016_j_snb_2011_01_055
crossref_primary_10_1021_jp509224n
crossref_primary_10_1039_C5CS00472A
crossref_primary_10_1021_acs_nanolett_3c02788
crossref_primary_10_15625_2525_2518_15778
crossref_primary_10_5757_ASCT_2023_32_1_16
crossref_primary_10_1002_ppsc_202000115
crossref_primary_10_1021_nl403478s
crossref_primary_10_1021_jp3014018
crossref_primary_10_1016_j_mattod_2018_09_002
crossref_primary_10_1021_nl101930z
crossref_primary_10_1021_nl3008659
crossref_primary_10_1021_acs_nanolett_7b03294
crossref_primary_10_1039_C5SC03715H
crossref_primary_10_1002_pssr_201600288
crossref_primary_10_1021_acsnano_0c01752
crossref_primary_10_1016_j_nanoen_2018_11_001
crossref_primary_10_1002_smll_201101740
crossref_primary_10_1021_acsanm_0c03483
crossref_primary_10_1038_nnano_2017_189
crossref_primary_10_1021_acs_jpclett_0c00845
crossref_primary_10_1016_j_ijleo_2021_168198
crossref_primary_10_1021_jz5027163
crossref_primary_10_1039_C7NR00654C
crossref_primary_10_1021_nl400141w
crossref_primary_10_1021_nn503343c
crossref_primary_10_1002_slct_202102450
crossref_primary_10_1002_cphc_201500975
crossref_primary_10_1016_j_pquantelec_2018_05_002
crossref_primary_10_1021_acs_nanolett_9b03442
crossref_primary_10_1103_PhysRevLett_106_187401
crossref_primary_10_1039_D3CC02605A
crossref_primary_10_1039_c3cp51351c
crossref_primary_10_1021_acs_jpclett_6b00622
crossref_primary_10_1038_nnano_2014_213
crossref_primary_10_1021_acsnano_6b03704
crossref_primary_10_1088_1674_1056_ab5fb7
crossref_primary_10_1039_C6SC00192K
crossref_primary_10_1021_acsanm_2c02663
crossref_primary_10_1007_s11051_020_04851_5
crossref_primary_10_1039_c0cp02253e
crossref_primary_10_1007_s41061_016_0060_0
crossref_primary_10_1080_15980316_2017_1313179
crossref_primary_10_1021_acs_jpcc_0c09721
crossref_primary_10_1103_PhysRevB_84_235304
crossref_primary_10_1002_adom_201500670
crossref_primary_10_1002_smll_202311559
crossref_primary_10_1063_1_4776736
crossref_primary_10_1021_jacs_3c10281
crossref_primary_10_1039_C9NR06110J
crossref_primary_10_1016_j_jphotochemrev_2018_01_004
crossref_primary_10_34133_2021_3245731
crossref_primary_10_1088_0957_4484_23_1_015201
crossref_primary_10_1103_PhysRevB_82_081306
crossref_primary_10_1021_nn504235w
crossref_primary_10_1021_acs_jpcc_5b09904
crossref_primary_10_1002_adma_202308979
crossref_primary_10_1021_acs_jpclett_1c00450
crossref_primary_10_1016_j_mne_2022_100167
crossref_primary_10_1002_adma_201403620
crossref_primary_10_1063_5_0194567
crossref_primary_10_1021_acs_nanolett_1c02284
crossref_primary_10_1109_JSTQE_2017_2713638
crossref_primary_10_1093_nsr_nwae311
crossref_primary_10_1021_cm201513a
crossref_primary_10_1038_s41566_021_00827_6
crossref_primary_10_1039_c2cp40439g
crossref_primary_10_1039_C4NR01538J
crossref_primary_10_1038_s41565_024_01812_0
crossref_primary_10_1021_acs_nanolett_5b01849
crossref_primary_10_1021_acsami_6b05587
crossref_primary_10_1021_acs_jpclett_6b00430
crossref_primary_10_1088_1748_0221_11_10_P10015
crossref_primary_10_1146_annurev_chembioeng_062011_081040
crossref_primary_10_1021_jacs_0c06256
crossref_primary_10_1002_adma_201801370
crossref_primary_10_1021_acsami_7b01669
crossref_primary_10_1021_nn100698u
crossref_primary_10_1021_nn2036957
crossref_primary_10_1063_5_0252275
crossref_primary_10_1021_acs_jpclett_9b02369
crossref_primary_10_1021_acs_chemrev_5b00012
crossref_primary_10_1021_acs_jpcc_5b08913
crossref_primary_10_1021_nn505793y
crossref_primary_10_1039_C4TC00806E
crossref_primary_10_1039_C6RA18081G
crossref_primary_10_1016_j_surfin_2025_106127
crossref_primary_10_1364_PRJ_525231
crossref_primary_10_1002_j_2168_0159_2014_tb00037_x
crossref_primary_10_1021_jacs_5b10856
crossref_primary_10_1021_jp4046808
crossref_primary_10_1038_s41598_018_35768_8
crossref_primary_10_1002_lpor_201500063
crossref_primary_10_1021_acsphotonics_5b00496
crossref_primary_10_1021_cm3026957
crossref_primary_10_1039_D4NR04692G
crossref_primary_10_1002_adom_201901463
crossref_primary_10_1021_ja303698e
crossref_primary_10_1021_acs_jpclett_1c01554
crossref_primary_10_1515_nanoph_2016_0009
crossref_primary_10_1002_aenm_202003233
crossref_primary_10_1038_s41598_018_37676_3
crossref_primary_10_1002_adom_202402739
crossref_primary_10_1016_j_orgel_2021_106086
crossref_primary_10_3390_ijms131012487
crossref_primary_10_1021_nl403289w
crossref_primary_10_1039_D3NR04065H
crossref_primary_10_1021_acs_chemrev_2c00721
crossref_primary_10_1063_1674_0068_30_cjcp1711206
crossref_primary_10_1039_C6TC03148J
crossref_primary_10_1016_j_orgel_2022_106593
crossref_primary_10_1002_lpor_202402269
crossref_primary_10_1016_j_cej_2023_142027
crossref_primary_10_1038_srep32662
crossref_primary_10_1021_nl501026r
crossref_primary_10_1038_ncomms3376
crossref_primary_10_1103_PhysRevLett_117_017401
crossref_primary_10_1021_acs_jpcc_8b01234
crossref_primary_10_1021_acs_nanolett_7b01705
crossref_primary_10_1021_acs_jpclett_5b00143
crossref_primary_10_1002_cnma_201900218
crossref_primary_10_1103_PhysRevLett_110_117401
crossref_primary_10_1364_OE_21_007419
crossref_primary_10_1021_nl3013727
crossref_primary_10_1364_OE_23_029921
crossref_primary_10_1021_acsphotonics_6b00452
crossref_primary_10_1016_j_cej_2021_131159
crossref_primary_10_1021_acs_jpclett_8b01666
crossref_primary_10_1021_acs_chemmater_2c03278
crossref_primary_10_1021_acs_jpcc_7b12629
crossref_primary_10_1038_nmat5011
crossref_primary_10_1002_anie_201708510
crossref_primary_10_1039_D1NR04781G
crossref_primary_10_26599_NR_2025_94907162
crossref_primary_10_1002_adma_201301947
crossref_primary_10_1002_adom_202201965
crossref_primary_10_1021_acsphotonics_6b00327
crossref_primary_10_1038_ncomms1281
crossref_primary_10_1039_C6CC08742F
crossref_primary_10_1021_acsami_0c15161
crossref_primary_10_1021_acs_chemrev_2c00865
crossref_primary_10_1039_C7NR04296E
crossref_primary_10_1021_acsphotonics_2c01394
crossref_primary_10_1021_acs_chemrev_6b00169
crossref_primary_10_1021_jacs_6b04888
crossref_primary_10_1038_nmat5000
crossref_primary_10_1021_acs_chemmater_0c01275
crossref_primary_10_1016_j_nanoen_2016_10_029
crossref_primary_10_1021_jz200510f
crossref_primary_10_1039_C4TC00232F
crossref_primary_10_3390_ma9080672
crossref_primary_10_1021_acs_chemrev_3c00742
crossref_primary_10_1021_acs_jpcc_5b02420
crossref_primary_10_1021_ja212032q
crossref_primary_10_1021_jacs_0c06073
crossref_primary_10_1039_c0sc00334d
crossref_primary_10_1002_adma_201203171
crossref_primary_10_1063_1_3280386
crossref_primary_10_1021_nn301182h
crossref_primary_10_1002_adma_201403237
crossref_primary_10_1021_acs_jpcc_8b03502
crossref_primary_10_1063_5_0036676
crossref_primary_10_1039_C5CS00285K
crossref_primary_10_1021_acsnano_5b05876
crossref_primary_10_1088_0957_4484_24_50_505714
crossref_primary_10_1002_smsc_202300092
crossref_primary_10_1021_acs_jpclett_6b02465
crossref_primary_10_1021_acs_jpclett_3c00853
crossref_primary_10_1021_acs_jpca_8b09758
crossref_primary_10_1039_D0NR03582C
crossref_primary_10_1021_acsphotonics_5b00626
crossref_primary_10_1103_PhysRevB_93_115416
crossref_primary_10_1002_adom_202302004
crossref_primary_10_1021_jp210949v
crossref_primary_10_1038_ncomms5506
crossref_primary_10_1002_jccs_201000075
crossref_primary_10_1146_annurev_conmatphys_031113_133900
crossref_primary_10_1021_acs_nanolett_2c04498
crossref_primary_10_1021_acs_nanolett_8b03715
crossref_primary_10_1021_acs_jpcc_7b11684
crossref_primary_10_1021_acs_nanolett_3c04361
crossref_primary_10_1002_adom_201400528
crossref_primary_10_1021_la2042229
crossref_primary_10_1021_acsphotonics_7b00984
crossref_primary_10_1039_D1CE00631B
crossref_primary_10_1039_C8CP00952J
crossref_primary_10_1016_j_mssp_2022_107160
crossref_primary_10_1021_acsnano_8b02493
crossref_primary_10_1021_ja202752s
crossref_primary_10_1021_nl3045316
crossref_primary_10_1002_pssa_201000374
crossref_primary_10_1038_ncomms1357
crossref_primary_10_1038_s41467_018_03971_w
crossref_primary_10_1063_1_4916827
crossref_primary_10_1038_nmat5056
crossref_primary_10_1021_jp312231k
crossref_primary_10_1002_adma_201202067
crossref_primary_10_1002_smll_201302896
crossref_primary_10_1021_jp1060045
crossref_primary_10_1039_c4tc00280f
crossref_primary_10_1021_nl903592h
crossref_primary_10_1002_adom_201901615
crossref_primary_10_1038_nenergy_2016_157
crossref_primary_10_1002_advs_202101125
crossref_primary_10_1103_PhysRevB_82_125324
crossref_primary_10_1109_JSTQE_2017_2737882
crossref_primary_10_1021_acs_jpclett_8b00248
crossref_primary_10_1038_s41467_020_15016_2
crossref_primary_10_1021_nn202713x
crossref_primary_10_1021_acsenergylett_2c00153
crossref_primary_10_1021_acs_jpclett_3c01809
crossref_primary_10_1557_opl_2012_425
crossref_primary_10_1016_j_chip_2023_100073
crossref_primary_10_1021_acs_nanolett_7b03703
crossref_primary_10_1021_jp212158a
crossref_primary_10_1021_acs_jpcc_6b10146
crossref_primary_10_1021_acs_chemmater_7b00968
crossref_primary_10_1021_jp400688g
crossref_primary_10_1557_mrs_2013_183
crossref_primary_10_1149_1_3610644
crossref_primary_10_1021_acs_jpclett_8b03549
crossref_primary_10_1364_PRJ_3_000200
crossref_primary_10_1039_c3nr06158b
crossref_primary_10_1016_j_optlastec_2020_106246
crossref_primary_10_1021_acs_jpclett_7b02805
crossref_primary_10_1002_lpor_201200010
crossref_primary_10_1016_j_pquantelec_2015_12_001
crossref_primary_10_1016_j_physe_2014_05_029
crossref_primary_10_1021_cm304161d
crossref_primary_10_1002_adfm_201400349
crossref_primary_10_1021_acsphotonics_0c00812
crossref_primary_10_1063_1_3684981
crossref_primary_10_3402_nano_v2i0_5895
crossref_primary_10_1021_jp311124c
crossref_primary_10_1021_acsnano_1c10404
crossref_primary_10_1038_s41563_018_0254_7
crossref_primary_10_1002_advs_201900412
crossref_primary_10_1002_solr_202200299
crossref_primary_10_1021_nn2005969
crossref_primary_10_1021_acs_jpcc_4c07446
crossref_primary_10_1021_nn9010158
crossref_primary_10_1021_acsnano_8b04435
crossref_primary_10_1021_nn507310f
crossref_primary_10_1021_nl1004652
crossref_primary_10_1039_C0CS00055H
crossref_primary_10_1002_adom_201801072
crossref_primary_10_1021_ja102716p
crossref_primary_10_1007_s11433_020_1550_4
crossref_primary_10_1021_acs_jpcc_1c02029
crossref_primary_10_1039_c3ta10255f
crossref_primary_10_1002_adma_201200121
crossref_primary_10_1021_nn303396c
crossref_primary_10_1021_cr500280t
crossref_primary_10_1088_1361_6463_ac24c7
crossref_primary_10_1002_aenm_202400148
crossref_primary_10_1002_cnma_201900025
crossref_primary_10_1021_acs_chemmater_0c01788
crossref_primary_10_1021_ja210312s
crossref_primary_10_1016_j_jcis_2019_03_075
crossref_primary_10_1103_PhysRevB_88_035302
crossref_primary_10_1038_ncomms15083
crossref_primary_10_1016_j_mseb_2023_116540
crossref_primary_10_1103_PhysRevLett_110_180404
crossref_primary_10_1021_nn901808f
crossref_primary_10_1021_nn506223h
crossref_primary_10_1088_1361_6528_ab746c
crossref_primary_10_1039_C7NR06272A
crossref_primary_10_1021_acs_chemrev_0c00931
crossref_primary_10_1021_nl302453x
crossref_primary_10_1021_nn305259g
crossref_primary_10_1039_C4NR07395A
crossref_primary_10_1021_acs_nanolett_1c00600
crossref_primary_10_1021_acsphotonics_6b00951
crossref_primary_10_1002_adma_201305125
crossref_primary_10_1038_s41578_020_00274_9
crossref_primary_10_1038_s41563_021_01119_8
crossref_primary_10_1021_acs_jpcc_5b11651
crossref_primary_10_1021_acs_jpclett_7b00547
crossref_primary_10_1515_zpch_2016_0882
crossref_primary_10_1002_chem_201905807
crossref_primary_10_1039_D2CP04270C
crossref_primary_10_1021_nl201052r
crossref_primary_10_1021_acs_nanolett_5b02595
crossref_primary_10_1021_nn4002825
crossref_primary_10_1126_science_aaz8541
crossref_primary_10_1039_D2NR00761D
crossref_primary_10_1021_acs_jpclett_8b03211
crossref_primary_10_1002_adma_201500418
crossref_primary_10_1063_5_0063634
crossref_primary_10_1021_jz501640f
crossref_primary_10_1103_PhysRevB_91_085416
crossref_primary_10_1021_acs_nanolett_2c03564
crossref_primary_10_1039_D0TC00198H
crossref_primary_10_1002_jbio_201000058
crossref_primary_10_1021_acs_nanolett_2c03563
crossref_primary_10_1021_acs_nanolett_7b02438
crossref_primary_10_1021_acsphotonics_0c00505
crossref_primary_10_1002_smll_202303247
crossref_primary_10_1002_adfm_201908762
crossref_primary_10_1021_jp208863e
crossref_primary_10_1021_nn402022z
crossref_primary_10_1002_adfm_202106108
crossref_primary_10_3390_nano12101645
crossref_primary_10_1021_acsnano_0c08903
crossref_primary_10_1002_adom_202201378
crossref_primary_10_1016_j_jlumin_2021_118463
crossref_primary_10_1002_cnma_202300629
crossref_primary_10_1016_j_ccr_2013_10_014
crossref_primary_10_1021_acs_jpclett_0c01460
crossref_primary_10_1016_j_nanoen_2016_04_055
crossref_primary_10_1021_nn302371q
crossref_primary_10_1021_jz401958u
crossref_primary_10_1063_1_3533401
crossref_primary_10_1021_acsnano_8b07896
crossref_primary_10_1021_nn403594j
crossref_primary_10_1039_C8TC04028A
crossref_primary_10_1021_acsnano_9b09147
crossref_primary_10_1016_j_cplett_2014_07_078
crossref_primary_10_1103_PhysRevB_84_195133
crossref_primary_10_1021_acsnano_7b03975
crossref_primary_10_1038_s41563_024_02048_y
crossref_primary_10_1002_advs_201800656
crossref_primary_10_1038_s41598_022_11882_6
crossref_primary_10_1063_5_0201731
crossref_primary_10_1021_ct400485s
crossref_primary_10_1021_ja5032634
crossref_primary_10_1063_1_4749276
crossref_primary_10_1039_c4sc00436a
crossref_primary_10_1021_jz200254n
crossref_primary_10_1021_jp109608t
crossref_primary_10_1021_acs_chemmater_9b00136
crossref_primary_10_1021_acsphotonics_9b00068
crossref_primary_10_1021_acs_nanolett_6b00066
crossref_primary_10_1364_OSAC_2_002755
crossref_primary_10_1038_s41427_019_0141_y
crossref_primary_10_1039_D3NR04203K
crossref_primary_10_1364_OME_7_001547
crossref_primary_10_1021_nl2025272
crossref_primary_10_1021_acs_nanolett_6b00060
crossref_primary_10_1039_D2NR00305H
crossref_primary_10_1021_acsphotonics_4c01659
crossref_primary_10_1021_acsnano_4c06961
crossref_primary_10_1002_aenm_202101693
crossref_primary_10_1021_acs_jpclett_4c00123
crossref_primary_10_1021_nn402870e
crossref_primary_10_1021_jp207621s
crossref_primary_10_1039_C9RA02027F
crossref_primary_10_1021_jz500726h
crossref_primary_10_1063_5_0225907
crossref_primary_10_1021_nn204008q
crossref_primary_10_1021_acsnano_2c07519
crossref_primary_10_1039_c2ee22679k
crossref_primary_10_1016_j_nantod_2016_04_005
crossref_primary_10_1039_D3CC02091F
crossref_primary_10_1002_adma_202312250
crossref_primary_10_3402_nano_v1i0_5202
crossref_primary_10_1021_acs_nanolett_2c02982
crossref_primary_10_1021_jp211325x
crossref_primary_10_1016_j_ccr_2013_09_005
crossref_primary_10_1021_nn5023473
crossref_primary_10_1002_adma_201503573
crossref_primary_10_1021_nn204447e
crossref_primary_10_1021_acsphotonics_4c01516
crossref_primary_10_1021_jz302100r
crossref_primary_10_1021_acs_nanolett_9b05342
crossref_primary_10_1002_adom_201600209
crossref_primary_10_1021_jz100321z
crossref_primary_10_1038_ncomms9210
crossref_primary_10_1038_ncomms9694
crossref_primary_10_1021_acsnano_5b02509
crossref_primary_10_1038_lsa_2015_109
crossref_primary_10_1039_c2sc00561a
crossref_primary_10_1002_ange_201708510
crossref_primary_10_1021_acsnano_7b04079
crossref_primary_10_1021_acs_nanolett_6b04577
crossref_primary_10_1021_nl500775p
crossref_primary_10_1021_acs_jpcc_8b11099
crossref_primary_10_1021_acs_nanolett_7b04203
crossref_primary_10_1021_jp505530k
crossref_primary_10_1021_acs_jpcc_8b07787
crossref_primary_10_1021_acs_nanolett_2c01791
crossref_primary_10_1021_acs_jpcc_3c01441
crossref_primary_10_1039_c0cp02688c
crossref_primary_10_1021_acsphotonics_4c01617
crossref_primary_10_1126_sciadv_aaq0208
crossref_primary_10_1021_jp1063098
crossref_primary_10_1103_PhysRevB_89_035303
crossref_primary_10_1021_acs_jpclett_9b03051
crossref_primary_10_1021_jp5118932
crossref_primary_10_1021_acs_jpcc_9b07889
crossref_primary_10_1021_nl400117h
crossref_primary_10_1364_OME_495483
crossref_primary_10_1021_nn502792m
crossref_primary_10_1021_acsnano_6b08142
crossref_primary_10_1103_PhysRevB_86_205311
crossref_primary_10_1038_ncomms1916
crossref_primary_10_1021_acs_nanolett_0c04740
crossref_primary_10_1021_acsanm_3c01374
crossref_primary_10_1063_1_5126423
crossref_primary_10_1021_acs_chemmater_5b03588
crossref_primary_10_1021_jp203587x
crossref_primary_10_1002_smtd_201900196
crossref_primary_10_1166_nnl_2017_2581
crossref_primary_10_1016_j_physe_2019_01_019
crossref_primary_10_1021_nn402597p
crossref_primary_10_1021_acsnano_5b01859
crossref_primary_10_1002_chem_201801853
crossref_primary_10_1002_smll_201402527
crossref_primary_10_1126_sciadv_aav3140
crossref_primary_10_1002_aenm_202403574
crossref_primary_10_1021_acsphotonics_0c00567
crossref_primary_10_1021_jz402211m
crossref_primary_10_1007_s11082_020_02421_6
crossref_primary_10_1021_ph500109h
crossref_primary_10_1039_C4NR07581A
crossref_primary_10_1051_epjap_2016160151
crossref_primary_10_1039_C9CC00162J
Cites_doi 10.1038/nmat2222
10.1103/PhysRevLett.84.334
10.1007/978-1-4757-3677-9_2
10.1063/1.2766957
10.1038/nature08072
10.1063/1.1795368
10.1103/PhysRevLett.102.197401
10.1103/PhysRevB.78.085434
10.1016/S1386-9477(02)00374-0
10.1021/nl0622404
10.1103/PhysRevB.75.035330
10.1103/PhysRevLett.78.1110
10.1103/PhysRevLett.102.136801
10.1021/jp9530562
10.1021/jp0738659
10.1063/1.1586460
10.1103/PhysRevLett.91.227401
10.1063/1.2168032
10.1021/ja711379k
10.1038/nature05839
10.1021/ar800112v
10.1016/0022-2313(90)90007-X
10.1201/9780203913260
10.1126/science.287.5455.1011
10.1126/science.290.5490.314
10.1038/383802a0
10.1103/PhysRevLett.80.4991
10.1103/PhysRevLett.91.056404
10.1126/science.271.5251.933
10.1103/PhysRevB.77.195324
10.1103/PhysRevLett.85.1694
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 American Chemical Society
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
5PM
DOI 10.1021/nl901681d
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 3488
ExternalDocumentID PMC2897714
19505082
22069586
10_1021_nl901681d
h54776674
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 1R01GM084702-01
– fundername: NIGMS NIH HHS
  grantid: R01 GM084702
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
6P2
IQODW
NPM
7X8
5PM
ID FETCH-LOGICAL-a500t-302e973d16df2d71c9e6e219af7dbb5cfd1e4eda7216d9653730bb44117a65db3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Aug 21 14:13:11 EDT 2025
Sun Aug 24 03:55:58 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
Mon Jul 21 09:12:19 EDT 2025
Tue Jul 01 00:42:33 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Charge carriers
Semiconductor materials
Non radiative recombination
Light emitting diodes
Optoelectronic devices
Nanostructures
Cadmium sulfide
Photovoltaic cell
Cadmium selenides
Nanoparticles
Lifetime
Excitons
Photovoltaic cells
Bandwidth
Nanostructured materials
Nanocrystal
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a500t-302e973d16df2d71c9e6e219af7dbb5cfd1e4eda7216d9653730bb44117a65db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2897714
PMID 19505082
PQID 733146149
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2897714
proquest_miscellaneous_733146149
pubmed_primary_19505082
pascalfrancis_primary_22069586
crossref_primary_10_1021_nl901681d
crossref_citationtrail_10_1021_nl901681d
acs_journals_10_1021_nl901681d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Anikeeva P. O. (ref6/cit6) 2008; 78
Hines M. A. (ref21/cit21) 1996; 100
Wang X. (ref16/cit16) 2009; 459
Nozik A. J. (ref5/cit5) 2002; 14
Htoon H. (ref30/cit30) 2003; 82
McGuire J. A. (ref22/cit22) 2008; 41
Klimov V. I. (ref25/cit25) 2007; 447
Htoon H. (ref12/cit12) 2003; 91
Kegel I. (ref27/cit27) 2000; 85
Klimov V. I. (ref11/cit11) 2008; 77
Osovsky R. (ref15/cit15) 2009; 102
Mahler B. (ref19/cit19) 2008; 7
Alivisatos A. P. (ref1/cit1) 1996; 271
Nanda J. (ref13/cit13) 2007; 111
Wang L. W. (ref10/cit10) 2003; 91
Pandey A. (ref29/cit29) 2007; 127
Klimov V. I. (ref4/cit4) 2000; 290
Efros A. L. (ref17/cit17) 2003
Chen Y. (ref18/cit18) 2008; 130
Liu N. (ref28/cit28) 2000; 84
Nirmal M. (ref7/cit7) 1996; 383
Nanda J. (ref14/cit14) 2006; 99
Chan Y. (ref31/cit31) 2004; 85
Efros A. L. (ref8/cit8) 1997; 78
Klimov V. I. (ref3/cit3) 2000; 287
Spinicelli P. (ref20/cit20) 2009; 102
Efros A. L. (ref32/cit32) 1982; 16
Oron D. (ref23/cit23) 2007; 75
Klimov V. I. (ref2/cit2) 2003
Chepic D. I. (ref9/cit9) 1990; 47
Piryatinski A. (ref24/cit24) 2007; 7
Dekel E. (ref26/cit26) 1998; 80
References_xml – volume: 7
  start-page: 659
  year: 2008
  ident: ref19/cit19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2222
– volume: 84
  start-page: 334
  year: 2000
  ident: ref28/cit28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.334
– start-page: 52
  volume-title: Semiconductor nanocrystals
  year: 2003
  ident: ref17/cit17
  doi: 10.1007/978-1-4757-3677-9_2
– volume: 127
  start-page: 104710
  year: 2007
  ident: ref29/cit29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2766957
– volume: 459
  start-page: 686
  year: 2009
  ident: ref16/cit16
  publication-title: Nature
  doi: 10.1038/nature08072
– volume: 85
  start-page: 2460
  year: 2004
  ident: ref31/cit31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1795368
– volume: 102
  start-page: 197401
  year: 2009
  ident: ref15/cit15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.197401
– volume: 78
  start-page: 085434
  year: 2008
  ident: ref6/cit6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.085434
– volume: 14
  start-page: 115
  year: 2002
  ident: ref5/cit5
  publication-title: Physica E
  doi: 10.1016/S1386-9477(02)00374-0
– volume: 7
  start-page: 108
  year: 2007
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl0622404
– volume: 75
  start-page: 035330
  year: 2007
  ident: ref23/cit23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.035330
– volume: 78
  start-page: 1110
  year: 1997
  ident: ref8/cit8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1110
– volume: 102
  start-page: 136801
  year: 2009
  ident: ref20/cit20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.136801
– volume: 100
  start-page: 468
  year: 1996
  ident: ref21/cit21
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9530562
– volume: 16
  start-page: 772
  year: 1982
  ident: ref32/cit32
  publication-title: Sov. Phys. Semicond.
– volume: 111
  start-page: 15382
  year: 2007
  ident: ref13/cit13
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0738659
– volume: 82
  start-page: 4776
  year: 2003
  ident: ref30/cit30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1586460
– volume: 91
  start-page: 227401
  year: 2003
  ident: ref12/cit12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.227401
– volume: 99
  start-page: 034309
  year: 2006
  ident: ref14/cit14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2168032
– volume: 130
  start-page: 5026
  year: 2008
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja711379k
– volume: 447
  start-page: 441
  year: 2007
  ident: ref25/cit25
  publication-title: Nature
  doi: 10.1038/nature05839
– volume: 41
  start-page: 1810
  year: 2008
  ident: ref22/cit22
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800112v
– volume: 47
  start-page: 113
  year: 1990
  ident: ref9/cit9
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(90)90007-X
– volume-title: Semiconductor and metal nanocrystals
  year: 2003
  ident: ref2/cit2
  doi: 10.1201/9780203913260
– volume: 287
  start-page: 1011
  year: 2000
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.287.5455.1011
– volume: 290
  start-page: 314
  year: 2000
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.290.5490.314
– volume: 383
  start-page: 802
  year: 1996
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/383802a0
– volume: 80
  start-page: 4991
  year: 1998
  ident: ref26/cit26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4991
– volume: 91
  start-page: 056404
  year: 2003
  ident: ref10/cit10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.056404
– volume: 271
  start-page: 933
  year: 1996
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– volume: 77
  start-page: 195324
  year: 2008
  ident: ref11/cit11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.195324
– volume: 85
  start-page: 1694
  year: 2000
  ident: ref27/cit27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1694
SSID ssj0009350
Score 2.503715
Snippet Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination...
Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination...
Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron–hole (exciton) recombination...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3482
SubjectTerms Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Electron states
Electronics
Exact sciences and technology
Excitons and related phenomena
Materials science
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Optoelectronic devices
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Title Suppressed Auger Recombination in “Giant” Nanocrystals Boosts Optical Gain Performance
URI http://dx.doi.org/10.1021/nl901681d
https://www.ncbi.nlm.nih.gov/pubmed/19505082
https://www.proquest.com/docview/733146149
https://pubmed.ncbi.nlm.nih.gov/PMC2897714
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6V9AJCpQUKBhqtgAMXt_Fr13sMoU1UiYcEkSIu1q533UYNdhQ7h3LqD2n_XH8Js-s82wBXeyzLOzM733h2vgF4r1s6a3GdukqxzA0zIVxpGnyyOBCGvCWV0jQnf_5Ce_3wdBANtuDdXyr4vneUjzBkUYRVD2Dbp-i8Bv90vi-ZdQM7hhU9F_MgHodz-qDVR03oScu10PN4LEpchaweX7EJX949JrkSd06ewKd590593OTicFrJw_T3fTLHf33SLuzMcCdp14ayB1s6fwqPVtgIn8FPM-HTcokr0p6e6QkxuekvTJ2t9sgwJ7dX1120p-r26obgvlykk0tEl6OSfCyKsirJ17H9NU66AoW_LXsSnkP_5PhHp-fORi-4ZkJC5QYtX3MWKI-qzFfMS7mmGjc3kTElZZRmytOhVsJQ_yhOowA3CikRWnlM0EjJYB8aeZHrl0CUIYD3lFRMa0OuJWJEbQLzuAAv8jh2oIm6SWauUya2Ku57yWKRHPgwV1uSzojLzfyM0SbRtwvRcc3WsUmouab7haTvtyiPYuoAmRtDgs5mKigi18W0TMyAyxABDXfgRW0by9dwxJKIpxxga1azEDA83ut38uG55fPGnJcxL3z1v4V4DQ9tLcseJXwDjWoy1QcIiSrZtC7xB13dCjs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619NAi1DeQ0m6tqgcuoZun4-OCCtsWKBIgIS6RHTuAWJLVOnuAEz8E_hy_hLGTfaGV2msyeY1n7G8ynm8Avqu2yttMZa6UNHfDnHNXmAKfPAm4IW_JhDDFyXv7cfc4_H0SnTQ0OaYWBl9C4520TeJP2AW8H0UPV64Y0dVzeIEgxDfW3Nk6nBDsBrYbKzowhkMsCUcsQtOXmhUo0zMr0FKfa1RGXnexmAczn-6WnFp-tt_UfYzsi9tdJ5cbw0psZDdPOB3_78vewusGhZJObTbv4Jkq3sPiFDfhBzg1_T4ts7gkneGZGhATqV5hIG3HklwU5OH2bgetq3q4vSc4S5fZ4BqxZk-TzbLUlSZ_-_ZHOdnhKHwwqVD4CMfbP4-2um7TiME1_RIqN2j7itFAerHMfUm9jKlY4VTHcyqFiLJceipUkhsiIMniKMBpQwgEWh7lcSRFsAwLRVmoVSDS0MF7UkiqlKHa4gliOI5RXYAHWZI40EIdpY0j6dTmyH0vHSvJgfXR6KVZQ2Nuumn05ol-G4v2a-6OeUKtGRMYS_p-O2ZREjtARjaRouuZfAovVDnUqWl3GSK8YQ6s1CYyeQxDZInoygE6YzxjAcPqPXumuDi37N4YAVPqhZ_-pYiv8LJ7tLeb7v7a_7MGr2yWy24y_AwL1WCoviBYqkTLeskjRN8SnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkRAI8WyLeYQV4sDFJX6ufQyFtLzaSlCp4mLtenehIrWjrHOAU38I_Ln-EmY2jpNUkeBqj1-zM7vfeHa-AXih-9r0c136SnHjx0YIX1KBj8kiQeQtpZRUnPzpIN0_jt-fJCdtoEi1MPgSFu9kXRKfvHqsTMswELyqRrh6pYiwrsI1SteRRQ92Py9IdiPXkRWdGEOiPIvnTELLl9IqVNqVVejWWFhUiJl1slgHNS_vmFxagoZ34LB7ebfz5MfOtJE75a9LvI7__3V34XaLRtlgZj734Iqu7sPNJY7CB_CV-n46hnHFBtNvesIoYj3DgNqNKTut2MX57z20subi_A_D2bouJz8Rc44se13XtrHscOx-mLM9gcJHi0qFTTgevv2yu--3DRl86pvQ-FE_1DmPVJAqEyoelLlONU55wnAlZVIaFehYK0GEQCpPkwinDykRcAVcpImS0RZsVHWlHwJTRAsfKKm41kS5JTLEcgKjuwgP5lnmQQ_1VLQOZQuXKw-DolOSBy_nI1iULZ05ddUYrRN93omOZxwe64R6K2bQSYZhP82TLPWAze2iQBekvIqodD21BbW9jBHm5B5sz8xk8ZgcESaiLA_4igF1AsTuvXqmOv3uWL4xEuY8iB_9SxHP4PrRm2Hx8d3Bh8dwwyW73F7DJ7DRTKb6KWKmRvaco_wFBpsVHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressed+Auger+Recombination+in+Giant+Nanocrystals+Boosts+Optical+Gain+Performance&rft.jtitle=Nano+letters&rft.au=GARCIA-SANTAMARIA%2C+Florencio&rft.au=YONGFEN+CHEN&rft.au=VELA%2C+Javier&rft.au=SCHALLER%2C+Richard+D&rft.date=2009-10-01&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=9&rft.issue=10&rft.spage=3482&rft.epage=3488&rft_id=info:doi/10.1021%2Fnl901681d&rft.externalDBID=n%2Fa&rft.externalDocID=22069586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon