Suppressed Auger Recombination in “Giant” Nanocrystals Boosts Optical Gain Performance
Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonrad...
Saved in:
Published in | Nano letters Vol. 9; no. 10; pp. 3482 - 3488 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.10.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency (“blinking”) of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called “giant” nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles. |
---|---|
AbstractList | Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency (“blinking”) of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called “giant” nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles. Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron–hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency (“blinking”) of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called “giant” nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles. Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ("blinking") of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called "giant" nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles.Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ("blinking") of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called "giant" nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles. |
Author | García-Santamaría, Florencio Chen, Yongfen Hollingsworth, Jennifer A Klimov, Victor I Vela, Javier Schaller, Richard D |
Author_xml | – sequence: 1 givenname: Florencio surname: García-Santamaría fullname: García-Santamaría, Florencio – sequence: 2 givenname: Yongfen surname: Chen fullname: Chen, Yongfen – sequence: 3 givenname: Javier surname: Vela fullname: Vela, Javier – sequence: 4 givenname: Richard D surname: Schaller fullname: Schaller, Richard D – sequence: 5 givenname: Jennifer A surname: Hollingsworth fullname: Hollingsworth, Jennifer A – sequence: 6 givenname: Victor I surname: Klimov fullname: Klimov, Victor I email: klimov@lanl.gov |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22069586$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19505082$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0ctuFiEUB3BiauxFF76AmY0xLj7LZYBhY1Ib_TRprPGycUMYOFNpZmAKjEl3fRB9uT6JaD8_L-kKEn6cA_-zj3ZCDIDQQ4KfEUzJYRgVJqIj7g7aI5zhlVCK7mz3XbuL9nM-xxgrxvE9tEsUxxx3dA99_rDMc4KcwTVHyxmk5j3YOPU-mOJjaHxorq--rb0J5frqe_PWhGjTZS5mzM2LGHPJzelcvDVjszYVv4M0xDSZYOE-ujtUBg826wH69Orlx-PXq5PT9Zvjo5OV4RiXFcMUlGSOCDdQJ4lVIIASZQbp-p7bwRFowRlJq1CCM8lw37ctIdII7np2gJ7f1J2XfgJnIZRkRj0nP5l0qaPx-t-T4L_os_hV005JSdpa4MmmQIoXC-SiJ58tjKMJEJesJWOkFaRVVT76u9W2x-88K3i8ASbXTIZUg_B56yjFQvFOVPf0xtkUc04w_CmF9c-Z6u1Mqz38z1pffk2n_saPt97YvMLYrM_jkkLN_xb3A-NVsn4 |
CitedBy_id | crossref_primary_10_1088_0957_4484_22_42_425202 crossref_primary_10_1016_j_jcis_2013_01_008 crossref_primary_10_1021_acs_jpclett_3c01630 crossref_primary_10_1021_acs_nanolett_4c02077 crossref_primary_10_1021_acs_nanolett_7b03272 crossref_primary_10_1557_mrs_2013_182 crossref_primary_10_1021_jp311975h crossref_primary_10_1557_mrs_2013_180 crossref_primary_10_1021_jp107531h crossref_primary_10_1021_acs_jpclett_7b02367 crossref_primary_10_1002_adfm_202103413 crossref_primary_10_1021_nl1028057 crossref_primary_10_1021_nn5031274 crossref_primary_10_1002_aenm_201701432 crossref_primary_10_1021_nl203620f crossref_primary_10_1021_acs_nanolett_3c02770 crossref_primary_10_1021_acsnano_6b02635 crossref_primary_10_1039_D1RA07556J crossref_primary_10_1021_acs_nanolett_7b04495 crossref_primary_10_1038_nnano_2016_140 crossref_primary_10_1021_acs_jpclett_3c01627 crossref_primary_10_1088_1361_648X_acf4dc crossref_primary_10_1016_j_snb_2011_01_055 crossref_primary_10_1021_jp509224n crossref_primary_10_1039_C5CS00472A crossref_primary_10_1021_acs_nanolett_3c02788 crossref_primary_10_15625_2525_2518_15778 crossref_primary_10_5757_ASCT_2023_32_1_16 crossref_primary_10_1002_ppsc_202000115 crossref_primary_10_1021_nl403478s crossref_primary_10_1021_jp3014018 crossref_primary_10_1016_j_mattod_2018_09_002 crossref_primary_10_1021_nl101930z crossref_primary_10_1021_nl3008659 crossref_primary_10_1021_acs_nanolett_7b03294 crossref_primary_10_1039_C5SC03715H crossref_primary_10_1002_pssr_201600288 crossref_primary_10_1021_acsnano_0c01752 crossref_primary_10_1016_j_nanoen_2018_11_001 crossref_primary_10_1002_smll_201101740 crossref_primary_10_1021_acsanm_0c03483 crossref_primary_10_1038_nnano_2017_189 crossref_primary_10_1021_acs_jpclett_0c00845 crossref_primary_10_1016_j_ijleo_2021_168198 crossref_primary_10_1021_jz5027163 crossref_primary_10_1039_C7NR00654C crossref_primary_10_1021_nl400141w crossref_primary_10_1021_nn503343c crossref_primary_10_1002_slct_202102450 crossref_primary_10_1002_cphc_201500975 crossref_primary_10_1016_j_pquantelec_2018_05_002 crossref_primary_10_1021_acs_nanolett_9b03442 crossref_primary_10_1103_PhysRevLett_106_187401 crossref_primary_10_1039_D3CC02605A crossref_primary_10_1039_c3cp51351c crossref_primary_10_1021_acs_jpclett_6b00622 crossref_primary_10_1038_nnano_2014_213 crossref_primary_10_1021_acsnano_6b03704 crossref_primary_10_1088_1674_1056_ab5fb7 crossref_primary_10_1039_C6SC00192K crossref_primary_10_1021_acsanm_2c02663 crossref_primary_10_1007_s11051_020_04851_5 crossref_primary_10_1039_c0cp02253e crossref_primary_10_1007_s41061_016_0060_0 crossref_primary_10_1080_15980316_2017_1313179 crossref_primary_10_1021_acs_jpcc_0c09721 crossref_primary_10_1103_PhysRevB_84_235304 crossref_primary_10_1002_adom_201500670 crossref_primary_10_1002_smll_202311559 crossref_primary_10_1063_1_4776736 crossref_primary_10_1021_jacs_3c10281 crossref_primary_10_1039_C9NR06110J crossref_primary_10_1016_j_jphotochemrev_2018_01_004 crossref_primary_10_34133_2021_3245731 crossref_primary_10_1088_0957_4484_23_1_015201 crossref_primary_10_1103_PhysRevB_82_081306 crossref_primary_10_1021_nn504235w crossref_primary_10_1021_acs_jpcc_5b09904 crossref_primary_10_1002_adma_202308979 crossref_primary_10_1021_acs_jpclett_1c00450 crossref_primary_10_1016_j_mne_2022_100167 crossref_primary_10_1002_adma_201403620 crossref_primary_10_1063_5_0194567 crossref_primary_10_1021_acs_nanolett_1c02284 crossref_primary_10_1109_JSTQE_2017_2713638 crossref_primary_10_1093_nsr_nwae311 crossref_primary_10_1021_cm201513a crossref_primary_10_1038_s41566_021_00827_6 crossref_primary_10_1039_c2cp40439g crossref_primary_10_1039_C4NR01538J crossref_primary_10_1038_s41565_024_01812_0 crossref_primary_10_1021_acs_nanolett_5b01849 crossref_primary_10_1021_acsami_6b05587 crossref_primary_10_1021_acs_jpclett_6b00430 crossref_primary_10_1088_1748_0221_11_10_P10015 crossref_primary_10_1146_annurev_chembioeng_062011_081040 crossref_primary_10_1021_jacs_0c06256 crossref_primary_10_1002_adma_201801370 crossref_primary_10_1021_acsami_7b01669 crossref_primary_10_1021_nn100698u crossref_primary_10_1021_nn2036957 crossref_primary_10_1063_5_0252275 crossref_primary_10_1021_acs_jpclett_9b02369 crossref_primary_10_1021_acs_chemrev_5b00012 crossref_primary_10_1021_acs_jpcc_5b08913 crossref_primary_10_1021_nn505793y crossref_primary_10_1039_C4TC00806E crossref_primary_10_1039_C6RA18081G crossref_primary_10_1016_j_surfin_2025_106127 crossref_primary_10_1364_PRJ_525231 crossref_primary_10_1002_j_2168_0159_2014_tb00037_x crossref_primary_10_1021_jacs_5b10856 crossref_primary_10_1021_jp4046808 crossref_primary_10_1038_s41598_018_35768_8 crossref_primary_10_1002_lpor_201500063 crossref_primary_10_1021_acsphotonics_5b00496 crossref_primary_10_1021_cm3026957 crossref_primary_10_1039_D4NR04692G crossref_primary_10_1002_adom_201901463 crossref_primary_10_1021_ja303698e crossref_primary_10_1021_acs_jpclett_1c01554 crossref_primary_10_1515_nanoph_2016_0009 crossref_primary_10_1002_aenm_202003233 crossref_primary_10_1038_s41598_018_37676_3 crossref_primary_10_1002_adom_202402739 crossref_primary_10_1016_j_orgel_2021_106086 crossref_primary_10_3390_ijms131012487 crossref_primary_10_1021_nl403289w crossref_primary_10_1039_D3NR04065H crossref_primary_10_1021_acs_chemrev_2c00721 crossref_primary_10_1063_1674_0068_30_cjcp1711206 crossref_primary_10_1039_C6TC03148J crossref_primary_10_1016_j_orgel_2022_106593 crossref_primary_10_1002_lpor_202402269 crossref_primary_10_1016_j_cej_2023_142027 crossref_primary_10_1038_srep32662 crossref_primary_10_1021_nl501026r crossref_primary_10_1038_ncomms3376 crossref_primary_10_1103_PhysRevLett_117_017401 crossref_primary_10_1021_acs_jpcc_8b01234 crossref_primary_10_1021_acs_nanolett_7b01705 crossref_primary_10_1021_acs_jpclett_5b00143 crossref_primary_10_1002_cnma_201900218 crossref_primary_10_1103_PhysRevLett_110_117401 crossref_primary_10_1364_OE_21_007419 crossref_primary_10_1021_nl3013727 crossref_primary_10_1364_OE_23_029921 crossref_primary_10_1021_acsphotonics_6b00452 crossref_primary_10_1016_j_cej_2021_131159 crossref_primary_10_1021_acs_jpclett_8b01666 crossref_primary_10_1021_acs_chemmater_2c03278 crossref_primary_10_1021_acs_jpcc_7b12629 crossref_primary_10_1038_nmat5011 crossref_primary_10_1002_anie_201708510 crossref_primary_10_1039_D1NR04781G crossref_primary_10_26599_NR_2025_94907162 crossref_primary_10_1002_adma_201301947 crossref_primary_10_1002_adom_202201965 crossref_primary_10_1021_acsphotonics_6b00327 crossref_primary_10_1038_ncomms1281 crossref_primary_10_1039_C6CC08742F crossref_primary_10_1021_acsami_0c15161 crossref_primary_10_1021_acs_chemrev_2c00865 crossref_primary_10_1039_C7NR04296E crossref_primary_10_1021_acsphotonics_2c01394 crossref_primary_10_1021_acs_chemrev_6b00169 crossref_primary_10_1021_jacs_6b04888 crossref_primary_10_1038_nmat5000 crossref_primary_10_1021_acs_chemmater_0c01275 crossref_primary_10_1016_j_nanoen_2016_10_029 crossref_primary_10_1021_jz200510f crossref_primary_10_1039_C4TC00232F crossref_primary_10_3390_ma9080672 crossref_primary_10_1021_acs_chemrev_3c00742 crossref_primary_10_1021_acs_jpcc_5b02420 crossref_primary_10_1021_ja212032q crossref_primary_10_1021_jacs_0c06073 crossref_primary_10_1039_c0sc00334d crossref_primary_10_1002_adma_201203171 crossref_primary_10_1063_1_3280386 crossref_primary_10_1021_nn301182h crossref_primary_10_1002_adma_201403237 crossref_primary_10_1021_acs_jpcc_8b03502 crossref_primary_10_1063_5_0036676 crossref_primary_10_1039_C5CS00285K crossref_primary_10_1021_acsnano_5b05876 crossref_primary_10_1088_0957_4484_24_50_505714 crossref_primary_10_1002_smsc_202300092 crossref_primary_10_1021_acs_jpclett_6b02465 crossref_primary_10_1021_acs_jpclett_3c00853 crossref_primary_10_1021_acs_jpca_8b09758 crossref_primary_10_1039_D0NR03582C crossref_primary_10_1021_acsphotonics_5b00626 crossref_primary_10_1103_PhysRevB_93_115416 crossref_primary_10_1002_adom_202302004 crossref_primary_10_1021_jp210949v crossref_primary_10_1038_ncomms5506 crossref_primary_10_1002_jccs_201000075 crossref_primary_10_1146_annurev_conmatphys_031113_133900 crossref_primary_10_1021_acs_nanolett_2c04498 crossref_primary_10_1021_acs_nanolett_8b03715 crossref_primary_10_1021_acs_jpcc_7b11684 crossref_primary_10_1021_acs_nanolett_3c04361 crossref_primary_10_1002_adom_201400528 crossref_primary_10_1021_la2042229 crossref_primary_10_1021_acsphotonics_7b00984 crossref_primary_10_1039_D1CE00631B crossref_primary_10_1039_C8CP00952J crossref_primary_10_1016_j_mssp_2022_107160 crossref_primary_10_1021_acsnano_8b02493 crossref_primary_10_1021_ja202752s crossref_primary_10_1021_nl3045316 crossref_primary_10_1002_pssa_201000374 crossref_primary_10_1038_ncomms1357 crossref_primary_10_1038_s41467_018_03971_w crossref_primary_10_1063_1_4916827 crossref_primary_10_1038_nmat5056 crossref_primary_10_1021_jp312231k crossref_primary_10_1002_adma_201202067 crossref_primary_10_1002_smll_201302896 crossref_primary_10_1021_jp1060045 crossref_primary_10_1039_c4tc00280f crossref_primary_10_1021_nl903592h crossref_primary_10_1002_adom_201901615 crossref_primary_10_1038_nenergy_2016_157 crossref_primary_10_1002_advs_202101125 crossref_primary_10_1103_PhysRevB_82_125324 crossref_primary_10_1109_JSTQE_2017_2737882 crossref_primary_10_1021_acs_jpclett_8b00248 crossref_primary_10_1038_s41467_020_15016_2 crossref_primary_10_1021_nn202713x crossref_primary_10_1021_acsenergylett_2c00153 crossref_primary_10_1021_acs_jpclett_3c01809 crossref_primary_10_1557_opl_2012_425 crossref_primary_10_1016_j_chip_2023_100073 crossref_primary_10_1021_acs_nanolett_7b03703 crossref_primary_10_1021_jp212158a crossref_primary_10_1021_acs_jpcc_6b10146 crossref_primary_10_1021_acs_chemmater_7b00968 crossref_primary_10_1021_jp400688g crossref_primary_10_1557_mrs_2013_183 crossref_primary_10_1149_1_3610644 crossref_primary_10_1021_acs_jpclett_8b03549 crossref_primary_10_1364_PRJ_3_000200 crossref_primary_10_1039_c3nr06158b crossref_primary_10_1016_j_optlastec_2020_106246 crossref_primary_10_1021_acs_jpclett_7b02805 crossref_primary_10_1002_lpor_201200010 crossref_primary_10_1016_j_pquantelec_2015_12_001 crossref_primary_10_1016_j_physe_2014_05_029 crossref_primary_10_1021_cm304161d crossref_primary_10_1002_adfm_201400349 crossref_primary_10_1021_acsphotonics_0c00812 crossref_primary_10_1063_1_3684981 crossref_primary_10_3402_nano_v2i0_5895 crossref_primary_10_1021_jp311124c crossref_primary_10_1021_acsnano_1c10404 crossref_primary_10_1038_s41563_018_0254_7 crossref_primary_10_1002_advs_201900412 crossref_primary_10_1002_solr_202200299 crossref_primary_10_1021_nn2005969 crossref_primary_10_1021_acs_jpcc_4c07446 crossref_primary_10_1021_nn9010158 crossref_primary_10_1021_acsnano_8b04435 crossref_primary_10_1021_nn507310f crossref_primary_10_1021_nl1004652 crossref_primary_10_1039_C0CS00055H crossref_primary_10_1002_adom_201801072 crossref_primary_10_1021_ja102716p crossref_primary_10_1007_s11433_020_1550_4 crossref_primary_10_1021_acs_jpcc_1c02029 crossref_primary_10_1039_c3ta10255f crossref_primary_10_1002_adma_201200121 crossref_primary_10_1021_nn303396c crossref_primary_10_1021_cr500280t crossref_primary_10_1088_1361_6463_ac24c7 crossref_primary_10_1002_aenm_202400148 crossref_primary_10_1002_cnma_201900025 crossref_primary_10_1021_acs_chemmater_0c01788 crossref_primary_10_1021_ja210312s crossref_primary_10_1016_j_jcis_2019_03_075 crossref_primary_10_1103_PhysRevB_88_035302 crossref_primary_10_1038_ncomms15083 crossref_primary_10_1016_j_mseb_2023_116540 crossref_primary_10_1103_PhysRevLett_110_180404 crossref_primary_10_1021_nn901808f crossref_primary_10_1021_nn506223h crossref_primary_10_1088_1361_6528_ab746c crossref_primary_10_1039_C7NR06272A crossref_primary_10_1021_acs_chemrev_0c00931 crossref_primary_10_1021_nl302453x crossref_primary_10_1021_nn305259g crossref_primary_10_1039_C4NR07395A crossref_primary_10_1021_acs_nanolett_1c00600 crossref_primary_10_1021_acsphotonics_6b00951 crossref_primary_10_1002_adma_201305125 crossref_primary_10_1038_s41578_020_00274_9 crossref_primary_10_1038_s41563_021_01119_8 crossref_primary_10_1021_acs_jpcc_5b11651 crossref_primary_10_1021_acs_jpclett_7b00547 crossref_primary_10_1515_zpch_2016_0882 crossref_primary_10_1002_chem_201905807 crossref_primary_10_1039_D2CP04270C crossref_primary_10_1021_nl201052r crossref_primary_10_1021_acs_nanolett_5b02595 crossref_primary_10_1021_nn4002825 crossref_primary_10_1126_science_aaz8541 crossref_primary_10_1039_D2NR00761D crossref_primary_10_1021_acs_jpclett_8b03211 crossref_primary_10_1002_adma_201500418 crossref_primary_10_1063_5_0063634 crossref_primary_10_1021_jz501640f crossref_primary_10_1103_PhysRevB_91_085416 crossref_primary_10_1021_acs_nanolett_2c03564 crossref_primary_10_1039_D0TC00198H crossref_primary_10_1002_jbio_201000058 crossref_primary_10_1021_acs_nanolett_2c03563 crossref_primary_10_1021_acs_nanolett_7b02438 crossref_primary_10_1021_acsphotonics_0c00505 crossref_primary_10_1002_smll_202303247 crossref_primary_10_1002_adfm_201908762 crossref_primary_10_1021_jp208863e crossref_primary_10_1021_nn402022z crossref_primary_10_1002_adfm_202106108 crossref_primary_10_3390_nano12101645 crossref_primary_10_1021_acsnano_0c08903 crossref_primary_10_1002_adom_202201378 crossref_primary_10_1016_j_jlumin_2021_118463 crossref_primary_10_1002_cnma_202300629 crossref_primary_10_1016_j_ccr_2013_10_014 crossref_primary_10_1021_acs_jpclett_0c01460 crossref_primary_10_1016_j_nanoen_2016_04_055 crossref_primary_10_1021_nn302371q crossref_primary_10_1021_jz401958u crossref_primary_10_1063_1_3533401 crossref_primary_10_1021_acsnano_8b07896 crossref_primary_10_1021_nn403594j crossref_primary_10_1039_C8TC04028A crossref_primary_10_1021_acsnano_9b09147 crossref_primary_10_1016_j_cplett_2014_07_078 crossref_primary_10_1103_PhysRevB_84_195133 crossref_primary_10_1021_acsnano_7b03975 crossref_primary_10_1038_s41563_024_02048_y crossref_primary_10_1002_advs_201800656 crossref_primary_10_1038_s41598_022_11882_6 crossref_primary_10_1063_5_0201731 crossref_primary_10_1021_ct400485s crossref_primary_10_1021_ja5032634 crossref_primary_10_1063_1_4749276 crossref_primary_10_1039_c4sc00436a crossref_primary_10_1021_jz200254n crossref_primary_10_1021_jp109608t crossref_primary_10_1021_acs_chemmater_9b00136 crossref_primary_10_1021_acsphotonics_9b00068 crossref_primary_10_1021_acs_nanolett_6b00066 crossref_primary_10_1364_OSAC_2_002755 crossref_primary_10_1038_s41427_019_0141_y crossref_primary_10_1039_D3NR04203K crossref_primary_10_1364_OME_7_001547 crossref_primary_10_1021_nl2025272 crossref_primary_10_1021_acs_nanolett_6b00060 crossref_primary_10_1039_D2NR00305H crossref_primary_10_1021_acsphotonics_4c01659 crossref_primary_10_1021_acsnano_4c06961 crossref_primary_10_1002_aenm_202101693 crossref_primary_10_1021_acs_jpclett_4c00123 crossref_primary_10_1021_nn402870e crossref_primary_10_1021_jp207621s crossref_primary_10_1039_C9RA02027F crossref_primary_10_1021_jz500726h crossref_primary_10_1063_5_0225907 crossref_primary_10_1021_nn204008q crossref_primary_10_1021_acsnano_2c07519 crossref_primary_10_1039_c2ee22679k crossref_primary_10_1016_j_nantod_2016_04_005 crossref_primary_10_1039_D3CC02091F crossref_primary_10_1002_adma_202312250 crossref_primary_10_3402_nano_v1i0_5202 crossref_primary_10_1021_acs_nanolett_2c02982 crossref_primary_10_1021_jp211325x crossref_primary_10_1016_j_ccr_2013_09_005 crossref_primary_10_1021_nn5023473 crossref_primary_10_1002_adma_201503573 crossref_primary_10_1021_nn204447e crossref_primary_10_1021_acsphotonics_4c01516 crossref_primary_10_1021_jz302100r crossref_primary_10_1021_acs_nanolett_9b05342 crossref_primary_10_1002_adom_201600209 crossref_primary_10_1021_jz100321z crossref_primary_10_1038_ncomms9210 crossref_primary_10_1038_ncomms9694 crossref_primary_10_1021_acsnano_5b02509 crossref_primary_10_1038_lsa_2015_109 crossref_primary_10_1039_c2sc00561a crossref_primary_10_1002_ange_201708510 crossref_primary_10_1021_acsnano_7b04079 crossref_primary_10_1021_acs_nanolett_6b04577 crossref_primary_10_1021_nl500775p crossref_primary_10_1021_acs_jpcc_8b11099 crossref_primary_10_1021_acs_nanolett_7b04203 crossref_primary_10_1021_jp505530k crossref_primary_10_1021_acs_jpcc_8b07787 crossref_primary_10_1021_acs_nanolett_2c01791 crossref_primary_10_1021_acs_jpcc_3c01441 crossref_primary_10_1039_c0cp02688c crossref_primary_10_1021_acsphotonics_4c01617 crossref_primary_10_1126_sciadv_aaq0208 crossref_primary_10_1021_jp1063098 crossref_primary_10_1103_PhysRevB_89_035303 crossref_primary_10_1021_acs_jpclett_9b03051 crossref_primary_10_1021_jp5118932 crossref_primary_10_1021_acs_jpcc_9b07889 crossref_primary_10_1021_nl400117h crossref_primary_10_1364_OME_495483 crossref_primary_10_1021_nn502792m crossref_primary_10_1021_acsnano_6b08142 crossref_primary_10_1103_PhysRevB_86_205311 crossref_primary_10_1038_ncomms1916 crossref_primary_10_1021_acs_nanolett_0c04740 crossref_primary_10_1021_acsanm_3c01374 crossref_primary_10_1063_1_5126423 crossref_primary_10_1021_acs_chemmater_5b03588 crossref_primary_10_1021_jp203587x crossref_primary_10_1002_smtd_201900196 crossref_primary_10_1166_nnl_2017_2581 crossref_primary_10_1016_j_physe_2019_01_019 crossref_primary_10_1021_nn402597p crossref_primary_10_1021_acsnano_5b01859 crossref_primary_10_1002_chem_201801853 crossref_primary_10_1002_smll_201402527 crossref_primary_10_1126_sciadv_aav3140 crossref_primary_10_1002_aenm_202403574 crossref_primary_10_1021_acsphotonics_0c00567 crossref_primary_10_1021_jz402211m crossref_primary_10_1007_s11082_020_02421_6 crossref_primary_10_1021_ph500109h crossref_primary_10_1039_C4NR07581A crossref_primary_10_1051_epjap_2016160151 crossref_primary_10_1039_C9CC00162J |
Cites_doi | 10.1038/nmat2222 10.1103/PhysRevLett.84.334 10.1007/978-1-4757-3677-9_2 10.1063/1.2766957 10.1038/nature08072 10.1063/1.1795368 10.1103/PhysRevLett.102.197401 10.1103/PhysRevB.78.085434 10.1016/S1386-9477(02)00374-0 10.1021/nl0622404 10.1103/PhysRevB.75.035330 10.1103/PhysRevLett.78.1110 10.1103/PhysRevLett.102.136801 10.1021/jp9530562 10.1021/jp0738659 10.1063/1.1586460 10.1103/PhysRevLett.91.227401 10.1063/1.2168032 10.1021/ja711379k 10.1038/nature05839 10.1021/ar800112v 10.1016/0022-2313(90)90007-X 10.1201/9780203913260 10.1126/science.287.5455.1011 10.1126/science.290.5490.314 10.1038/383802a0 10.1103/PhysRevLett.80.4991 10.1103/PhysRevLett.91.056404 10.1126/science.271.5251.933 10.1103/PhysRevB.77.195324 10.1103/PhysRevLett.85.1694 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 5PM |
DOI | 10.1021/nl901681d |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1530-6992 |
EndPage | 3488 |
ExternalDocumentID | PMC2897714 19505082 22069586 10_1021_nl901681d h54776674 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 1R01GM084702-01 – fundername: NIGMS NIH HHS grantid: R01 GM084702 |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G 6P2 IQODW NPM 7X8 5PM |
ID | FETCH-LOGICAL-a500t-302e973d16df2d71c9e6e219af7dbb5cfd1e4eda7216d9653730bb44117a65db3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Aug 21 14:13:11 EDT 2025 Sun Aug 24 03:55:58 EDT 2025 Mon Jul 21 06:03:50 EDT 2025 Mon Jul 21 09:12:19 EDT 2025 Tue Jul 01 00:42:33 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Charge carriers Semiconductor materials Non radiative recombination Light emitting diodes Optoelectronic devices Nanostructures Cadmium sulfide Photovoltaic cell Cadmium selenides Nanoparticles Lifetime Excitons Photovoltaic cells Bandwidth Nanostructured materials Nanocrystal |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a500t-302e973d16df2d71c9e6e219af7dbb5cfd1e4eda7216d9653730bb44117a65db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2897714 |
PMID | 19505082 |
PQID | 733146149 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2897714 proquest_miscellaneous_733146149 pubmed_primary_19505082 pascalfrancis_primary_22069586 crossref_primary_10_1021_nl901681d crossref_citationtrail_10_1021_nl901681d acs_journals_10_1021_nl901681d |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-10-01 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2009 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Anikeeva P. O. (ref6/cit6) 2008; 78 Hines M. A. (ref21/cit21) 1996; 100 Wang X. (ref16/cit16) 2009; 459 Nozik A. J. (ref5/cit5) 2002; 14 Htoon H. (ref30/cit30) 2003; 82 McGuire J. A. (ref22/cit22) 2008; 41 Klimov V. I. (ref25/cit25) 2007; 447 Htoon H. (ref12/cit12) 2003; 91 Kegel I. (ref27/cit27) 2000; 85 Klimov V. I. (ref11/cit11) 2008; 77 Osovsky R. (ref15/cit15) 2009; 102 Mahler B. (ref19/cit19) 2008; 7 Alivisatos A. P. (ref1/cit1) 1996; 271 Nanda J. (ref13/cit13) 2007; 111 Wang L. W. (ref10/cit10) 2003; 91 Pandey A. (ref29/cit29) 2007; 127 Klimov V. I. (ref4/cit4) 2000; 290 Efros A. L. (ref17/cit17) 2003 Chen Y. (ref18/cit18) 2008; 130 Liu N. (ref28/cit28) 2000; 84 Nirmal M. (ref7/cit7) 1996; 383 Nanda J. (ref14/cit14) 2006; 99 Chan Y. (ref31/cit31) 2004; 85 Efros A. L. (ref8/cit8) 1997; 78 Klimov V. I. (ref3/cit3) 2000; 287 Spinicelli P. (ref20/cit20) 2009; 102 Efros A. L. (ref32/cit32) 1982; 16 Oron D. (ref23/cit23) 2007; 75 Klimov V. I. (ref2/cit2) 2003 Chepic D. I. (ref9/cit9) 1990; 47 Piryatinski A. (ref24/cit24) 2007; 7 Dekel E. (ref26/cit26) 1998; 80 |
References_xml | – volume: 7 start-page: 659 year: 2008 ident: ref19/cit19 publication-title: Nat. Mater. doi: 10.1038/nmat2222 – volume: 84 start-page: 334 year: 2000 ident: ref28/cit28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.334 – start-page: 52 volume-title: Semiconductor nanocrystals year: 2003 ident: ref17/cit17 doi: 10.1007/978-1-4757-3677-9_2 – volume: 127 start-page: 104710 year: 2007 ident: ref29/cit29 publication-title: J. Chem. Phys. doi: 10.1063/1.2766957 – volume: 459 start-page: 686 year: 2009 ident: ref16/cit16 publication-title: Nature doi: 10.1038/nature08072 – volume: 85 start-page: 2460 year: 2004 ident: ref31/cit31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1795368 – volume: 102 start-page: 197401 year: 2009 ident: ref15/cit15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.197401 – volume: 78 start-page: 085434 year: 2008 ident: ref6/cit6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.085434 – volume: 14 start-page: 115 year: 2002 ident: ref5/cit5 publication-title: Physica E doi: 10.1016/S1386-9477(02)00374-0 – volume: 7 start-page: 108 year: 2007 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl0622404 – volume: 75 start-page: 035330 year: 2007 ident: ref23/cit23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.035330 – volume: 78 start-page: 1110 year: 1997 ident: ref8/cit8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1110 – volume: 102 start-page: 136801 year: 2009 ident: ref20/cit20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.136801 – volume: 100 start-page: 468 year: 1996 ident: ref21/cit21 publication-title: J. Phys. Chem. doi: 10.1021/jp9530562 – volume: 16 start-page: 772 year: 1982 ident: ref32/cit32 publication-title: Sov. Phys. Semicond. – volume: 111 start-page: 15382 year: 2007 ident: ref13/cit13 publication-title: J. Phys. Chem. C doi: 10.1021/jp0738659 – volume: 82 start-page: 4776 year: 2003 ident: ref30/cit30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1586460 – volume: 91 start-page: 227401 year: 2003 ident: ref12/cit12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.227401 – volume: 99 start-page: 034309 year: 2006 ident: ref14/cit14 publication-title: J. Appl. Phys. doi: 10.1063/1.2168032 – volume: 130 start-page: 5026 year: 2008 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711379k – volume: 447 start-page: 441 year: 2007 ident: ref25/cit25 publication-title: Nature doi: 10.1038/nature05839 – volume: 41 start-page: 1810 year: 2008 ident: ref22/cit22 publication-title: Acc. Chem. Res. doi: 10.1021/ar800112v – volume: 47 start-page: 113 year: 1990 ident: ref9/cit9 publication-title: J. Lumin. doi: 10.1016/0022-2313(90)90007-X – volume-title: Semiconductor and metal nanocrystals year: 2003 ident: ref2/cit2 doi: 10.1201/9780203913260 – volume: 287 start-page: 1011 year: 2000 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.287.5455.1011 – volume: 290 start-page: 314 year: 2000 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.290.5490.314 – volume: 383 start-page: 802 year: 1996 ident: ref7/cit7 publication-title: Nature doi: 10.1038/383802a0 – volume: 80 start-page: 4991 year: 1998 ident: ref26/cit26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4991 – volume: 91 start-page: 056404 year: 2003 ident: ref10/cit10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.056404 – volume: 271 start-page: 933 year: 1996 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 77 start-page: 195324 year: 2008 ident: ref11/cit11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.195324 – volume: 85 start-page: 1694 year: 2000 ident: ref27/cit27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.1694 |
SSID | ssj0009350 |
Score | 2.503715 |
Snippet | Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron−hole (exciton) recombination... Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination... Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron–hole (exciton) recombination... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3482 |
SubjectTerms | Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science; rheology Electron states Electronics Exact sciences and technology Excitons and related phenomena Materials science Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Optoelectronic devices Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
Title | Suppressed Auger Recombination in “Giant” Nanocrystals Boosts Optical Gain Performance |
URI | http://dx.doi.org/10.1021/nl901681d https://www.ncbi.nlm.nih.gov/pubmed/19505082 https://www.proquest.com/docview/733146149 https://pubmed.ncbi.nlm.nih.gov/PMC2897714 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6V9AJCpQUKBhqtgAMXt_Fr13sMoU1UiYcEkSIu1q533UYNdhQ7h3LqD2n_XH8Js-s82wBXeyzLOzM733h2vgF4r1s6a3GdukqxzA0zIVxpGnyyOBCGvCWV0jQnf_5Ce_3wdBANtuDdXyr4vneUjzBkUYRVD2Dbp-i8Bv90vi-ZdQM7hhU9F_MgHodz-qDVR03oScu10PN4LEpchaweX7EJX949JrkSd06ewKd590593OTicFrJw_T3fTLHf33SLuzMcCdp14ayB1s6fwqPVtgIn8FPM-HTcokr0p6e6QkxuekvTJ2t9sgwJ7dX1120p-r26obgvlykk0tEl6OSfCyKsirJ17H9NU66AoW_LXsSnkP_5PhHp-fORi-4ZkJC5QYtX3MWKI-qzFfMS7mmGjc3kTElZZRmytOhVsJQ_yhOowA3CikRWnlM0EjJYB8aeZHrl0CUIYD3lFRMa0OuJWJEbQLzuAAv8jh2oIm6SWauUya2Ku57yWKRHPgwV1uSzojLzfyM0SbRtwvRcc3WsUmouab7haTvtyiPYuoAmRtDgs5mKigi18W0TMyAyxABDXfgRW0by9dwxJKIpxxga1azEDA83ut38uG55fPGnJcxL3z1v4V4DQ9tLcseJXwDjWoy1QcIiSrZtC7xB13dCjs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619NAi1DeQ0m6tqgcuoZun4-OCCtsWKBIgIS6RHTuAWJLVOnuAEz8E_hy_hLGTfaGV2msyeY1n7G8ynm8Avqu2yttMZa6UNHfDnHNXmAKfPAm4IW_JhDDFyXv7cfc4_H0SnTQ0OaYWBl9C4520TeJP2AW8H0UPV64Y0dVzeIEgxDfW3Nk6nBDsBrYbKzowhkMsCUcsQtOXmhUo0zMr0FKfa1RGXnexmAczn-6WnFp-tt_UfYzsi9tdJ5cbw0psZDdPOB3_78vewusGhZJObTbv4Jkq3sPiFDfhBzg1_T4ts7gkneGZGhATqV5hIG3HklwU5OH2bgetq3q4vSc4S5fZ4BqxZk-TzbLUlSZ_-_ZHOdnhKHwwqVD4CMfbP4-2um7TiME1_RIqN2j7itFAerHMfUm9jKlY4VTHcyqFiLJceipUkhsiIMniKMBpQwgEWh7lcSRFsAwLRVmoVSDS0MF7UkiqlKHa4gliOI5RXYAHWZI40EIdpY0j6dTmyH0vHSvJgfXR6KVZQ2Nuumn05ol-G4v2a-6OeUKtGRMYS_p-O2ZREjtARjaRouuZfAovVDnUqWl3GSK8YQ6s1CYyeQxDZInoygE6YzxjAcPqPXumuDi37N4YAVPqhZ_-pYiv8LJ7tLeb7v7a_7MGr2yWy24y_AwL1WCoviBYqkTLeskjRN8SnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkRAI8WyLeYQV4sDFJX6ufQyFtLzaSlCp4mLtenehIrWjrHOAU38I_Ln-EmY2jpNUkeBqj1-zM7vfeHa-AXih-9r0c136SnHjx0YIX1KBj8kiQeQtpZRUnPzpIN0_jt-fJCdtoEi1MPgSFu9kXRKfvHqsTMswELyqRrh6pYiwrsI1SteRRQ92Py9IdiPXkRWdGEOiPIvnTELLl9IqVNqVVejWWFhUiJl1slgHNS_vmFxagoZ34LB7ebfz5MfOtJE75a9LvI7__3V34XaLRtlgZj734Iqu7sPNJY7CB_CV-n46hnHFBtNvesIoYj3DgNqNKTut2MX57z20subi_A_D2bouJz8Rc44se13XtrHscOx-mLM9gcJHi0qFTTgevv2yu--3DRl86pvQ-FE_1DmPVJAqEyoelLlONU55wnAlZVIaFehYK0GEQCpPkwinDykRcAVcpImS0RZsVHWlHwJTRAsfKKm41kS5JTLEcgKjuwgP5lnmQQ_1VLQOZQuXKw-DolOSBy_nI1iULZ05ddUYrRN93omOZxwe64R6K2bQSYZhP82TLPWAze2iQBekvIqodD21BbW9jBHm5B5sz8xk8ZgcESaiLA_4igF1AsTuvXqmOv3uWL4xEuY8iB_9SxHP4PrRm2Hx8d3Bh8dwwyW73F7DJ7DRTKb6KWKmRvaco_wFBpsVHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressed+Auger+Recombination+in+Giant+Nanocrystals+Boosts+Optical+Gain+Performance&rft.jtitle=Nano+letters&rft.au=GARCIA-SANTAMARIA%2C+Florencio&rft.au=YONGFEN+CHEN&rft.au=VELA%2C+Javier&rft.au=SCHALLER%2C+Richard+D&rft.date=2009-10-01&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=9&rft.issue=10&rft.spage=3482&rft.epage=3488&rft_id=info:doi/10.1021%2Fnl901681d&rft.externalDBID=n%2Fa&rft.externalDocID=22069586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |