Causes and importance of new particle formation in the present‐day and preindustrial atmospheres
New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here we assess the importance of new particle formation (NPF) for both the present‐day and the preindustrial atmospheres. We use a global aerosol...
Saved in:
Published in | Journal of geophysical research. Atmospheres Vol. 122; no. 16; pp. 8739 - 8760 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
27.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here we assess the importance of new particle formation (NPF) for both the present‐day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low‐cloud‐level CCN concentrations at 0.2% supersaturation by 26% in the present‐day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion‐induced NPF, compared with 27% in the present day, although we caution that the ion‐induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions.
Plain Language Summary
New particle formation in the atmosphere is the process by which gas molecules collide and stick together to form atmospheric aerosol particles. Aerosols act as seeds for cloud droplets, so the concentration of aerosols in the atmosphere affects the properties of clouds. It is important to understand how aerosols affect clouds because they reflect a lot of incoming solar radiation away from Earth's surface, so changes in cloud properties can affect the climate. Before the Industrial Revolution, aerosol concentrations were significantly lower than they are today. In this article, we show using global model simulations that new particle formation was a more important mechanism for aerosol production than it is now. We also study the importance of gases emitted by vegetation, and of atmospheric ions made by radon gas or cosmic rays, in preindustrial aerosol formation. We find that the contribution of ions and vegetation to new particle formation was also greater in the preindustrial period than it is today. However, the effect on particle formation of variations in ion concentration due to changes in the intensity of cosmic rays reaching Earth was small.
Key Points
New particle formation produces over half of CCN in the present‐day and preindustrial atmospheres
BVOCs are more important to CCN formation than previously thought
Our current ion‐induced nucleation rates imply only small changes of CCN over the solar cycle |
---|---|
AbstractList | New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here we assess the importance of new particle formation (NPF) for both the present‐day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low‐cloud‐level CCN concentrations at 0.2% supersaturation by 26% in the present‐day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion‐induced NPF, compared with 27% in the present day, although we caution that the ion‐induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions.
Plain Language Summary
New particle formation in the atmosphere is the process by which gas molecules collide and stick together to form atmospheric aerosol particles. Aerosols act as seeds for cloud droplets, so the concentration of aerosols in the atmosphere affects the properties of clouds. It is important to understand how aerosols affect clouds because they reflect a lot of incoming solar radiation away from Earth's surface, so changes in cloud properties can affect the climate. Before the Industrial Revolution, aerosol concentrations were significantly lower than they are today. In this article, we show using global model simulations that new particle formation was a more important mechanism for aerosol production than it is now. We also study the importance of gases emitted by vegetation, and of atmospheric ions made by radon gas or cosmic rays, in preindustrial aerosol formation. We find that the contribution of ions and vegetation to new particle formation was also greater in the preindustrial period than it is today. However, the effect on particle formation of variations in ion concentration due to changes in the intensity of cosmic rays reaching Earth was small.
Key Points
New particle formation produces over half of CCN in the present‐day and preindustrial atmospheres
BVOCs are more important to CCN formation than previously thought
Our current ion‐induced nucleation rates imply only small changes of CCN over the solar cycle |
Author | Dunne, Eimear M. Curtius, Joachim Ehrhart, Sebastian Tsagkogeorgas, Georgios Dommen, Josef Kirkby, Jasper Breitenlechner, Martin Fuchs, Claudia Baltensperger, Urs Wimmer, Daniela Dias, Antonio Stozkhov, Yuri Tröstl, Jasmin Lehtipalo, Katrianne Flagan, Richard C. Kürten, Andreas Hansel, Armin Carslaw, Ken S. Yan, Chao Molteni, Ugo Gordon, Hamish Frege, Carla Makhmutov, Vladimir Duplissy, Jonathan Rissanen, Matti P. Hoyle, Christopher R. Bianchi, Federico Williamson, Christina Donahue, Neil M. Kulmala, Markku Wagner, Robert Winkler, Paul M. |
Author_xml | – sequence: 1 givenname: Hamish orcidid: 0000-0002-1822-3224 surname: Gordon fullname: Gordon, Hamish email: hamish.gordon@cern.ch organization: University of Leeds – sequence: 2 givenname: Jasper surname: Kirkby fullname: Kirkby, Jasper organization: Goethe University Frankfurt – sequence: 3 givenname: Urs surname: Baltensperger fullname: Baltensperger, Urs organization: Paul Scherrer Institute – sequence: 4 givenname: Federico orcidid: 0000-0003-2996-3604 surname: Bianchi fullname: Bianchi, Federico organization: University of Helsinki – sequence: 5 givenname: Martin surname: Breitenlechner fullname: Breitenlechner, Martin organization: Harvard University – sequence: 6 givenname: Joachim orcidid: 0000-0003-3153-4630 surname: Curtius fullname: Curtius, Joachim organization: Goethe University Frankfurt – sequence: 7 givenname: Antonio surname: Dias fullname: Dias, Antonio organization: CERN – sequence: 8 givenname: Josef orcidid: 0000-0002-0006-0009 surname: Dommen fullname: Dommen, Josef organization: Paul Scherrer Institute – sequence: 9 givenname: Neil M. orcidid: 0000-0003-3054-2364 surname: Donahue fullname: Donahue, Neil M. organization: Carnegie Mellon University – sequence: 10 givenname: Eimear M. orcidid: 0000-0001-7085-8473 surname: Dunne fullname: Dunne, Eimear M. organization: Atmospheric Research Centre of Eastern Finland – sequence: 11 givenname: Jonathan orcidid: 0000-0001-8819-0264 surname: Duplissy fullname: Duplissy, Jonathan organization: Helsinki Institute of Physics – sequence: 12 givenname: Sebastian surname: Ehrhart fullname: Ehrhart, Sebastian organization: Max Planck Institute for Chemistry – sequence: 13 givenname: Richard C. orcidid: 0000-0001-5690-770X surname: Flagan fullname: Flagan, Richard C. organization: California Institute of Technology – sequence: 14 givenname: Carla surname: Frege fullname: Frege, Carla organization: Paul Scherrer Institute – sequence: 15 givenname: Claudia surname: Fuchs fullname: Fuchs, Claudia organization: Paul Scherrer Institute – sequence: 16 givenname: Armin orcidid: 0000-0002-1062-2394 surname: Hansel fullname: Hansel, Armin organization: University of Innsbruck – sequence: 17 givenname: Christopher R. orcidid: 0000-0002-1369-9143 surname: Hoyle fullname: Hoyle, Christopher R. organization: SLFWSL Institute for Snow and Avalanche Research – sequence: 18 givenname: Markku surname: Kulmala fullname: Kulmala, Markku organization: University of Helsinki – sequence: 19 givenname: Andreas orcidid: 0000-0002-8955-4450 surname: Kürten fullname: Kürten, Andreas organization: Goethe University Frankfurt – sequence: 20 givenname: Katrianne surname: Lehtipalo fullname: Lehtipalo, Katrianne organization: University of Helsinki – sequence: 21 givenname: Vladimir surname: Makhmutov fullname: Makhmutov, Vladimir organization: Lebedev Physical Institute – sequence: 22 givenname: Ugo surname: Molteni fullname: Molteni, Ugo organization: Paul Scherrer Institute – sequence: 23 givenname: Matti P. orcidid: 0000-0003-0463-8098 surname: Rissanen fullname: Rissanen, Matti P. organization: University of Helsinki – sequence: 24 givenname: Yuri surname: Stozkhov fullname: Stozkhov, Yuri organization: Lebedev Physical Institute – sequence: 25 givenname: Jasmin orcidid: 0000-0002-2807-0348 surname: Tröstl fullname: Tröstl, Jasmin organization: Paul Scherrer Institute – sequence: 26 givenname: Georgios surname: Tsagkogeorgas fullname: Tsagkogeorgas, Georgios organization: Leibniz Institute for Tropospheric Research – sequence: 27 givenname: Robert orcidid: 0000-0001-7365-8020 surname: Wagner fullname: Wagner, Robert organization: University of Helsinki – sequence: 28 givenname: Christina surname: Williamson fullname: Williamson, Christina organization: University of Colorado Boulder and National Oceanic and Atmospheric Administration Earth System Research Laboratory – sequence: 29 givenname: Daniela surname: Wimmer fullname: Wimmer, Daniela organization: University of Helsinki – sequence: 30 givenname: Paul M. surname: Winkler fullname: Winkler, Paul M. organization: University of Vienna – sequence: 31 givenname: Chao surname: Yan fullname: Yan, Chao organization: University of Helsinki – sequence: 32 givenname: Ken S. orcidid: 0000-0002-6800-154X surname: Carslaw fullname: Carslaw, Ken S. organization: University of Leeds |
BookMark | eNpNUM1KAzEYDFLBWnvzAfICq_nbbHKUVltLQRAFb8vXzbc0sptdki2lNx_BZ_RJrD-Ic5lhmJnDnJNR6AIScsnZFWdMXAvGi9WcCW2UOiFjwbXNjLV69KeLlzMyTemVHWGYVLkak80MdgkTheCob_suDhAqpF1NA-5pD3HwVYO07mILg-8C9YEOW6R9xIRh-Hh7d3D4bh8dH9wuDdFDQ2Fou9Rv8Ri7IKc1NAmnvzwhz3e3T7Nltn5Y3M9u1hnkjKmsAseV0sCwBrRWoDR2I0AZoWFTFZUTWGjOlJGoWe6cqoG7Go1RUmkljZwQ-bO79w0eyj76FuKh5Kz8-qf8_0-5WjzOc2lzJT8BgQZebA |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_143684 crossref_primary_10_5194_ar_2_13_2024 crossref_primary_10_1038_s41598_022_14525_y crossref_primary_10_1038_s41598_021_99033_1 crossref_primary_10_5194_acp_23_3955_2023 crossref_primary_10_1021_acs_chemrev_8b00395 crossref_primary_10_1038_s41586_024_07547_1 crossref_primary_10_5194_acp_21_3827_2021 crossref_primary_10_1073_pnas_2006716117 crossref_primary_10_5194_acp_21_17559_2021 crossref_primary_10_5194_acp_23_2927_2023 crossref_primary_10_1039_D0FD00077A crossref_primary_10_1016_j_aeaoa_2019_100051 crossref_primary_10_5194_acp_20_9183_2020 crossref_primary_10_3390_atmos10050275 crossref_primary_10_5194_acp_20_4809_2020 crossref_primary_10_1126_science_adq4711 crossref_primary_10_5194_acp_21_183_2021 crossref_primary_10_5194_acp_22_8287_2022 crossref_primary_10_1126_sciadv_adm9191 crossref_primary_10_1038_s41612_025_00893_5 crossref_primary_10_5194_acp_24_65_2024 crossref_primary_10_1029_2023GL104325 crossref_primary_10_3389_fenvs_2022_912385 crossref_primary_10_5194_acp_25_959_2025 crossref_primary_10_1088_1674_4527_21_6_131 crossref_primary_10_1038_s41467_020_18551_0 crossref_primary_10_5194_acp_21_2693_2021 crossref_primary_10_5194_acp_22_15909_2022 crossref_primary_10_5194_acp_19_8915_2019 crossref_primary_10_5194_acp_22_8097_2022 crossref_primary_10_5140_JASS_2019_36_4_225 crossref_primary_10_1038_s41586_024_08192_4 crossref_primary_10_1073_pnas_1807604115 crossref_primary_10_5194_acp_22_4491_2022 crossref_primary_10_5194_gmd_16_5237_2023 crossref_primary_10_5194_acp_24_6769_2024 crossref_primary_10_1039_D2CP01671K crossref_primary_10_5194_acp_22_11529_2022 crossref_primary_10_1029_2021GL095190 crossref_primary_10_5194_acp_19_8669_2019 crossref_primary_10_5194_acp_23_9853_2023 crossref_primary_10_1016_j_jaerosci_2025_106524 crossref_primary_10_1016_j_jaerosci_2024_106502 crossref_primary_10_1016_j_atmosenv_2023_119732 crossref_primary_10_1146_annurev_physchem_062322_041503 crossref_primary_10_5194_acp_20_15983_2020 crossref_primary_10_5194_amt_14_5429_2021 crossref_primary_10_1038_s41586_022_04605_4 crossref_primary_10_5194_acp_21_2457_2021 crossref_primary_10_5194_acp_21_13455_2021 crossref_primary_10_5194_acp_21_17099_2021 crossref_primary_10_1021_acs_est_0c07465 crossref_primary_10_1021_acs_jpca_2c02072 crossref_primary_10_5194_ar_2_49_2024 crossref_primary_10_5194_acp_23_8789_2023 crossref_primary_10_1126_science_abe0298 crossref_primary_10_3390_atmos13091443 crossref_primary_10_1029_2022GL098959 crossref_primary_10_5194_acp_23_6879_2023 crossref_primary_10_1021_acs_jpca_4c06062 crossref_primary_10_1002_2017JD027475 crossref_primary_10_1039_D4EA00056K crossref_primary_10_1021_acsomega_4c01235 crossref_primary_10_3390_atmos14050795 crossref_primary_10_1016_j_chemosphere_2024_141630 crossref_primary_10_5194_acp_19_10537_2019 crossref_primary_10_5194_acp_22_11155_2022 crossref_primary_10_5194_acp_23_14949_2023 crossref_primary_10_1038_s41598_023_30447_9 crossref_primary_10_5194_acp_18_9975_2018 crossref_primary_10_1016_j_atmosenv_2024_120915 crossref_primary_10_1038_s43247_024_01519_z crossref_primary_10_5194_acp_23_2183_2023 crossref_primary_10_5194_acp_19_2787_2019 crossref_primary_10_5194_acp_19_3137_2019 crossref_primary_10_5194_acp_24_2535_2024 crossref_primary_10_1093_nsr_nwac137 crossref_primary_10_1029_2020JD033529 crossref_primary_10_5194_acp_20_8953_2020 crossref_primary_10_1029_2023GL107516 crossref_primary_10_1029_2021GL094198 crossref_primary_10_1021_acs_jpca_4c01629 crossref_primary_10_1016_j_ecoenv_2021_112329 crossref_primary_10_5194_acp_19_6185_2019 crossref_primary_10_1016_j_envpol_2023_121759 crossref_primary_10_1016_j_jaerosci_2021_105808 crossref_primary_10_1016_j_atmosenv_2021_118894 crossref_primary_10_1016_j_atmosenv_2023_120094 crossref_primary_10_5194_amt_16_2471_2023 crossref_primary_10_1016_j_atmosenv_2020_117920 crossref_primary_10_1080_02786826_2020_1839013 crossref_primary_10_1016_j_atmosres_2024_107586 crossref_primary_10_1021_acs_jpca_2c01672 crossref_primary_10_5194_amt_16_1323_2023 crossref_primary_10_1016_j_oneear_2025_101237 crossref_primary_10_1088_1402_4896_ad8848 crossref_primary_10_1021_acs_est_4c06578 crossref_primary_10_1016_j_uclim_2022_101214 crossref_primary_10_1080_07055900_2024_2325921 crossref_primary_10_1038_s41612_024_00758_3 crossref_primary_10_5194_acp_18_12085_2018 crossref_primary_10_1038_s41561_023_01305_0 crossref_primary_10_1016_j_atmosenv_2021_118526 crossref_primary_10_5194_acp_20_5055_2020 crossref_primary_10_5194_acp_24_3785_2024 crossref_primary_10_1029_2021GL092758 crossref_primary_10_1126_science_adn2961 crossref_primary_10_5194_acp_23_5801_2023 crossref_primary_10_1038_s41586_019_1638_9 crossref_primary_10_1126_sciadv_abd9954 crossref_primary_10_5194_acp_20_7359_2020 crossref_primary_10_5194_acp_21_12649_2021 crossref_primary_10_1021_acs_est_2c04328 crossref_primary_10_1073_pnas_2201955119 crossref_primary_10_5194_acp_21_9223_2021 crossref_primary_10_5194_acp_23_895_2023 crossref_primary_10_5194_acp_25_511_2025 crossref_primary_10_1038_s41596_019_0274_z crossref_primary_10_1016_j_atmosenv_2024_120831 crossref_primary_10_1038_s41561_020_00661_5 crossref_primary_10_1016_j_atmosenv_2021_118460 crossref_primary_10_5194_acp_24_12595_2024 crossref_primary_10_5194_amt_10_5075_2017 crossref_primary_10_1029_2022JD037525 crossref_primary_10_5194_acp_21_17243_2021 crossref_primary_10_5194_acp_19_2671_2019 crossref_primary_10_1038_s41586_020_2270_4 crossref_primary_10_1016_j_jcp_2018_02_032 crossref_primary_10_1016_j_jes_2024_09_002 crossref_primary_10_5194_acp_20_15037_2020 crossref_primary_10_5194_acp_22_14571_2022 crossref_primary_10_5194_acp_24_11365_2024 crossref_primary_10_1029_2020GL091334 crossref_primary_10_5194_acp_22_13153_2022 crossref_primary_10_1038_s41467_021_27642_5 crossref_primary_10_1038_s41586_024_08196_0 crossref_primary_10_5194_acp_22_2487_2022 crossref_primary_10_1103_RevModPhys_95_045002 crossref_primary_10_5194_acp_20_10889_2020 crossref_primary_10_5194_acp_20_11841_2020 crossref_primary_10_5194_acp_22_8547_2022 crossref_primary_10_1002_jcc_27076 crossref_primary_10_5194_acp_19_8591_2019 crossref_primary_10_5194_ar_3_15_2025 crossref_primary_10_5194_acp_22_6231_2022 crossref_primary_10_1016_j_atmosres_2021_105537 crossref_primary_10_1016_j_scitotenv_2023_163477 crossref_primary_10_1029_2018JD029356 crossref_primary_10_1021_acs_est_2c08348 crossref_primary_10_1080_02786826_2020_1769837 crossref_primary_10_1080_02786826_2023_2245859 crossref_primary_10_1021_acs_est_3c10526 crossref_primary_10_1016_j_atmosres_2024_107510 crossref_primary_10_5194_acp_19_13243_2019 crossref_primary_10_1029_2020JD033267 crossref_primary_10_1039_D1EA00050K crossref_primary_10_5194_acp_24_10349_2024 crossref_primary_10_5194_acp_22_10061_2022 crossref_primary_10_5194_acp_23_13191_2023 crossref_primary_10_1021_acsearthspacechem_3c00017 crossref_primary_10_1080_02786826_2021_1922598 crossref_primary_10_5194_acp_23_4431_2023 crossref_primary_10_5194_gmd_15_683_2022 crossref_primary_10_1007_s40009_023_01221_2 crossref_primary_10_1016_j_atmosenv_2020_117982 crossref_primary_10_1039_D0FD00083C crossref_primary_10_5194_acp_20_11747_2020 crossref_primary_10_5194_acp_22_10077_2022 crossref_primary_10_1021_acs_est_9b03091 crossref_primary_10_5194_gmd_17_4923_2024 crossref_primary_10_1016_j_atmosenv_2019_04_024 crossref_primary_10_5194_acp_18_13231_2018 crossref_primary_10_5194_acp_21_17185_2021 crossref_primary_10_5194_acp_21_4979_2021 crossref_primary_10_1021_acsomega_3c01643 crossref_primary_10_5194_acp_23_4343_2023 crossref_primary_10_1039_D2EA00174H crossref_primary_10_1073_pnas_2308696120 crossref_primary_10_1525_elementa_2023_00058 crossref_primary_10_1088_1748_9326_aadf3c crossref_primary_10_1016_j_jaerosci_2020_105676 crossref_primary_10_5194_acp_23_9287_2023 crossref_primary_10_1021_acs_est_3c06098 crossref_primary_10_1029_2019JD030297 crossref_primary_10_1016_j_jaerosci_2024_106494 crossref_primary_10_1029_2018JD028882 crossref_primary_10_5194_acp_19_5033_2019 crossref_primary_10_5194_ar_2_291_2024 crossref_primary_10_5194_acp_23_8241_2023 crossref_primary_10_1080_02786826_2021_1898536 crossref_primary_10_1021_acs_est_3c07958 crossref_primary_10_5575_geosoc_2022_0051 crossref_primary_10_5194_acp_19_4763_2019 crossref_primary_10_1080_02786826_2020_1755012 crossref_primary_10_5194_acp_18_1307_2018 crossref_primary_10_1038_s41467_019_12338_8 crossref_primary_10_5194_acp_21_7901_2021 crossref_primary_10_5194_ar_3_139_2025 crossref_primary_10_5194_ar_2_93_2024 crossref_primary_10_5194_gmd_14_3335_2021 crossref_primary_10_1038_s43247_024_01490_9 crossref_primary_10_5194_amt_18_197_2025 crossref_primary_10_5194_acp_23_15325_2023 crossref_primary_10_1021_acs_est_4c06053 crossref_primary_10_1038_s41612_023_00405_3 crossref_primary_10_1016_j_jaerosci_2021_105878 crossref_primary_10_5194_acp_21_9065_2021 crossref_primary_10_1016_j_atmosenv_2024_120414 crossref_primary_10_1029_2023JD039344 crossref_primary_10_1039_D3EA00001J crossref_primary_10_5194_acp_18_5921_2018 crossref_primary_10_1016_j_scitotenv_2020_143100 crossref_primary_10_5194_acp_23_15795_2023 crossref_primary_10_1038_s42004_020_00339_4 |
ContentType | Journal Article |
Copyright | 2017. The Authors. |
Copyright_xml | – notice: 2017. The Authors. |
DBID | 24P |
DOI | 10.1002/2017JD026844 |
DatabaseName | Open Access资源_Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2169-8996 |
EndPage | 8760 |
ExternalDocumentID | JGRD53954 |
Genre | article |
GrantInformation_xml | – fundername: Swiss National Science Foundation Swiss National Science Foundation funderid: 200020_135307; 206620_141278 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 50Y 52M 5VS 702 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI DPXWK DRFUL DRSTM EBS EJD G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W R.K RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA |
ID | FETCH-LOGICAL-a5004-cad1446a0efae992e389b2a4826abc7cd2e7610483e605dd4fa1dfe8843464383 |
IEDL.DBID | 24P |
ISSN | 2169-897X |
IngestDate | Wed Jan 22 17:09:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5004-cad1446a0efae992e389b2a4826abc7cd2e7610483e605dd4fa1dfe8843464383 |
ORCID | 0000-0001-7365-8020 0000-0002-8955-4450 0000-0001-8819-0264 0000-0003-3153-4630 0000-0002-1822-3224 0000-0002-6800-154X 0000-0002-1062-2394 0000-0001-5690-770X 0000-0002-2807-0348 0000-0003-0463-8098 0000-0003-2996-3604 0000-0001-7085-8473 0000-0002-1369-9143 0000-0003-3054-2364 0000-0002-0006-0009 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017JD026844 |
PageCount | 22 |
ParticipantIDs | wiley_primary_10_1002_2017JD026844_JGRD53954 |
PublicationCentury | 2000 |
PublicationDate | 27 August 2017 |
PublicationDateYYYYMMDD | 2017-08-27 |
PublicationDate_xml | – month: 08 year: 2017 text: 27 August 2017 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | Journal of geophysical research. Atmospheres |
PublicationYear | 2017 |
References | 2011; 116 2015; 581 2010; 10 2009a; 9 2013; 4 2017; 3 2009; 43 2010; 107 1994; 370 2011; 11 2006; 132 2008; 35 2010; 183 2003; 17 2016; 2016 2012; 12 2013; 13 2014b; 14 2003; 9 2016; 113 2002; 107 2016; 354 1986 2014; 14 2016; 352 2007; 7 2013; 110 2010; 3 2014a; 9 2009; 326 2014; 119 2015; 15 2005; 110 2013; 503 2013; 502 2002; 33 2006; 6 2016; 121 2012; 39 2008; 321 2016; 16 2012; 109 1987; 25 2003; 108 2009b; 36 2014; 506 2015; 115 2017; 17 2000; 105 2015; 112 2005; 5 2009; 9 2011; 45 2016; 533 2011; 49 2016; 9 2014; 344 |
References_xml | – volume: 354 start-page: 1119 year: 2016 end-page: 1124 article-title: Global atmospheric particle formation from CERN CLOUD measurements publication-title: Science – volume: 12 start-page: 11,573 issue: 23 year: 2012 end-page: 11,587 article-title: No statistically significant effect of a short‐term decrease in the nucleation rate on atmospheric aerosols publication-title: Atmos. Chem. Phys. – volume: 25 start-page: 1 issue: 1 year: 1987 end-page: 16 article-title: Centered and eccentric geomagnetic dipoles and their poles, 1600–1985 publication-title: Rev. Geophys. – volume: 10 start-page: 9773 issue: 20 year: 2010 end-page: 9779 article-title: Sub‐10 nm particle growth by vapor condensation effects of vapor molecule size and particle thermal speed publication-title: Atmos. Chem. Phys. – volume: 321 start-page: 1309 issue: 5894 year: 2008 end-page: 1313 article-title: Flood or drought: How do aerosols affect precipitation? publication-title: Science – volume: 3 start-page: 1 year: 2017 end-page: 15 article-title: Aerosols in the pre‐industrial atmosphere publication-title: Curr. Clim. Change Rep. – volume: 119 start-page: 7502 year: 2014 end-page: 7514 article-title: Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine publication-title: J. Geophys. Res. Atmos. – volume: 352 start-page: 1109 issue: 6289 year: 2016 end-page: 1112 article-title: New particle formation in the free troposphere: A question of chemistry and timing publication-title: Science – volume: 107 start-page: 4564 issue: D21 year: 2002 article-title: Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations publication-title: J. Geophys. Res. Atmos. – volume: 11 start-page: 4001 issue: 8 year: 2011 end-page: 4013 article-title: Cosmic rays, aerosol formation and cloud‐condensation nuclei: Sensitivities to model uncertainties publication-title: Atmos. Chem. Phys. – volume: 39 year: 2012 article-title: The present‐day decadal solar cycle modulation of Earth's radiative forcing via charged H SO /H O aerosol nucleation publication-title: Geophys. Res. Lett. – volume: 14 start-page: 9317 issue: 17 year: 2014 end-page: 9341 article-title: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years publication-title: Atmos. Chem. Phys. – volume: 10 start-page: 695 issue: 2 year: 2010 end-page: 705 article-title: Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000 publication-title: Atmos. Chem. Phys. – volume: 15 start-page: 12,989 issue: 22 year: 2015 end-page: 13,001 article-title: Impact of gas‐to‐particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol publication-title: Atmos. Chem. Phys. – volume: 7 start-page: 1961 issue: 8 year: 2007 end-page: 1971 article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 1339 issue: 4 year: 2009a end-page: 1356 article-title: Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates publication-title: Atmos. Chem. Phys. – volume: 110 start-page: 17,223 issue: 43 year: 2013 end-page: 17,228 article-title: Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 17 start-page: 2163 issue: 3 year: 2017 end-page: 2187 article-title: Measurements of sub‐3 nm particles using a particle size magnifier in different environments: From clean mountain top to polluted megacities publication-title: Atmos. Chem. Phys. – volume: 12 start-page: 4449 issue: 10 year: 2012 end-page: 4476 article-title: Intercomparison of modal and sectional aerosol microphysics representations within the same 3‐D global chemical transport model publication-title: Atmos. Chem. Phys. – volume: 344 start-page: 717 issue: 6185 year: 2014 end-page: 721 article-title: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles publication-title: Science – volume: 15 start-page: 2247 issue: 5 year: 2015 end-page: 2268 article-title: Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation publication-title: Atmos. Chem. Phys. – volume: 43 start-page: 81 issue: 1 year: 2009 end-page: 96 article-title: Effect of working fluid on sub‐2 nm particle detection with a laminar flow ultrafine condensation particle counter publication-title: Aerosol Sci. Technol. – volume: 9 start-page: 8601 issue: 21 year: 2009 end-page: 8616 article-title: Impact of nucleation on global CCN publication-title: Atmos. Chem. Phys. – volume: 45 start-page: 533 issue: 4 year: 2011 end-page: 542 article-title: Particle size magnifier for nano‐CN detection publication-title: Aerosol Sci. Technol. – volume: 9 start-page: 1747 issue: 5 year: 2009 end-page: 1766 article-title: Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5‐HAM global circulation model publication-title: Atmos. Chem. Phys. – volume: 533 start-page: 527 issue: 7604 year: 2016 end-page: 531 article-title: The role of low‐volatility organic compounds in initial particle growth in the atmosphere publication-title: Nature – volume: 7 start-page: 609 issue: 3 year: 2007 end-page: 620 article-title: Technical note: Performance of Chemical Ionization Reaction Time‐of‐Flight Mass Spectrometry (CIR‐TOF‐MS) for the measurement of atmospherically significant oxygenated volatile organic compounds publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 1949 issue: 5 year: 2011 end-page: 1959 article-title: Sensitivity of global cloud condensation nuclei concentrations to primary sulfate emission parameterizations publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 239 issue: 1 year: 2009 end-page: 260 article-title: Aerosol indirect forcing in a global model with particle nucleation publication-title: Atmos. Chem. Phys. – volume: 107 start-page: 4407 issue: D19 year: 2002 article-title: Global distribution and climate forcing of carbonaceous aerosols publication-title: J. Geophys. Res. – volume: 14 start-page: 447 issue: 1 year: 2014 end-page: 470 article-title: The direct and indirect radiative effects of biogenic secondary organic aerosol publication-title: Atmos. Chem. Phys. – start-page: 167 year: 1986 end-page: 174 – volume: 13 start-page: 8879 issue: 17 year: 2013 end-page: 8914 article-title: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei publication-title: Atmos. Chem. Phys. – volume: 49 year: 2011 article-title: Production flux of sea spray aerosol publication-title: Rev. Geophys. – volume: 15 start-page: 7203 issue: 13 year: 2015 end-page: 7216 article-title: Experimental investigation of ion–ion recombination under atmospheric conditions publication-title: Atmos. Chem. Phys. – volume: 6 start-page: 4321 issue: 12 year: 2006 end-page: 4344 article-title: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data‐sets for AeroCom publication-title: Atmos. Chem. Phys. – volume: 113 start-page: 12053 year: 2016 end-page: 12058 article-title: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 12 start-page: 11,451 issue: 23 year: 2012 end-page: 11,463 article-title: Indirect radiative forcing by ion‐mediated nucleation of aerosol publication-title: Atmos. Chem. Phys. – volume: 119 start-page: 6867 year: 2014 end-page: 6885 article-title: Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium publication-title: J. Geophys. Res. Atmos. – volume: 112 start-page: 7123 issue: 23 year: 2015 end-page: 7128 article-title: Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 3 start-page: 519 issue: 2 year: 2010 end-page: 551 article-title: Description and evaluation of GLOMAP‐mode: A modal global aerosol microphysics model for the UKCA composition‐climate model publication-title: Geosci. Model Dev. – volume: 5 start-page: 2227 issue: 8 year: 2005 end-page: 2252 article-title: A global off‐line model of size‐resolved aerosol microphysics: I. Model development and prediction of aerosol properties publication-title: Atmos. Chem. Phys. – volume: 116 year: 2011 article-title: Solar modulation parameter for cosmic rays since 1936 reconstructed from ground‐based neutron monitors and ionization chambers publication-title: J. Geophys. Res. – volume: 326 start-page: 1525 issue: 5959 year: 2009 end-page: 1529 article-title: Evolution of organic aerosols in the atmosphere publication-title: Science – volume: 12 start-page: 4399 issue: 10 year: 2012 end-page: 4411 article-title: Sulfuric acid nucleation: Power dependencies, variation with relative humidity, and effect of bases publication-title: Atmos. Chem. Phys. – volume: 9 issue: 4 year: 2014a article-title: Effect of solar variations on particle formation and cloud condensation nuclei publication-title: Environ. Res. Lett. – volume: 108 start-page: 4297 issue: D9 year: 2003 article-title: Laboratory simulations and parameterization of the primary marine aerosol production publication-title: J. Geophys. Res. – volume: 109 start-page: 18,713 issue: 46 year: 2012 end-page: 18,718 article-title: Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 581 start-page: A95 year: 2015 article-title: The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets publication-title: Astron. Astrophys. – volume: 502 start-page: 359 issue: 7471 year: 2013 end-page: 363 article-title: Molecular understanding of sulphuric acid‐amine particle nucleation in the atmosphere publication-title: Nature – volume: 121 start-page: 1752 year: 2016 end-page: 1775 article-title: Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory publication-title: J. Geophys. Res. Atmos. – volume: 17 start-page: 1097 issue: 4 year: 2003 article-title: A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles publication-title: Global Biogeochem. Cycles – volume: 370 start-page: 450 year: 1994 end-page: 453 article-title: A climate model study of indirect radiative forcing publication-title: Nature – volume: 3 start-page: 1039 issue: 4 year: 2010 end-page: 1053 article-title: A high‐resolution mass spectrometer to measure atmospheric ion composition publication-title: Atmos. Meas. Tech. – volume: 9 start-page: 547 issue: 4 year: 2003 end-page: 562 article-title: Carbon emissions from fires in tropical and subtropical ecosystems publication-title: Global Change Biol. – volume: 5 start-page: 1125 issue: 4 year: 2005 end-page: 1156 article-title: The aerosol‐climate model ECHAM5‐HAM publication-title: Atmos. Chem. Phys. – volume: 12 start-page: 89 issue: 1 year: 2012 end-page: 101 article-title: Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations publication-title: Atmos. Chem. Phys. – volume: 105 start-page: 26,793 issue: D22 year: 2000 end-page: 26,808 article-title: Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models publication-title: J. Geophys. Res. – volume: 183 start-page: 1216 issue: 3 year: 2010 end-page: 1230 article-title: International geomagnetic reference field: The eleventh generation publication-title: Geophys. J. Int. – volume: 12 start-page: 10,077 issue: 21 year: 2012 end-page: 10,096 article-title: BVOC‐aerosol‐climate interactions in the global aerosol‐climate model ECHAM5.5‐HAM2 publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 3875 issue: 11 year: 2016 end-page: 3906 article-title: Size‐resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS‐1.0: Description, evaluation and first global modelling results publication-title: Geosci. Model Dev. – volume: 16 start-page: 7709 issue: 12 year: 2016 end-page: 7724 article-title: The evolution of biomass‐burning aerosol size distributions due to coagulation: Dependence on fire and meteorological details and parameterization publication-title: Atmos. Chem. Phys. – volume: 121 start-page: 12,377 year: 2016 end-page: 12,400 article-title: Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures publication-title: J. Geophys. Res. Atmos. – volume: 110 year: 2005 article-title: Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004 publication-title: J. Geophys. Res. – volume: 6 start-page: 787 issue: 3 year: 2006 end-page: 793 article-title: Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration publication-title: Atmos. Chem. Phys. – volume: 36 year: 2009b article-title: Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? publication-title: Geophys. Res. Lett. – volume: 10 start-page: 10,733 issue: 22 year: 2010 end-page: 10,752 article-title: Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol‐climate model ECHAM5‐HAM publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 3253 issue: 10 year: 2009 end-page: 3259 article-title: Variable CCN formation potential of regional sulfur emissions publication-title: Atmos. Chem. Phys. – volume: 14 start-page: 12,455 issue: 22 year: 2014b end-page: 12,464 article-title: Modeling of gaseous methylamines in the global atmosphere: Impacts of oxidation and aerosol uptake publication-title: Atmos. Chem. Phys. – volume: 132 start-page: 1179 issue: 617 year: 2006 end-page: 1203 article-title: New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments publication-title: Q. J. R. Meteorol. Soc. – volume: 506 start-page: 476 issue: 7489 year: 2014 end-page: 479 article-title: A large source of low‐volatility secondary organic aerosol publication-title: Nature – volume: 115 start-page: 4476 issue: 10 year: 2015 end-page: 4496 article-title: Land use change impacts on air quality and climate publication-title: Chem. Rev. – volume: 533 start-page: 521 issue: 7604 year: 2016 end-page: 526 article-title: Ion‐induced nucleation of pure biogenic particles publication-title: Nature – volume: 11 start-page: 4755 issue: 10 year: 2011 end-page: 4766 article-title: Ternary homogeneous nucleation of H SO , NH , and H O under conditions relevant to the lower troposphere publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 7817 issue: 15 year: 2011 end-page: 7838 article-title: Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions publication-title: Atmos. Chem. Phys. – volume: 7 start-page: 1367 issue: 5 year: 2007 end-page: 1379 article-title: Efficiency of cloud condensation nuclei formation from ultrafine particles publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 7691 issue: 20 year: 2009 end-page: 7710 article-title: Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations publication-title: Atmos. Chem. Phys. – volume: 5 start-page: 1053 issue: 4 year: 2005 end-page: 1123 article-title: Organic aerosol and global climate modelling: A review publication-title: Atmos. Chem. Phys. – volume: 35 year: 2008 article-title: Contribution of particle formation to global cloud condensation nuclei concentrations publication-title: Geophys. Res. Lett. – volume: 107 start-page: 6646 year: 2010 end-page: 6651 article-title: Evidence for the role of organics in aerosol particle formation under atmospheric conditions publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 2016 start-page: 1 year: 2016 end-page: 22 article-title: Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere publication-title: Atmos. Chem. Phys. Discuss. – volume: 33 start-page: 609 issue: 4 year: 2002 end-page: 622 article-title: Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events publication-title: J. Aerosol Sci. – volume: 14 start-page: 5577 issue: 11 year: 2014 end-page: 5597 article-title: Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation publication-title: Atmos. Chem. Phys. – volume: 503 start-page: 67 issue: 7474 year: 2013 end-page: 71 article-title: Large contribution of natural aerosols to uncertainty in indirect forcing publication-title: Nature – volume: 4 start-page: 3513 issue: 20 year: 2013 end-page: 3520 article-title: Autoxidation of organic compounds in the atmosphere publication-title: J. Phys. Chem. Lett. |
SSID | ssj0000803454 |
Score | 2.4987938 |
Snippet | New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here... |
SourceID | wiley |
SourceType | Publisher |
StartPage | 8739 |
SubjectTerms | aerosol atmosphere nucleation |
Title | Causes and importance of new particle formation in the present‐day and preindustrial atmospheres |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017JD026844 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XryIT6wv9iCeDE02k2z2KK21FCoiFnoLm90NBGxamvbgzZ_gb_SXOLsJsR495rWEmUzmmy-Zbwi5FUKFgYm1lwg_8iBQPoYUk54wTMVgwFfKftGdPMejKYxn0awh3GwvTK0P0RJuNjLc-9oGuMyq3q9oKGYuPh74Vq0Edsme7a612vkMXlqOBdFQCG4QGgtigbfDZ82_77hEb3uBv9DU5ZbhITloQCF9qL14RHZMeUy6E8Szi5Wjvekd7b8XCC7d1gnJ-nJTmYrKUtNi7iA0Oo8ucooomS6bx4G2nYm0KCkiPbqsm42-P7-0_HBX456ind5B5Xq-qKzQgKlOyXT4-NYfec20BM8ONQBPSW1rO-mbXBohmEEokjEJWD_ITHGlmeGIlSAJDZYwWkMuA52bJIEQLYeF6hnplIvSnBMacZNJBXkOEQeEZELpxISBDKXPVQJBl9w7a6XLWhEjrbWPWbpt0nT89DqIQhHBxf9OvyT79oAlbhm_Ip31amOuMfOvsxvn3h_ERKhD |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT4QwEMcbHwe9GJ9xffZgPEmEMlB6NLvqurobYzTZGyltSUgUNrJ78OZH8DP6SZwWsq5Hj5DSkA5DfzMw_yHkTAgVBibWXiL8yINA-ehSTHrCMBWDAV8p-0V3OIr7LzAYR-O2z6mthWn0IeYJN-sZ7n1tHdwmpC9_VUNx6-KDnm_lSmCZrELMuPVMBo_zJAviUAiuExoLYoH3w8ftz-84xeXiBH_Z1G0uN5tko6VCetWYcYssmXKbdIYItNW7y3vTc9p9LZAu3dEOybpyVpuaylLT4s0xNFqPVjlFTKaT9nmg89JEWpQUUY9Ommqj788vLT_c1XimmLfvoHL6VtVWacDUu-Tl5vq52_fadgme7WoAnpLaBnfSN7k0QjCDLJIxCRhAyExxpZnhCEuQhAZjGK0hl4HOTZJACLFVLN0jK2VVmn1CI24yqSDPIeKATCaUTkwYyFD6XCUQdMiFW6100khipI34MUsXlzQd3D71olBEcPC_4adkrf88fEgf7kb3h2TdDrJZXMaPyMr0fWaOEQOm2Ykz9Q_xz6uv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIYtKBLiglhFWX1AnIjIMll8RC2lFFpViEq9RY7tSJFoGjXtgRuPwDPyJIydKJQjx0SOFXky8eex5x9CrhkTnqMCaUXM9i1whI0u5XKLKVcEoMAWQu_oDkdBfwKDqT-tA246F6bSh2gCbtozzP9aO3gh07tf0VCcucJB19ZqJbBJtsx-n1Z2hnETY0Ea8sAUQnOdgOHrhNP67Dt2cbfewV80NXNLb4_s1lBI7ysr7pMNlR-Q9hB5dr4wYW96QzvvGcKluTokSYevSlVSnkuazQxCo_HoPKVIybSoPwfaZCbSLKdIerSoko2-P78k_zBP452sqd5B-XI2L7XQgCqPyKT38NbpW3W1BEsXNQBLcKnXdtxWKVeMuQpRJHE54PqBJyIU0lUhshJEnsIljJSQckemKorAg0ALlh6TVj7P1QmhfqgSLiBNwQ8BkYwJGSnP4R63QxGB0ya3ZrTiolLEiCvtYzdeH9J48Pja9T3mw-n_ml-R7XG3F788jZ7PyI5uo2O4bnhOWsvFSl0gBCyTS2PpHzj9quE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causes+and+importance+of+new+particle+formation+in+the+present%E2%80%90day+and+preindustrial+atmospheres&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Gordon%2C+Hamish&rft.au=Kirkby%2C+Jasper&rft.au=Baltensperger%2C+Urs&rft.au=Bianchi%2C+Federico&rft.date=2017-08-27&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=122&rft.issue=16&rft.spage=8739&rft.epage=8760&rft_id=info:doi/10.1002%2F2017JD026844&rft.externalDBID=10.1002%252F2017JD026844&rft.externalDocID=JGRD53954 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon |