Causes and importance of new particle formation in the present‐day and preindustrial atmospheres

New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here we assess the importance of new particle formation (NPF) for both the present‐day and the preindustrial atmospheres. We use a global aerosol...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Atmospheres Vol. 122; no. 16; pp. 8739 - 8760
Main Authors Gordon, Hamish, Kirkby, Jasper, Baltensperger, Urs, Bianchi, Federico, Breitenlechner, Martin, Curtius, Joachim, Dias, Antonio, Dommen, Josef, Donahue, Neil M., Dunne, Eimear M., Duplissy, Jonathan, Ehrhart, Sebastian, Flagan, Richard C., Frege, Carla, Fuchs, Claudia, Hansel, Armin, Hoyle, Christopher R., Kulmala, Markku, Kürten, Andreas, Lehtipalo, Katrianne, Makhmutov, Vladimir, Molteni, Ugo, Rissanen, Matti P., Stozkhov, Yuri, Tröstl, Jasmin, Tsagkogeorgas, Georgios, Wagner, Robert, Williamson, Christina, Wimmer, Daniela, Winkler, Paul M., Yan, Chao, Carslaw, Ken S.
Format Journal Article
LanguageEnglish
Published 27.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here we assess the importance of new particle formation (NPF) for both the present‐day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low‐cloud‐level CCN concentrations at 0.2% supersaturation by 26% in the present‐day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion‐induced NPF, compared with 27% in the present day, although we caution that the ion‐induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions. Plain Language Summary New particle formation in the atmosphere is the process by which gas molecules collide and stick together to form atmospheric aerosol particles. Aerosols act as seeds for cloud droplets, so the concentration of aerosols in the atmosphere affects the properties of clouds. It is important to understand how aerosols affect clouds because they reflect a lot of incoming solar radiation away from Earth's surface, so changes in cloud properties can affect the climate. Before the Industrial Revolution, aerosol concentrations were significantly lower than they are today. In this article, we show using global model simulations that new particle formation was a more important mechanism for aerosol production than it is now. We also study the importance of gases emitted by vegetation, and of atmospheric ions made by radon gas or cosmic rays, in preindustrial aerosol formation. We find that the contribution of ions and vegetation to new particle formation was also greater in the preindustrial period than it is today. However, the effect on particle formation of variations in ion concentration due to changes in the intensity of cosmic rays reaching Earth was small. Key Points New particle formation produces over half of CCN in the present‐day and preindustrial atmospheres BVOCs are more important to CCN formation than previously thought Our current ion‐induced nucleation rates imply only small changes of CCN over the solar cycle
AbstractList New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here we assess the importance of new particle formation (NPF) for both the present‐day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low‐cloud‐level CCN concentrations at 0.2% supersaturation by 26% in the present‐day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion‐induced NPF, compared with 27% in the present day, although we caution that the ion‐induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions. Plain Language Summary New particle formation in the atmosphere is the process by which gas molecules collide and stick together to form atmospheric aerosol particles. Aerosols act as seeds for cloud droplets, so the concentration of aerosols in the atmosphere affects the properties of clouds. It is important to understand how aerosols affect clouds because they reflect a lot of incoming solar radiation away from Earth's surface, so changes in cloud properties can affect the climate. Before the Industrial Revolution, aerosol concentrations were significantly lower than they are today. In this article, we show using global model simulations that new particle formation was a more important mechanism for aerosol production than it is now. We also study the importance of gases emitted by vegetation, and of atmospheric ions made by radon gas or cosmic rays, in preindustrial aerosol formation. We find that the contribution of ions and vegetation to new particle formation was also greater in the preindustrial period than it is today. However, the effect on particle formation of variations in ion concentration due to changes in the intensity of cosmic rays reaching Earth was small. Key Points New particle formation produces over half of CCN in the present‐day and preindustrial atmospheres BVOCs are more important to CCN formation than previously thought Our current ion‐induced nucleation rates imply only small changes of CCN over the solar cycle
Author Dunne, Eimear M.
Curtius, Joachim
Ehrhart, Sebastian
Tsagkogeorgas, Georgios
Dommen, Josef
Kirkby, Jasper
Breitenlechner, Martin
Fuchs, Claudia
Baltensperger, Urs
Wimmer, Daniela
Dias, Antonio
Stozkhov, Yuri
Tröstl, Jasmin
Lehtipalo, Katrianne
Flagan, Richard C.
Kürten, Andreas
Hansel, Armin
Carslaw, Ken S.
Yan, Chao
Molteni, Ugo
Gordon, Hamish
Frege, Carla
Makhmutov, Vladimir
Duplissy, Jonathan
Rissanen, Matti P.
Hoyle, Christopher R.
Bianchi, Federico
Williamson, Christina
Donahue, Neil M.
Kulmala, Markku
Wagner, Robert
Winkler, Paul M.
Author_xml – sequence: 1
  givenname: Hamish
  orcidid: 0000-0002-1822-3224
  surname: Gordon
  fullname: Gordon, Hamish
  email: hamish.gordon@cern.ch
  organization: University of Leeds
– sequence: 2
  givenname: Jasper
  surname: Kirkby
  fullname: Kirkby, Jasper
  organization: Goethe University Frankfurt
– sequence: 3
  givenname: Urs
  surname: Baltensperger
  fullname: Baltensperger, Urs
  organization: Paul Scherrer Institute
– sequence: 4
  givenname: Federico
  orcidid: 0000-0003-2996-3604
  surname: Bianchi
  fullname: Bianchi, Federico
  organization: University of Helsinki
– sequence: 5
  givenname: Martin
  surname: Breitenlechner
  fullname: Breitenlechner, Martin
  organization: Harvard University
– sequence: 6
  givenname: Joachim
  orcidid: 0000-0003-3153-4630
  surname: Curtius
  fullname: Curtius, Joachim
  organization: Goethe University Frankfurt
– sequence: 7
  givenname: Antonio
  surname: Dias
  fullname: Dias, Antonio
  organization: CERN
– sequence: 8
  givenname: Josef
  orcidid: 0000-0002-0006-0009
  surname: Dommen
  fullname: Dommen, Josef
  organization: Paul Scherrer Institute
– sequence: 9
  givenname: Neil M.
  orcidid: 0000-0003-3054-2364
  surname: Donahue
  fullname: Donahue, Neil M.
  organization: Carnegie Mellon University
– sequence: 10
  givenname: Eimear M.
  orcidid: 0000-0001-7085-8473
  surname: Dunne
  fullname: Dunne, Eimear M.
  organization: Atmospheric Research Centre of Eastern Finland
– sequence: 11
  givenname: Jonathan
  orcidid: 0000-0001-8819-0264
  surname: Duplissy
  fullname: Duplissy, Jonathan
  organization: Helsinki Institute of Physics
– sequence: 12
  givenname: Sebastian
  surname: Ehrhart
  fullname: Ehrhart, Sebastian
  organization: Max Planck Institute for Chemistry
– sequence: 13
  givenname: Richard C.
  orcidid: 0000-0001-5690-770X
  surname: Flagan
  fullname: Flagan, Richard C.
  organization: California Institute of Technology
– sequence: 14
  givenname: Carla
  surname: Frege
  fullname: Frege, Carla
  organization: Paul Scherrer Institute
– sequence: 15
  givenname: Claudia
  surname: Fuchs
  fullname: Fuchs, Claudia
  organization: Paul Scherrer Institute
– sequence: 16
  givenname: Armin
  orcidid: 0000-0002-1062-2394
  surname: Hansel
  fullname: Hansel, Armin
  organization: University of Innsbruck
– sequence: 17
  givenname: Christopher R.
  orcidid: 0000-0002-1369-9143
  surname: Hoyle
  fullname: Hoyle, Christopher R.
  organization: SLFWSL Institute for Snow and Avalanche Research
– sequence: 18
  givenname: Markku
  surname: Kulmala
  fullname: Kulmala, Markku
  organization: University of Helsinki
– sequence: 19
  givenname: Andreas
  orcidid: 0000-0002-8955-4450
  surname: Kürten
  fullname: Kürten, Andreas
  organization: Goethe University Frankfurt
– sequence: 20
  givenname: Katrianne
  surname: Lehtipalo
  fullname: Lehtipalo, Katrianne
  organization: University of Helsinki
– sequence: 21
  givenname: Vladimir
  surname: Makhmutov
  fullname: Makhmutov, Vladimir
  organization: Lebedev Physical Institute
– sequence: 22
  givenname: Ugo
  surname: Molteni
  fullname: Molteni, Ugo
  organization: Paul Scherrer Institute
– sequence: 23
  givenname: Matti P.
  orcidid: 0000-0003-0463-8098
  surname: Rissanen
  fullname: Rissanen, Matti P.
  organization: University of Helsinki
– sequence: 24
  givenname: Yuri
  surname: Stozkhov
  fullname: Stozkhov, Yuri
  organization: Lebedev Physical Institute
– sequence: 25
  givenname: Jasmin
  orcidid: 0000-0002-2807-0348
  surname: Tröstl
  fullname: Tröstl, Jasmin
  organization: Paul Scherrer Institute
– sequence: 26
  givenname: Georgios
  surname: Tsagkogeorgas
  fullname: Tsagkogeorgas, Georgios
  organization: Leibniz Institute for Tropospheric Research
– sequence: 27
  givenname: Robert
  orcidid: 0000-0001-7365-8020
  surname: Wagner
  fullname: Wagner, Robert
  organization: University of Helsinki
– sequence: 28
  givenname: Christina
  surname: Williamson
  fullname: Williamson, Christina
  organization: University of Colorado Boulder and National Oceanic and Atmospheric Administration Earth System Research Laboratory
– sequence: 29
  givenname: Daniela
  surname: Wimmer
  fullname: Wimmer, Daniela
  organization: University of Helsinki
– sequence: 30
  givenname: Paul M.
  surname: Winkler
  fullname: Winkler, Paul M.
  organization: University of Vienna
– sequence: 31
  givenname: Chao
  surname: Yan
  fullname: Yan, Chao
  organization: University of Helsinki
– sequence: 32
  givenname: Ken S.
  orcidid: 0000-0002-6800-154X
  surname: Carslaw
  fullname: Carslaw, Ken S.
  organization: University of Leeds
BookMark eNpNUM1KAzEYDFLBWnvzAfICq_nbbHKUVltLQRAFb8vXzbc0sptdki2lNx_BZ_RJrD-Ic5lhmJnDnJNR6AIScsnZFWdMXAvGi9WcCW2UOiFjwbXNjLV69KeLlzMyTemVHWGYVLkak80MdgkTheCob_suDhAqpF1NA-5pD3HwVYO07mILg-8C9YEOW6R9xIRh-Hh7d3D4bh8dH9wuDdFDQ2Fou9Rv8Ri7IKc1NAmnvzwhz3e3T7Nltn5Y3M9u1hnkjKmsAseV0sCwBrRWoDR2I0AZoWFTFZUTWGjOlJGoWe6cqoG7Go1RUmkljZwQ-bO79w0eyj76FuKh5Kz8-qf8_0-5WjzOc2lzJT8BgQZebA
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_143684
crossref_primary_10_5194_ar_2_13_2024
crossref_primary_10_1038_s41598_022_14525_y
crossref_primary_10_1038_s41598_021_99033_1
crossref_primary_10_5194_acp_23_3955_2023
crossref_primary_10_1021_acs_chemrev_8b00395
crossref_primary_10_1038_s41586_024_07547_1
crossref_primary_10_5194_acp_21_3827_2021
crossref_primary_10_1073_pnas_2006716117
crossref_primary_10_5194_acp_21_17559_2021
crossref_primary_10_5194_acp_23_2927_2023
crossref_primary_10_1039_D0FD00077A
crossref_primary_10_1016_j_aeaoa_2019_100051
crossref_primary_10_5194_acp_20_9183_2020
crossref_primary_10_3390_atmos10050275
crossref_primary_10_5194_acp_20_4809_2020
crossref_primary_10_1126_science_adq4711
crossref_primary_10_5194_acp_21_183_2021
crossref_primary_10_5194_acp_22_8287_2022
crossref_primary_10_1126_sciadv_adm9191
crossref_primary_10_1038_s41612_025_00893_5
crossref_primary_10_5194_acp_24_65_2024
crossref_primary_10_1029_2023GL104325
crossref_primary_10_3389_fenvs_2022_912385
crossref_primary_10_5194_acp_25_959_2025
crossref_primary_10_1088_1674_4527_21_6_131
crossref_primary_10_1038_s41467_020_18551_0
crossref_primary_10_5194_acp_21_2693_2021
crossref_primary_10_5194_acp_22_15909_2022
crossref_primary_10_5194_acp_19_8915_2019
crossref_primary_10_5194_acp_22_8097_2022
crossref_primary_10_5140_JASS_2019_36_4_225
crossref_primary_10_1038_s41586_024_08192_4
crossref_primary_10_1073_pnas_1807604115
crossref_primary_10_5194_acp_22_4491_2022
crossref_primary_10_5194_gmd_16_5237_2023
crossref_primary_10_5194_acp_24_6769_2024
crossref_primary_10_1039_D2CP01671K
crossref_primary_10_5194_acp_22_11529_2022
crossref_primary_10_1029_2021GL095190
crossref_primary_10_5194_acp_19_8669_2019
crossref_primary_10_5194_acp_23_9853_2023
crossref_primary_10_1016_j_jaerosci_2025_106524
crossref_primary_10_1016_j_jaerosci_2024_106502
crossref_primary_10_1016_j_atmosenv_2023_119732
crossref_primary_10_1146_annurev_physchem_062322_041503
crossref_primary_10_5194_acp_20_15983_2020
crossref_primary_10_5194_amt_14_5429_2021
crossref_primary_10_1038_s41586_022_04605_4
crossref_primary_10_5194_acp_21_2457_2021
crossref_primary_10_5194_acp_21_13455_2021
crossref_primary_10_5194_acp_21_17099_2021
crossref_primary_10_1021_acs_est_0c07465
crossref_primary_10_1021_acs_jpca_2c02072
crossref_primary_10_5194_ar_2_49_2024
crossref_primary_10_5194_acp_23_8789_2023
crossref_primary_10_1126_science_abe0298
crossref_primary_10_3390_atmos13091443
crossref_primary_10_1029_2022GL098959
crossref_primary_10_5194_acp_23_6879_2023
crossref_primary_10_1021_acs_jpca_4c06062
crossref_primary_10_1002_2017JD027475
crossref_primary_10_1039_D4EA00056K
crossref_primary_10_1021_acsomega_4c01235
crossref_primary_10_3390_atmos14050795
crossref_primary_10_1016_j_chemosphere_2024_141630
crossref_primary_10_5194_acp_19_10537_2019
crossref_primary_10_5194_acp_22_11155_2022
crossref_primary_10_5194_acp_23_14949_2023
crossref_primary_10_1038_s41598_023_30447_9
crossref_primary_10_5194_acp_18_9975_2018
crossref_primary_10_1016_j_atmosenv_2024_120915
crossref_primary_10_1038_s43247_024_01519_z
crossref_primary_10_5194_acp_23_2183_2023
crossref_primary_10_5194_acp_19_2787_2019
crossref_primary_10_5194_acp_19_3137_2019
crossref_primary_10_5194_acp_24_2535_2024
crossref_primary_10_1093_nsr_nwac137
crossref_primary_10_1029_2020JD033529
crossref_primary_10_5194_acp_20_8953_2020
crossref_primary_10_1029_2023GL107516
crossref_primary_10_1029_2021GL094198
crossref_primary_10_1021_acs_jpca_4c01629
crossref_primary_10_1016_j_ecoenv_2021_112329
crossref_primary_10_5194_acp_19_6185_2019
crossref_primary_10_1016_j_envpol_2023_121759
crossref_primary_10_1016_j_jaerosci_2021_105808
crossref_primary_10_1016_j_atmosenv_2021_118894
crossref_primary_10_1016_j_atmosenv_2023_120094
crossref_primary_10_5194_amt_16_2471_2023
crossref_primary_10_1016_j_atmosenv_2020_117920
crossref_primary_10_1080_02786826_2020_1839013
crossref_primary_10_1016_j_atmosres_2024_107586
crossref_primary_10_1021_acs_jpca_2c01672
crossref_primary_10_5194_amt_16_1323_2023
crossref_primary_10_1016_j_oneear_2025_101237
crossref_primary_10_1088_1402_4896_ad8848
crossref_primary_10_1021_acs_est_4c06578
crossref_primary_10_1016_j_uclim_2022_101214
crossref_primary_10_1080_07055900_2024_2325921
crossref_primary_10_1038_s41612_024_00758_3
crossref_primary_10_5194_acp_18_12085_2018
crossref_primary_10_1038_s41561_023_01305_0
crossref_primary_10_1016_j_atmosenv_2021_118526
crossref_primary_10_5194_acp_20_5055_2020
crossref_primary_10_5194_acp_24_3785_2024
crossref_primary_10_1029_2021GL092758
crossref_primary_10_1126_science_adn2961
crossref_primary_10_5194_acp_23_5801_2023
crossref_primary_10_1038_s41586_019_1638_9
crossref_primary_10_1126_sciadv_abd9954
crossref_primary_10_5194_acp_20_7359_2020
crossref_primary_10_5194_acp_21_12649_2021
crossref_primary_10_1021_acs_est_2c04328
crossref_primary_10_1073_pnas_2201955119
crossref_primary_10_5194_acp_21_9223_2021
crossref_primary_10_5194_acp_23_895_2023
crossref_primary_10_5194_acp_25_511_2025
crossref_primary_10_1038_s41596_019_0274_z
crossref_primary_10_1016_j_atmosenv_2024_120831
crossref_primary_10_1038_s41561_020_00661_5
crossref_primary_10_1016_j_atmosenv_2021_118460
crossref_primary_10_5194_acp_24_12595_2024
crossref_primary_10_5194_amt_10_5075_2017
crossref_primary_10_1029_2022JD037525
crossref_primary_10_5194_acp_21_17243_2021
crossref_primary_10_5194_acp_19_2671_2019
crossref_primary_10_1038_s41586_020_2270_4
crossref_primary_10_1016_j_jcp_2018_02_032
crossref_primary_10_1016_j_jes_2024_09_002
crossref_primary_10_5194_acp_20_15037_2020
crossref_primary_10_5194_acp_22_14571_2022
crossref_primary_10_5194_acp_24_11365_2024
crossref_primary_10_1029_2020GL091334
crossref_primary_10_5194_acp_22_13153_2022
crossref_primary_10_1038_s41467_021_27642_5
crossref_primary_10_1038_s41586_024_08196_0
crossref_primary_10_5194_acp_22_2487_2022
crossref_primary_10_1103_RevModPhys_95_045002
crossref_primary_10_5194_acp_20_10889_2020
crossref_primary_10_5194_acp_20_11841_2020
crossref_primary_10_5194_acp_22_8547_2022
crossref_primary_10_1002_jcc_27076
crossref_primary_10_5194_acp_19_8591_2019
crossref_primary_10_5194_ar_3_15_2025
crossref_primary_10_5194_acp_22_6231_2022
crossref_primary_10_1016_j_atmosres_2021_105537
crossref_primary_10_1016_j_scitotenv_2023_163477
crossref_primary_10_1029_2018JD029356
crossref_primary_10_1021_acs_est_2c08348
crossref_primary_10_1080_02786826_2020_1769837
crossref_primary_10_1080_02786826_2023_2245859
crossref_primary_10_1021_acs_est_3c10526
crossref_primary_10_1016_j_atmosres_2024_107510
crossref_primary_10_5194_acp_19_13243_2019
crossref_primary_10_1029_2020JD033267
crossref_primary_10_1039_D1EA00050K
crossref_primary_10_5194_acp_24_10349_2024
crossref_primary_10_5194_acp_22_10061_2022
crossref_primary_10_5194_acp_23_13191_2023
crossref_primary_10_1021_acsearthspacechem_3c00017
crossref_primary_10_1080_02786826_2021_1922598
crossref_primary_10_5194_acp_23_4431_2023
crossref_primary_10_5194_gmd_15_683_2022
crossref_primary_10_1007_s40009_023_01221_2
crossref_primary_10_1016_j_atmosenv_2020_117982
crossref_primary_10_1039_D0FD00083C
crossref_primary_10_5194_acp_20_11747_2020
crossref_primary_10_5194_acp_22_10077_2022
crossref_primary_10_1021_acs_est_9b03091
crossref_primary_10_5194_gmd_17_4923_2024
crossref_primary_10_1016_j_atmosenv_2019_04_024
crossref_primary_10_5194_acp_18_13231_2018
crossref_primary_10_5194_acp_21_17185_2021
crossref_primary_10_5194_acp_21_4979_2021
crossref_primary_10_1021_acsomega_3c01643
crossref_primary_10_5194_acp_23_4343_2023
crossref_primary_10_1039_D2EA00174H
crossref_primary_10_1073_pnas_2308696120
crossref_primary_10_1525_elementa_2023_00058
crossref_primary_10_1088_1748_9326_aadf3c
crossref_primary_10_1016_j_jaerosci_2020_105676
crossref_primary_10_5194_acp_23_9287_2023
crossref_primary_10_1021_acs_est_3c06098
crossref_primary_10_1029_2019JD030297
crossref_primary_10_1016_j_jaerosci_2024_106494
crossref_primary_10_1029_2018JD028882
crossref_primary_10_5194_acp_19_5033_2019
crossref_primary_10_5194_ar_2_291_2024
crossref_primary_10_5194_acp_23_8241_2023
crossref_primary_10_1080_02786826_2021_1898536
crossref_primary_10_1021_acs_est_3c07958
crossref_primary_10_5575_geosoc_2022_0051
crossref_primary_10_5194_acp_19_4763_2019
crossref_primary_10_1080_02786826_2020_1755012
crossref_primary_10_5194_acp_18_1307_2018
crossref_primary_10_1038_s41467_019_12338_8
crossref_primary_10_5194_acp_21_7901_2021
crossref_primary_10_5194_ar_3_139_2025
crossref_primary_10_5194_ar_2_93_2024
crossref_primary_10_5194_gmd_14_3335_2021
crossref_primary_10_1038_s43247_024_01490_9
crossref_primary_10_5194_amt_18_197_2025
crossref_primary_10_5194_acp_23_15325_2023
crossref_primary_10_1021_acs_est_4c06053
crossref_primary_10_1038_s41612_023_00405_3
crossref_primary_10_1016_j_jaerosci_2021_105878
crossref_primary_10_5194_acp_21_9065_2021
crossref_primary_10_1016_j_atmosenv_2024_120414
crossref_primary_10_1029_2023JD039344
crossref_primary_10_1039_D3EA00001J
crossref_primary_10_5194_acp_18_5921_2018
crossref_primary_10_1016_j_scitotenv_2020_143100
crossref_primary_10_5194_acp_23_15795_2023
crossref_primary_10_1038_s42004_020_00339_4
ContentType Journal Article
Copyright 2017. The Authors.
Copyright_xml – notice: 2017. The Authors.
DBID 24P
DOI 10.1002/2017JD026844
DatabaseName Open Access资源_Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2169-8996
EndPage 8760
ExternalDocumentID JGRD53954
Genre article
GrantInformation_xml – fundername: Swiss National Science Foundation Swiss National Science Foundation
  funderid: 200020_135307; 206620_141278
GroupedDBID 05W
0R~
1OC
24P
33P
50Y
52M
5VS
702
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
ID FETCH-LOGICAL-a5004-cad1446a0efae992e389b2a4826abc7cd2e7610483e605dd4fa1dfe8843464383
IEDL.DBID 24P
ISSN 2169-897X
IngestDate Wed Jan 22 17:09:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5004-cad1446a0efae992e389b2a4826abc7cd2e7610483e605dd4fa1dfe8843464383
ORCID 0000-0001-7365-8020
0000-0002-8955-4450
0000-0001-8819-0264
0000-0003-3153-4630
0000-0002-1822-3224
0000-0002-6800-154X
0000-0002-1062-2394
0000-0001-5690-770X
0000-0002-2807-0348
0000-0003-0463-8098
0000-0003-2996-3604
0000-0001-7085-8473
0000-0002-1369-9143
0000-0003-3054-2364
0000-0002-0006-0009
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017JD026844
PageCount 22
ParticipantIDs wiley_primary_10_1002_2017JD026844_JGRD53954
PublicationCentury 2000
PublicationDate 27 August 2017
PublicationDateYYYYMMDD 2017-08-27
PublicationDate_xml – month: 08
  year: 2017
  text: 27 August 2017
  day: 27
PublicationDecade 2010
PublicationTitle Journal of geophysical research. Atmospheres
PublicationYear 2017
References 2011; 116
2015; 581
2010; 10
2009a; 9
2013; 4
2017; 3
2009; 43
2010; 107
1994; 370
2011; 11
2006; 132
2008; 35
2010; 183
2003; 17
2016; 2016
2012; 12
2013; 13
2014b; 14
2003; 9
2016; 113
2002; 107
2016; 354
1986
2014; 14
2016; 352
2007; 7
2013; 110
2010; 3
2014a; 9
2009; 326
2014; 119
2015; 15
2005; 110
2013; 503
2013; 502
2002; 33
2006; 6
2016; 121
2012; 39
2008; 321
2016; 16
2012; 109
1987; 25
2003; 108
2009b; 36
2014; 506
2015; 115
2017; 17
2000; 105
2015; 112
2005; 5
2009; 9
2011; 45
2016; 533
2011; 49
2016; 9
2014; 344
References_xml – volume: 354
  start-page: 1119
  year: 2016
  end-page: 1124
  article-title: Global atmospheric particle formation from CERN CLOUD measurements
  publication-title: Science
– volume: 12
  start-page: 11,573
  issue: 23
  year: 2012
  end-page: 11,587
  article-title: No statistically significant effect of a short‐term decrease in the nucleation rate on atmospheric aerosols
  publication-title: Atmos. Chem. Phys.
– volume: 25
  start-page: 1
  issue: 1
  year: 1987
  end-page: 16
  article-title: Centered and eccentric geomagnetic dipoles and their poles, 1600–1985
  publication-title: Rev. Geophys.
– volume: 10
  start-page: 9773
  issue: 20
  year: 2010
  end-page: 9779
  article-title: Sub‐10 nm particle growth by vapor condensation effects of vapor molecule size and particle thermal speed
  publication-title: Atmos. Chem. Phys.
– volume: 321
  start-page: 1309
  issue: 5894
  year: 2008
  end-page: 1313
  article-title: Flood or drought: How do aerosols affect precipitation?
  publication-title: Science
– volume: 3
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Aerosols in the pre‐industrial atmosphere
  publication-title: Curr. Clim. Change Rep.
– volume: 119
  start-page: 7502
  year: 2014
  end-page: 7514
  article-title: Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine
  publication-title: J. Geophys. Res. Atmos.
– volume: 352
  start-page: 1109
  issue: 6289
  year: 2016
  end-page: 1112
  article-title: New particle formation in the free troposphere: A question of chemistry and timing
  publication-title: Science
– volume: 107
  start-page: 4564
  issue: D21
  year: 2002
  article-title: Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations
  publication-title: J. Geophys. Res. Atmos.
– volume: 11
  start-page: 4001
  issue: 8
  year: 2011
  end-page: 4013
  article-title: Cosmic rays, aerosol formation and cloud‐condensation nuclei: Sensitivities to model uncertainties
  publication-title: Atmos. Chem. Phys.
– volume: 39
  year: 2012
  article-title: The present‐day decadal solar cycle modulation of Earth's radiative forcing via charged H SO /H O aerosol nucleation
  publication-title: Geophys. Res. Lett.
– volume: 14
  start-page: 9317
  issue: 17
  year: 2014
  end-page: 9341
  article-title: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years
  publication-title: Atmos. Chem. Phys.
– volume: 10
  start-page: 695
  issue: 2
  year: 2010
  end-page: 705
  article-title: Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000
  publication-title: Atmos. Chem. Phys.
– volume: 15
  start-page: 12,989
  issue: 22
  year: 2015
  end-page: 13,001
  article-title: Impact of gas‐to‐particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol
  publication-title: Atmos. Chem. Phys.
– volume: 7
  start-page: 1961
  issue: 8
  year: 2007
  end-page: 1971
  article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 1339
  issue: 4
  year: 2009a
  end-page: 1356
  article-title: Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates
  publication-title: Atmos. Chem. Phys.
– volume: 110
  start-page: 17,223
  issue: 43
  year: 2013
  end-page: 17,228
  article-title: Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 17
  start-page: 2163
  issue: 3
  year: 2017
  end-page: 2187
  article-title: Measurements of sub‐3 nm particles using a particle size magnifier in different environments: From clean mountain top to polluted megacities
  publication-title: Atmos. Chem. Phys.
– volume: 12
  start-page: 4449
  issue: 10
  year: 2012
  end-page: 4476
  article-title: Intercomparison of modal and sectional aerosol microphysics representations within the same 3‐D global chemical transport model
  publication-title: Atmos. Chem. Phys.
– volume: 344
  start-page: 717
  issue: 6185
  year: 2014
  end-page: 721
  article-title: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles
  publication-title: Science
– volume: 15
  start-page: 2247
  issue: 5
  year: 2015
  end-page: 2268
  article-title: Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation
  publication-title: Atmos. Chem. Phys.
– volume: 43
  start-page: 81
  issue: 1
  year: 2009
  end-page: 96
  article-title: Effect of working fluid on sub‐2 nm particle detection with a laminar flow ultrafine condensation particle counter
  publication-title: Aerosol Sci. Technol.
– volume: 9
  start-page: 8601
  issue: 21
  year: 2009
  end-page: 8616
  article-title: Impact of nucleation on global CCN
  publication-title: Atmos. Chem. Phys.
– volume: 45
  start-page: 533
  issue: 4
  year: 2011
  end-page: 542
  article-title: Particle size magnifier for nano‐CN detection
  publication-title: Aerosol Sci. Technol.
– volume: 9
  start-page: 1747
  issue: 5
  year: 2009
  end-page: 1766
  article-title: Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5‐HAM global circulation model
  publication-title: Atmos. Chem. Phys.
– volume: 533
  start-page: 527
  issue: 7604
  year: 2016
  end-page: 531
  article-title: The role of low‐volatility organic compounds in initial particle growth in the atmosphere
  publication-title: Nature
– volume: 7
  start-page: 609
  issue: 3
  year: 2007
  end-page: 620
  article-title: Technical note: Performance of Chemical Ionization Reaction Time‐of‐Flight Mass Spectrometry (CIR‐TOF‐MS) for the measurement of atmospherically significant oxygenated volatile organic compounds
  publication-title: Atmos. Chem. Phys.
– volume: 11
  start-page: 1949
  issue: 5
  year: 2011
  end-page: 1959
  article-title: Sensitivity of global cloud condensation nuclei concentrations to primary sulfate emission parameterizations
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 239
  issue: 1
  year: 2009
  end-page: 260
  article-title: Aerosol indirect forcing in a global model with particle nucleation
  publication-title: Atmos. Chem. Phys.
– volume: 107
  start-page: 4407
  issue: D19
  year: 2002
  article-title: Global distribution and climate forcing of carbonaceous aerosols
  publication-title: J. Geophys. Res.
– volume: 14
  start-page: 447
  issue: 1
  year: 2014
  end-page: 470
  article-title: The direct and indirect radiative effects of biogenic secondary organic aerosol
  publication-title: Atmos. Chem. Phys.
– start-page: 167
  year: 1986
  end-page: 174
– volume: 13
  start-page: 8879
  issue: 17
  year: 2013
  end-page: 8914
  article-title: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei
  publication-title: Atmos. Chem. Phys.
– volume: 49
  year: 2011
  article-title: Production flux of sea spray aerosol
  publication-title: Rev. Geophys.
– volume: 15
  start-page: 7203
  issue: 13
  year: 2015
  end-page: 7216
  article-title: Experimental investigation of ion–ion recombination under atmospheric conditions
  publication-title: Atmos. Chem. Phys.
– volume: 6
  start-page: 4321
  issue: 12
  year: 2006
  end-page: 4344
  article-title: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data‐sets for AeroCom
  publication-title: Atmos. Chem. Phys.
– volume: 113
  start-page: 12053
  year: 2016
  end-page: 12058
  article-title: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 12
  start-page: 11,451
  issue: 23
  year: 2012
  end-page: 11,463
  article-title: Indirect radiative forcing by ion‐mediated nucleation of aerosol
  publication-title: Atmos. Chem. Phys.
– volume: 119
  start-page: 6867
  year: 2014
  end-page: 6885
  article-title: Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium
  publication-title: J. Geophys. Res. Atmos.
– volume: 112
  start-page: 7123
  issue: 23
  year: 2015
  end-page: 7128
  article-title: Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 3
  start-page: 519
  issue: 2
  year: 2010
  end-page: 551
  article-title: Description and evaluation of GLOMAP‐mode: A modal global aerosol microphysics model for the UKCA composition‐climate model
  publication-title: Geosci. Model Dev.
– volume: 5
  start-page: 2227
  issue: 8
  year: 2005
  end-page: 2252
  article-title: A global off‐line model of size‐resolved aerosol microphysics: I. Model development and prediction of aerosol properties
  publication-title: Atmos. Chem. Phys.
– volume: 116
  year: 2011
  article-title: Solar modulation parameter for cosmic rays since 1936 reconstructed from ground‐based neutron monitors and ionization chambers
  publication-title: J. Geophys. Res.
– volume: 326
  start-page: 1525
  issue: 5959
  year: 2009
  end-page: 1529
  article-title: Evolution of organic aerosols in the atmosphere
  publication-title: Science
– volume: 12
  start-page: 4399
  issue: 10
  year: 2012
  end-page: 4411
  article-title: Sulfuric acid nucleation: Power dependencies, variation with relative humidity, and effect of bases
  publication-title: Atmos. Chem. Phys.
– volume: 9
  issue: 4
  year: 2014a
  article-title: Effect of solar variations on particle formation and cloud condensation nuclei
  publication-title: Environ. Res. Lett.
– volume: 108
  start-page: 4297
  issue: D9
  year: 2003
  article-title: Laboratory simulations and parameterization of the primary marine aerosol production
  publication-title: J. Geophys. Res.
– volume: 109
  start-page: 18,713
  issue: 46
  year: 2012
  end-page: 18,718
  article-title: Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 581
  start-page: A95
  year: 2015
  article-title: The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets
  publication-title: Astron. Astrophys.
– volume: 502
  start-page: 359
  issue: 7471
  year: 2013
  end-page: 363
  article-title: Molecular understanding of sulphuric acid‐amine particle nucleation in the atmosphere
  publication-title: Nature
– volume: 121
  start-page: 1752
  year: 2016
  end-page: 1775
  article-title: Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory
  publication-title: J. Geophys. Res. Atmos.
– volume: 17
  start-page: 1097
  issue: 4
  year: 2003
  article-title: A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles
  publication-title: Global Biogeochem. Cycles
– volume: 370
  start-page: 450
  year: 1994
  end-page: 453
  article-title: A climate model study of indirect radiative forcing
  publication-title: Nature
– volume: 3
  start-page: 1039
  issue: 4
  year: 2010
  end-page: 1053
  article-title: A high‐resolution mass spectrometer to measure atmospheric ion composition
  publication-title: Atmos. Meas. Tech.
– volume: 9
  start-page: 547
  issue: 4
  year: 2003
  end-page: 562
  article-title: Carbon emissions from fires in tropical and subtropical ecosystems
  publication-title: Global Change Biol.
– volume: 5
  start-page: 1125
  issue: 4
  year: 2005
  end-page: 1156
  article-title: The aerosol‐climate model ECHAM5‐HAM
  publication-title: Atmos. Chem. Phys.
– volume: 12
  start-page: 89
  issue: 1
  year: 2012
  end-page: 101
  article-title: Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations
  publication-title: Atmos. Chem. Phys.
– volume: 105
  start-page: 26,793
  issue: D22
  year: 2000
  end-page: 26,808
  article-title: Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models
  publication-title: J. Geophys. Res.
– volume: 183
  start-page: 1216
  issue: 3
  year: 2010
  end-page: 1230
  article-title: International geomagnetic reference field: The eleventh generation
  publication-title: Geophys. J. Int.
– volume: 12
  start-page: 10,077
  issue: 21
  year: 2012
  end-page: 10,096
  article-title: BVOC‐aerosol‐climate interactions in the global aerosol‐climate model ECHAM5.5‐HAM2
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 3875
  issue: 11
  year: 2016
  end-page: 3906
  article-title: Size‐resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS‐1.0: Description, evaluation and first global modelling results
  publication-title: Geosci. Model Dev.
– volume: 16
  start-page: 7709
  issue: 12
  year: 2016
  end-page: 7724
  article-title: The evolution of biomass‐burning aerosol size distributions due to coagulation: Dependence on fire and meteorological details and parameterization
  publication-title: Atmos. Chem. Phys.
– volume: 121
  start-page: 12,377
  year: 2016
  end-page: 12,400
  article-title: Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures
  publication-title: J. Geophys. Res. Atmos.
– volume: 110
  year: 2005
  article-title: Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004
  publication-title: J. Geophys. Res.
– volume: 6
  start-page: 787
  issue: 3
  year: 2006
  end-page: 793
  article-title: Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration
  publication-title: Atmos. Chem. Phys.
– volume: 36
  year: 2009b
  article-title: Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?
  publication-title: Geophys. Res. Lett.
– volume: 10
  start-page: 10,733
  issue: 22
  year: 2010
  end-page: 10,752
  article-title: Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol‐climate model ECHAM5‐HAM
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 3253
  issue: 10
  year: 2009
  end-page: 3259
  article-title: Variable CCN formation potential of regional sulfur emissions
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 12,455
  issue: 22
  year: 2014b
  end-page: 12,464
  article-title: Modeling of gaseous methylamines in the global atmosphere: Impacts of oxidation and aerosol uptake
  publication-title: Atmos. Chem. Phys.
– volume: 132
  start-page: 1179
  issue: 617
  year: 2006
  end-page: 1203
  article-title: New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 506
  start-page: 476
  issue: 7489
  year: 2014
  end-page: 479
  article-title: A large source of low‐volatility secondary organic aerosol
  publication-title: Nature
– volume: 115
  start-page: 4476
  issue: 10
  year: 2015
  end-page: 4496
  article-title: Land use change impacts on air quality and climate
  publication-title: Chem. Rev.
– volume: 533
  start-page: 521
  issue: 7604
  year: 2016
  end-page: 526
  article-title: Ion‐induced nucleation of pure biogenic particles
  publication-title: Nature
– volume: 11
  start-page: 4755
  issue: 10
  year: 2011
  end-page: 4766
  article-title: Ternary homogeneous nucleation of H SO , NH , and H O under conditions relevant to the lower troposphere
  publication-title: Atmos. Chem. Phys.
– volume: 11
  start-page: 7817
  issue: 15
  year: 2011
  end-page: 7838
  article-title: Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions
  publication-title: Atmos. Chem. Phys.
– volume: 7
  start-page: 1367
  issue: 5
  year: 2007
  end-page: 1379
  article-title: Efficiency of cloud condensation nuclei formation from ultrafine particles
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 7691
  issue: 20
  year: 2009
  end-page: 7710
  article-title: Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations
  publication-title: Atmos. Chem. Phys.
– volume: 5
  start-page: 1053
  issue: 4
  year: 2005
  end-page: 1123
  article-title: Organic aerosol and global climate modelling: A review
  publication-title: Atmos. Chem. Phys.
– volume: 35
  year: 2008
  article-title: Contribution of particle formation to global cloud condensation nuclei concentrations
  publication-title: Geophys. Res. Lett.
– volume: 107
  start-page: 6646
  year: 2010
  end-page: 6651
  article-title: Evidence for the role of organics in aerosol particle formation under atmospheric conditions
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 22
  article-title: Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere
  publication-title: Atmos. Chem. Phys. Discuss.
– volume: 33
  start-page: 609
  issue: 4
  year: 2002
  end-page: 622
  article-title: Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events
  publication-title: J. Aerosol Sci.
– volume: 14
  start-page: 5577
  issue: 11
  year: 2014
  end-page: 5597
  article-title: Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation
  publication-title: Atmos. Chem. Phys.
– volume: 503
  start-page: 67
  issue: 7474
  year: 2013
  end-page: 71
  article-title: Large contribution of natural aerosols to uncertainty in indirect forcing
  publication-title: Nature
– volume: 4
  start-page: 3513
  issue: 20
  year: 2013
  end-page: 3520
  article-title: Autoxidation of organic compounds in the atmosphere
  publication-title: J. Phys. Chem. Lett.
SSID ssj0000803454
Score 2.4987938
Snippet New particle formation has been estimated to produce around half of cloud‐forming particles in the present‐day atmosphere, via gas‐to‐particle conversion. Here...
SourceID wiley
SourceType Publisher
StartPage 8739
SubjectTerms aerosol
atmosphere
nucleation
Title Causes and importance of new particle formation in the present‐day and preindustrial atmospheres
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017JD026844
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XryIT6wv9iCeDE02k2z2KK21FCoiFnoLm90NBGxamvbgzZ_gb_SXOLsJsR495rWEmUzmmy-Zbwi5FUKFgYm1lwg_8iBQPoYUk54wTMVgwFfKftGdPMejKYxn0awh3GwvTK0P0RJuNjLc-9oGuMyq3q9oKGYuPh74Vq0Edsme7a612vkMXlqOBdFQCG4QGgtigbfDZ82_77hEb3uBv9DU5ZbhITloQCF9qL14RHZMeUy6E8Szi5Wjvekd7b8XCC7d1gnJ-nJTmYrKUtNi7iA0Oo8ucooomS6bx4G2nYm0KCkiPbqsm42-P7-0_HBX456ind5B5Xq-qKzQgKlOyXT4-NYfec20BM8ONQBPSW1rO-mbXBohmEEokjEJWD_ITHGlmeGIlSAJDZYwWkMuA52bJIEQLYeF6hnplIvSnBMacZNJBXkOEQeEZELpxISBDKXPVQJBl9w7a6XLWhEjrbWPWbpt0nT89DqIQhHBxf9OvyT79oAlbhm_Ip31amOuMfOvsxvn3h_ERKhD
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT4QwEMcbHwe9GJ9xffZgPEmEMlB6NLvqurobYzTZGyltSUgUNrJ78OZH8DP6SZwWsq5Hj5DSkA5DfzMw_yHkTAgVBibWXiL8yINA-ehSTHrCMBWDAV8p-0V3OIr7LzAYR-O2z6mthWn0IeYJN-sZ7n1tHdwmpC9_VUNx6-KDnm_lSmCZrELMuPVMBo_zJAviUAiuExoLYoH3w8ftz-84xeXiBH_Z1G0uN5tko6VCetWYcYssmXKbdIYItNW7y3vTc9p9LZAu3dEOybpyVpuaylLT4s0xNFqPVjlFTKaT9nmg89JEWpQUUY9Ommqj788vLT_c1XimmLfvoHL6VtVWacDUu-Tl5vq52_fadgme7WoAnpLaBnfSN7k0QjCDLJIxCRhAyExxpZnhCEuQhAZjGK0hl4HOTZJACLFVLN0jK2VVmn1CI24yqSDPIeKATCaUTkwYyFD6XCUQdMiFW6100khipI34MUsXlzQd3D71olBEcPC_4adkrf88fEgf7kb3h2TdDrJZXMaPyMr0fWaOEQOm2Ykz9Q_xz6uv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIYtKBLiglhFWX1AnIjIMll8RC2lFFpViEq9RY7tSJFoGjXtgRuPwDPyJIydKJQjx0SOFXky8eex5x9CrhkTnqMCaUXM9i1whI0u5XKLKVcEoMAWQu_oDkdBfwKDqT-tA246F6bSh2gCbtozzP9aO3gh07tf0VCcucJB19ZqJbBJtsx-n1Z2hnETY0Ea8sAUQnOdgOHrhNP67Dt2cbfewV80NXNLb4_s1lBI7ysr7pMNlR-Q9hB5dr4wYW96QzvvGcKluTokSYevSlVSnkuazQxCo_HoPKVIybSoPwfaZCbSLKdIerSoko2-P78k_zBP452sqd5B-XI2L7XQgCqPyKT38NbpW3W1BEsXNQBLcKnXdtxWKVeMuQpRJHE54PqBJyIU0lUhshJEnsIljJSQckemKorAg0ALlh6TVj7P1QmhfqgSLiBNwQ8BkYwJGSnP4R63QxGB0ya3ZrTiolLEiCvtYzdeH9J48Pja9T3mw-n_ml-R7XG3F788jZ7PyI5uo2O4bnhOWsvFSl0gBCyTS2PpHzj9quE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causes+and+importance+of+new+particle+formation+in+the+present%E2%80%90day+and+preindustrial+atmospheres&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Gordon%2C+Hamish&rft.au=Kirkby%2C+Jasper&rft.au=Baltensperger%2C+Urs&rft.au=Bianchi%2C+Federico&rft.date=2017-08-27&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=122&rft.issue=16&rft.spage=8739&rft.epage=8760&rft_id=info:doi/10.1002%2F2017JD026844&rft.externalDBID=10.1002%252F2017JD026844&rft.externalDocID=JGRD53954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon