Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120
With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characteriz...
Saved in:
Published in | ACS omega Vol. 5; no. 11; pp. 5748 - 5755 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.03.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4–10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g–1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants. |
---|---|
AbstractList | With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g-1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g-1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants. With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4–10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g–1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants. With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4–10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g –1 ) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants. With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g ) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants. |
Author | Zou, Weixin Gao, Bin Dong, Lin Wei, Xiaoqian Wang, Xin |
AuthorAffiliation | School of the Environmental Department of Agricultural and Biological Engineering Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis |
AuthorAffiliation_xml | – name: Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering – name: Department of Agricultural and Biological Engineering – name: School of the Environmental – name: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis |
Author_xml | – sequence: 1 givenname: Xiaoqian surname: Wei fullname: Wei, Xiaoqian organization: Department of Agricultural and Biological Engineering – sequence: 2 givenname: Xin surname: Wang fullname: Wang, Xin organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis – sequence: 3 givenname: Bin orcidid: 0000-0003-3769-0191 surname: Gao fullname: Gao, Bin organization: Department of Agricultural and Biological Engineering – sequence: 4 givenname: Weixin surname: Zou fullname: Zou, Weixin email: wxzou2016@nju.edu.cn organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis – sequence: 5 givenname: Lin orcidid: 0000-0002-8393-6669 surname: Dong fullname: Dong, Lin email: donglin@nju.edu.cn organization: School of the Environmental |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32226853$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UklP3DAUtiqqQqfcOaEce2jAS5w4l0plBC0Si0S5W8-OPeORE0_tZCT-fT2dAUGl9uQnv29520d0MITBIHRC8BnBlJyDTqE3CzhrFWaNaN6hI1o1uCSsYgev4kN0nNIKY0xqQQWtP6BDRimtBWdHyFyBdt4UF-B9eeu8d8Oi-Pk0jEuTXCqCLebT_fmFC3oJsbiDIejQr0Nyo0mFDbG4tNZpZ4axeDB92IDfch4M6NFtTA66glD8Cb234JM53r8z9Hh1-Tj_Ud7cf7-ef7spoWrbsVRUMGW14ZRrgUmnlWJMCZWL7VrR2Fw8rtuaVZpDw6nAhikQgqs8D4stm6HrnWwXYCXX0fUQn2QAJ_98hLiQEEenvZGUU8UtBgLcVhys6KgipIZaKE62vjP0dae1nlRvOp07jODfiL7NDG4pF2EjG9w2bW5khj7vBWL4NZk0yt4lbbyHwYQpScpEJWibwRl6-trrxeR5TRmAdwAdQ0rR2BcIwXJ7DPL5GOT-GDKl_oui3QijC9tqnf8f8cuOmDNyFaY45I39G_4buAHKUQ |
CitedBy_id | crossref_primary_10_1016_j_rechem_2025_102050 crossref_primary_10_1016_j_jaap_2022_105691 crossref_primary_10_1016_j_mtsust_2023_100526 crossref_primary_10_1016_j_scp_2024_101505 crossref_primary_10_1016_j_bios_2024_116808 crossref_primary_10_1111_jfpe_13708 crossref_primary_10_1007_s11356_024_34929_9 crossref_primary_10_1080_26395940_2024_2311675 crossref_primary_10_1016_j_cej_2020_127719 crossref_primary_10_1016_j_cej_2023_142916 crossref_primary_10_1039_D3DT01691A crossref_primary_10_1016_j_biortech_2021_124678 crossref_primary_10_4491_eer_2023_596 crossref_primary_10_1016_j_talanta_2024_126790 crossref_primary_10_1021_acs_langmuir_3c02885 crossref_primary_10_1016_j_physe_2022_115152 crossref_primary_10_1016_j_jclepro_2022_135484 crossref_primary_10_1016_j_heliyon_2024_e37123 crossref_primary_10_1016_j_jafr_2021_100191 crossref_primary_10_1007_s13399_024_06474_5 crossref_primary_10_1016_j_jcomc_2021_100225 crossref_primary_10_1016_j_aca_2022_340158 crossref_primary_10_1016_j_jenvman_2022_114652 crossref_primary_10_1088_2053_1591_ad4776 crossref_primary_10_3390_agriculture14010037 crossref_primary_10_1016_j_biortech_2020_123613 crossref_primary_10_1016_j_jwpe_2021_101993 crossref_primary_10_22144_ctujos_2024_310 crossref_primary_10_1039_D1NR07643D crossref_primary_10_3390_ijerph19137770 crossref_primary_10_1016_j_envpol_2021_117992 crossref_primary_10_1039_D3NR03843B crossref_primary_10_1007_s13738_023_02768_z crossref_primary_10_1021_acsomega_0c04020 crossref_primary_10_1002_pc_29540 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_3389_fmicb_2023_1214870 crossref_primary_10_1016_j_chemosphere_2021_131651 crossref_primary_10_1016_j_jes_2020_10_006 crossref_primary_10_1016_j_scitotenv_2024_174956 crossref_primary_10_1016_j_cis_2021_102597 crossref_primary_10_3390_app12189312 crossref_primary_10_1007_s10904_020_01674_8 crossref_primary_10_1007_s40726_022_00238_3 crossref_primary_10_1002_slct_202400067 crossref_primary_10_1039_D3RA01123B crossref_primary_10_1016_j_jclepro_2024_141637 crossref_primary_10_1016_j_molstruc_2023_135148 crossref_primary_10_1080_10643389_2022_2128194 crossref_primary_10_1039_D1NJ00941A crossref_primary_10_1016_j_biortech_2022_128385 crossref_primary_10_1016_j_jhazmat_2021_126258 crossref_primary_10_1016_j_biombioe_2024_107247 crossref_primary_10_3390_ma16041460 crossref_primary_10_1016_j_cej_2021_131233 crossref_primary_10_1080_01932691_2022_2144878 crossref_primary_10_1007_s10653_024_01875_x crossref_primary_10_3390_ijms23169098 crossref_primary_10_3390_w16121639 crossref_primary_10_1016_j_jece_2021_106753 crossref_primary_10_1016_j_stress_2024_100615 crossref_primary_10_1016_j_jenvman_2021_113762 crossref_primary_10_1016_j_indcrop_2023_117234 crossref_primary_10_1021_acsomega_3c07804 crossref_primary_10_1016_j_biteb_2022_101160 crossref_primary_10_3390_pharmaceutics16040473 crossref_primary_10_1016_j_nanoso_2024_101269 crossref_primary_10_2166_wst_2022_153 crossref_primary_10_1016_j_chemosphere_2020_128539 crossref_primary_10_1007_s11694_023_02287_8 crossref_primary_10_1016_j_dwt_2025_101004 crossref_primary_10_1016_j_jiec_2020_12_006 crossref_primary_10_1016_j_jhazmat_2021_125511 crossref_primary_10_1016_j_jclepro_2024_144259 crossref_primary_10_1016_j_biortech_2023_128830 crossref_primary_10_1039_D3RA00988B crossref_primary_10_3390_met11020329 crossref_primary_10_1016_j_jiec_2025_01_054 crossref_primary_10_3390_jof7010048 crossref_primary_10_1016_j_chemosphere_2022_136989 crossref_primary_10_1016_j_indcrop_2022_115229 crossref_primary_10_1016_j_seppur_2024_127148 crossref_primary_10_1007_s42773_023_00208_y crossref_primary_10_1002_ep_14140 crossref_primary_10_1016_j_psep_2023_11_071 crossref_primary_10_1016_j_micromeso_2022_112325 |
Cites_doi | 10.1007/s11144-019-01564-2 10.1021/acs.est.8b01524 10.1016/j.biortech.2016.05.057 10.1016/j.electacta.2016.03.018 10.1016/j.jcis.2016.10.057 10.1016/j.chemosphere.2016.08.036 10.1016/j.scitotenv.2017.03.087 10.4491/eer.2015.152 10.1016/j.mineng.2018.05.021 10.1016/j.cej.2017.04.058 10.1021/acs.chemrev.5b00195 10.1016/j.orggeochem.2014.09.006 10.1016/j.biortech.2016.04.093 10.1016/j.jiec.2019.06.008 10.1016/j.apcatb.2019.117752 10.1016/j.apsusc.2019.03.131 10.1016/j.molliq.2015.07.058 10.1007/s13201-016-0392-5 10.1016/j.apcatb.2019.04.020 10.1016/j.cej.2019.03.047 10.1016/j.envpol.2014.10.031 10.1016/j.scitotenv.2019.01.005 10.1016/j.jhazmat.2015.11.047 10.1016/j.envres.2018.09.024 10.1016/j.scitotenv.2015.05.130 10.1007/s42773-019-00007-4 10.1016/j.cej.2012.08.052 10.1016/j.biortech.2018.03.013 10.1016/j.saa.2016.05.002 10.1016/j.cej.2014.07.109 10.1016/j.cej.2019.02.165 10.1016/j.cej.2019.04.097 10.1016/j.apcatb.2015.08.017 10.1007/s42773-019-00006-5 10.1016/j.scitotenv.2013.12.120 10.1016/j.powtec.2015.02.055 10.1016/j.biortech.2018.04.016 10.1080/10643389.2017.1418580 10.1016/j.chemosphere.2018.09.091 10.1016/j.apsusc.2011.11.025 10.1016/j.cej.2019.05.204 10.1016/j.chemosphere.2016.01.043 10.1016/j.envpol.2017.10.037 10.1016/j.biortech.2013.03.057 10.1016/j.foodhyd.2019.04.064 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Chemical Society. Copyright © 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: Copyright © 2020 American Chemical Society. – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society |
DBID | N~. AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/acsomega.9b03787 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 5755 |
ExternalDocumentID | oai_doaj_org_article_252b5f0a1a5f45af8d2b116a68b51cbb PMC7097928 32226853 10_1021_acsomega_9b03787 b247293328 |
Genre | Journal Article |
GroupedDBID | 53G ABUCX ACS ADACO ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS BCNDV EBS GROUPED_DOAJ HYE N~. OK1 RPM VF5 AAFWJ AAHBH AAYXX ABBLG ADUCK AFPKN AOIJS CITATION M~E NPM 7X8 5PM |
ID | FETCH-LOGICAL-a499t-b283bfce525c801dcbb33b8b226d987f826069634c5a75280e3ba885b102f0f3 |
IEDL.DBID | N~. |
ISSN | 2470-1343 |
IngestDate | Wed Aug 27 01:30:09 EDT 2025 Thu Aug 21 18:13:28 EDT 2025 Fri Jul 11 02:25:57 EDT 2025 Wed Feb 19 02:30:50 EST 2025 Tue Jul 01 01:21:43 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Thu Aug 27 22:10:49 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html Copyright © 2020 American Chemical Society. This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-b283bfce525c801dcbb33b8b226d987f826069634c5a75280e3ba885b102f0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8393-6669 0000-0003-3769-0191 |
OpenAccessLink | http://dx.doi.org/10.1021/acsomega.9b03787 |
PMID | 32226853 |
PQID | 2384829979 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_252b5f0a1a5f45af8d2b116a68b51cbb pubmedcentral_primary_oai_pubmedcentral_nih_gov_7097928 proquest_miscellaneous_2384829979 pubmed_primary_32226853 crossref_primary_10_1021_acsomega_9b03787 crossref_citationtrail_10_1021_acsomega_9b03787 acs_journals_10_1021_acsomega_9b03787 |
ProviderPackageCode | ACS ABUCX AFEFF VF5 N~. CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-24 |
PublicationDateYYYYMMDD | 2020-03-24 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 Raizada A. (ref33/cit33) 2014; 2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 Petrović S. (ref22/cit22) 2019; 127 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – volume: 127 start-page: 175 year: 2019 ident: ref22/cit22 publication-title: React. Kinet., Mech. Catal. doi: 10.1007/s11144-019-01564-2 – ident: ref2/cit2 doi: 10.1021/acs.est.8b01524 – ident: ref15/cit15 doi: 10.1016/j.biortech.2016.05.057 – ident: ref24/cit24 doi: 10.1016/j.electacta.2016.03.018 – ident: ref9/cit9 doi: 10.1016/j.jcis.2016.10.057 – ident: ref1/cit1 doi: 10.1016/j.chemosphere.2016.08.036 – ident: ref11/cit11 doi: 10.1016/j.scitotenv.2017.03.087 – ident: ref44/cit44 doi: 10.4491/eer.2015.152 – ident: ref28/cit28 doi: 10.1016/j.mineng.2018.05.021 – ident: ref34/cit34 doi: 10.1016/j.cej.2017.04.058 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.5b00195 – ident: ref38/cit38 doi: 10.1016/j.orggeochem.2014.09.006 – ident: ref10/cit10 doi: 10.1016/j.biortech.2016.04.093 – ident: ref5/cit5 doi: 10.1016/j.jiec.2019.06.008 – ident: ref6/cit6 doi: 10.1016/j.apcatb.2019.117752 – ident: ref25/cit25 doi: 10.1016/j.apsusc.2019.03.131 – ident: ref26/cit26 doi: 10.1016/j.molliq.2015.07.058 – ident: ref32/cit32 doi: 10.1007/s13201-016-0392-5 – ident: ref21/cit21 doi: 10.1016/j.apcatb.2019.04.020 – ident: ref35/cit35 doi: 10.1016/j.cej.2019.03.047 – ident: ref39/cit39 doi: 10.1016/j.envpol.2014.10.031 – ident: ref31/cit31 doi: 10.1016/j.scitotenv.2019.01.005 – ident: ref23/cit23 doi: 10.1016/j.jhazmat.2015.11.047 – ident: ref40/cit40 doi: 10.1016/j.envres.2018.09.024 – ident: ref43/cit43 doi: 10.1016/j.scitotenv.2015.05.130 – ident: ref30/cit30 doi: 10.1007/s42773-019-00007-4 – ident: ref16/cit16 doi: 10.1016/j.cej.2012.08.052 – ident: ref45/cit45 doi: 10.1016/j.biortech.2018.03.013 – ident: ref29/cit29 doi: 10.1016/j.saa.2016.05.002 – ident: ref42/cit42 doi: 10.1016/j.cej.2014.07.109 – ident: ref8/cit8 doi: 10.1016/j.cej.2019.02.165 – ident: ref27/cit27 doi: 10.1016/j.cej.2019.04.097 – ident: ref37/cit37 doi: 10.1016/j.apcatb.2015.08.017 – ident: ref46/cit46 doi: 10.1007/s42773-019-00006-5 – ident: ref18/cit18 doi: 10.1016/j.scitotenv.2013.12.120 – ident: ref41/cit41 doi: 10.1016/j.powtec.2015.02.055 – ident: ref4/cit4 doi: 10.1016/j.biortech.2018.04.016 – ident: ref14/cit14 doi: 10.1080/10643389.2017.1418580 – volume: 2 start-page: 249 year: 2014 ident: ref33/cit33 publication-title: J. Chem. Eng. Chem. Res. – ident: ref12/cit12 doi: 10.1016/j.chemosphere.2018.09.091 – ident: ref36/cit36 doi: 10.1016/j.apsusc.2011.11.025 – ident: ref7/cit7 doi: 10.1016/j.cej.2019.05.204 – ident: ref13/cit13 doi: 10.1016/j.chemosphere.2016.01.043 – ident: ref20/cit20 doi: 10.1016/j.envpol.2017.10.037 – ident: ref17/cit17 doi: 10.1016/j.biortech.2013.03.057 – ident: ref19/cit19 doi: 10.1016/j.foodhyd.2019.04.064 |
SSID | ssj0001682826 |
Score | 2.4706411 |
Snippet | With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through... With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5748 |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQXuCCeJPlISPBgUOo4_iVI622WiEB0rJIe7M8rg2Vugki7YF_z9hJqhah5cItSuzYGs_4-8Zjjwl5rT3iBhNQJjQpEfFi6WTDyuReRKcdQlQ64Pzxkzr_Kj5cyauDq77SnrAhPfAguBmXHGRkrnIyCumiWXGoKuWUAVl5gDT74g8PnKm8uqLQk-BTXBIbnjnfd9fhm3vXAKu1yWjk-yM0ykn7_8Y0_9wweYBAy3vk7kgd6fuhy_fJrdA-ILcX041tD0lYOo9GTudusynTIT-EJfrlV4scr1_3tIt0sfs8m6-7dNSK4rzapQ3laddW6CmSV3qW80lg6_QiXHeog6nORXB5TsSHFa04e0Qul2eXi_NyvEahdOjObEtABgHRB8mlRzxaodDqGgwg8Vo1RkeUE1Noh8JLpyU3LNTgjJGAcoss1o_JSdu14SmhOA7ghaojRCOEDyCV1y6CrxuFRU1B3qBM7WgFvc0Bbl7ZSfZ2lH1BZpPUrR9TkacbMTY31Hi7r_FjSMNxQ9l5Gsh9uZRAO79AtbKjWtl_qVVBXk1qYHEUUxTFtaHb9RY5jjAI4ropyJNBLfZNpbCVQgJUEH2kMEd9Of7Srr_npN6a4R-5Of0fnX9G7vC0LMDqkovn5GT7cxdeIHfawstsJr8BEysY9w priority: 102 providerName: Directory of Open Access Journals |
Title | Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120 |
URI | http://dx.doi.org/10.1021/acsomega.9b03787 https://www.ncbi.nlm.nih.gov/pubmed/32226853 https://www.proquest.com/docview/2384829979 https://pubmed.ncbi.nlm.nih.gov/PMC7097928 https://doaj.org/article/252b5f0a1a5f45af8d2b116a68b51cbb |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFBdbd9guY92n9xE02A47qJH1Zfm4hIQyaAdtB70JSZG2QGqXOjns0r99T4qTLqWUXoyxJdl-ek-_3_OTnhD6UnnADSocSWhCAPEisbKmJLkX0VYWICotcD46Voe_xI9zeX6TJud2BJ-VQ-u79iL8tge1oxzU6zF6wpTWyQiPrw9u_qco8B3y7mpMVJSUXPA-KnlXIwmLfLeDRTll_1088_Z0yf_wZ_oCPe-JI_6-7ul99Cg0L9HT8Wa_tlcoTK0HE8cju1iQtMQPQAmf_m2A4XXzDrcRj1c_h6N5mxZaYRhV2zSdPM3ZCh0G6oonOZsEPB2fhIsWNDDVOQk2j4hwMsMlo6_R2XRyNj4k_SYKxIIzsyQO-IOLPkgmPaDRzDvHudMOaNes1lUEmVEFVii8tJVkmgburNbSgdwijfwN2mvaJrxDWEbqvFA8uqiF8MFJ5Ssbnee1gqK6QF9Bpqa3gc7k8DYrzUb2ppd9gYYbqRvfJyJP-2Es7qnxbVvjcp2E456yo9SR23IpfXa-ADplems0TDIHn2NLK6OQNuoZc2WprNJOliChAn3eqIGBXkwxFNuEdtUZYDhCA4RXdYHertVi-6gUtFJAfwpU7SjMzrvs3mnmf3JK74pCi0y_f6AIP6BnLPn9lBMmPqK95dUqfAJytHQDcA7Gp4P8awGOR9eTQbaTf6tODpM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOIwL4puMLyPBgYNXxx-xc6TVqgJbkUaRdrNs1x6VugQt7YELfzvPadJRNE3cIsd2nOf3_PvZz35G6J3ygBtUOJLQhADiRWJlSUmaXkSrLEBUOuB8Oi0m38Xnc3m-h_L-LAw0ooGamtaJfx1dIB9AWn0ZLuxR6SgHLbuD7gIXkckWp7-PrpdVCphCtJesMaEoybngnXPypkoSJPlmB5LayP030c1_d03-BUPjB-h-xx_xx02HP0R7oXqEDkb9tW2PURhbD5aOh3a5JOmkH2AT_varAqLXLBpcRzxafx0MF3U6b4VhcK3TrvK0dSs0GBgsPm6DSsDX8Vm4rEERU5mzYNuBER7mOGf0CZqNj2ejCenuUiAW5jQr4oBGuOiDZNIDKM29c5w77YB9zUutIsiMFmCMwkurJNM0cGe1lg7kFmnkT9F-VVfhOcIyUudFwaOLWggfnCy8stF5XhaQVWfoPcjUdKbQmNbLzXLTy950ss_QoJe68V088nQtxvKWEh-2JX5uYnHckneYOnKbL0XRbhNAr0xnlIZJ5uB3bG5lFNJGPWcuzwtbaCdzkFCG3vZqYKAXkyvFVqFeNwaIjtCA5KrM0LONWmw_lXxXBbCgDKkdhdlpy-6bavGjjeytKNTI9OF_ivANOpjMTk_MyafplxfoHktLAZQTJl6i_dXVOrwCvrRyr1sL-QPy7REa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkYBLxbOEp5HgwMFdx684R3bpqrwWVIrUm2U7Nqy0TSqye-iF3844mywsqipukWM7znjG32ePPUboZeEBN6hwJKEJAcSLxMqSkjS9iLawAFHpgPOnmTr6Jt6fytMdJIezMNCIFmpqOyd-surzKvYRBvIRpDdn4bs9KB3loGnX0HVgIzTZ4-zXwZ-lFQXTiO6iNSYKSnIueO-gvKySBEu-3YKlLnr_ZZTz352Tf0HR9Dba6zkkfrPu9DtoJ9R30c3JcHXbPRSm1oO147FdLEg67Qf4hL9e1ED22nmLm4gnq8-j8bxJZ64wDLBN2lmetm-FFgOLxYddYAn4Oj4OZw0oYypzHGw3OMJDhXNG76OT6eHJ5Ij09ykQC_OaJXFAJVz0QTLpAZgq7xznTjtgYFWpiwgyowoMUnhpC8k0DdxZraUDuUUa-QO0Wzd1eIiwjNR5oXh0UQvhg5PKFzY6z0sFWXWGXoFMTW8Orek83Sw3g-xNL_sMjQapG9_HJE9XYyyuKPF6U-J8HY_jirzj1JGbfCmSdpcAumV6wzRMMge_Y3Mro5A26oq5PFdWaSdzkFCGXgxqYKAXkzvF1qFZtQbIjtCA5kWZof21Wmw-lfxXCphQhoothdlqy_abev6ji-5dUKiR6Uf_KcLn6MaXt1Pz8d3sw2N0i6XVAMoJE0_Q7vLnKjwFyrR0zzoD-Q3T6RIn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Ball-Milling+Synthesis+of+CuO%2FBiochar+Nanocomposites+for+Efficient+Removal+of+Reactive+Red+120&rft.jtitle=ACS+omega&rft.au=Wei%2C+Xiaoqian&rft.au=Wang%2C+Xin&rft.au=Gao%2C+Bin&rft.au=Zou%2C+Weixin&rft.date=2020-03-24&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=5&rft.issue=11&rft.spage=5748&rft.epage=5755&rft_id=info:doi/10.1021%2Facsomega.9b03787&rft.externalDocID=b247293328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |