Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120

With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characteriz...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 5; no. 11; pp. 5748 - 5755
Main Authors Wei, Xiaoqian, Wang, Xin, Gao, Bin, Zou, Weixin, Dong, Lin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.03.2020
Online AccessGet full text

Cover

Loading…
Abstract With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4–10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g–1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.
AbstractList With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g-1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g-1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.
With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4–10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g–1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.
With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4–10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g –1 ) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.
With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g ) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.
Author Zou, Weixin
Gao, Bin
Dong, Lin
Wei, Xiaoqian
Wang, Xin
AuthorAffiliation School of the Environmental
Department of Agricultural and Biological Engineering
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering
Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis
AuthorAffiliation_xml – name: Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering
– name: Department of Agricultural and Biological Engineering
– name: School of the Environmental
– name: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis
Author_xml – sequence: 1
  givenname: Xiaoqian
  surname: Wei
  fullname: Wei, Xiaoqian
  organization: Department of Agricultural and Biological Engineering
– sequence: 2
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis
– sequence: 3
  givenname: Bin
  orcidid: 0000-0003-3769-0191
  surname: Gao
  fullname: Gao, Bin
  organization: Department of Agricultural and Biological Engineering
– sequence: 4
  givenname: Weixin
  surname: Zou
  fullname: Zou, Weixin
  email: wxzou2016@nju.edu.cn
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis
– sequence: 5
  givenname: Lin
  orcidid: 0000-0002-8393-6669
  surname: Dong
  fullname: Dong, Lin
  email: donglin@nju.edu.cn
  organization: School of the Environmental
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32226853$$D View this record in MEDLINE/PubMed
BookMark eNp9UklP3DAUtiqqQqfcOaEce2jAS5w4l0plBC0Si0S5W8-OPeORE0_tZCT-fT2dAUGl9uQnv29520d0MITBIHRC8BnBlJyDTqE3CzhrFWaNaN6hI1o1uCSsYgev4kN0nNIKY0xqQQWtP6BDRimtBWdHyFyBdt4UF-B9eeu8d8Oi-Pk0jEuTXCqCLebT_fmFC3oJsbiDIejQr0Nyo0mFDbG4tNZpZ4axeDB92IDfch4M6NFtTA66glD8Cb234JM53r8z9Hh1-Tj_Ud7cf7-ef7spoWrbsVRUMGW14ZRrgUmnlWJMCZWL7VrR2Fw8rtuaVZpDw6nAhikQgqs8D4stm6HrnWwXYCXX0fUQn2QAJ_98hLiQEEenvZGUU8UtBgLcVhys6KgipIZaKE62vjP0dae1nlRvOp07jODfiL7NDG4pF2EjG9w2bW5khj7vBWL4NZk0yt4lbbyHwYQpScpEJWibwRl6-trrxeR5TRmAdwAdQ0rR2BcIwXJ7DPL5GOT-GDKl_oui3QijC9tqnf8f8cuOmDNyFaY45I39G_4buAHKUQ
CitedBy_id crossref_primary_10_1016_j_rechem_2025_102050
crossref_primary_10_1016_j_jaap_2022_105691
crossref_primary_10_1016_j_mtsust_2023_100526
crossref_primary_10_1016_j_scp_2024_101505
crossref_primary_10_1016_j_bios_2024_116808
crossref_primary_10_1111_jfpe_13708
crossref_primary_10_1007_s11356_024_34929_9
crossref_primary_10_1080_26395940_2024_2311675
crossref_primary_10_1016_j_cej_2020_127719
crossref_primary_10_1016_j_cej_2023_142916
crossref_primary_10_1039_D3DT01691A
crossref_primary_10_1016_j_biortech_2021_124678
crossref_primary_10_4491_eer_2023_596
crossref_primary_10_1016_j_talanta_2024_126790
crossref_primary_10_1021_acs_langmuir_3c02885
crossref_primary_10_1016_j_physe_2022_115152
crossref_primary_10_1016_j_jclepro_2022_135484
crossref_primary_10_1016_j_heliyon_2024_e37123
crossref_primary_10_1016_j_jafr_2021_100191
crossref_primary_10_1007_s13399_024_06474_5
crossref_primary_10_1016_j_jcomc_2021_100225
crossref_primary_10_1016_j_aca_2022_340158
crossref_primary_10_1016_j_jenvman_2022_114652
crossref_primary_10_1088_2053_1591_ad4776
crossref_primary_10_3390_agriculture14010037
crossref_primary_10_1016_j_biortech_2020_123613
crossref_primary_10_1016_j_jwpe_2021_101993
crossref_primary_10_22144_ctujos_2024_310
crossref_primary_10_1039_D1NR07643D
crossref_primary_10_3390_ijerph19137770
crossref_primary_10_1016_j_envpol_2021_117992
crossref_primary_10_1039_D3NR03843B
crossref_primary_10_1007_s13738_023_02768_z
crossref_primary_10_1021_acsomega_0c04020
crossref_primary_10_1002_pc_29540
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_3389_fmicb_2023_1214870
crossref_primary_10_1016_j_chemosphere_2021_131651
crossref_primary_10_1016_j_jes_2020_10_006
crossref_primary_10_1016_j_scitotenv_2024_174956
crossref_primary_10_1016_j_cis_2021_102597
crossref_primary_10_3390_app12189312
crossref_primary_10_1007_s10904_020_01674_8
crossref_primary_10_1007_s40726_022_00238_3
crossref_primary_10_1002_slct_202400067
crossref_primary_10_1039_D3RA01123B
crossref_primary_10_1016_j_jclepro_2024_141637
crossref_primary_10_1016_j_molstruc_2023_135148
crossref_primary_10_1080_10643389_2022_2128194
crossref_primary_10_1039_D1NJ00941A
crossref_primary_10_1016_j_biortech_2022_128385
crossref_primary_10_1016_j_jhazmat_2021_126258
crossref_primary_10_1016_j_biombioe_2024_107247
crossref_primary_10_3390_ma16041460
crossref_primary_10_1016_j_cej_2021_131233
crossref_primary_10_1080_01932691_2022_2144878
crossref_primary_10_1007_s10653_024_01875_x
crossref_primary_10_3390_ijms23169098
crossref_primary_10_3390_w16121639
crossref_primary_10_1016_j_jece_2021_106753
crossref_primary_10_1016_j_stress_2024_100615
crossref_primary_10_1016_j_jenvman_2021_113762
crossref_primary_10_1016_j_indcrop_2023_117234
crossref_primary_10_1021_acsomega_3c07804
crossref_primary_10_1016_j_biteb_2022_101160
crossref_primary_10_3390_pharmaceutics16040473
crossref_primary_10_1016_j_nanoso_2024_101269
crossref_primary_10_2166_wst_2022_153
crossref_primary_10_1016_j_chemosphere_2020_128539
crossref_primary_10_1007_s11694_023_02287_8
crossref_primary_10_1016_j_dwt_2025_101004
crossref_primary_10_1016_j_jiec_2020_12_006
crossref_primary_10_1016_j_jhazmat_2021_125511
crossref_primary_10_1016_j_jclepro_2024_144259
crossref_primary_10_1016_j_biortech_2023_128830
crossref_primary_10_1039_D3RA00988B
crossref_primary_10_3390_met11020329
crossref_primary_10_1016_j_jiec_2025_01_054
crossref_primary_10_3390_jof7010048
crossref_primary_10_1016_j_chemosphere_2022_136989
crossref_primary_10_1016_j_indcrop_2022_115229
crossref_primary_10_1016_j_seppur_2024_127148
crossref_primary_10_1007_s42773_023_00208_y
crossref_primary_10_1002_ep_14140
crossref_primary_10_1016_j_psep_2023_11_071
crossref_primary_10_1016_j_micromeso_2022_112325
Cites_doi 10.1007/s11144-019-01564-2
10.1021/acs.est.8b01524
10.1016/j.biortech.2016.05.057
10.1016/j.electacta.2016.03.018
10.1016/j.jcis.2016.10.057
10.1016/j.chemosphere.2016.08.036
10.1016/j.scitotenv.2017.03.087
10.4491/eer.2015.152
10.1016/j.mineng.2018.05.021
10.1016/j.cej.2017.04.058
10.1021/acs.chemrev.5b00195
10.1016/j.orggeochem.2014.09.006
10.1016/j.biortech.2016.04.093
10.1016/j.jiec.2019.06.008
10.1016/j.apcatb.2019.117752
10.1016/j.apsusc.2019.03.131
10.1016/j.molliq.2015.07.058
10.1007/s13201-016-0392-5
10.1016/j.apcatb.2019.04.020
10.1016/j.cej.2019.03.047
10.1016/j.envpol.2014.10.031
10.1016/j.scitotenv.2019.01.005
10.1016/j.jhazmat.2015.11.047
10.1016/j.envres.2018.09.024
10.1016/j.scitotenv.2015.05.130
10.1007/s42773-019-00007-4
10.1016/j.cej.2012.08.052
10.1016/j.biortech.2018.03.013
10.1016/j.saa.2016.05.002
10.1016/j.cej.2014.07.109
10.1016/j.cej.2019.02.165
10.1016/j.cej.2019.04.097
10.1016/j.apcatb.2015.08.017
10.1007/s42773-019-00006-5
10.1016/j.scitotenv.2013.12.120
10.1016/j.powtec.2015.02.055
10.1016/j.biortech.2018.04.016
10.1080/10643389.2017.1418580
10.1016/j.chemosphere.2018.09.091
10.1016/j.apsusc.2011.11.025
10.1016/j.cej.2019.05.204
10.1016/j.chemosphere.2016.01.043
10.1016/j.envpol.2017.10.037
10.1016/j.biortech.2013.03.057
10.1016/j.foodhyd.2019.04.064
ContentType Journal Article
Copyright Copyright © 2020 American Chemical Society.
Copyright © 2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: Copyright © 2020 American Chemical Society.
– notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acsomega.9b03787
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 5755
ExternalDocumentID oai_doaj_org_article_252b5f0a1a5f45af8d2b116a68b51cbb
PMC7097928
32226853
10_1021_acsomega_9b03787
b247293328
Genre Journal Article
GroupedDBID 53G
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
GROUPED_DOAJ
HYE
N~.
OK1
RPM
VF5
AAFWJ
AAHBH
AAYXX
ABBLG
ADUCK
AFPKN
AOIJS
CITATION
M~E
NPM
7X8
5PM
ID FETCH-LOGICAL-a499t-b283bfce525c801dcbb33b8b226d987f826069634c5a75280e3ba885b102f0f3
IEDL.DBID N~.
ISSN 2470-1343
IngestDate Wed Aug 27 01:30:09 EDT 2025
Thu Aug 21 18:13:28 EDT 2025
Fri Jul 11 02:25:57 EDT 2025
Wed Feb 19 02:30:50 EST 2025
Tue Jul 01 01:21:43 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Thu Aug 27 22:10:49 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
Copyright © 2020 American Chemical Society.
This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-b283bfce525c801dcbb33b8b226d987f826069634c5a75280e3ba885b102f0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8393-6669
0000-0003-3769-0191
OpenAccessLink http://dx.doi.org/10.1021/acsomega.9b03787
PMID 32226853
PQID 2384829979
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_252b5f0a1a5f45af8d2b116a68b51cbb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7097928
proquest_miscellaneous_2384829979
pubmed_primary_32226853
crossref_primary_10_1021_acsomega_9b03787
crossref_citationtrail_10_1021_acsomega_9b03787
acs_journals_10_1021_acsomega_9b03787
ProviderPackageCode ACS
ABUCX
AFEFF
VF5
N~.
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-24
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
Raizada A. (ref33/cit33) 2014; 2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
Petrović S. (ref22/cit22) 2019; 127
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – volume: 127
  start-page: 175
  year: 2019
  ident: ref22/cit22
  publication-title: React. Kinet., Mech. Catal.
  doi: 10.1007/s11144-019-01564-2
– ident: ref2/cit2
  doi: 10.1021/acs.est.8b01524
– ident: ref15/cit15
  doi: 10.1016/j.biortech.2016.05.057
– ident: ref24/cit24
  doi: 10.1016/j.electacta.2016.03.018
– ident: ref9/cit9
  doi: 10.1016/j.jcis.2016.10.057
– ident: ref1/cit1
  doi: 10.1016/j.chemosphere.2016.08.036
– ident: ref11/cit11
  doi: 10.1016/j.scitotenv.2017.03.087
– ident: ref44/cit44
  doi: 10.4491/eer.2015.152
– ident: ref28/cit28
  doi: 10.1016/j.mineng.2018.05.021
– ident: ref34/cit34
  doi: 10.1016/j.cej.2017.04.058
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.5b00195
– ident: ref38/cit38
  doi: 10.1016/j.orggeochem.2014.09.006
– ident: ref10/cit10
  doi: 10.1016/j.biortech.2016.04.093
– ident: ref5/cit5
  doi: 10.1016/j.jiec.2019.06.008
– ident: ref6/cit6
  doi: 10.1016/j.apcatb.2019.117752
– ident: ref25/cit25
  doi: 10.1016/j.apsusc.2019.03.131
– ident: ref26/cit26
  doi: 10.1016/j.molliq.2015.07.058
– ident: ref32/cit32
  doi: 10.1007/s13201-016-0392-5
– ident: ref21/cit21
  doi: 10.1016/j.apcatb.2019.04.020
– ident: ref35/cit35
  doi: 10.1016/j.cej.2019.03.047
– ident: ref39/cit39
  doi: 10.1016/j.envpol.2014.10.031
– ident: ref31/cit31
  doi: 10.1016/j.scitotenv.2019.01.005
– ident: ref23/cit23
  doi: 10.1016/j.jhazmat.2015.11.047
– ident: ref40/cit40
  doi: 10.1016/j.envres.2018.09.024
– ident: ref43/cit43
  doi: 10.1016/j.scitotenv.2015.05.130
– ident: ref30/cit30
  doi: 10.1007/s42773-019-00007-4
– ident: ref16/cit16
  doi: 10.1016/j.cej.2012.08.052
– ident: ref45/cit45
  doi: 10.1016/j.biortech.2018.03.013
– ident: ref29/cit29
  doi: 10.1016/j.saa.2016.05.002
– ident: ref42/cit42
  doi: 10.1016/j.cej.2014.07.109
– ident: ref8/cit8
  doi: 10.1016/j.cej.2019.02.165
– ident: ref27/cit27
  doi: 10.1016/j.cej.2019.04.097
– ident: ref37/cit37
  doi: 10.1016/j.apcatb.2015.08.017
– ident: ref46/cit46
  doi: 10.1007/s42773-019-00006-5
– ident: ref18/cit18
  doi: 10.1016/j.scitotenv.2013.12.120
– ident: ref41/cit41
  doi: 10.1016/j.powtec.2015.02.055
– ident: ref4/cit4
  doi: 10.1016/j.biortech.2018.04.016
– ident: ref14/cit14
  doi: 10.1080/10643389.2017.1418580
– volume: 2
  start-page: 249
  year: 2014
  ident: ref33/cit33
  publication-title: J. Chem. Eng. Chem. Res.
– ident: ref12/cit12
  doi: 10.1016/j.chemosphere.2018.09.091
– ident: ref36/cit36
  doi: 10.1016/j.apsusc.2011.11.025
– ident: ref7/cit7
  doi: 10.1016/j.cej.2019.05.204
– ident: ref13/cit13
  doi: 10.1016/j.chemosphere.2016.01.043
– ident: ref20/cit20
  doi: 10.1016/j.envpol.2017.10.037
– ident: ref17/cit17
  doi: 10.1016/j.biortech.2013.03.057
– ident: ref19/cit19
  doi: 10.1016/j.foodhyd.2019.04.064
SSID ssj0001682826
Score 2.4706411
Snippet With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through...
With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5748
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQXuCCeJPlISPBgUOo4_iVI622WiEB0rJIe7M8rg2Vugki7YF_z9hJqhah5cItSuzYGs_4-8Zjjwl5rT3iBhNQJjQpEfFi6WTDyuReRKcdQlQ64Pzxkzr_Kj5cyauDq77SnrAhPfAguBmXHGRkrnIyCumiWXGoKuWUAVl5gDT74g8PnKm8uqLQk-BTXBIbnjnfd9fhm3vXAKu1yWjk-yM0ykn7_8Y0_9wweYBAy3vk7kgd6fuhy_fJrdA-ILcX041tD0lYOo9GTudusynTIT-EJfrlV4scr1_3tIt0sfs8m6-7dNSK4rzapQ3laddW6CmSV3qW80lg6_QiXHeog6nORXB5TsSHFa04e0Qul2eXi_NyvEahdOjObEtABgHRB8mlRzxaodDqGgwg8Vo1RkeUE1Noh8JLpyU3LNTgjJGAcoss1o_JSdu14SmhOA7ghaojRCOEDyCV1y6CrxuFRU1B3qBM7WgFvc0Bbl7ZSfZ2lH1BZpPUrR9TkacbMTY31Hi7r_FjSMNxQ9l5Gsh9uZRAO79AtbKjWtl_qVVBXk1qYHEUUxTFtaHb9RY5jjAI4ropyJNBLfZNpbCVQgJUEH2kMEd9Of7Srr_npN6a4R-5Of0fnX9G7vC0LMDqkovn5GT7cxdeIHfawstsJr8BEysY9w
  priority: 102
  providerName: Directory of Open Access Journals
Title Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120
URI http://dx.doi.org/10.1021/acsomega.9b03787
https://www.ncbi.nlm.nih.gov/pubmed/32226853
https://www.proquest.com/docview/2384829979
https://pubmed.ncbi.nlm.nih.gov/PMC7097928
https://doaj.org/article/252b5f0a1a5f45af8d2b116a68b51cbb
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFBdbd9guY92n9xE02A47qJH1Zfm4hIQyaAdtB70JSZG2QGqXOjns0r99T4qTLqWUXoyxJdl-ek-_3_OTnhD6UnnADSocSWhCAPEisbKmJLkX0VYWICotcD46Voe_xI9zeX6TJud2BJ-VQ-u79iL8tge1oxzU6zF6wpTWyQiPrw9u_qco8B3y7mpMVJSUXPA-KnlXIwmLfLeDRTll_1088_Z0yf_wZ_oCPe-JI_6-7ul99Cg0L9HT8Wa_tlcoTK0HE8cju1iQtMQPQAmf_m2A4XXzDrcRj1c_h6N5mxZaYRhV2zSdPM3ZCh0G6oonOZsEPB2fhIsWNDDVOQk2j4hwMsMlo6_R2XRyNj4k_SYKxIIzsyQO-IOLPkgmPaDRzDvHudMOaNes1lUEmVEFVii8tJVkmgburNbSgdwijfwN2mvaJrxDWEbqvFA8uqiF8MFJ5Ssbnee1gqK6QF9Bpqa3gc7k8DYrzUb2ppd9gYYbqRvfJyJP-2Es7qnxbVvjcp2E456yo9SR23IpfXa-ADplems0TDIHn2NLK6OQNuoZc2WprNJOliChAn3eqIGBXkwxFNuEdtUZYDhCA4RXdYHertVi-6gUtFJAfwpU7SjMzrvs3mnmf3JK74pCi0y_f6AIP6BnLPn9lBMmPqK95dUqfAJytHQDcA7Gp4P8awGOR9eTQbaTf6tODpM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOIwL4puMLyPBgYNXxx-xc6TVqgJbkUaRdrNs1x6VugQt7YELfzvPadJRNE3cIsd2nOf3_PvZz35G6J3ygBtUOJLQhADiRWJlSUmaXkSrLEBUOuB8Oi0m38Xnc3m-h_L-LAw0ooGamtaJfx1dIB9AWn0ZLuxR6SgHLbuD7gIXkckWp7-PrpdVCphCtJesMaEoybngnXPypkoSJPlmB5LayP030c1_d03-BUPjB-h-xx_xx02HP0R7oXqEDkb9tW2PURhbD5aOh3a5JOmkH2AT_varAqLXLBpcRzxafx0MF3U6b4VhcK3TrvK0dSs0GBgsPm6DSsDX8Vm4rEERU5mzYNuBER7mOGf0CZqNj2ejCenuUiAW5jQr4oBGuOiDZNIDKM29c5w77YB9zUutIsiMFmCMwkurJNM0cGe1lg7kFmnkT9F-VVfhOcIyUudFwaOLWggfnCy8stF5XhaQVWfoPcjUdKbQmNbLzXLTy950ss_QoJe68V088nQtxvKWEh-2JX5uYnHckneYOnKbL0XRbhNAr0xnlIZJ5uB3bG5lFNJGPWcuzwtbaCdzkFCG3vZqYKAXkyvFVqFeNwaIjtCA5KrM0LONWmw_lXxXBbCgDKkdhdlpy-6bavGjjeytKNTI9OF_ivANOpjMTk_MyafplxfoHktLAZQTJl6i_dXVOrwCvrRyr1sL-QPy7REa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkYBLxbOEp5HgwMFdx684R3bpqrwWVIrUm2U7Nqy0TSqye-iF3844mywsqipukWM7znjG32ePPUboZeEBN6hwJKEJAcSLxMqSkjS9iLawAFHpgPOnmTr6Jt6fytMdJIezMNCIFmpqOyd-surzKvYRBvIRpDdn4bs9KB3loGnX0HVgIzTZ4-zXwZ-lFQXTiO6iNSYKSnIueO-gvKySBEu-3YKlLnr_ZZTz352Tf0HR9Dba6zkkfrPu9DtoJ9R30c3JcHXbPRSm1oO147FdLEg67Qf4hL9e1ED22nmLm4gnq8-j8bxJZ64wDLBN2lmetm-FFgOLxYddYAn4Oj4OZw0oYypzHGw3OMJDhXNG76OT6eHJ5Ij09ykQC_OaJXFAJVz0QTLpAZgq7xznTjtgYFWpiwgyowoMUnhpC8k0DdxZraUDuUUa-QO0Wzd1eIiwjNR5oXh0UQvhg5PKFzY6z0sFWXWGXoFMTW8Orek83Sw3g-xNL_sMjQapG9_HJE9XYyyuKPF6U-J8HY_jirzj1JGbfCmSdpcAumV6wzRMMge_Y3Mro5A26oq5PFdWaSdzkFCGXgxqYKAXkzvF1qFZtQbIjtCA5kWZof21Wmw-lfxXCphQhoothdlqy_abev6ji-5dUKiR6Uf_KcLn6MaXt1Pz8d3sw2N0i6XVAMoJE0_Q7vLnKjwFyrR0zzoD-Q3T6RIn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Ball-Milling+Synthesis+of+CuO%2FBiochar+Nanocomposites+for+Efficient+Removal+of+Reactive+Red+120&rft.jtitle=ACS+omega&rft.au=Wei%2C+Xiaoqian&rft.au=Wang%2C+Xin&rft.au=Gao%2C+Bin&rft.au=Zou%2C+Weixin&rft.date=2020-03-24&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=5&rft.issue=11&rft.spage=5748&rft.epage=5755&rft_id=info:doi/10.1021%2Facsomega.9b03787&rft.externalDocID=b247293328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon