Cyclic Formation Stability of 1,1,1,2-Tetrafluoroethane Hydrate in Different SDS Solution Systems and Dissociation Characteristics Using Thermal Stimulation Combined with Depressurization

Cold storage using hydrates for cooling is a high-efficiency technology. However, this technology suffers from problems such as the stochastic nature of hydrate nucleation, cyclic hydrate formation instability, and a low cold discharge rate. To solve these problems, it is necessary to further clarif...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 4; no. 7; pp. 11397 - 11407
Main Authors Cheng, Chuanxiao, Wang, Fan, Zhang, Jun, Qi, Tian, Jin, Tingxiang, Zhao, Jiafei, Zheng, Jili, Li, Lingjuan, Li, Lun, Yang, Penglin, Lv, Shuai
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.07.2019
Online AccessGet full text

Cover

Loading…
Abstract Cold storage using hydrates for cooling is a high-efficiency technology. However, this technology suffers from problems such as the stochastic nature of hydrate nucleation, cyclic hydrate formation instability, and a low cold discharge rate. To solve these problems, it is necessary to further clarify the characteristics of hydrate formation and dissociation in different systems. First, a comparative experimental study in pure water and sodium dodecyl sulfate (SDS) solution systems was conducted to explore the influence of SDS on the morphology of the hydrate and the time needed for its formation under visualization conditions. Subsequently, the cyclic hydrate formation stability was investigated at different test temperatures with two types of SDS solution systemswith or without a porous medium. The induction time, full time, and energy consumption time ratio of the first hydrate formation process and the cyclic hydrate reformation process were analyzed. Finally, thermal stimulation combined with depressurization was used to intensify hydrate dissociation compared with single thermal stimulation. The results showed that the growth morphology of hydrate and the time required for its formation in the SDS solution system were obviously different than those in pure water. In addition, the calculation and comparison results revealed that the induction time and full time of cyclic hydrate reformation were shorter and the energy consumption time ratio was smaller in the porous medium. The results indicated that a porous medium could improve the cyclic hydrate formation process by making it more stable and by decreasing time and energy costs. Thermal stimulation combined with depressurization at different backpressures (0.1, 0.2, 0.3, and 0.4 MPa) effectively promoted the decomposition of hydrates, and with the decrease in backpressure, the dissociation time decreased gradually. At a backpressure of 0.1 MPa, the dissociation time was reduced by 150 min. The experimental results presented the formation and dissociation characteristics of 1,1,1,2-tetrafluoroethane hydrates in different systems, which could accelerate the application of gas hydrates in cold storage.
AbstractList Cold storage using hydrates for cooling is a high-efficiency technology. However, this technology suffers from problems such as the stochastic nature of hydrate nucleation, cyclic hydrate formation instability, and a low cold discharge rate. To solve these problems, it is necessary to further clarify the characteristics of hydrate formation and dissociation in different systems. First, a comparative experimental study in pure water and sodium dodecyl sulfate (SDS) solution systems was conducted to explore the influence of SDS on the morphology of the hydrate and the time needed for its formation under visualization conditions. Subsequently, the cyclic hydrate formation stability was investigated at different test temperatures with two types of SDS solution systemswith or without a porous medium. The induction time, full time, and energy consumption time ratio of the first hydrate formation process and the cyclic hydrate reformation process were analyzed. Finally, thermal stimulation combined with depressurization was used to intensify hydrate dissociation compared with single thermal stimulation. The results showed that the growth morphology of hydrate and the time required for its formation in the SDS solution system were obviously different than those in pure water. In addition, the calculation and comparison results revealed that the induction time and full time of cyclic hydrate reformation were shorter and the energy consumption time ratio was smaller in the porous medium. The results indicated that a porous medium could improve the cyclic hydrate formation process by making it more stable and by decreasing time and energy costs. Thermal stimulation combined with depressurization at different backpressures (0.1, 0.2, 0.3, and 0.4 MPa) effectively promoted the decomposition of hydrates, and with the decrease in backpressure, the dissociation time decreased gradually. At a backpressure of 0.1 MPa, the dissociation time was reduced by 150 min. The experimental results presented the formation and dissociation characteristics of 1,1,1,2-tetrafluoroethane hydrates in different systems, which could accelerate the application of gas hydrates in cold storage.
Cold storage using hydrates for cooling is a high-efficiency technology. However, this technology suffers from problems such as the stochastic nature of hydrate nucleation, cyclic hydrate formation instability, and a low cold discharge rate. To solve these problems, it is necessary to further clarify the characteristics of hydrate formation and dissociation in different systems. First, a comparative experimental study in pure water and sodium dodecyl sulfate (SDS) solution systems was conducted to explore the influence of SDS on the morphology of the hydrate and the time needed for its formation under visualization conditions. Subsequently, the cyclic hydrate formation stability was investigated at different test temperatures with two types of SDS solution systems-with or without a porous medium. The induction time, full time, and energy consumption time ratio of the first hydrate formation process and the cyclic hydrate reformation process were analyzed. Finally, thermal stimulation combined with depressurization was used to intensify hydrate dissociation compared with single thermal stimulation. The results showed that the growth morphology of hydrate and the time required for its formation in the SDS solution system were obviously different than those in pure water. In addition, the calculation and comparison results revealed that the induction time and full time of cyclic hydrate reformation were shorter and the energy consumption time ratio was smaller in the porous medium. The results indicated that a porous medium could improve the cyclic hydrate formation process by making it more stable and by decreasing time and energy costs. Thermal stimulation combined with depressurization at different backpressures (0.1, 0.2, 0.3, and 0.4 MPa) effectively promoted the decomposition of hydrates, and with the decrease in backpressure, the dissociation time decreased gradually. At a backpressure of 0.1 MPa, the dissociation time was reduced by 150 min. The experimental results presented the formation and dissociation characteristics of 1,1,1,2-tetrafluoroethane hydrates in different systems, which could accelerate the application of gas hydrates in cold storage.
Cold storage using hydrates for cooling is a high-efficiency technology. However, this technology suffers from problems such as the stochastic nature of hydrate nucleation, cyclic hydrate formation instability, and a low cold discharge rate. To solve these problems, it is necessary to further clarify the characteristics of hydrate formation and dissociation in different systems. First, a comparative experimental study in pure water and sodium dodecyl sulfate (SDS) solution systems was conducted to explore the influence of SDS on the morphology of the hydrate and the time needed for its formation under visualization conditions. Subsequently, the cyclic hydrate formation stability was investigated at different test temperatures with two types of SDS solution systems—with or without a porous medium. The induction time, full time, and energy consumption time ratio of the first hydrate formation process and the cyclic hydrate reformation process were analyzed. Finally, thermal stimulation combined with depressurization was used to intensify hydrate dissociation compared with single thermal stimulation. The results showed that the growth morphology of hydrate and the time required for its formation in the SDS solution system were obviously different than those in pure water. In addition, the calculation and comparison results revealed that the induction time and full time of cyclic hydrate reformation were shorter and the energy consumption time ratio was smaller in the porous medium. The results indicated that a porous medium could improve the cyclic hydrate formation process by making it more stable and by decreasing time and energy costs. Thermal stimulation combined with depressurization at different backpressures (0.1, 0.2, 0.3, and 0.4 MPa) effectively promoted the decomposition of hydrates, and with the decrease in backpressure, the dissociation time decreased gradually. At a backpressure of 0.1 MPa, the dissociation time was reduced by 150 min. The experimental results presented the formation and dissociation characteristics of 1,1,1,2-tetrafluoroethane hydrates in different systems, which could accelerate the application of gas hydrates in cold storage.
Author Jin, Tingxiang
Lv, Shuai
Cheng, Chuanxiao
Qi, Tian
Li, Lun
Zhao, Jiafei
Zheng, Jili
Wang, Fan
Zhang, Jun
Li, Lingjuan
Yang, Penglin
AuthorAffiliation School of Energy and Power Engineering
Henan Muxiang Veterinary Pharmaceutical Company Limited
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education
AuthorAffiliation_xml – name: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education
– name: Henan Muxiang Veterinary Pharmaceutical Company Limited
– name: School of Energy and Power Engineering
Author_xml – sequence: 1
  givenname: Chuanxiao
  orcidid: 0000-0001-5057-6364
  surname: Cheng
  fullname: Cheng, Chuanxiao
  organization: School of Energy and Power Engineering
– sequence: 2
  givenname: Fan
  orcidid: 0000-0001-5068-5309
  surname: Wang
  fullname: Wang, Fan
  organization: School of Energy and Power Engineering
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: School of Energy and Power Engineering
– sequence: 4
  givenname: Tian
  surname: Qi
  fullname: Qi, Tian
  organization: School of Energy and Power Engineering
– sequence: 5
  givenname: Tingxiang
  orcidid: 0000-0001-8883-8294
  surname: Jin
  fullname: Jin, Tingxiang
  email: txjin@126.com
  organization: School of Energy and Power Engineering
– sequence: 6
  givenname: Jiafei
  orcidid: 0000-0001-8401-4204
  surname: Zhao
  fullname: Zhao, Jiafei
  email: jfzhao@dlut.edu.cn
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education
– sequence: 7
  givenname: Jili
  surname: Zheng
  fullname: Zheng, Jili
  organization: School of Energy and Power Engineering
– sequence: 8
  givenname: Lingjuan
  surname: Li
  fullname: Li, Lingjuan
  organization: Henan Muxiang Veterinary Pharmaceutical Company Limited
– sequence: 9
  givenname: Lun
  surname: Li
  fullname: Li, Lun
  organization: School of Energy and Power Engineering
– sequence: 10
  givenname: Penglin
  surname: Yang
  fullname: Yang, Penglin
  organization: School of Energy and Power Engineering
– sequence: 11
  givenname: Shuai
  surname: Lv
  fullname: Lv, Shuai
  organization: School of Energy and Power Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31460244$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvGyEQx1dVqubR3HuqOPYQp8Cyr0ulym6aSJF6sHNGPGZtLBZcYFO5X61fLiTrRMmhQgjE_Oc3w8ycFkfOOyiKTwRfEkzJV6GiH2AtLjuJCWmbd8UJZQ2ekZKVR6_ux8V5jFuMMalb2tL6Q3FcElZjythJ8W--V9YodOXDIJLxDi2TkMaatEe-R-TicdHZClIQvR198JA2wgG63usgEiDj0ML0PQRwCS0XS7T0dpxA-5hgiEg4nSUxemWmCPONCEIlCCYmoyK6i8at0WoDOQWb45thtAelH6RxoNEfkzZoAbsAMY7B_H0yfyze98JGOD-cZ8Xd1Y_V_Hp2--vnzfz77UywrkszSRloLXtai1wpirVkQnbQ4KrqJRWihrrUNdEqb6wZKEkbRZWWHS2xBlKeFTcTV3ux5btgBhH23AvDnx58WHMR8k8scFW2dSUkMEWBtW0ny4o0uquASNKzhmXWt4m1G-UAWuWqBWHfQN9anNnwtb_ndW4eJlUGfDkAgv89Qkx8MFGBtbkpfoyc0pa0jJS4zVI8SVXwMQboX8IQzB9HiD-PED-MUHb5_Dq9F4fngcmCi0mQXfnWj8Hlyv-f9wB8ItpJ
CitedBy_id crossref_primary_10_1021_acs_jced_1c00139
crossref_primary_10_1016_j_est_2022_103980
crossref_primary_10_1021_acsomega_3c04578
crossref_primary_10_1021_acs_energyfuels_3c03559
crossref_primary_10_1016_j_rser_2019_109492
crossref_primary_10_1021_acsomega_9b02497
crossref_primary_10_1016_j_fuel_2023_129249
crossref_primary_10_1016_j_fuel_2020_118908
crossref_primary_10_1016_j_applthermaleng_2022_118462
crossref_primary_10_1016_j_est_2024_111127
crossref_primary_10_1016_j_fuel_2021_122080
crossref_primary_10_1016_j_energy_2020_119374
crossref_primary_10_1016_j_fuel_2023_130483
crossref_primary_10_1016_j_energy_2022_124647
Cites_doi 10.1016/j.apenergy.2013.11.031
10.1021/ef9003329
10.1016/j.ijhydene.2016.11.003
10.1016/j.jngse.2015.03.030
10.1016/j.ijheatmasstransfer.2017.02.085
10.1016/j.jct.2014.08.007
10.1016/j.fuel.2018.07.072
10.1021/ef400257a
10.1016/j.cossms.2016.03.005
10.1016/j.petrol.2016.06.003
10.1016/j.apenergy.2014.12.071
10.1016/j.cej.2016.09.047
10.1016/j.cej.2010.04.047
10.1063/1.5095812
10.1016/j.jiec.2016.07.021
10.1016/j.apenergy.2015.02.040
10.1021/ie1013019
10.1016/j.apenergy.2017.04.031
10.1016/j.cej.2018.12.051
10.1016/j.enconman.2005.03.018
10.1016/j.apenergy.2019.05.035
10.1007/s11814-016-0032-7
10.1016/s1003-9953(08)60085-7
10.1016/j.ijheatmasstransfer.2014.05.034
10.1007/bf03187022
10.1016/j.ces.2017.04.036
10.1016/j.apenergy.2015.05.106
10.1002/er.805
10.1016/s0140-7007(00)00085-2
10.1016/j.energy.2018.08.100
10.1016/j.proeng.2015.09.116
10.1016/j.enbuild.2011.10.030
10.1016/j.enconman.2017.04.091
10.1002/slct.201800154
10.1016/j.rser.2016.04.062
10.1016/j.apenergy.2014.12.061
10.1002/aic.15722
10.1016/j.petrol.2019.03.012
10.1016/j.cej.2018.12.178
10.1016/j.fluid.2014.07.006
10.1016/j.apenergy.2019.01.095
10.1126/science.273.5283.1843
10.1021/acs.jpcc.6b07995
10.1023/A:1010735318011
10.1039/c8ce00190a
10.1016/j.ces.2016.08.020
10.1016/j.mri.2010.08.012
10.1016/j.ces.2016.01.035
10.1016/j.cjche.2019.02.028
10.1016/j.jct.2016.12.026
10.1016/j.rser.2014.04.032
10.1016/j.fuel.2018.08.126
10.1021/acs.energyfuels.8b02934
10.1016/j.energy.2013.01.066
10.1016/s0378-3812(96)03177-9
ContentType Journal Article
Copyright Copyright © 2019 American Chemical Society 2019 American Chemical Society
Copyright_xml – notice: Copyright © 2019 American Chemical Society 2019 American Chemical Society
DBID N~.
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1021/acsomega.9b01187
DatabaseName American Chemical Society (ACS) Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 11407
ExternalDocumentID oai_doaj_org_article_c3865abe4c2e4889b3517d95e1b1f474
10_1021_acsomega_9b01187
31460244
d151558244
Genre Journal Article
GroupedDBID 53G
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
EJD
GROUPED_DOAJ
HYE
N~.
OK1
RPM
VF5
AAFWJ
AAHBH
AFPKN
AOIJS
M~E
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a499t-b24eddbf26a9b020db4ab9e7055fb2aa6e63d61dc61d0d4ecb27c2cdb9230de13
IEDL.DBID RPM
ISSN 2470-1343
IngestDate Thu Sep 05 15:44:49 EDT 2024
Tue Sep 17 21:15:13 EDT 2024
Fri Aug 16 05:59:08 EDT 2024
Fri Aug 23 01:45:36 EDT 2024
Sat Sep 28 08:35:50 EDT 2024
Thu Aug 27 13:44:28 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-b24eddbf26a9b020db4ab9e7055fb2aa6e63d61dc61d0d4ecb27c2cdb9230de13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8401-4204
0000-0001-5057-6364
0000-0001-5068-5309
0000-0001-8883-8294
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682015/
PMID 31460244
PQID 2281841308
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c3865abe4c2e4889b3517d95e1b1f474
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6682015
proquest_miscellaneous_2281841308
crossref_primary_10_1021_acsomega_9b01187
pubmed_primary_31460244
acs_journals_10_1021_acsomega_9b01187
ProviderPackageCode ACS
ABUCX
AFEFF
VF5
N~.
PublicationCentury 2000
PublicationDate 2019-07-31
PublicationDateYYYYMMDD 2019-07-31
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
Kawamura T. (ref32/cit32) 2010; 20
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
Xie Y. M. (ref3/cit3) 2004; 34
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref8/cit8
  doi: 10.1016/j.apenergy.2013.11.031
– ident: ref11/cit11
  doi: 10.1021/ef9003329
– ident: ref16/cit16
  doi: 10.1016/j.ijhydene.2016.11.003
– ident: ref29/cit29
  doi: 10.1016/j.jngse.2015.03.030
– ident: ref49/cit49
  doi: 10.1016/j.ijheatmasstransfer.2017.02.085
– ident: ref1/cit1
  doi: 10.1016/j.jct.2014.08.007
– ident: ref35/cit35
  doi: 10.1016/j.fuel.2018.07.072
– ident: ref40/cit40
  doi: 10.1021/ef400257a
– ident: ref58/cit58
  doi: 10.1016/j.cossms.2016.03.005
– ident: ref28/cit28
  doi: 10.1016/j.petrol.2016.06.003
– ident: ref44/cit44
  doi: 10.1016/j.apenergy.2014.12.071
– ident: ref9/cit9
  doi: 10.1016/j.cej.2016.09.047
– ident: ref59/cit59
  doi: 10.1016/j.cej.2010.04.047
– ident: ref42/cit42
  doi: 10.1063/1.5095812
– ident: ref39/cit39
  doi: 10.1016/j.jiec.2016.07.021
– ident: ref51/cit51
  doi: 10.1016/j.apenergy.2015.02.040
– ident: ref23/cit23
  doi: 10.1021/ie1013019
– ident: ref45/cit45
  doi: 10.1016/j.apenergy.2017.04.031
– ident: ref20/cit20
  doi: 10.1016/j.cej.2018.12.051
– ident: ref12/cit12
  doi: 10.1016/j.enconman.2005.03.018
– ident: ref37/cit37
  doi: 10.1016/j.apenergy.2019.05.035
– ident: ref56/cit56
  doi: 10.1007/s11814-016-0032-7
– ident: ref10/cit10
  doi: 10.1016/s1003-9953(08)60085-7
– ident: ref46/cit46
  doi: 10.1016/j.ijheatmasstransfer.2014.05.034
– ident: ref7/cit7
  doi: 10.1007/bf03187022
– ident: ref30/cit30
  doi: 10.1016/j.ces.2017.04.036
– ident: ref33/cit33
  doi: 10.1016/j.apenergy.2015.05.106
– ident: ref27/cit27
  doi: 10.1016/j.cossms.2016.03.005
– ident: ref2/cit2
  doi: 10.1002/er.805
– ident: ref4/cit4
  doi: 10.1016/s0140-7007(00)00085-2
– ident: ref50/cit50
  doi: 10.1016/j.energy.2018.08.100
– ident: ref18/cit18
  doi: 10.1016/j.proeng.2015.09.116
– ident: ref6/cit6
  doi: 10.1016/j.enbuild.2011.10.030
– ident: ref52/cit52
  doi: 10.1016/j.enconman.2017.04.091
– ident: ref25/cit25
  doi: 10.1002/slct.201800154
– ident: ref54/cit54
  doi: 10.1016/j.rser.2016.04.062
– ident: ref34/cit34
  doi: 10.1016/j.cej.2016.09.047
– ident: ref31/cit31
  doi: 10.1016/j.apenergy.2014.12.061
– ident: ref48/cit48
  doi: 10.1002/aic.15722
– ident: ref36/cit36
  doi: 10.1016/j.petrol.2019.03.012
– ident: ref17/cit17
  doi: 10.1016/j.cej.2018.12.178
– ident: ref15/cit15
  doi: 10.1016/j.fluid.2014.07.006
– ident: ref43/cit43
  doi: 10.1016/j.apenergy.2019.01.095
– ident: ref57/cit57
  doi: 10.1126/science.273.5283.1843
– ident: ref24/cit24
  doi: 10.1021/acs.jpcc.6b07995
– ident: ref13/cit13
  doi: 10.1023/A:1010735318011
– ident: ref26/cit26
  doi: 10.1039/c8ce00190a
– ident: ref53/cit53
  doi: 10.1016/j.ces.2016.08.020
– ident: ref41/cit41
  doi: 10.1016/j.mri.2010.08.012
– volume: 34
  start-page: 25
  year: 2004
  ident: ref3/cit3
  publication-title: Heat. Vent. Air Cond
  contributor:
    fullname: Xie Y. M.
– ident: ref22/cit22
  doi: 10.1016/j.ces.2016.01.035
– ident: ref38/cit38
  doi: 10.1016/j.cjche.2019.02.028
– ident: ref14/cit14
  doi: 10.1016/j.jct.2016.12.026
– ident: ref5/cit5
  doi: 10.1016/j.rser.2014.04.032
– ident: ref19/cit19
  doi: 10.1016/j.fuel.2018.08.126
– ident: ref21/cit21
  doi: 10.1021/acs.energyfuels.8b02934
– ident: ref47/cit47
  doi: 10.1016/j.energy.2013.01.066
– volume: 20
  start-page: 125
  year: 2010
  ident: ref32/cit32
  publication-title: Int. J. Offshore Polar Eng.
  contributor:
    fullname: Kawamura T.
– ident: ref55/cit55
  doi: 10.1016/s0378-3812(96)03177-9
SSID ssj0001682826
Score 2.2365084
Snippet Cold storage using hydrates for cooling is a high-efficiency technology. However, this technology suffers from problems such as the stochastic nature of...
Cold storage using hydrates for cooling is a high-efficiency technology. However, this technology suffers from problems such as the stochastic nature of...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11397
SummonAdditionalLinks – databaseName: ACS Journals: American Chemical Society Web Editions
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOcCF96O8ZCQ4IJESO66zOS4pVYUEl-5Ke4v8mCwV3QQ1yaH8Nf4cY8fZkmWFVlEuiZM4nrHn6W8IeWtSbROTigiVY4UGCk7FQw1lFEuuhQsmar997Os3uTwRX05np3uYnMsRfM4-KtPU53Cmppn2tbFvklscxaIztI7y1d6fItF28NXVuEjjiCUiCVHJq17iZJFpRrLIQ_ZfpWdeTpf8S_4s7vWFjBoPW-jSTn5Mu1ZPza9_QR2v8Wv3yd2ghtKjnm8ekBtQPSS386H62yPyO9-ZzdrQxbC5kaJa6hNpd7QuKfvgDh4dA_a13HT1tgbnhAe63FmHPkHXFZ2H4istXc1XdHDA0QCSTlVlscmePWg-Bo-mPp2BIiNjFzb4_fV5qDVGcRVDix4sdW5kOu-zebtt2FP6mJwsPh_nyygUeogUGlxtpLkAa3XJpcKR4LHVQukMHNBPqblSEmRiJbMGz9gKMJqnhhurUTuNLbDkCTmo6gqeESpLrmZKaMMUiEQiU0CiTMwzXqZuLZ2QdzjqRZioTeFj8JwVAymKQIoJeT-wRvGzx_34T9tPjncu2jnEbn8BaV2EBaAwrriq0iAMB1w0M53MWGqzGTDNSpGKCXkzcF6BpHZhGyRa3TUFd4BdTtc4nJCnPSdefCpBQYdaFj6djnh01JfxnWr93aOIu7FBXfD5NQfkBbmDzbPerf2SHLTbDl6hPtbq134i_gElLjXq
  priority: 102
  providerName: American Chemical Society
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvFleGiQ4IBEaO47THGGX1QoJLm2l3iw_JrDSNkH7OOxv65_r2HHKBiG4oCiXxEkszzjzzXj8DWNvXGV94SqZETg25KDQVDyx2GS5ElaGxUQbt499_aYW5_LLRXlxUOor5IT19MD9wB27UJTSWJROIClbbYuSV74ukVveyKpnAuXlgTMVoyuKPAkxrEuSHTs2btNd4nfzobaxxHawRm4zskaRtP9PSPP3hMkDCzS_x-4m6Agf-y7fZ7ewfcBuT4eKbQ_Z1XTvVksH82FDIhCUjMmve-ga4O_DIbIzpLc3q1237jAEzhEWex8YI2DZwiwVTNnC6ewUhqAZJGJzMK2nJr9ECtMx4TPEFAQg5aMurOj7y8tUHwzoz0NeOHoIoV-Y9Rm4u3XaB_qInc8_n00XWSrOkBlykraZFRK9t41QhkZU5N5KY2sM5DyNFcYoVIVX3Ds6cy_RWVE54bwlRJl75MVjdtR2LT5loBphSiOt4wZloUh0WBiXi1o0Vfj_TdhbEpVOk2uj47q54HoQqU4inbB3gzD1z56r4y9tPwVp37QLLNvxAumeTrqn_6V7E_Z60BVNog5LLSS0brfRIpBsBXxwMmFPet25-VRBxomQET1djbRq1JfxnXb5IzJ_h7Eh_Pbsf3T-ObtD76r7OPULdrRd7_AlAaytfRXn0jXdXimE
  priority: 102
  providerName: Directory of Open Access Journals
Title Cyclic Formation Stability of 1,1,1,2-Tetrafluoroethane Hydrate in Different SDS Solution Systems and Dissociation Characteristics Using Thermal Stimulation Combined with Depressurization
URI http://dx.doi.org/10.1021/acsomega.9b01187
https://www.ncbi.nlm.nih.gov/pubmed/31460244
https://search.proquest.com/docview/2281841308
https://pubmed.ncbi.nlm.nih.gov/PMC6682015
https://doaj.org/article/c3865abe4c2e4889b3517d95e1b1f474
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6SHNpcSt9VH2YK7aFQ2dJqtYqOrVxjCgkFJ5Cb2JdSgS0FPw6-5I_lz3V2tUqjUnoowjJYK2nxN7vz2NlvCPmgMqkTlbEQjWOBDgoOxRNpqjDiVDK7mCjd9rHTMz6_YN8v08sDkvZ7YVzSvpL1uFmuxk390-VWXq_UpM8Tm_w4LTi3eiudHJLDLEnuuegusIIX0Wb2S5KowiZCbdqVuRLjXLrq2sfkQYITBGonZnWS2gx0kqPu_5u9-Wfa5D09NHtMHnkDEr50HX1CDkzzlDws-rptz8htsVfLWsGs35YIaFC6FNg9tBXEn-1Bw3ODT6-Wu3bdGhs-NzDfa8sbAXUDU182ZQuL6QL60Bl4enMQjcYmv4GFYkj7DC4RAVAEsQtLfH-98lXCAOcf9MWNBhsAhmmXh7tb-92gz8nF7Nt5MQ99iYZQoKu0DSVlRmtZUS7wz6WRlkzI3FiKnkpSIbjhieaxVviJNDNK0kxRpSXalZE2cfKCHDVtY14R4BUVqWBSxcKwxEJsEqEimtMqs7NgQD4iVKUfYpvSrZ7TuOzRLT26AfnUg1led4wd_2j71aJ9185ybbsf2vVV6SWuVLYsqpCGKWpwustlksaZzlMTy7hiGQvI-15WSoTaLrggaO1uU1JLtWWthJOAvOxk5-5VvQQGJBtI1aAvwys4HBz_txf_1_995xtyjF95F6J-S4626515h7bVVo7QtygWIxeZwPPZzXjkRtcvVMktIw
link.rule.ids 230,315,733,786,790,870,891,2115,2782,27107,27111,27955,27956,53825,53827,57091,57115,57141,57165
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5bBceD_K00hwQCLd2HGSzRFSqgK7e6BdaW-WX4GKboKa5FD-Gn-OseO0ZLVCoCiXxEkcz9jz2TP-BqFXKpU6UikLABwLmKBAVzySpgjChEpmnYnSbR87OU1mZ-zTeXy-h0i_FwYqUcObaufE37ELkEO4Vl2Yr2KcSZci-xq6Hqdg7Cwayue7ZZUEphAuyRplaRiQiEXeOXnVS6xJUvXAJDnm_qvg5uWoyT_M0PQW-rL9ARd98n3cNnKsfl7idvyvP7yNbnpQit91WnQH7ZnyLjrI-1xw99CvfKNWS4Wn_VZHDCDVhdVucFVg8tYeNFgYqHKxaqt1ZeySvMGzjbZcFHhZ4olPxdLg-WSO--U47CnTsSg1FNkpC86HVNLYBTdgUGuowgq-v7zwmccwjGkwvzca20VlPOlie9u132F6H51NPyzyWeDTPgQCpl9NICkzWsuCJgJagoZaMiEzY2l_CkmFSEwS6YRoBWeomVGSpooqLQGrhtqQ6AHaL6vSPEI4KaiIBZOKCMOiBHTDREKFNKNFakfWEXoNrc59t62588hTwntRcC-KEXrTawj_0bGA_KXse6tC23KWv9tdAHlzPxxwZVOtCmmYogaG0ExGMUl1FhsiScFSNkIvewXkIGrrxAGhVW3NqaXvssjjaIQedgq5_VQEZg8wFzydDlR1UJfhnXL5zXGK27YBZPj4HxvkBTqYLU6O-fHH089P0A14NOsWvJ-i_WbdmmeA1Br53PXN38pMPlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkaAXxLvLc5DggERK_EjSHGGX1fJaIbWVerP8Cqy0TarN7mEv_DH-HGPHaQmqEIpySRzH8szYn2fsbwh5aQptuSlEguBY4QIFTfFQuypJc6aFDybqcHzs6zyfnYhPp9npDsn6szDYiBZrakMQ31v1ua0iwwB9i8-bM_ddHZQ6pMm-Rq5niPf9Tr75z4NL10qOy4iQaI2JIk0oFzwGKK-qxE9Lph1MS4G9_yrI-ffOyT-moultcitiSHjXCf0O2XH1XXJz3Kduu0d-jbdmuTAw7U8mAmLKsAt2C00F9I2_WHLssPZquWlWjfMedAezrfXUEbCoYRIzp6zhaHIEvfcMIsM5qNpikUvZwnjI_AxhLwKgFmITlvj_xVlMFAY4BOFy3FnwPmCYdFtxN6t4IPQ-OZl-OB7PkpilIVG4Wlonmglnra5YrrBHWWq1ULp0nqWn0kyp3OXc5tQavFMrnNGsMMxYjdAytY7yB2S3bmq3TyCvmMqU0IYqJ3iOYnRcmZSVrCr8QDgir1BUMlpZK0MAnVHZi1RGkY7I616Y8rwj7fhH2fde2hflPN12eIAKKKP1SuMzoyrthGEOR7xS84wWtswc1bQShRiRF72uSBS1j7mg0JpNK5ln2_JA4XBEHna6c_ErjrMUQiT8uhho1aAtwzf14kegAPd9g0Du0X92yHNy49tkKr98nH9-TPbwy7JzTz8hu-vVxj1FXLXWz4IV_QYFEiOF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+Formation+Stability+of+1%2C1%2C1%2C2-Tetrafluoroethane+Hydrate+in+Different+SDS+Solution+Systems+and+Dissociation+Characteristics+Using+Thermal+Stimulation+Combined+with+Depressurization&rft.jtitle=ACS+omega&rft.au=Cheng%2C+Chuanxiao&rft.au=Wang%2C+Fan&rft.au=Zhang%2C+Jun&rft.au=Qi%2C+Tian&rft.date=2019-07-31&rft.eissn=2470-1343&rft.volume=4&rft.issue=7&rft.spage=11397&rft.epage=11407&rft_id=info:doi/10.1021%2Facsomega.9b01187&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon