Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites

By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly­(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–5 S cm–1 at 30 °C, about 4 orders of magnitud...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 1; pp. 784 - 791
Main Authors Li, Zhuo, Huang, He-Ming, Zhu, Jia-Kun, Wu, Jian-Fang, Yang, Hui, Wei, Lu, Guo, Xin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly­(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–5 S cm–1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions.
AbstractList By dispersing Li₆.₂₅Ga₀.₂₅La₃Zr₂O₁₂ (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–⁵ S cm–¹ at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions.
By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10-5 S cm-1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions.By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10-5 S cm-1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions.
By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly­(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–5 S cm–1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions.
By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in polyethylene oxide (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO:Ga-LLZO composite with 16 vol.% Ga-LLZO nanoparticles shows a conductivity of 7.2×10-5 S cm-1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (~3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions.
Author Huang, He-Ming
Zhu, Jia-Kun
Li, Zhuo
Wu, Jian-Fang
Guo, Xin
Wei, Lu
Yang, Hui
AuthorAffiliation Department of Mechanics
School of Materials Science and Engineering
AuthorAffiliation_xml – name: School of Materials Science and Engineering
– name: Department of Mechanics
Author_xml – sequence: 1
  givenname: Zhuo
  surname: Li
  fullname: Li, Zhuo
– sequence: 2
  givenname: He-Ming
  surname: Huang
  fullname: Huang, He-Ming
– sequence: 3
  givenname: Jia-Kun
  surname: Zhu
  fullname: Zhu, Jia-Kun
– sequence: 4
  givenname: Jian-Fang
  surname: Wu
  fullname: Wu, Jian-Fang
– sequence: 5
  givenname: Hui
  orcidid: 0000-0002-2628-4676
  surname: Yang
  fullname: Yang, Hui
  email: huiyang2017@hust.edu.cn
– sequence: 6
  givenname: Lu
  surname: Wei
  fullname: Wei, Lu
  email: lwei@hust.edu.cn
– sequence: 7
  givenname: Xin
  orcidid: 0000-0003-1546-8119
  surname: Guo
  fullname: Guo, Xin
  email: xguo@hust.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30525410$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1Lw0AQhhdRtFavHiVHEVL3a0y2NwlVC4WK6MVLmGw2sJJk625y6L83JVVBEDzNzvI8c3jfU3LYutYQcsHojFHOblAHbOwsLVjCE3VAJkxJGacc-OH3W8oTchrCO6W3glM4JieCAgfJ6IQ8L11rdZS5tux1Z10b2XbYmo0LtjPRk6u3jfHRoja688PSmTCPMgwmclX0tFjPHzBerd7WP044I0cV1sGc7-eUvN4vXrLHeLV-WGZ3qxilUl2clillAhjHRHKV0AKqUskSdIEUBQfFqhIroAJRJ3irQRhVIhYJK0AJXokpuRrvbrz76E3o8sYGbeoaW-P6kHOWKoAUKP8HCsCAgkgG9HKP9kVjynzjbYN-m39FNgCzEdDeheBN9Y0wmu86ycdO8n0ngyB_Cdp2uMu682jrv7XrURv-83fX-3YI8y_4E1xynfk
CitedBy_id crossref_primary_10_1021_acsami_3c06304
crossref_primary_10_1038_s41563_022_01343_w
crossref_primary_10_1039_D1TA04631D
crossref_primary_10_1021_acsaem_0c01358
crossref_primary_10_1002_eom2_12317
crossref_primary_10_1021_acs_jpcc_4c05494
crossref_primary_10_1007_s11426_020_9936_6
crossref_primary_10_1039_D2TA06808G
crossref_primary_10_1016_j_ssi_2021_115572
crossref_primary_10_34133_energymatadv_0041
crossref_primary_10_1002_aenm_202401336
crossref_primary_10_1007_s11581_022_04599_z
crossref_primary_10_1007_s40820_024_01498_y
crossref_primary_10_1016_j_jpowsour_2025_236556
crossref_primary_10_1039_C9TA10400C
crossref_primary_10_26599_NRE_2023_9120050
crossref_primary_10_1007_s11581_023_05318_y
crossref_primary_10_1016_j_nanoen_2022_107105
crossref_primary_10_1149_1945_7111_abb37f
crossref_primary_10_1039_D2SE01782B
crossref_primary_10_1360_TB_2021_1078
crossref_primary_10_1021_acsaem_3c02051
crossref_primary_10_1016_j_compscitech_2020_108102
crossref_primary_10_1360_SSC_2024_0054
crossref_primary_10_1021_acssuschemeng_0c02362
crossref_primary_10_1016_j_ensm_2019_10_008
crossref_primary_10_1039_D4YA00231H
crossref_primary_10_1016_j_jpowsour_2025_236575
crossref_primary_10_1016_j_jpowsour_2020_227797
crossref_primary_10_1021_acsaem_0c00935
crossref_primary_10_1016_j_ensm_2020_05_019
crossref_primary_10_1016_j_jpowsour_2021_229919
crossref_primary_10_1021_acsaem_0c03098
crossref_primary_10_1016_j_jpowsour_2023_233613
crossref_primary_10_1016_j_cej_2024_154259
crossref_primary_10_1021_acsami_1c05846
crossref_primary_10_1016_j_est_2023_109531
crossref_primary_10_1021_acs_energyfuels_3c03181
crossref_primary_10_1007_s10008_024_05867_w
crossref_primary_10_3390_batteries11020052
crossref_primary_10_1039_D0TA11679C
crossref_primary_10_1016_j_cej_2024_153847
crossref_primary_10_2139_ssrn_4124074
crossref_primary_10_1007_s10008_022_05231_w
crossref_primary_10_1126_sciadv_adu4531
crossref_primary_10_1021_acsami_1c17718
crossref_primary_10_1002_chem_201904461
crossref_primary_10_1021_acsami_3c01998
crossref_primary_10_20517_energymater_2024_195
crossref_primary_10_1016_j_jechem_2025_01_014
crossref_primary_10_1016_j_cej_2024_157191
crossref_primary_10_1039_D1EE03345J
crossref_primary_10_1016_j_cej_2023_142535
crossref_primary_10_1016_j_mssp_2024_109101
crossref_primary_10_1002_aenm_202002869
crossref_primary_10_1016_j_mser_2024_100815
crossref_primary_10_1007_s11581_021_04042_9
crossref_primary_10_1016_j_cclet_2021_03_032
crossref_primary_10_1021_acsenergylett_5c00214
crossref_primary_10_1016_j_est_2024_112452
crossref_primary_10_1021_acsami_2c20787
crossref_primary_10_1016_j_est_2024_112696
crossref_primary_10_1016_j_ensm_2021_04_028
crossref_primary_10_1016_j_jpowsour_2023_233982
crossref_primary_10_1021_acsami_2c15871
crossref_primary_10_1016_j_jcis_2022_05_069
crossref_primary_10_1021_acsaem_2c03059
crossref_primary_10_1021_acsaem_1c00216
crossref_primary_10_1039_D4TA04591B
crossref_primary_10_1002_adfm_202203272
crossref_primary_10_1007_s40145_021_0489_7
crossref_primary_10_1016_j_ensm_2022_02_045
crossref_primary_10_1016_j_jechem_2019_11_012
crossref_primary_10_1002_smll_202312251
crossref_primary_10_1021_acs_energyfuels_4c01520
crossref_primary_10_1016_j_electacta_2022_141353
crossref_primary_10_1021_acsenergylett_1c00401
crossref_primary_10_1016_j_ensm_2020_09_016
crossref_primary_10_1007_s12598_022_02132_9
crossref_primary_10_1021_acsami_1c02119
crossref_primary_10_1039_D3TA02761A
crossref_primary_10_1002_cey2_146
crossref_primary_10_1016_j_nanoen_2022_107912
crossref_primary_10_1016_j_ensm_2022_08_019
crossref_primary_10_1021_acs_energyfuels_1c01609
crossref_primary_10_1002_aenm_202003154
crossref_primary_10_1039_D3CS00572K
crossref_primary_10_33889_PMSL_2023_2_1_003
crossref_primary_10_1360_nso_20220036
crossref_primary_10_1016_j_polymer_2024_126728
crossref_primary_10_1039_D0TA10523F
crossref_primary_10_7498_aps_69_20201191
crossref_primary_10_1002_smll_202200891
crossref_primary_10_1002_adfm_202107652
crossref_primary_10_1016_j_ssi_2022_115897
crossref_primary_10_1007_s11581_024_05873_y
crossref_primary_10_1002_eng2_12448
crossref_primary_10_1016_j_memsci_2023_121636
crossref_primary_10_1007_s11431_021_2027_3
crossref_primary_10_1016_j_jcis_2022_10_027
crossref_primary_10_1002_cphc_202200296
crossref_primary_10_1016_j_jechem_2023_05_011
crossref_primary_10_1016_j_cej_2022_135420
crossref_primary_10_1002_advs_202201718
crossref_primary_10_1021_acs_energyfuels_4c02715
crossref_primary_10_1016_j_nxmate_2024_100173
crossref_primary_10_3389_fchem_2023_1199677
crossref_primary_10_1002_adfm_202210845
crossref_primary_10_1088_1742_6596_2962_1_012004
crossref_primary_10_1002_smll_201902813
crossref_primary_10_1016_j_materresbull_2023_112588
crossref_primary_10_1016_j_polymer_2023_126214
crossref_primary_10_1016_j_apmate_2023_100141
crossref_primary_10_1016_j_rser_2023_114136
crossref_primary_10_1149_1945_7111_acf6e6
crossref_primary_10_1021_acsami_9b07830
crossref_primary_10_3390_en16237695
crossref_primary_10_1002_aenm_202003250
crossref_primary_10_1016_j_jallcom_2021_160307
crossref_primary_10_1002_smll_202103617
crossref_primary_10_1021_acsami_9b15463
crossref_primary_10_1007_s11581_022_04659_4
crossref_primary_10_1021_acsami_2c13408
crossref_primary_10_1080_17518253_2024_2321247
crossref_primary_10_2139_ssrn_3994258
crossref_primary_10_1016_j_jcis_2024_03_058
crossref_primary_10_1021_acsanm_2c03819
crossref_primary_10_1039_D3DT01677C
crossref_primary_10_1021_acsami_3c04262
crossref_primary_10_1002_adsu_202400369
crossref_primary_10_1021_acsami_2c20734
crossref_primary_10_1016_j_ssi_2023_116245
crossref_primary_10_1039_D4TA01836B
crossref_primary_10_1039_D1RA06210G
crossref_primary_10_1016_j_coelec_2020_07_006
crossref_primary_10_1039_D3QM00759F
crossref_primary_10_1002_cssc_202201801
crossref_primary_10_1002_idm2_12109
crossref_primary_10_1021_acsapm_4c00161
crossref_primary_10_1002_inf2_12394
crossref_primary_10_1149_1945_7111_ab8478
crossref_primary_10_1039_D0CS00305K
crossref_primary_10_1002_aenm_202402402
crossref_primary_10_1002_aenm_202403179
crossref_primary_10_1021_acsami_4c06551
crossref_primary_10_1002_smll_202305769
crossref_primary_10_1021_acsami_3c11477
crossref_primary_10_1002_adma_202417796
crossref_primary_10_1016_j_apsusc_2024_161265
crossref_primary_10_1021_acsami_3c19519
crossref_primary_10_1002_chem_202100380
crossref_primary_10_1002_smll_202307942
crossref_primary_10_1002_cssc_202401304
crossref_primary_10_1002_cey2_108
crossref_primary_10_1007_s42114_023_00637_0
crossref_primary_10_1016_j_ensm_2023_02_038
crossref_primary_10_1021_acs_jpcc_4c05094
crossref_primary_10_1002_advs_202003887
crossref_primary_10_1002_celc_202200317
crossref_primary_10_1002_celc_202400323
crossref_primary_10_1021_acsami_2c00753
crossref_primary_10_3389_fchem_2020_619832
crossref_primary_10_1002_cey2_190
crossref_primary_10_33961_jecst_2020_01459
crossref_primary_10_1021_acs_chemrev_9b00760
crossref_primary_10_1186_s11671_019_3210_9
crossref_primary_10_1016_j_jpowsour_2022_231305
crossref_primary_10_1016_j_jechem_2023_03_045
crossref_primary_10_1016_j_jpowsour_2020_228146
crossref_primary_10_1002_sus2_67
crossref_primary_10_1021_acsami_4c04864
crossref_primary_10_1039_D1TA03720J
crossref_primary_10_1039_D3TA05329F
crossref_primary_10_1002_adma_202401625
crossref_primary_10_1002_advs_202100899
crossref_primary_10_1016_j_coelec_2021_100828
crossref_primary_10_1039_D3CP04617F
crossref_primary_10_1016_j_jpowsour_2020_228125
crossref_primary_10_1039_D1RA01312B
crossref_primary_10_1039_C9TA08415K
crossref_primary_10_1016_j_mtsust_2024_100758
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1016_j_jiec_2022_06_039
crossref_primary_10_1002_advs_201903088
crossref_primary_10_1016_j_jallcom_2023_171158
crossref_primary_10_1016_j_cej_2021_132343
crossref_primary_10_1021_acsami_1c04113
crossref_primary_10_1002_adfm_202201465
crossref_primary_10_1016_j_cossms_2022_101003
crossref_primary_10_1002_adma_202306111
crossref_primary_10_1016_j_jallcom_2024_174123
crossref_primary_10_1002_batt_202200142
crossref_primary_10_1016_j_nanoen_2023_108571
crossref_primary_10_1021_acs_chemrev_2c00196
crossref_primary_10_1016_j_mtphys_2020_100264
crossref_primary_10_1002_slct_201904206
crossref_primary_10_1016_j_jpowsour_2021_229843
crossref_primary_10_1016_j_adna_2024_03_002
crossref_primary_10_1016_j_ssi_2024_116527
crossref_primary_10_1016_j_jechem_2020_12_026
crossref_primary_10_1007_s12598_022_02260_2
crossref_primary_10_1088_1361_6528_ac4b7c
crossref_primary_10_1149_1945_7111_aca6a3
crossref_primary_10_1039_D4CS00214H
crossref_primary_10_1007_s12274_021_3683_6
crossref_primary_10_1039_D3QM00840A
crossref_primary_10_1007_s11581_024_05451_2
crossref_primary_10_1088_1361_6463_ad816c
crossref_primary_10_1016_j_ensm_2022_04_026
crossref_primary_10_1021_acs_chemrev_9b00427
crossref_primary_10_1016_j_cclet_2025_110973
crossref_primary_10_1021_acssuschemeng_2c05879
crossref_primary_10_1016_j_gee_2023_06_002
crossref_primary_10_1016_j_nanoen_2024_110447
crossref_primary_10_1002_masy_202300050
crossref_primary_10_1021_acsaem_4c00701
crossref_primary_10_1149_1945_7111_ac9554
crossref_primary_10_1007_s10853_021_05832_2
crossref_primary_10_1002_adfm_202307045
crossref_primary_10_1002_smll_202402035
crossref_primary_10_1016_j_ceramint_2023_06_153
crossref_primary_10_1002_er_8416
crossref_primary_10_1007_s40820_022_00996_1
crossref_primary_10_1021_acsami_1c21131
crossref_primary_10_1149_1945_7111_abcd12
crossref_primary_10_1007_s12598_025_03239_5
crossref_primary_10_1016_j_electacta_2020_137348
crossref_primary_10_1002_smll_202305326
crossref_primary_10_1002_aenm_201904119
crossref_primary_10_1039_D2MA00215A
crossref_primary_10_1021_acsaem_1c04001
crossref_primary_10_1016_j_jechem_2021_10_038
crossref_primary_10_1002_adfm_202301165
crossref_primary_10_1021_acsnano_3c07754
crossref_primary_10_1016_j_solidstatesciences_2022_106958
crossref_primary_10_1016_j_ensm_2023_102954
crossref_primary_10_3390_batteries9050257
crossref_primary_10_1016_j_ceja_2023_100532
crossref_primary_10_1016_j_jpowsour_2021_229672
crossref_primary_10_1016_j_mtchem_2020_100368
crossref_primary_10_1021_acsami_1c09792
crossref_primary_10_1039_C9TA09969G
crossref_primary_10_1016_j_ceramint_2023_06_214
crossref_primary_10_1021_acsami_1c07029
crossref_primary_10_1016_j_partic_2021_04_002
crossref_primary_10_1039_D4MH01869A
crossref_primary_10_15541_jim20200152
crossref_primary_10_1002_aenm_202401802
crossref_primary_10_1016_j_ensm_2020_10_006
crossref_primary_10_1149_1945_7111_ac6c1c
crossref_primary_10_1016_j_jallcom_2023_171872
crossref_primary_10_1149_2_0042007JES
crossref_primary_10_1016_j_cej_2022_138787
crossref_primary_10_1016_j_jechem_2020_03_017
crossref_primary_10_1007_s11814_025_00395_3
crossref_primary_10_1016_j_coelec_2020_05_002
crossref_primary_10_1016_j_esci_2024_100278
crossref_primary_10_1021_acsaem_4c02591
crossref_primary_10_1016_j_jpowsour_2020_227881
crossref_primary_10_1016_j_jpowsour_2020_228179
crossref_primary_10_1021_acsenergylett_1c02233
crossref_primary_10_1021_jacs_0c07060
crossref_primary_10_1016_j_xcrp_2023_101321
crossref_primary_10_1002_smll_202207223
crossref_primary_10_1016_j_colsurfa_2022_130520
crossref_primary_10_1002_tcr_202300155
crossref_primary_10_1002_advs_202411437
crossref_primary_10_1016_j_ssi_2024_116607
crossref_primary_10_1021_acsami_0c17422
crossref_primary_10_1021_acs_macromol_3c00568
crossref_primary_10_1007_s40145_022_0580_8
crossref_primary_10_1007_s12598_022_02081_3
crossref_primary_10_1016_j_ceramint_2020_12_239
crossref_primary_10_1002_asia_202200929
crossref_primary_10_1021_acsaem_2c03935
crossref_primary_10_1111_ijac_14184
crossref_primary_10_1016_j_jelechem_2025_119035
crossref_primary_10_1002_cnma_202100262
crossref_primary_10_1002_er_5476
crossref_primary_10_1002_anie_202302586
crossref_primary_10_1002_adma_202004711
crossref_primary_10_1021_acsaem_4c02489
crossref_primary_10_1039_D0QM00541J
crossref_primary_10_1002_adma_201902029
crossref_primary_10_1016_j_jclepro_2023_140039
crossref_primary_10_1039_D3SE00421J
crossref_primary_10_1039_D4RA06863G
crossref_primary_10_1002_app_52143
crossref_primary_10_1016_j_mseb_2022_116049
crossref_primary_10_1021_acsami_3c06179
crossref_primary_10_1016_j_electacta_2022_141155
crossref_primary_10_1007_s42765_024_00402_y
crossref_primary_10_1016_j_electacta_2023_142785
crossref_primary_10_1002_slct_202000260
crossref_primary_10_1016_j_cjche_2022_04_013
crossref_primary_10_1016_j_supmat_2025_100097
crossref_primary_10_20517_energymater_2024_57
crossref_primary_10_1007_s00339_021_05128_x
crossref_primary_10_3390_inorganics10060081
crossref_primary_10_1039_D4CP02727B
crossref_primary_10_1002_advs_202104506
crossref_primary_10_1002_slct_202201667
crossref_primary_10_1016_j_compscitech_2019_107863
crossref_primary_10_1002_ange_202302586
Cites_doi 10.1016/0167-2738(86)90102-5
10.1021/cr030203g
10.1016/j.ssi.2011.01.002
10.1038/nature19078
10.1111/j.1151-2916.1987.tb04930.x
10.1016/j.nanoen.2017.01.028
10.1038/nenergy.2016.30
10.1021/cm021374p
10.1039/C6TA05439K
10.1002/adfm.200500538
10.1103/PhysRevLett.55.5
10.1016/0167-2738(83)90083-8
10.1149/1.2100703
10.1002/anie.201607539
10.1016/j.jpowsour.2010.11.074
10.1021/acsami.6b03070
10.1021/acsami.7b18123
10.1039/C5TA08107F
10.1021/acsami.6b13902
10.1016/j.nanoen.2017.12.037
10.1021/acsami.7b03806
10.1021/cm901452z
10.1080/13642818908208449
10.1039/C5EE02060C
10.1073/pnas.1600422113
10.1038/nenergy.2017.35
10.1016/0032-3861(87)90394-6
10.1016/j.jpowsour.2015.09.111
10.1063/1.1772360
10.1038/28818
10.1016/j.polymer.2006.05.069
10.1016/0022-3697(95)00025-9
10.1016/j.ssi.2016.08.008
10.1021/acs.chemmater.6b00610
10.1016/j.electacta.2017.08.130
10.1002/aenm.201501082
10.1039/C7TA10517G
10.1038/35104644
10.1016/j.commatsci.2014.11.025
10.1016/j.nanoen.2016.09.002
10.1021/acs.nanolett.7b00715
10.1002/anie.201608924
10.1021/acs.chemrev.5b00563
10.1039/C6MH00218H
10.1016/0022-4596(82)90256-0
10.1021/nn405887k
10.1021/acsami.7b17301
10.1149/1.2403248
10.1002/advs.201600377
10.1021/acs.nanolett.5b00600
10.1038/nmat1513
10.1021/jacs.7b06364
10.1002/bbpc.19920960202
10.1021/acsenergylett.7b00175
10.1038/35050047
10.1016/j.jpowsour.2005.06.007
10.1063/1.4977206
10.1103/PhysRevB.34.3439
10.1002/anie.201710841
10.1002/aenm.201701231
10.1021/acs.chemmater.5b03854
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.8b17279
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 791
ExternalDocumentID 30525410
10_1021_acsami_8b17279
a5202377
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a499t-8d8013512a742970b5fd94d5cba0a32591fdaf503aac7a6c53e9daab71b5932f3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 01:18:00 EDT 2025
Fri Jul 11 05:06:29 EDT 2025
Thu Apr 03 06:57:34 EDT 2025
Tue Jul 01 04:06:12 EDT 2025
Thu Apr 24 23:08:05 EDT 2025
Thu Aug 27 13:44:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords composite polymer electrolyte
space charge region
ionic conductivity
phase-field simulation
percolation
Monte Carlo simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-8d8013512a742970b5fd94d5cba0a32591fdaf503aac7a6c53e9daab71b5932f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2628-4676
0000-0003-1546-8119
PMID 30525410
PQID 2155150537
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2189558502
proquest_miscellaneous_2155150537
pubmed_primary_30525410
crossref_primary_10_1021_acsami_8b17279
crossref_citationtrail_10_1021_acsami_8b17279
acs_journals_10_1021_acsami_8b17279
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-09
PublicationDateYYYYMMDD 2019-01-09
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref62/cit62
  doi: 10.1016/0167-2738(86)90102-5
– ident: ref2/cit2
  doi: 10.1021/cr030203g
– ident: ref41/cit41
  doi: 10.1016/j.ssi.2011.01.002
– ident: ref56/cit56
  doi: 10.1038/nature19078
– ident: ref45/cit45
  doi: 10.1111/j.1151-2916.1987.tb04930.x
– ident: ref5/cit5
  doi: 10.1016/j.nanoen.2017.01.028
– ident: ref13/cit13
  doi: 10.1038/nenergy.2016.30
– ident: ref10/cit10
  doi: 10.1021/cm021374p
– ident: ref17/cit17
  doi: 10.1039/C6TA05439K
– ident: ref44/cit44
  doi: 10.1002/adfm.200500538
– ident: ref52/cit52
  doi: 10.1103/PhysRevLett.55.5
– ident: ref38/cit38
  doi: 10.1016/0167-2738(83)90083-8
– ident: ref54/cit54
  doi: 10.1149/1.2100703
– ident: ref18/cit18
  doi: 10.1002/anie.201607539
– ident: ref1/cit1
  doi: 10.1016/j.jpowsour.2010.11.074
– ident: ref6/cit6
  doi: 10.1021/acsami.6b03070
– ident: ref30/cit30
  doi: 10.1021/acsami.7b18123
– ident: ref7/cit7
  doi: 10.1039/C5TA08107F
– ident: ref8/cit8
  doi: 10.1021/acsami.6b13902
– ident: ref31/cit31
  doi: 10.1016/j.nanoen.2017.12.037
– ident: ref36/cit36
  doi: 10.1021/acsami.7b03806
– ident: ref15/cit15
  doi: 10.1021/cm901452z
– ident: ref49/cit49
  doi: 10.1080/13642818908208449
– ident: ref57/cit57
  doi: 10.1039/C5EE02060C
– ident: ref29/cit29
  doi: 10.1073/pnas.1600422113
– ident: ref33/cit33
  doi: 10.1038/nenergy.2017.35
– ident: ref42/cit42
  doi: 10.1016/0032-3861(87)90394-6
– ident: ref9/cit9
  doi: 10.1021/acsami.6b13902
– ident: ref14/cit14
  doi: 10.1016/j.jpowsour.2015.09.111
– ident: ref61/cit61
  doi: 10.1063/1.1772360
– ident: ref28/cit28
  doi: 10.1038/28818
– ident: ref27/cit27
  doi: 10.1016/j.polymer.2006.05.069
– ident: ref47/cit47
  doi: 10.1016/0022-3697(95)00025-9
– ident: ref58/cit58
  doi: 10.1016/j.ssi.2016.08.008
– ident: ref11/cit11
  doi: 10.1021/acs.chemmater.6b00610
– ident: ref16/cit16
  doi: 10.1016/j.electacta.2017.08.130
– ident: ref21/cit21
  doi: 10.1002/aenm.201501082
– ident: ref32/cit32
  doi: 10.1039/C7TA10517G
– ident: ref3/cit3
  doi: 10.1038/35104644
– ident: ref59/cit59
  doi: 10.1016/j.commatsci.2014.11.025
– ident: ref39/cit39
  doi: 10.1016/j.nanoen.2016.09.002
– ident: ref34/cit34
  doi: 10.1021/acs.nanolett.7b00715
– ident: ref4/cit4
  doi: 10.1002/anie.201608924
– ident: ref12/cit12
  doi: 10.1021/acs.chemrev.5b00563
– ident: ref25/cit25
  doi: 10.1039/C6MH00218H
– ident: ref48/cit48
  doi: 10.1016/0022-4596(82)90256-0
– ident: ref46/cit46
  doi: 10.1021/nn405887k
– ident: ref19/cit19
  doi: 10.1021/acsami.7b17301
– ident: ref43/cit43
  doi: 10.1149/1.2403248
– ident: ref22/cit22
  doi: 10.1002/advs.201600377
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.5b00600
– ident: ref55/cit55
  doi: 10.1038/nmat1513
– ident: ref37/cit37
  doi: 10.1021/jacs.7b06364
– ident: ref50/cit50
  doi: 10.1002/bbpc.19920960202
– ident: ref23/cit23
  doi: 10.1021/acsenergylett.7b00175
– ident: ref51/cit51
  doi: 10.1038/35050047
– ident: ref26/cit26
  doi: 10.1016/j.jpowsour.2005.06.007
– ident: ref60/cit60
  doi: 10.1063/1.4977206
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.34.3439
– ident: ref35/cit35
  doi: 10.1002/anie.201710841
– ident: ref24/cit24
  doi: 10.1002/aenm.201701231
– ident: ref40/cit40
  doi: 10.1021/acs.chemmater.5b03854
SSID ssj0063205
Score 2.6557992
Snippet By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly­(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized....
By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in polyethylene oxide (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The...
By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized....
By dispersing Li₆.₂₅Ga₀.₂₅La₃Zr₂O₁₂ (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 784
SubjectTerms composite polymers
electrolytes
Monte Carlo method
nanoparticles
polyethylene glycol
resistors
transmission electron microscopes
transmission electron microscopy
Title Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites
URI http://dx.doi.org/10.1021/acsami.8b17279
https://www.ncbi.nlm.nih.gov/pubmed/30525410
https://www.proquest.com/docview/2155150537
https://www.proquest.com/docview/2189558502
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYYXNhhjDFYYSBPm8TJkNhxanNDVaEgoBWsEuIS-aeE6JKJtAf21-85SfmpAvdnxbGf_X3Pfv4eQr-EdkJYrwnjLCKJMDGR1FMS3oFa8IfU6fB2-PQs7Q2T40t--XDe8fwGn8a7ypShFI7QAWrlB7RAU1jBgQR1LqZ7bspolawIEXlCBCDWVJ7xRfsAQqZ8CkIzmGWFMAdLtdxRWQkThsSSm53JWO-Yfy9lG9_s_Gf0qaGZeL_2i2U05_Iv6OMj8cEVdH4UVHFxp8htrSCLr3MctoeQxuXwoBjd_XG3uFvXyRndASfdwx0APVx4POj29w4VOTm56j-0Kb-i4UH3d6dHmgoLREGkMybCAkAxwHwFEbJsR5p7KxPLjVaRYhAZxd4qzyOmlGmr1HDmpFVKt2PNgfh5torm8yJ33xB2NvHcM2Fg1wIKlupUJpE3NKS3MtqOWugnDEbWrJAyqy6_aZzVI5Q1I9RCZDoxmWlEykOtjNFM--17-7-1PMdMyx_Tec5gBYVrEZW7YlJmNLBGHnRtXrMRkkNkFdEWWqud5P57LJQCTOJo_V1_uIEWgXPJ6hRHfkfz49uJ2wReM9ZblUv_B2-68IY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvB_L0wgkTm4TO87avVWrLVvYtitopYpL5KdUdUlQs3sov55xHlseWgTXaJzY47Hnm3j8DcBbabyULhjKBU9oJm1KFQuMxnugDu0h9ybeHT44zCcn2YdTcboB2_1dGOxEjW-qm0P8K3aBdBufxYo40kSPq67BdUQiLJr07uhzv_XmnDU5ixiYZ1Si4-pZGv9oH32RrX_1RWsAZuNo9u7AbNXFJr_kfGu5MFv2-2_sjf8xhrtwuwOdZLe1knuw4cv7cOsnKsIH8Gk_cuSSUVW6lk-WnJUkbhYxqcuTWTW__OovyLitmjO_RIS6Q0boAkkVyGx8tPNe0-n0y9FVm_ohnOyNj0cT2tVboBrjngWVDt0VRwSgMV5Ww8SI4FTmhDU60RzjpDQ4HUTCtbZDnVvBvXJam2FqBMLAwB_BZlmV_gkQ77IgApcW9zAEZLnJVZYEy2KyK2fDZABvUBlFt17qojkKZ2nRaqjoNDQA2s9PYTvK8lg5Y75W_t1K_ltL1rFW8nU_3QWup3hIoktfLeuCRQwpIsvN32SkEhhnJWwAj1tbWX2Px8KAWZo8_acRvoIbk-ODaTHdP_z4DG4iGlPN_x31HDYXF0v_AhHPwrxsrPwH11D45w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5BkRA8cB_hXAQST1tsr9fZ7VsVEloIbQStVPFi7Skhgl3VyUP59czYTrgUBK_WrL3H7M433plvAF4oG5Ty0XIhRcJz5VKus5hxygP1qA9FsJQ7_P6g2DvO357Ikz6Pm3JhsBMNvqlpL_FpV5_62DMMpK_wOVXFUZasrr4Il-jOjtR6d_RxdfwWImvjFtE5z7lC47ViavyjPdkj1_xqjzaAzNbYTK7D0bqbbYzJl-3lwm67b78xOP7nOG7AtR58st1OW27ChVDdgqs_URLehg_7xJXLRnXlO15Z9rlidGhQcFdgs3p-_jWcsXFXPWd-jkh1h43QFLI6stn4cOeN4dPpp8MfbZo7cDwZH432eF93gRv0fxZceTRbApGAQb9ZDxMro9e5l86axAj0l9LoTZSJMMYNTeGkCNobY4eplQgHo7gLW1VdhfvAgs-jjEI5PMsQmBW20HkSXUZBryIbJgN4jpNR9vumKdsr8Swtuxkq-xkaAF-tUel66nKqoDHfKP9yLX_akXZslHy2WvIS9xVdlpgq1MumzAhLSmK7-ZuM0hL9rSQbwL1OX9bfE1QgME-TB_80wqdwefZ6Uk73D949hCsIynT7m0c_gq3F2TI8RuCzsE9aRf8OASf7ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Conduction+in+Composite+Polymer+Electrolytes%3A+Case+of+PEO%3AGa-LLZO+Composites&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Zhuo&rft.au=Huang%2C+He-Ming&rft.au=Zhu%2C+Jia-Kun&rft.au=Wu%2C+Jian-Fang&rft.date=2019-01-09&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=1&rft.spage=784&rft.epage=791&rft_id=info:doi/10.1021%2Facsami.8b17279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_8b17279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon