Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites
By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–5 S cm–1 at 30 °C, about 4 orders of magnitud...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 1; pp. 784 - 791 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–5 S cm–1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions. |
---|---|
AbstractList | By dispersing Li₆.₂₅Ga₀.₂₅La₃Zr₂O₁₂ (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–⁵ S cm–¹ at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions. By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10-5 S cm-1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions.By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10-5 S cm-1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions. By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO: Ga-LLZO composite with 16 vol % Ga-LLZO nanoparticles shows a conductivity of 7.2 × 10–5 S cm–1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (∼3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions. By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in polyethylene oxide (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The PEO:Ga-LLZO composite with 16 vol.% Ga-LLZO nanoparticles shows a conductivity of 7.2×10-5 S cm-1 at 30 °C, about 4 orders of magnitude higher than the conductivity of PEO. The enhancement of the ionic conductivity is closely related to the space charge region (~3 nm) formed at the interface between the PEO matrix and the Ga-LLZO nanoparticles. The space charge region is observed by transmission electron microscope (TEM) and corroborated by the phase-field simulation. Using the random resistor model, the lithium-ion transport in the composite polymer electrolyte is simulated by the Monte Carlo simulation, demonstrating that the enhanced ionic conductivity can be ascribed to the ionic conduction in the space charge regions and the percolation of the space charge regions. |
Author | Huang, He-Ming Zhu, Jia-Kun Li, Zhuo Wu, Jian-Fang Guo, Xin Wei, Lu Yang, Hui |
AuthorAffiliation | Department of Mechanics School of Materials Science and Engineering |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering – name: Department of Mechanics |
Author_xml | – sequence: 1 givenname: Zhuo surname: Li fullname: Li, Zhuo – sequence: 2 givenname: He-Ming surname: Huang fullname: Huang, He-Ming – sequence: 3 givenname: Jia-Kun surname: Zhu fullname: Zhu, Jia-Kun – sequence: 4 givenname: Jian-Fang surname: Wu fullname: Wu, Jian-Fang – sequence: 5 givenname: Hui orcidid: 0000-0002-2628-4676 surname: Yang fullname: Yang, Hui email: huiyang2017@hust.edu.cn – sequence: 6 givenname: Lu surname: Wei fullname: Wei, Lu email: lwei@hust.edu.cn – sequence: 7 givenname: Xin orcidid: 0000-0003-1546-8119 surname: Guo fullname: Guo, Xin email: xguo@hust.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30525410$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1Lw0AQhhdRtFavHiVHEVL3a0y2NwlVC4WK6MVLmGw2sJJk625y6L83JVVBEDzNzvI8c3jfU3LYutYQcsHojFHOblAHbOwsLVjCE3VAJkxJGacc-OH3W8oTchrCO6W3glM4JieCAgfJ6IQ8L11rdZS5tux1Z10b2XbYmo0LtjPRk6u3jfHRoja688PSmTCPMgwmclX0tFjPHzBerd7WP044I0cV1sGc7-eUvN4vXrLHeLV-WGZ3qxilUl2clillAhjHRHKV0AKqUskSdIEUBQfFqhIroAJRJ3irQRhVIhYJK0AJXokpuRrvbrz76E3o8sYGbeoaW-P6kHOWKoAUKP8HCsCAgkgG9HKP9kVjynzjbYN-m39FNgCzEdDeheBN9Y0wmu86ycdO8n0ngyB_Cdp2uMu682jrv7XrURv-83fX-3YI8y_4E1xynfk |
CitedBy_id | crossref_primary_10_1021_acsami_3c06304 crossref_primary_10_1038_s41563_022_01343_w crossref_primary_10_1039_D1TA04631D crossref_primary_10_1021_acsaem_0c01358 crossref_primary_10_1002_eom2_12317 crossref_primary_10_1021_acs_jpcc_4c05494 crossref_primary_10_1007_s11426_020_9936_6 crossref_primary_10_1039_D2TA06808G crossref_primary_10_1016_j_ssi_2021_115572 crossref_primary_10_34133_energymatadv_0041 crossref_primary_10_1002_aenm_202401336 crossref_primary_10_1007_s11581_022_04599_z crossref_primary_10_1007_s40820_024_01498_y crossref_primary_10_1016_j_jpowsour_2025_236556 crossref_primary_10_1039_C9TA10400C crossref_primary_10_26599_NRE_2023_9120050 crossref_primary_10_1007_s11581_023_05318_y crossref_primary_10_1016_j_nanoen_2022_107105 crossref_primary_10_1149_1945_7111_abb37f crossref_primary_10_1039_D2SE01782B crossref_primary_10_1360_TB_2021_1078 crossref_primary_10_1021_acsaem_3c02051 crossref_primary_10_1016_j_compscitech_2020_108102 crossref_primary_10_1360_SSC_2024_0054 crossref_primary_10_1021_acssuschemeng_0c02362 crossref_primary_10_1016_j_ensm_2019_10_008 crossref_primary_10_1039_D4YA00231H crossref_primary_10_1016_j_jpowsour_2025_236575 crossref_primary_10_1016_j_jpowsour_2020_227797 crossref_primary_10_1021_acsaem_0c00935 crossref_primary_10_1016_j_ensm_2020_05_019 crossref_primary_10_1016_j_jpowsour_2021_229919 crossref_primary_10_1021_acsaem_0c03098 crossref_primary_10_1016_j_jpowsour_2023_233613 crossref_primary_10_1016_j_cej_2024_154259 crossref_primary_10_1021_acsami_1c05846 crossref_primary_10_1016_j_est_2023_109531 crossref_primary_10_1021_acs_energyfuels_3c03181 crossref_primary_10_1007_s10008_024_05867_w crossref_primary_10_3390_batteries11020052 crossref_primary_10_1039_D0TA11679C crossref_primary_10_1016_j_cej_2024_153847 crossref_primary_10_2139_ssrn_4124074 crossref_primary_10_1007_s10008_022_05231_w crossref_primary_10_1126_sciadv_adu4531 crossref_primary_10_1021_acsami_1c17718 crossref_primary_10_1002_chem_201904461 crossref_primary_10_1021_acsami_3c01998 crossref_primary_10_20517_energymater_2024_195 crossref_primary_10_1016_j_jechem_2025_01_014 crossref_primary_10_1016_j_cej_2024_157191 crossref_primary_10_1039_D1EE03345J crossref_primary_10_1016_j_cej_2023_142535 crossref_primary_10_1016_j_mssp_2024_109101 crossref_primary_10_1002_aenm_202002869 crossref_primary_10_1016_j_mser_2024_100815 crossref_primary_10_1007_s11581_021_04042_9 crossref_primary_10_1016_j_cclet_2021_03_032 crossref_primary_10_1021_acsenergylett_5c00214 crossref_primary_10_1016_j_est_2024_112452 crossref_primary_10_1021_acsami_2c20787 crossref_primary_10_1016_j_est_2024_112696 crossref_primary_10_1016_j_ensm_2021_04_028 crossref_primary_10_1016_j_jpowsour_2023_233982 crossref_primary_10_1021_acsami_2c15871 crossref_primary_10_1016_j_jcis_2022_05_069 crossref_primary_10_1021_acsaem_2c03059 crossref_primary_10_1021_acsaem_1c00216 crossref_primary_10_1039_D4TA04591B crossref_primary_10_1002_adfm_202203272 crossref_primary_10_1007_s40145_021_0489_7 crossref_primary_10_1016_j_ensm_2022_02_045 crossref_primary_10_1016_j_jechem_2019_11_012 crossref_primary_10_1002_smll_202312251 crossref_primary_10_1021_acs_energyfuels_4c01520 crossref_primary_10_1016_j_electacta_2022_141353 crossref_primary_10_1021_acsenergylett_1c00401 crossref_primary_10_1016_j_ensm_2020_09_016 crossref_primary_10_1007_s12598_022_02132_9 crossref_primary_10_1021_acsami_1c02119 crossref_primary_10_1039_D3TA02761A crossref_primary_10_1002_cey2_146 crossref_primary_10_1016_j_nanoen_2022_107912 crossref_primary_10_1016_j_ensm_2022_08_019 crossref_primary_10_1021_acs_energyfuels_1c01609 crossref_primary_10_1002_aenm_202003154 crossref_primary_10_1039_D3CS00572K crossref_primary_10_33889_PMSL_2023_2_1_003 crossref_primary_10_1360_nso_20220036 crossref_primary_10_1016_j_polymer_2024_126728 crossref_primary_10_1039_D0TA10523F crossref_primary_10_7498_aps_69_20201191 crossref_primary_10_1002_smll_202200891 crossref_primary_10_1002_adfm_202107652 crossref_primary_10_1016_j_ssi_2022_115897 crossref_primary_10_1007_s11581_024_05873_y crossref_primary_10_1002_eng2_12448 crossref_primary_10_1016_j_memsci_2023_121636 crossref_primary_10_1007_s11431_021_2027_3 crossref_primary_10_1016_j_jcis_2022_10_027 crossref_primary_10_1002_cphc_202200296 crossref_primary_10_1016_j_jechem_2023_05_011 crossref_primary_10_1016_j_cej_2022_135420 crossref_primary_10_1002_advs_202201718 crossref_primary_10_1021_acs_energyfuels_4c02715 crossref_primary_10_1016_j_nxmate_2024_100173 crossref_primary_10_3389_fchem_2023_1199677 crossref_primary_10_1002_adfm_202210845 crossref_primary_10_1088_1742_6596_2962_1_012004 crossref_primary_10_1002_smll_201902813 crossref_primary_10_1016_j_materresbull_2023_112588 crossref_primary_10_1016_j_polymer_2023_126214 crossref_primary_10_1016_j_apmate_2023_100141 crossref_primary_10_1016_j_rser_2023_114136 crossref_primary_10_1149_1945_7111_acf6e6 crossref_primary_10_1021_acsami_9b07830 crossref_primary_10_3390_en16237695 crossref_primary_10_1002_aenm_202003250 crossref_primary_10_1016_j_jallcom_2021_160307 crossref_primary_10_1002_smll_202103617 crossref_primary_10_1021_acsami_9b15463 crossref_primary_10_1007_s11581_022_04659_4 crossref_primary_10_1021_acsami_2c13408 crossref_primary_10_1080_17518253_2024_2321247 crossref_primary_10_2139_ssrn_3994258 crossref_primary_10_1016_j_jcis_2024_03_058 crossref_primary_10_1021_acsanm_2c03819 crossref_primary_10_1039_D3DT01677C crossref_primary_10_1021_acsami_3c04262 crossref_primary_10_1002_adsu_202400369 crossref_primary_10_1021_acsami_2c20734 crossref_primary_10_1016_j_ssi_2023_116245 crossref_primary_10_1039_D4TA01836B crossref_primary_10_1039_D1RA06210G crossref_primary_10_1016_j_coelec_2020_07_006 crossref_primary_10_1039_D3QM00759F crossref_primary_10_1002_cssc_202201801 crossref_primary_10_1002_idm2_12109 crossref_primary_10_1021_acsapm_4c00161 crossref_primary_10_1002_inf2_12394 crossref_primary_10_1149_1945_7111_ab8478 crossref_primary_10_1039_D0CS00305K crossref_primary_10_1002_aenm_202402402 crossref_primary_10_1002_aenm_202403179 crossref_primary_10_1021_acsami_4c06551 crossref_primary_10_1002_smll_202305769 crossref_primary_10_1021_acsami_3c11477 crossref_primary_10_1002_adma_202417796 crossref_primary_10_1016_j_apsusc_2024_161265 crossref_primary_10_1021_acsami_3c19519 crossref_primary_10_1002_chem_202100380 crossref_primary_10_1002_smll_202307942 crossref_primary_10_1002_cssc_202401304 crossref_primary_10_1002_cey2_108 crossref_primary_10_1007_s42114_023_00637_0 crossref_primary_10_1016_j_ensm_2023_02_038 crossref_primary_10_1021_acs_jpcc_4c05094 crossref_primary_10_1002_advs_202003887 crossref_primary_10_1002_celc_202200317 crossref_primary_10_1002_celc_202400323 crossref_primary_10_1021_acsami_2c00753 crossref_primary_10_3389_fchem_2020_619832 crossref_primary_10_1002_cey2_190 crossref_primary_10_33961_jecst_2020_01459 crossref_primary_10_1021_acs_chemrev_9b00760 crossref_primary_10_1186_s11671_019_3210_9 crossref_primary_10_1016_j_jpowsour_2022_231305 crossref_primary_10_1016_j_jechem_2023_03_045 crossref_primary_10_1016_j_jpowsour_2020_228146 crossref_primary_10_1002_sus2_67 crossref_primary_10_1021_acsami_4c04864 crossref_primary_10_1039_D1TA03720J crossref_primary_10_1039_D3TA05329F crossref_primary_10_1002_adma_202401625 crossref_primary_10_1002_advs_202100899 crossref_primary_10_1016_j_coelec_2021_100828 crossref_primary_10_1039_D3CP04617F crossref_primary_10_1016_j_jpowsour_2020_228125 crossref_primary_10_1039_D1RA01312B crossref_primary_10_1039_C9TA08415K crossref_primary_10_1016_j_mtsust_2024_100758 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1016_j_jiec_2022_06_039 crossref_primary_10_1002_advs_201903088 crossref_primary_10_1016_j_jallcom_2023_171158 crossref_primary_10_1016_j_cej_2021_132343 crossref_primary_10_1021_acsami_1c04113 crossref_primary_10_1002_adfm_202201465 crossref_primary_10_1016_j_cossms_2022_101003 crossref_primary_10_1002_adma_202306111 crossref_primary_10_1016_j_jallcom_2024_174123 crossref_primary_10_1002_batt_202200142 crossref_primary_10_1016_j_nanoen_2023_108571 crossref_primary_10_1021_acs_chemrev_2c00196 crossref_primary_10_1016_j_mtphys_2020_100264 crossref_primary_10_1002_slct_201904206 crossref_primary_10_1016_j_jpowsour_2021_229843 crossref_primary_10_1016_j_adna_2024_03_002 crossref_primary_10_1016_j_ssi_2024_116527 crossref_primary_10_1016_j_jechem_2020_12_026 crossref_primary_10_1007_s12598_022_02260_2 crossref_primary_10_1088_1361_6528_ac4b7c crossref_primary_10_1149_1945_7111_aca6a3 crossref_primary_10_1039_D4CS00214H crossref_primary_10_1007_s12274_021_3683_6 crossref_primary_10_1039_D3QM00840A crossref_primary_10_1007_s11581_024_05451_2 crossref_primary_10_1088_1361_6463_ad816c crossref_primary_10_1016_j_ensm_2022_04_026 crossref_primary_10_1021_acs_chemrev_9b00427 crossref_primary_10_1016_j_cclet_2025_110973 crossref_primary_10_1021_acssuschemeng_2c05879 crossref_primary_10_1016_j_gee_2023_06_002 crossref_primary_10_1016_j_nanoen_2024_110447 crossref_primary_10_1002_masy_202300050 crossref_primary_10_1021_acsaem_4c00701 crossref_primary_10_1149_1945_7111_ac9554 crossref_primary_10_1007_s10853_021_05832_2 crossref_primary_10_1002_adfm_202307045 crossref_primary_10_1002_smll_202402035 crossref_primary_10_1016_j_ceramint_2023_06_153 crossref_primary_10_1002_er_8416 crossref_primary_10_1007_s40820_022_00996_1 crossref_primary_10_1021_acsami_1c21131 crossref_primary_10_1149_1945_7111_abcd12 crossref_primary_10_1007_s12598_025_03239_5 crossref_primary_10_1016_j_electacta_2020_137348 crossref_primary_10_1002_smll_202305326 crossref_primary_10_1002_aenm_201904119 crossref_primary_10_1039_D2MA00215A crossref_primary_10_1021_acsaem_1c04001 crossref_primary_10_1016_j_jechem_2021_10_038 crossref_primary_10_1002_adfm_202301165 crossref_primary_10_1021_acsnano_3c07754 crossref_primary_10_1016_j_solidstatesciences_2022_106958 crossref_primary_10_1016_j_ensm_2023_102954 crossref_primary_10_3390_batteries9050257 crossref_primary_10_1016_j_ceja_2023_100532 crossref_primary_10_1016_j_jpowsour_2021_229672 crossref_primary_10_1016_j_mtchem_2020_100368 crossref_primary_10_1021_acsami_1c09792 crossref_primary_10_1039_C9TA09969G crossref_primary_10_1016_j_ceramint_2023_06_214 crossref_primary_10_1021_acsami_1c07029 crossref_primary_10_1016_j_partic_2021_04_002 crossref_primary_10_1039_D4MH01869A crossref_primary_10_15541_jim20200152 crossref_primary_10_1002_aenm_202401802 crossref_primary_10_1016_j_ensm_2020_10_006 crossref_primary_10_1149_1945_7111_ac6c1c crossref_primary_10_1016_j_jallcom_2023_171872 crossref_primary_10_1149_2_0042007JES crossref_primary_10_1016_j_cej_2022_138787 crossref_primary_10_1016_j_jechem_2020_03_017 crossref_primary_10_1007_s11814_025_00395_3 crossref_primary_10_1016_j_coelec_2020_05_002 crossref_primary_10_1016_j_esci_2024_100278 crossref_primary_10_1021_acsaem_4c02591 crossref_primary_10_1016_j_jpowsour_2020_227881 crossref_primary_10_1016_j_jpowsour_2020_228179 crossref_primary_10_1021_acsenergylett_1c02233 crossref_primary_10_1021_jacs_0c07060 crossref_primary_10_1016_j_xcrp_2023_101321 crossref_primary_10_1002_smll_202207223 crossref_primary_10_1016_j_colsurfa_2022_130520 crossref_primary_10_1002_tcr_202300155 crossref_primary_10_1002_advs_202411437 crossref_primary_10_1016_j_ssi_2024_116607 crossref_primary_10_1021_acsami_0c17422 crossref_primary_10_1021_acs_macromol_3c00568 crossref_primary_10_1007_s40145_022_0580_8 crossref_primary_10_1007_s12598_022_02081_3 crossref_primary_10_1016_j_ceramint_2020_12_239 crossref_primary_10_1002_asia_202200929 crossref_primary_10_1021_acsaem_2c03935 crossref_primary_10_1111_ijac_14184 crossref_primary_10_1016_j_jelechem_2025_119035 crossref_primary_10_1002_cnma_202100262 crossref_primary_10_1002_er_5476 crossref_primary_10_1002_anie_202302586 crossref_primary_10_1002_adma_202004711 crossref_primary_10_1021_acsaem_4c02489 crossref_primary_10_1039_D0QM00541J crossref_primary_10_1002_adma_201902029 crossref_primary_10_1016_j_jclepro_2023_140039 crossref_primary_10_1039_D3SE00421J crossref_primary_10_1039_D4RA06863G crossref_primary_10_1002_app_52143 crossref_primary_10_1016_j_mseb_2022_116049 crossref_primary_10_1021_acsami_3c06179 crossref_primary_10_1016_j_electacta_2022_141155 crossref_primary_10_1007_s42765_024_00402_y crossref_primary_10_1016_j_electacta_2023_142785 crossref_primary_10_1002_slct_202000260 crossref_primary_10_1016_j_cjche_2022_04_013 crossref_primary_10_1016_j_supmat_2025_100097 crossref_primary_10_20517_energymater_2024_57 crossref_primary_10_1007_s00339_021_05128_x crossref_primary_10_3390_inorganics10060081 crossref_primary_10_1039_D4CP02727B crossref_primary_10_1002_advs_202104506 crossref_primary_10_1002_slct_202201667 crossref_primary_10_1016_j_compscitech_2019_107863 crossref_primary_10_1002_ange_202302586 |
Cites_doi | 10.1016/0167-2738(86)90102-5 10.1021/cr030203g 10.1016/j.ssi.2011.01.002 10.1038/nature19078 10.1111/j.1151-2916.1987.tb04930.x 10.1016/j.nanoen.2017.01.028 10.1038/nenergy.2016.30 10.1021/cm021374p 10.1039/C6TA05439K 10.1002/adfm.200500538 10.1103/PhysRevLett.55.5 10.1016/0167-2738(83)90083-8 10.1149/1.2100703 10.1002/anie.201607539 10.1016/j.jpowsour.2010.11.074 10.1021/acsami.6b03070 10.1021/acsami.7b18123 10.1039/C5TA08107F 10.1021/acsami.6b13902 10.1016/j.nanoen.2017.12.037 10.1021/acsami.7b03806 10.1021/cm901452z 10.1080/13642818908208449 10.1039/C5EE02060C 10.1073/pnas.1600422113 10.1038/nenergy.2017.35 10.1016/0032-3861(87)90394-6 10.1016/j.jpowsour.2015.09.111 10.1063/1.1772360 10.1038/28818 10.1016/j.polymer.2006.05.069 10.1016/0022-3697(95)00025-9 10.1016/j.ssi.2016.08.008 10.1021/acs.chemmater.6b00610 10.1016/j.electacta.2017.08.130 10.1002/aenm.201501082 10.1039/C7TA10517G 10.1038/35104644 10.1016/j.commatsci.2014.11.025 10.1016/j.nanoen.2016.09.002 10.1021/acs.nanolett.7b00715 10.1002/anie.201608924 10.1021/acs.chemrev.5b00563 10.1039/C6MH00218H 10.1016/0022-4596(82)90256-0 10.1021/nn405887k 10.1021/acsami.7b17301 10.1149/1.2403248 10.1002/advs.201600377 10.1021/acs.nanolett.5b00600 10.1038/nmat1513 10.1021/jacs.7b06364 10.1002/bbpc.19920960202 10.1021/acsenergylett.7b00175 10.1038/35050047 10.1016/j.jpowsour.2005.06.007 10.1063/1.4977206 10.1103/PhysRevB.34.3439 10.1002/anie.201710841 10.1002/aenm.201701231 10.1021/acs.chemmater.5b03854 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.8b17279 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 791 |
ExternalDocumentID | 30525410 10_1021_acsami_8b17279 a5202377 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a499t-8d8013512a742970b5fd94d5cba0a32591fdaf503aac7a6c53e9daab71b5932f3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 01:18:00 EDT 2025 Fri Jul 11 05:06:29 EDT 2025 Thu Apr 03 06:57:34 EDT 2025 Tue Jul 01 04:06:12 EDT 2025 Thu Apr 24 23:08:05 EDT 2025 Thu Aug 27 13:44:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | composite polymer electrolyte space charge region ionic conductivity phase-field simulation percolation Monte Carlo simulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-8d8013512a742970b5fd94d5cba0a32591fdaf503aac7a6c53e9daab71b5932f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2628-4676 0000-0003-1546-8119 |
PMID | 30525410 |
PQID | 2155150537 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2189558502 proquest_miscellaneous_2155150537 pubmed_primary_30525410 crossref_primary_10_1021_acsami_8b17279 crossref_citationtrail_10_1021_acsami_8b17279 acs_journals_10_1021_acsami_8b17279 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-09 |
PublicationDateYYYYMMDD | 2019-01-09 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref62/cit62 doi: 10.1016/0167-2738(86)90102-5 – ident: ref2/cit2 doi: 10.1021/cr030203g – ident: ref41/cit41 doi: 10.1016/j.ssi.2011.01.002 – ident: ref56/cit56 doi: 10.1038/nature19078 – ident: ref45/cit45 doi: 10.1111/j.1151-2916.1987.tb04930.x – ident: ref5/cit5 doi: 10.1016/j.nanoen.2017.01.028 – ident: ref13/cit13 doi: 10.1038/nenergy.2016.30 – ident: ref10/cit10 doi: 10.1021/cm021374p – ident: ref17/cit17 doi: 10.1039/C6TA05439K – ident: ref44/cit44 doi: 10.1002/adfm.200500538 – ident: ref52/cit52 doi: 10.1103/PhysRevLett.55.5 – ident: ref38/cit38 doi: 10.1016/0167-2738(83)90083-8 – ident: ref54/cit54 doi: 10.1149/1.2100703 – ident: ref18/cit18 doi: 10.1002/anie.201607539 – ident: ref1/cit1 doi: 10.1016/j.jpowsour.2010.11.074 – ident: ref6/cit6 doi: 10.1021/acsami.6b03070 – ident: ref30/cit30 doi: 10.1021/acsami.7b18123 – ident: ref7/cit7 doi: 10.1039/C5TA08107F – ident: ref8/cit8 doi: 10.1021/acsami.6b13902 – ident: ref31/cit31 doi: 10.1016/j.nanoen.2017.12.037 – ident: ref36/cit36 doi: 10.1021/acsami.7b03806 – ident: ref15/cit15 doi: 10.1021/cm901452z – ident: ref49/cit49 doi: 10.1080/13642818908208449 – ident: ref57/cit57 doi: 10.1039/C5EE02060C – ident: ref29/cit29 doi: 10.1073/pnas.1600422113 – ident: ref33/cit33 doi: 10.1038/nenergy.2017.35 – ident: ref42/cit42 doi: 10.1016/0032-3861(87)90394-6 – ident: ref9/cit9 doi: 10.1021/acsami.6b13902 – ident: ref14/cit14 doi: 10.1016/j.jpowsour.2015.09.111 – ident: ref61/cit61 doi: 10.1063/1.1772360 – ident: ref28/cit28 doi: 10.1038/28818 – ident: ref27/cit27 doi: 10.1016/j.polymer.2006.05.069 – ident: ref47/cit47 doi: 10.1016/0022-3697(95)00025-9 – ident: ref58/cit58 doi: 10.1016/j.ssi.2016.08.008 – ident: ref11/cit11 doi: 10.1021/acs.chemmater.6b00610 – ident: ref16/cit16 doi: 10.1016/j.electacta.2017.08.130 – ident: ref21/cit21 doi: 10.1002/aenm.201501082 – ident: ref32/cit32 doi: 10.1039/C7TA10517G – ident: ref3/cit3 doi: 10.1038/35104644 – ident: ref59/cit59 doi: 10.1016/j.commatsci.2014.11.025 – ident: ref39/cit39 doi: 10.1016/j.nanoen.2016.09.002 – ident: ref34/cit34 doi: 10.1021/acs.nanolett.7b00715 – ident: ref4/cit4 doi: 10.1002/anie.201608924 – ident: ref12/cit12 doi: 10.1021/acs.chemrev.5b00563 – ident: ref25/cit25 doi: 10.1039/C6MH00218H – ident: ref48/cit48 doi: 10.1016/0022-4596(82)90256-0 – ident: ref46/cit46 doi: 10.1021/nn405887k – ident: ref19/cit19 doi: 10.1021/acsami.7b17301 – ident: ref43/cit43 doi: 10.1149/1.2403248 – ident: ref22/cit22 doi: 10.1002/advs.201600377 – ident: ref20/cit20 doi: 10.1021/acs.nanolett.5b00600 – ident: ref55/cit55 doi: 10.1038/nmat1513 – ident: ref37/cit37 doi: 10.1021/jacs.7b06364 – ident: ref50/cit50 doi: 10.1002/bbpc.19920960202 – ident: ref23/cit23 doi: 10.1021/acsenergylett.7b00175 – ident: ref51/cit51 doi: 10.1038/35050047 – ident: ref26/cit26 doi: 10.1016/j.jpowsour.2005.06.007 – ident: ref60/cit60 doi: 10.1063/1.4977206 – ident: ref53/cit53 doi: 10.1103/PhysRevB.34.3439 – ident: ref35/cit35 doi: 10.1002/anie.201710841 – ident: ref24/cit24 doi: 10.1002/aenm.201701231 – ident: ref40/cit40 doi: 10.1021/acs.chemmater.5b03854 |
SSID | ssj0063205 |
Score | 2.6557992 |
Snippet | By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized.... By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in polyethylene oxide (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized. The... By dispersing Li6.25Ga0.25La3Zr2O12 (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized.... By dispersing Li₆.₂₅Ga₀.₂₅La₃Zr₂O₁₂ (Ga-LLZO) nanoparticles in poly(ethylene oxide) (PEO) matrix, PEO:Ga-LLZO composite polymer electrolytes are synthesized.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 784 |
SubjectTerms | composite polymers electrolytes Monte Carlo method nanoparticles polyethylene glycol resistors transmission electron microscopes transmission electron microscopy |
Title | Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites |
URI | http://dx.doi.org/10.1021/acsami.8b17279 https://www.ncbi.nlm.nih.gov/pubmed/30525410 https://www.proquest.com/docview/2155150537 https://www.proquest.com/docview/2189558502 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYYXNhhjDFYYSBPm8TJkNhxanNDVaEgoBWsEuIS-aeE6JKJtAf21-85SfmpAvdnxbGf_X3Pfv4eQr-EdkJYrwnjLCKJMDGR1FMS3oFa8IfU6fB2-PQs7Q2T40t--XDe8fwGn8a7ypShFI7QAWrlB7RAU1jBgQR1LqZ7bspolawIEXlCBCDWVJ7xRfsAQqZ8CkIzmGWFMAdLtdxRWQkThsSSm53JWO-Yfy9lG9_s_Gf0qaGZeL_2i2U05_Iv6OMj8cEVdH4UVHFxp8htrSCLr3MctoeQxuXwoBjd_XG3uFvXyRndASfdwx0APVx4POj29w4VOTm56j-0Kb-i4UH3d6dHmgoLREGkMybCAkAxwHwFEbJsR5p7KxPLjVaRYhAZxd4qzyOmlGmr1HDmpFVKt2PNgfh5torm8yJ33xB2NvHcM2Fg1wIKlupUJpE3NKS3MtqOWugnDEbWrJAyqy6_aZzVI5Q1I9RCZDoxmWlEykOtjNFM--17-7-1PMdMyx_Tec5gBYVrEZW7YlJmNLBGHnRtXrMRkkNkFdEWWqud5P57LJQCTOJo_V1_uIEWgXPJ6hRHfkfz49uJ2wReM9ZblUv_B2-68IY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvB_L0wgkTm4TO87avVWrLVvYtitopYpL5KdUdUlQs3sov55xHlseWgTXaJzY47Hnm3j8DcBbabyULhjKBU9oJm1KFQuMxnugDu0h9ybeHT44zCcn2YdTcboB2_1dGOxEjW-qm0P8K3aBdBufxYo40kSPq67BdUQiLJr07uhzv_XmnDU5ixiYZ1Si4-pZGv9oH32RrX_1RWsAZuNo9u7AbNXFJr_kfGu5MFv2-2_sjf8xhrtwuwOdZLe1knuw4cv7cOsnKsIH8Gk_cuSSUVW6lk-WnJUkbhYxqcuTWTW__OovyLitmjO_RIS6Q0boAkkVyGx8tPNe0-n0y9FVm_ohnOyNj0cT2tVboBrjngWVDt0VRwSgMV5Ww8SI4FTmhDU60RzjpDQ4HUTCtbZDnVvBvXJam2FqBMLAwB_BZlmV_gkQ77IgApcW9zAEZLnJVZYEy2KyK2fDZABvUBlFt17qojkKZ2nRaqjoNDQA2s9PYTvK8lg5Y75W_t1K_ltL1rFW8nU_3QWup3hIoktfLeuCRQwpIsvN32SkEhhnJWwAj1tbWX2Px8KAWZo8_acRvoIbk-ODaTHdP_z4DG4iGlPN_x31HDYXF0v_AhHPwrxsrPwH11D45w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5BkRA8cB_hXAQST1tsr9fZ7VsVEloIbQStVPFi7Skhgl3VyUP59czYTrgUBK_WrL3H7M433plvAF4oG5Ty0XIhRcJz5VKus5hxygP1qA9FsJQ7_P6g2DvO357Ikz6Pm3JhsBMNvqlpL_FpV5_62DMMpK_wOVXFUZasrr4Il-jOjtR6d_RxdfwWImvjFtE5z7lC47ViavyjPdkj1_xqjzaAzNbYTK7D0bqbbYzJl-3lwm67b78xOP7nOG7AtR58st1OW27ChVDdgqs_URLehg_7xJXLRnXlO15Z9rlidGhQcFdgs3p-_jWcsXFXPWd-jkh1h43QFLI6stn4cOeN4dPpp8MfbZo7cDwZH432eF93gRv0fxZceTRbApGAQb9ZDxMro9e5l86axAj0l9LoTZSJMMYNTeGkCNobY4eplQgHo7gLW1VdhfvAgs-jjEI5PMsQmBW20HkSXUZBryIbJgN4jpNR9vumKdsr8Swtuxkq-xkaAF-tUel66nKqoDHfKP9yLX_akXZslHy2WvIS9xVdlpgq1MumzAhLSmK7-ZuM0hL9rSQbwL1OX9bfE1QgME-TB_80wqdwefZ6Uk73D949hCsIynT7m0c_gq3F2TI8RuCzsE9aRf8OASf7ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Conduction+in+Composite+Polymer+Electrolytes%3A+Case+of+PEO%3AGa-LLZO+Composites&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Zhuo&rft.au=Huang%2C+He-Ming&rft.au=Zhu%2C+Jia-Kun&rft.au=Wu%2C+Jian-Fang&rft.date=2019-01-09&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=1&rft.spage=784&rft.epage=791&rft_id=info:doi/10.1021%2Facsami.8b17279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_8b17279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |