Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries

This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 120; no. 25; pp. 5691 - 5702
Main Authors Kazemiabnavi, Saeed, Zhang, Zhengcheng, Thornton, Katsuyo, Banerjee, Soumik
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 30.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li+/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)­s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6]− anion have a wider ESW. In addition to characterizing structure–function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.
AbstractList This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li⁺/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF₆]⁻ anion have a wider ESW. In addition to characterizing structure–function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.
This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.
This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.
This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li+/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)­s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6]− anion have a wider ESW. In addition to characterizing structure–function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.
Author Thornton, Katsuyo
Zhang, Zhengcheng
Banerjee, Soumik
Kazemiabnavi, Saeed
AuthorAffiliation University of Michigan
Washington State University
Chemical Sciences and Engineering Division
Joint Center for Energy Storage Research
Argonne National Laboratory
Department of Mechanical Engineering
Department of Materials Science and Engineering
School of Mechanical and Materials Engineering
AuthorAffiliation_xml – name: Department of Mechanical Engineering
– name: University of Michigan
– name: Joint Center for Energy Storage Research
– name: Argonne National Laboratory
– name: School of Mechanical and Materials Engineering
– name: Washington State University
– name: Chemical Sciences and Engineering Division
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Saeed
  surname: Kazemiabnavi
  fullname: Kazemiabnavi, Saeed
– sequence: 2
  givenname: Zhengcheng
  surname: Zhang
  fullname: Zhang, Zhengcheng
– sequence: 3
  givenname: Katsuyo
  surname: Thornton
  fullname: Thornton, Katsuyo
– sequence: 4
  givenname: Soumik
  surname: Banerjee
  fullname: Banerjee, Soumik
  email: soumik.banerjee@wsu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27266487$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1392110$$D View this record in Osti.gov
BookMark eNqFkU2P1DAMhiO0iP2AOycUceJABydpk_bIrhYYaSQOgDhGbppqsmqT2SQVGn49WaZwQAIOli35eS3b7yU588FbQp4z2DDg7A2atLk7mH4jexC1EI_IBWs4VCXU2VpLBvKcXKZ0B8Ab3son5JwrLmXdqgvibidrcgxmb2dncKKfMvZucvlIvzo_hG80jHQ7uwG_h8ktc3WNyQ50G7wzdOfuFzckiomuY6ZjtomOIZZe3heeXmPONjqbnpLHI07JPlvzFfny7vbzzYdq9_H99ubtrsK663LVmtoqhbLuDRvrsQXTQTO2Qg3DIFQjWwkKwaCUHReo2haFVDgKwIYNYkRxRV6e5oaUnU7GZWv2JnhfFtRMdJwxKNCrE3SI4X6xKevZJWOnCb0NS9IcAOqas6b5L8paYLXomOAFfbGiSz_bQR-imzEe9a93FwBOgIkhpWjH3wgD_eCoLo7qB0f16miRyD8k5SLMLvgc0U3_Er4-CX92whJ9-frf8R_F5rXX
CitedBy_id crossref_primary_10_1016_j_molliq_2021_117192
crossref_primary_10_1016_j_jmro_2022_100036
crossref_primary_10_3390_batteries10080266
crossref_primary_10_1016_j_molliq_2018_12_154
crossref_primary_10_1002_admi_201700873
crossref_primary_10_1007_s11581_024_05980_w
crossref_primary_10_1021_acs_jpcc_3c03661
crossref_primary_10_1016_j_saa_2019_117545
crossref_primary_10_1021_acs_jpcb_1c00592
crossref_primary_10_1002_celc_202001488
crossref_primary_10_1021_acs_jpcb_3c08127
crossref_primary_10_1021_acs_iecr_0c02442
crossref_primary_10_1016_j_jfluchem_2022_110026
crossref_primary_10_1002_aenm_202304342
crossref_primary_10_1016_j_ijoes_2024_100616
crossref_primary_10_1016_j_molliq_2019_112209
crossref_primary_10_1039_D3LP00269A
crossref_primary_10_1002_aenm_202300985
crossref_primary_10_1021_acs_jpcc_2c06057
crossref_primary_10_1002_ejoc_201800043
crossref_primary_10_1007_s13538_024_01424_y
crossref_primary_10_1016_j_apsusc_2022_154077
crossref_primary_10_1021_acs_jpcc_9b00868
crossref_primary_10_1016_j_electacta_2020_137060
crossref_primary_10_1063_5_0155775
crossref_primary_10_1016_j_mlblux_2021_100093
crossref_primary_10_1007_s10832_017_0091_0
crossref_primary_10_1016_j_jfluchem_2022_109970
crossref_primary_10_1021_acs_macromol_2c02531
crossref_primary_10_1016_j_jelechem_2020_114606
crossref_primary_10_1021_acsmacrolett_1c00354
crossref_primary_10_1016_j_molliq_2023_122314
crossref_primary_10_1039_D4TA06184E
crossref_primary_10_1016_j_jelechem_2020_113892
crossref_primary_10_1016_j_jphotochem_2024_115518
crossref_primary_10_1039_D4CP00356J
crossref_primary_10_1016_j_elecom_2018_04_013
crossref_primary_10_1039_C8TA03358G
crossref_primary_10_1016_j_combustflame_2025_113994
crossref_primary_10_3390_ma14123221
crossref_primary_10_1002_qua_26014
crossref_primary_10_1021_acs_jcim_2c00748
crossref_primary_10_1016_j_molliq_2024_126537
crossref_primary_10_1021_acs_jpcc_1c00624
crossref_primary_10_1016_j_jelechem_2021_114995
crossref_primary_10_1021_acs_chemmater_3c01685
crossref_primary_10_1002_qua_25972
crossref_primary_10_1016_j_apmt_2019_100522
crossref_primary_10_3390_molecules26123668
crossref_primary_10_3390_polym13081277
crossref_primary_10_1021_acs_jpcc_4c04520
crossref_primary_10_1039_D4ME00119B
crossref_primary_10_2174_1385272823666190627114321
crossref_primary_10_1080_00268976_2017_1414965
crossref_primary_10_1016_j_ssi_2023_116340
crossref_primary_10_1016_j_cogsc_2017_03_006
crossref_primary_10_1021_acs_macromol_2c01142
crossref_primary_10_3390_coatings11010080
crossref_primary_10_1016_j_electacta_2024_144762
crossref_primary_10_1070_RCR4970
crossref_primary_10_1007_s12034_020_02337_7
crossref_primary_10_1515_ijmr_2021_8689
crossref_primary_10_1002_chem_202102545
crossref_primary_10_3390_molecules24183382
crossref_primary_10_1002_adfm_201909736
crossref_primary_10_3390_e25050793
crossref_primary_10_1016_j_molliq_2020_115115
crossref_primary_10_1039_C9SE00829B
crossref_primary_10_1002_celc_202201104
crossref_primary_10_1149_1945_7111_ac4f76
crossref_primary_10_1002_batt_202300073
crossref_primary_10_3390_molecules29092131
crossref_primary_10_1002_aenm_202101021
crossref_primary_10_1002_celc_202200016
crossref_primary_10_1002_slct_202102825
crossref_primary_10_1016_j_electacta_2018_05_103
crossref_primary_10_1002_cphc_202400849
crossref_primary_10_1039_C9EE02041A
crossref_primary_10_1007_s00894_022_05353_y
crossref_primary_10_1016_j_electacta_2021_138308
crossref_primary_10_1016_j_est_2021_102659
crossref_primary_10_3390_molecules26144211
crossref_primary_10_1021_acs_jced_2c00729
crossref_primary_10_1039_D4CP03060E
crossref_primary_10_1039_C7CP07483B
crossref_primary_10_1007_s11581_019_02919_4
crossref_primary_10_1002_adma_201706836
crossref_primary_10_2139_ssrn_4105276
crossref_primary_10_1002_aenm_202002387
crossref_primary_10_1016_j_coelec_2022_101030
crossref_primary_10_1063_1_5123050
crossref_primary_10_1039_D1NR07515B
crossref_primary_10_3390_molecules27165117
crossref_primary_10_1021_acs_jpcc_3c01873
crossref_primary_10_1021_acs_langmuir_1c03390
crossref_primary_10_1007_s00214_021_02862_6
crossref_primary_10_1021_acs_inorgchem_3c02971
crossref_primary_10_1007_s13369_021_05859_2
crossref_primary_10_1016_j_electacta_2021_138169
crossref_primary_10_1021_acs_chemrev_2c00728
crossref_primary_10_1021_acs_jpcb_3c04057
crossref_primary_10_1016_j_molliq_2021_117589
crossref_primary_10_1021_acs_jpcb_3c00475
crossref_primary_10_1007_s00706_024_03178_4
crossref_primary_10_1021_acssuschemeng_9b07650
crossref_primary_10_1039_C6TA05330K
crossref_primary_10_1039_C8CP01485J
crossref_primary_10_1007_s11581_017_2198_3
crossref_primary_10_1039_D1SE01103K
crossref_primary_10_3390_molecules28196758
crossref_primary_10_1149_2_0401910jes
crossref_primary_10_1016_j_molliq_2023_123930
crossref_primary_10_1021_acs_nanolett_4c00198
crossref_primary_10_1002_poc_3784
crossref_primary_10_1007_s11581_020_03688_1
crossref_primary_10_1021_acsaem_4c02435
crossref_primary_10_1007_s11581_019_03325_6
crossref_primary_10_1002_chem_201701212
crossref_primary_10_1021_acsaem_1c00059
crossref_primary_10_1021_acs_langmuir_3c00883
crossref_primary_10_1002_tcr_202000178
crossref_primary_10_1115_1_4036456
crossref_primary_10_1002_aesr_202100165
crossref_primary_10_1002_chem_201902797
crossref_primary_10_1021_acs_jpcc_2c02501
crossref_primary_10_3389_fchem_2022_861379
crossref_primary_10_1016_j_ensm_2021_11_047
crossref_primary_10_1002_pssa_202000032
crossref_primary_10_1149_2_0641906jes
crossref_primary_10_20517_energymater_2023_47
crossref_primary_10_1002_adfm_201804378
crossref_primary_10_1016_j_electacta_2019_03_102
crossref_primary_10_1016_j_cej_2021_132240
crossref_primary_10_1016_j_jpowsour_2022_231792
crossref_primary_10_1016_j_molliq_2022_120919
crossref_primary_10_1039_D0SE00100G
crossref_primary_10_1088_1361_648X_abfb3c
crossref_primary_10_1021_acsaelm_9b00695
crossref_primary_10_1016_j_jpowsour_2018_02_023
crossref_primary_10_1016_j_porgcoat_2024_108353
crossref_primary_10_1088_1361_6528_aae3da
crossref_primary_10_1021_acs_jpcc_3c00587
crossref_primary_10_1016_j_jpowsour_2019_227634
crossref_primary_10_1016_j_jpowsour_2022_231103
crossref_primary_10_1039_D1CP02441H
crossref_primary_10_1088_1402_4896_ac6d20
crossref_primary_10_1088_2516_1083_ac3894
crossref_primary_10_1021_acs_chemmater_1c02981
crossref_primary_10_1016_j_trac_2018_04_010
crossref_primary_10_1016_j_jelechem_2025_118964
crossref_primary_10_1038_s42004_021_00570_7
crossref_primary_10_1039_D2TC03282A
crossref_primary_10_1002_chir_23665
crossref_primary_10_1016_j_apsadv_2021_100170
crossref_primary_10_1016_j_ccr_2023_215470
crossref_primary_10_1021_acssuschemeng_0c02568
crossref_primary_10_1016_j_xcrp_2022_100866
crossref_primary_10_1016_j_electacta_2016_09_107
crossref_primary_10_1021_acs_jpcb_0c06423
crossref_primary_10_1021_acsaem_3c00508
crossref_primary_10_1021_acs_jpcc_0c07012
crossref_primary_10_1039_C9TA04147H
crossref_primary_10_3390_polym12040918
crossref_primary_10_1016_j_molliq_2022_118903
crossref_primary_10_1088_1742_6596_2090_1_012078
crossref_primary_10_1016_j_jelechem_2022_116377
crossref_primary_10_1002_chem_202403872
crossref_primary_10_1021_acsami_1c24386
crossref_primary_10_1002_chem_202301000
crossref_primary_10_1039_D3TA04310J
crossref_primary_10_15541_jim20220097
crossref_primary_10_3390_molecules26226962
crossref_primary_10_1002_aenm_202201626
crossref_primary_10_1016_j_jpowsour_2018_10_051
crossref_primary_10_1007_s10570_024_05988_5
crossref_primary_10_3390_en10111748
crossref_primary_10_1016_j_rser_2024_114949
crossref_primary_10_1021_acs_macromol_3c01092
crossref_primary_10_1039_D0NR06065H
crossref_primary_10_1021_acsomega_0c05369
crossref_primary_10_1038_s42004_023_00875_9
crossref_primary_10_1007_s11581_023_04970_8
crossref_primary_10_1021_acsaelm_1c00117
crossref_primary_10_1039_C9RA05735H
crossref_primary_10_1063_5_0166976
crossref_primary_10_1021_acsaem_7b00173
crossref_primary_10_1021_acsenergylett_3c00829
crossref_primary_10_3390_molecules28020892
crossref_primary_10_1021_acsami_9b12915
crossref_primary_10_1016_j_nanoen_2024_109939
crossref_primary_10_1016_j_electacta_2021_139342
crossref_primary_10_1016_j_cogsc_2020_100404
crossref_primary_10_1016_j_applthermaleng_2017_07_126
crossref_primary_10_1016_j_molliq_2022_119219
crossref_primary_10_1021_acs_chemmater_3c00627
Cites_doi 10.1016/S1452-3981(23)16552-7
10.1021/jp303915c
10.1021/jp204401t
10.1021/jp8059618
10.1115/IMECE2014-40239
10.1021/jp802665d
10.1007/s00214-012-1250-7
10.1016/j.jpowsour.2009.06.089
10.1109/TVT.2010.2047877
10.1021/cm200679y
10.1021/jp063552y
10.1149/1.1362546
10.1021/ja00417a017
10.1021/jz1005384
10.1149/1.1795613
10.1039/C3TA15010K
10.1021/jp409498w
10.1016/0009-2614(88)85250-3
10.1149/1.3368694
10.1016/j.elecom.2004.09.007
10.1088/0957-4484/26/43/434004
10.1016/j.jpowsour.2006.02.018
10.1002/chem.201304744
10.1115/IMECE2015-52478
10.1524/zpch.2006.220.10.1483
10.1149/2.086202jes
10.1021/je800678e
10.1149/1.1448818
10.1016/j.jpowsour.2008.07.053
10.1039/C4CP06121G
10.1021/jp506563j
10.1039/B006677J
10.1063/1.3359469
10.1063/1.2001632
10.1149/1.1517579
10.1016/j.electacta.2016.02.099
10.1016/j.electacta.2006.03.016
10.1021/jp211619y
10.1149/1.1391827
10.1088/0957-4484/26/35/354003
10.1016/S0013-4686(96)00444-6
10.1002/9781118003350
10.1016/j.jpowsour.2006.02.077
10.1149/1.1837561
10.1103/PhysRevA.75.052503
10.1039/c3cp51682b
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/acs.jpcb.6b03433
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 5702
ExternalDocumentID 1392110
27266487
10_1021_acs_jpcb_6b03433
c334246612
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
7S9
L.6
ABFRP
OTOTI
ID FETCH-LOGICAL-a499t-8c4e77a64bc1f4f80c905f837ddd37568607a0ca66923a788a367af30a51d3fa3
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri May 19 01:40:16 EDT 2023
Wed Jul 02 03:12:04 EDT 2025
Fri Jul 11 01:56:15 EDT 2025
Thu Jan 02 23:09:39 EST 2025
Thu Apr 24 23:12:42 EDT 2025
Tue Jul 01 01:00:09 EDT 2025
Thu Aug 27 13:43:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-8c4e77a64bc1f4f80c905f837ddd37568607a0ca66923a788a367af30a51d3fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
AC02-06CH11357
PMID 27266487
PQID 1801439132
PQPubID 23479
PageCount 12
ParticipantIDs osti_scitechconnect_1392110
proquest_miscellaneous_2000442155
proquest_miscellaneous_1801439132
pubmed_primary_27266487
crossref_primary_10_1021_acs_jpcb_6b03433
crossref_citationtrail_10_1021_acs_jpcb_6b03433
acs_journals_10_1021_acs_jpcb_6b03433
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-30
PublicationDateYYYYMMDD 2016-06-30
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
Chen D. (ref20/cit20) 2012; 7
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – volume: 7
  start-page: 12383
  year: 2012
  ident: ref20/cit20
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)16552-7
– ident: ref34/cit34
  doi: 10.1021/jp303915c
– ident: ref30/cit30
  doi: 10.1021/jp204401t
– ident: ref41/cit41
  doi: 10.1021/jp8059618
– ident: ref14/cit14
  doi: 10.1115/IMECE2014-40239
– ident: ref42/cit42
  doi: 10.1021/jp802665d
– ident: ref43/cit43
  doi: 10.1007/s00214-012-1250-7
– ident: ref5/cit5
  doi: 10.1016/j.jpowsour.2009.06.089
– ident: ref3/cit3
  doi: 10.1109/TVT.2010.2047877
– ident: ref16/cit16
  doi: 10.1021/cm200679y
– ident: ref35/cit35
– ident: ref45/cit45
  doi: 10.1021/jp063552y
– ident: ref32/cit32
  doi: 10.1149/1.1362546
– ident: ref33/cit33
  doi: 10.1021/ja00417a017
– ident: ref1/cit1
  doi: 10.1021/jz1005384
– ident: ref24/cit24
  doi: 10.1149/1.1795613
– ident: ref26/cit26
  doi: 10.1039/C3TA15010K
– ident: ref7/cit7
  doi: 10.1021/jp409498w
– ident: ref36/cit36
  doi: 10.1016/0009-2614(88)85250-3
– ident: ref37/cit37
  doi: 10.1149/1.3368694
– ident: ref17/cit17
  doi: 10.1016/j.elecom.2004.09.007
– ident: ref29/cit29
  doi: 10.1088/0957-4484/26/43/434004
– ident: ref9/cit9
  doi: 10.1016/j.jpowsour.2006.02.018
– ident: ref18/cit18
  doi: 10.1002/chem.201304744
– ident: ref4/cit4
  doi: 10.1115/IMECE2015-52478
– ident: ref27/cit27
  doi: 10.1524/zpch.2006.220.10.1483
– ident: ref2/cit2
  doi: 10.1149/2.086202jes
– ident: ref25/cit25
  doi: 10.1021/je800678e
– ident: ref19/cit19
  doi: 10.1149/1.1448818
– ident: ref11/cit11
  doi: 10.1016/j.jpowsour.2008.07.053
– ident: ref13/cit13
  doi: 10.1039/C4CP06121G
– ident: ref12/cit12
  doi: 10.1021/jp506563j
– ident: ref8/cit8
  doi: 10.1039/B006677J
– ident: ref40/cit40
  doi: 10.1063/1.3359469
– ident: ref44/cit44
  doi: 10.1063/1.2001632
– ident: ref39/cit39
  doi: 10.1149/1.1517579
– ident: ref15/cit15
  doi: 10.1016/j.electacta.2016.02.099
– ident: ref6/cit6
  doi: 10.1016/j.electacta.2006.03.016
– ident: ref31/cit31
  doi: 10.1021/jp211619y
– ident: ref22/cit22
  doi: 10.1149/1.1391827
– ident: ref28/cit28
  doi: 10.1088/0957-4484/26/35/354003
– ident: ref21/cit21
  doi: 10.1016/S0013-4686(96)00444-6
– ident: ref47/cit47
  doi: 10.1002/9781118003350
– ident: ref10/cit10
  doi: 10.1016/j.jpowsour.2006.02.077
– ident: ref23/cit23
  doi: 10.1149/1.1837561
– ident: ref46/cit46
  doi: 10.1103/PhysRevA.75.052503
– ident: ref38/cit38
  doi: 10.1039/c3cp51682b
SSID ssj0025286
Score 2.591856
Snippet This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5691
SubjectTerms anions
cations
density functional theory
electrochemical stability window
electrochemistry
electrodes
electrolyte
ionic liquid
ionic liquids
lithium
lithium batteries
Lithium battery
methodology
oxidation
oxidation potential
redox potential
reduction potential
structure-activity relationships
thermodynamics
Title Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries
URI http://dx.doi.org/10.1021/acs.jpcb.6b03433
https://www.ncbi.nlm.nih.gov/pubmed/27266487
https://www.proquest.com/docview/1801439132
https://www.proquest.com/docview/2000442155
https://www.osti.gov/biblio/1392110
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oPejF96O-siZ68EAFFpblqI1GjXrRRm9kHxDRtlSBmPrrnV1ojY8ar7C7gdmZzPdlJt8gtA8ZlXGmqOWFKrY8x6UWk0loeYkP6YLZKjTzU65v6HnHu3zwHz5lcr5X8F3niMu89TSQokWFTTxCptGMSyGGNQxq347Jle-aqY6QjjQdskclyd9O0IlI5l8SUSODgJoMMk2yOVuophblRqNQ95g8t8pCtOT7TwXHf_zHIpqvMSc-rpxkCU3F_WU02x6NeltB6Wk1DEfW6gEYIKhpmh3ie-Ds2RvOEnzRSxV_z7pp2bNOIPcpfKFldfFV-lKmKsc8x_Ux3SHgVwxoGN4Vj7AeVyqeQMpXUefs9K59btUzGCwOXKiAi_PiIODUE9JJvITZMrT9BFitUooEPmXUDrgtOaWAFDnwaU5owBNic99RJOFkDTX6WT_eQJi5XAjKqSJUAmtVTIFnCEmYUcX3RRMdgI2iOobyyJTHXScyD8FwUW24JjoaXVwkayFzPU-j-8eOw_GOQSXi8cfaLe0LEQAQraIrdbuRLCIAypoqN9HeyEUiuCNdXOH9OCvha7UMDwmB3E9e45r6OYAsv4nWK_8af48bAFQC9rj5TytsoTnAbrRqXdxGjeK1jHcAHxVi1wTGB9CnCXQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5UAvfdAWtvRhJHroIUsSJ45zpCvQbrtwoKBys_xI1JRlQ5tEFfz6jp1kKxCg9prYljMea75PM_kGYAcjKpfcMC9KTeZFQcg8rvPUi_IYwwX3Ter6pxwesclp9PksPluBoP8XBjdR4UqVS-L_VRcIdu2zH5dajZjyaUTpI1hFLBJap94bf11yrDh0zR0xKllW5PeZybtWsPFIVzfi0aDEe3U_1nQx5-ApHC9360pNzkdNrUb6-paQ4399zjN40iFQste6zHNYyRbrsDbuG7-9gGK_bY2jOy0BgoDUldBekW_I4MvfpMzJ9KIw8rqcF82F9wkjoSFTK7JLZsXPpjAVkRXplplfIZoliI3xXf0dx5NW0xMp-ks4Pdg_GU-8riODJ5EZ1XiMUZYkkkVKB3mUc1-nfpwjxzXG0CRmnPmJ9LVkDHGjRHYtKUtkTn0ZB4bmkr6CwaJcZJtAeCiVYpIZyjRyWMMN-onSlDuN_FgN4QPaSHQ3qhIuWR4Gwj1Ew4nOcEPY7c9P6E7W3HbXmD8w4-NyxmUr6fHA2C3rEgLhiNXU1bb4SNcCYbMlzkPY7j1F4BnZVItcZGWDu7WiPDRFqn__mNBl0xFyxUPYaN1suZ8wQeCEXPL1P1rhPaxNTg5nYjY9-rIFjxHVsbao8Q0M6l9N9haRU63eubvyB9uGEdU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VRQIulG-WFjASHDhkm8SxkxzbpasulAoJCr1Z_ohFYLtZSCLU_vqOnWQlEK3gmtjWxJ7RvKdx3gC8xIyayczwIMlNESRRzINM2zxILMN0kYUm9_1T3h_xg-Pk7Qk72QA2_AuDRtS4Uu2L-C6qV8b2CgPRjnv-baXVhKuQJpReg-uuaucce3f6cc2zWOwbPGJmcswoHKqTf1vB5SRd_5aTRhXG1uV40-ed2SZ8Xlvsr5t8n7SNmujzP8Qc__uT7sDtHomS3c517sJGsbwHN6dDA7j7UO53LXJ0rylAEJj6q7Rn5Asy-eoXqSyZn5ZGnleLsj0N9jAjGjJ3YrvksPzRlqYmsib9MoszRLUEMTK-a77ieNJpeyJVfwDHs_1P04Og78wQSGRIDR5nUqSp5InSkU1sFuo8ZBa5rjGGpoxnPExlqCXniB8lsmxJeSotDSWLDLWSPoTRsloWj4FksVSKS24o18hlTWbQX5SmmdfKZ2oMr3CPRB9ZtfBF8zgS_iFunOg3bgw7wxkK3cubuy4biytmvF7PWHXSHleM3XJuIRCWOG1d7S4h6UYgfHYEegwvBm8ReEau5CKXRdWitU6ch-ZI-S8fE_uqOkIvNoZHnaut7YlTBFDIKZ_84y48hxsf3szE4fzo3RbcQnDHu7uN2zBqfrbFUwRQjXrmw-UCsvkUWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Stability+Window+of+Imidazolium-Based+Ionic+Liquids+as+Electrolytes+for+Lithium+Batteries&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Kazemiabnavi%2C+Saeed&rft.au=Zhang%2C+Zhengcheng&rft.au=Thornton%2C+Katsuyo&rft.au=Banerjee%2C+Soumik&rft.date=2016-06-30&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=120&rft.issue=25&rft.spage=5691&rft_id=info:doi/10.1021%2Facs.jpcb.6b03433&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon