Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries
This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to...
Saved in:
Published in | The journal of physical chemistry. B Vol. 120; no. 25; pp. 5691 - 5702 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
30.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li+/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6]− anion have a wider ESW. In addition to characterizing structure–function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries. |
---|---|
AbstractList | This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li⁺/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF₆]⁻ anion have a wider ESW. In addition to characterizing structure–function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries. This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries. This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries. This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li+/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6]− anion have a wider ESW. In addition to characterizing structure–function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries. |
Author | Thornton, Katsuyo Zhang, Zhengcheng Banerjee, Soumik Kazemiabnavi, Saeed |
AuthorAffiliation | University of Michigan Washington State University Chemical Sciences and Engineering Division Joint Center for Energy Storage Research Argonne National Laboratory Department of Mechanical Engineering Department of Materials Science and Engineering School of Mechanical and Materials Engineering |
AuthorAffiliation_xml | – name: Department of Mechanical Engineering – name: University of Michigan – name: Joint Center for Energy Storage Research – name: Argonne National Laboratory – name: School of Mechanical and Materials Engineering – name: Washington State University – name: Chemical Sciences and Engineering Division – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Saeed surname: Kazemiabnavi fullname: Kazemiabnavi, Saeed – sequence: 2 givenname: Zhengcheng surname: Zhang fullname: Zhang, Zhengcheng – sequence: 3 givenname: Katsuyo surname: Thornton fullname: Thornton, Katsuyo – sequence: 4 givenname: Soumik surname: Banerjee fullname: Banerjee, Soumik email: soumik.banerjee@wsu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27266487$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1392110$$D View this record in Osti.gov |
BookMark | eNqFkU2P1DAMhiO0iP2AOycUceJABydpk_bIrhYYaSQOgDhGbppqsmqT2SQVGn49WaZwQAIOli35eS3b7yU588FbQp4z2DDg7A2atLk7mH4jexC1EI_IBWs4VCXU2VpLBvKcXKZ0B8Ab3son5JwrLmXdqgvibidrcgxmb2dncKKfMvZucvlIvzo_hG80jHQ7uwG_h8ktc3WNyQ50G7wzdOfuFzckiomuY6ZjtomOIZZe3heeXmPONjqbnpLHI07JPlvzFfny7vbzzYdq9_H99ubtrsK663LVmtoqhbLuDRvrsQXTQTO2Qg3DIFQjWwkKwaCUHReo2haFVDgKwIYNYkRxRV6e5oaUnU7GZWv2JnhfFtRMdJwxKNCrE3SI4X6xKevZJWOnCb0NS9IcAOqas6b5L8paYLXomOAFfbGiSz_bQR-imzEe9a93FwBOgIkhpWjH3wgD_eCoLo7qB0f16miRyD8k5SLMLvgc0U3_Er4-CX92whJ9-frf8R_F5rXX |
CitedBy_id | crossref_primary_10_1016_j_molliq_2021_117192 crossref_primary_10_1016_j_jmro_2022_100036 crossref_primary_10_3390_batteries10080266 crossref_primary_10_1016_j_molliq_2018_12_154 crossref_primary_10_1002_admi_201700873 crossref_primary_10_1007_s11581_024_05980_w crossref_primary_10_1021_acs_jpcc_3c03661 crossref_primary_10_1016_j_saa_2019_117545 crossref_primary_10_1021_acs_jpcb_1c00592 crossref_primary_10_1002_celc_202001488 crossref_primary_10_1021_acs_jpcb_3c08127 crossref_primary_10_1021_acs_iecr_0c02442 crossref_primary_10_1016_j_jfluchem_2022_110026 crossref_primary_10_1002_aenm_202304342 crossref_primary_10_1016_j_ijoes_2024_100616 crossref_primary_10_1016_j_molliq_2019_112209 crossref_primary_10_1039_D3LP00269A crossref_primary_10_1002_aenm_202300985 crossref_primary_10_1021_acs_jpcc_2c06057 crossref_primary_10_1002_ejoc_201800043 crossref_primary_10_1007_s13538_024_01424_y crossref_primary_10_1016_j_apsusc_2022_154077 crossref_primary_10_1021_acs_jpcc_9b00868 crossref_primary_10_1016_j_electacta_2020_137060 crossref_primary_10_1063_5_0155775 crossref_primary_10_1016_j_mlblux_2021_100093 crossref_primary_10_1007_s10832_017_0091_0 crossref_primary_10_1016_j_jfluchem_2022_109970 crossref_primary_10_1021_acs_macromol_2c02531 crossref_primary_10_1016_j_jelechem_2020_114606 crossref_primary_10_1021_acsmacrolett_1c00354 crossref_primary_10_1016_j_molliq_2023_122314 crossref_primary_10_1039_D4TA06184E crossref_primary_10_1016_j_jelechem_2020_113892 crossref_primary_10_1016_j_jphotochem_2024_115518 crossref_primary_10_1039_D4CP00356J crossref_primary_10_1016_j_elecom_2018_04_013 crossref_primary_10_1039_C8TA03358G crossref_primary_10_1016_j_combustflame_2025_113994 crossref_primary_10_3390_ma14123221 crossref_primary_10_1002_qua_26014 crossref_primary_10_1021_acs_jcim_2c00748 crossref_primary_10_1016_j_molliq_2024_126537 crossref_primary_10_1021_acs_jpcc_1c00624 crossref_primary_10_1016_j_jelechem_2021_114995 crossref_primary_10_1021_acs_chemmater_3c01685 crossref_primary_10_1002_qua_25972 crossref_primary_10_1016_j_apmt_2019_100522 crossref_primary_10_3390_molecules26123668 crossref_primary_10_3390_polym13081277 crossref_primary_10_1021_acs_jpcc_4c04520 crossref_primary_10_1039_D4ME00119B crossref_primary_10_2174_1385272823666190627114321 crossref_primary_10_1080_00268976_2017_1414965 crossref_primary_10_1016_j_ssi_2023_116340 crossref_primary_10_1016_j_cogsc_2017_03_006 crossref_primary_10_1021_acs_macromol_2c01142 crossref_primary_10_3390_coatings11010080 crossref_primary_10_1016_j_electacta_2024_144762 crossref_primary_10_1070_RCR4970 crossref_primary_10_1007_s12034_020_02337_7 crossref_primary_10_1515_ijmr_2021_8689 crossref_primary_10_1002_chem_202102545 crossref_primary_10_3390_molecules24183382 crossref_primary_10_1002_adfm_201909736 crossref_primary_10_3390_e25050793 crossref_primary_10_1016_j_molliq_2020_115115 crossref_primary_10_1039_C9SE00829B crossref_primary_10_1002_celc_202201104 crossref_primary_10_1149_1945_7111_ac4f76 crossref_primary_10_1002_batt_202300073 crossref_primary_10_3390_molecules29092131 crossref_primary_10_1002_aenm_202101021 crossref_primary_10_1002_celc_202200016 crossref_primary_10_1002_slct_202102825 crossref_primary_10_1016_j_electacta_2018_05_103 crossref_primary_10_1002_cphc_202400849 crossref_primary_10_1039_C9EE02041A crossref_primary_10_1007_s00894_022_05353_y crossref_primary_10_1016_j_electacta_2021_138308 crossref_primary_10_1016_j_est_2021_102659 crossref_primary_10_3390_molecules26144211 crossref_primary_10_1021_acs_jced_2c00729 crossref_primary_10_1039_D4CP03060E crossref_primary_10_1039_C7CP07483B crossref_primary_10_1007_s11581_019_02919_4 crossref_primary_10_1002_adma_201706836 crossref_primary_10_2139_ssrn_4105276 crossref_primary_10_1002_aenm_202002387 crossref_primary_10_1016_j_coelec_2022_101030 crossref_primary_10_1063_1_5123050 crossref_primary_10_1039_D1NR07515B crossref_primary_10_3390_molecules27165117 crossref_primary_10_1021_acs_jpcc_3c01873 crossref_primary_10_1021_acs_langmuir_1c03390 crossref_primary_10_1007_s00214_021_02862_6 crossref_primary_10_1021_acs_inorgchem_3c02971 crossref_primary_10_1007_s13369_021_05859_2 crossref_primary_10_1016_j_electacta_2021_138169 crossref_primary_10_1021_acs_chemrev_2c00728 crossref_primary_10_1021_acs_jpcb_3c04057 crossref_primary_10_1016_j_molliq_2021_117589 crossref_primary_10_1021_acs_jpcb_3c00475 crossref_primary_10_1007_s00706_024_03178_4 crossref_primary_10_1021_acssuschemeng_9b07650 crossref_primary_10_1039_C6TA05330K crossref_primary_10_1039_C8CP01485J crossref_primary_10_1007_s11581_017_2198_3 crossref_primary_10_1039_D1SE01103K crossref_primary_10_3390_molecules28196758 crossref_primary_10_1149_2_0401910jes crossref_primary_10_1016_j_molliq_2023_123930 crossref_primary_10_1021_acs_nanolett_4c00198 crossref_primary_10_1002_poc_3784 crossref_primary_10_1007_s11581_020_03688_1 crossref_primary_10_1021_acsaem_4c02435 crossref_primary_10_1007_s11581_019_03325_6 crossref_primary_10_1002_chem_201701212 crossref_primary_10_1021_acsaem_1c00059 crossref_primary_10_1021_acs_langmuir_3c00883 crossref_primary_10_1002_tcr_202000178 crossref_primary_10_1115_1_4036456 crossref_primary_10_1002_aesr_202100165 crossref_primary_10_1002_chem_201902797 crossref_primary_10_1021_acs_jpcc_2c02501 crossref_primary_10_3389_fchem_2022_861379 crossref_primary_10_1016_j_ensm_2021_11_047 crossref_primary_10_1002_pssa_202000032 crossref_primary_10_1149_2_0641906jes crossref_primary_10_20517_energymater_2023_47 crossref_primary_10_1002_adfm_201804378 crossref_primary_10_1016_j_electacta_2019_03_102 crossref_primary_10_1016_j_cej_2021_132240 crossref_primary_10_1016_j_jpowsour_2022_231792 crossref_primary_10_1016_j_molliq_2022_120919 crossref_primary_10_1039_D0SE00100G crossref_primary_10_1088_1361_648X_abfb3c crossref_primary_10_1021_acsaelm_9b00695 crossref_primary_10_1016_j_jpowsour_2018_02_023 crossref_primary_10_1016_j_porgcoat_2024_108353 crossref_primary_10_1088_1361_6528_aae3da crossref_primary_10_1021_acs_jpcc_3c00587 crossref_primary_10_1016_j_jpowsour_2019_227634 crossref_primary_10_1016_j_jpowsour_2022_231103 crossref_primary_10_1039_D1CP02441H crossref_primary_10_1088_1402_4896_ac6d20 crossref_primary_10_1088_2516_1083_ac3894 crossref_primary_10_1021_acs_chemmater_1c02981 crossref_primary_10_1016_j_trac_2018_04_010 crossref_primary_10_1016_j_jelechem_2025_118964 crossref_primary_10_1038_s42004_021_00570_7 crossref_primary_10_1039_D2TC03282A crossref_primary_10_1002_chir_23665 crossref_primary_10_1016_j_apsadv_2021_100170 crossref_primary_10_1016_j_ccr_2023_215470 crossref_primary_10_1021_acssuschemeng_0c02568 crossref_primary_10_1016_j_xcrp_2022_100866 crossref_primary_10_1016_j_electacta_2016_09_107 crossref_primary_10_1021_acs_jpcb_0c06423 crossref_primary_10_1021_acsaem_3c00508 crossref_primary_10_1021_acs_jpcc_0c07012 crossref_primary_10_1039_C9TA04147H crossref_primary_10_3390_polym12040918 crossref_primary_10_1016_j_molliq_2022_118903 crossref_primary_10_1088_1742_6596_2090_1_012078 crossref_primary_10_1016_j_jelechem_2022_116377 crossref_primary_10_1002_chem_202403872 crossref_primary_10_1021_acsami_1c24386 crossref_primary_10_1002_chem_202301000 crossref_primary_10_1039_D3TA04310J crossref_primary_10_15541_jim20220097 crossref_primary_10_3390_molecules26226962 crossref_primary_10_1002_aenm_202201626 crossref_primary_10_1016_j_jpowsour_2018_10_051 crossref_primary_10_1007_s10570_024_05988_5 crossref_primary_10_3390_en10111748 crossref_primary_10_1016_j_rser_2024_114949 crossref_primary_10_1021_acs_macromol_3c01092 crossref_primary_10_1039_D0NR06065H crossref_primary_10_1021_acsomega_0c05369 crossref_primary_10_1038_s42004_023_00875_9 crossref_primary_10_1007_s11581_023_04970_8 crossref_primary_10_1021_acsaelm_1c00117 crossref_primary_10_1039_C9RA05735H crossref_primary_10_1063_5_0166976 crossref_primary_10_1021_acsaem_7b00173 crossref_primary_10_1021_acsenergylett_3c00829 crossref_primary_10_3390_molecules28020892 crossref_primary_10_1021_acsami_9b12915 crossref_primary_10_1016_j_nanoen_2024_109939 crossref_primary_10_1016_j_electacta_2021_139342 crossref_primary_10_1016_j_cogsc_2020_100404 crossref_primary_10_1016_j_applthermaleng_2017_07_126 crossref_primary_10_1016_j_molliq_2022_119219 crossref_primary_10_1021_acs_chemmater_3c00627 |
Cites_doi | 10.1016/S1452-3981(23)16552-7 10.1021/jp303915c 10.1021/jp204401t 10.1021/jp8059618 10.1115/IMECE2014-40239 10.1021/jp802665d 10.1007/s00214-012-1250-7 10.1016/j.jpowsour.2009.06.089 10.1109/TVT.2010.2047877 10.1021/cm200679y 10.1021/jp063552y 10.1149/1.1362546 10.1021/ja00417a017 10.1021/jz1005384 10.1149/1.1795613 10.1039/C3TA15010K 10.1021/jp409498w 10.1016/0009-2614(88)85250-3 10.1149/1.3368694 10.1016/j.elecom.2004.09.007 10.1088/0957-4484/26/43/434004 10.1016/j.jpowsour.2006.02.018 10.1002/chem.201304744 10.1115/IMECE2015-52478 10.1524/zpch.2006.220.10.1483 10.1149/2.086202jes 10.1021/je800678e 10.1149/1.1448818 10.1016/j.jpowsour.2008.07.053 10.1039/C4CP06121G 10.1021/jp506563j 10.1039/B006677J 10.1063/1.3359469 10.1063/1.2001632 10.1149/1.1517579 10.1016/j.electacta.2016.02.099 10.1016/j.electacta.2006.03.016 10.1021/jp211619y 10.1149/1.1391827 10.1088/0957-4484/26/35/354003 10.1016/S0013-4686(96)00444-6 10.1002/9781118003350 10.1016/j.jpowsour.2006.02.077 10.1149/1.1837561 10.1103/PhysRevA.75.052503 10.1039/c3cp51682b |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/acs.jpcb.6b03433 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 5702 |
ExternalDocumentID | 1392110 27266487 10_1021_acs_jpcb_6b03433 c334246612 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 7S9 L.6 ABFRP OTOTI |
ID | FETCH-LOGICAL-a499t-8c4e77a64bc1f4f80c905f837ddd37568607a0ca66923a788a367af30a51d3fa3 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri May 19 01:40:16 EDT 2023 Wed Jul 02 03:12:04 EDT 2025 Fri Jul 11 01:56:15 EDT 2025 Thu Jan 02 23:09:39 EST 2025 Thu Apr 24 23:12:42 EDT 2025 Tue Jul 01 01:00:09 EDT 2025 Thu Aug 27 13:43:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-8c4e77a64bc1f4f80c905f837ddd37568607a0ca66923a788a367af30a51d3fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) AC02-06CH11357 |
PMID | 27266487 |
PQID | 1801439132 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1392110 proquest_miscellaneous_2000442155 proquest_miscellaneous_1801439132 pubmed_primary_27266487 crossref_primary_10_1021_acs_jpcb_6b03433 crossref_citationtrail_10_1021_acs_jpcb_6b03433 acs_journals_10_1021_acs_jpcb_6b03433 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-30 |
PublicationDateYYYYMMDD | 2016-06-30 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 Chen D. (ref20/cit20) 2012; 7 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – volume: 7 start-page: 12383 year: 2012 ident: ref20/cit20 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)16552-7 – ident: ref34/cit34 doi: 10.1021/jp303915c – ident: ref30/cit30 doi: 10.1021/jp204401t – ident: ref41/cit41 doi: 10.1021/jp8059618 – ident: ref14/cit14 doi: 10.1115/IMECE2014-40239 – ident: ref42/cit42 doi: 10.1021/jp802665d – ident: ref43/cit43 doi: 10.1007/s00214-012-1250-7 – ident: ref5/cit5 doi: 10.1016/j.jpowsour.2009.06.089 – ident: ref3/cit3 doi: 10.1109/TVT.2010.2047877 – ident: ref16/cit16 doi: 10.1021/cm200679y – ident: ref35/cit35 – ident: ref45/cit45 doi: 10.1021/jp063552y – ident: ref32/cit32 doi: 10.1149/1.1362546 – ident: ref33/cit33 doi: 10.1021/ja00417a017 – ident: ref1/cit1 doi: 10.1021/jz1005384 – ident: ref24/cit24 doi: 10.1149/1.1795613 – ident: ref26/cit26 doi: 10.1039/C3TA15010K – ident: ref7/cit7 doi: 10.1021/jp409498w – ident: ref36/cit36 doi: 10.1016/0009-2614(88)85250-3 – ident: ref37/cit37 doi: 10.1149/1.3368694 – ident: ref17/cit17 doi: 10.1016/j.elecom.2004.09.007 – ident: ref29/cit29 doi: 10.1088/0957-4484/26/43/434004 – ident: ref9/cit9 doi: 10.1016/j.jpowsour.2006.02.018 – ident: ref18/cit18 doi: 10.1002/chem.201304744 – ident: ref4/cit4 doi: 10.1115/IMECE2015-52478 – ident: ref27/cit27 doi: 10.1524/zpch.2006.220.10.1483 – ident: ref2/cit2 doi: 10.1149/2.086202jes – ident: ref25/cit25 doi: 10.1021/je800678e – ident: ref19/cit19 doi: 10.1149/1.1448818 – ident: ref11/cit11 doi: 10.1016/j.jpowsour.2008.07.053 – ident: ref13/cit13 doi: 10.1039/C4CP06121G – ident: ref12/cit12 doi: 10.1021/jp506563j – ident: ref8/cit8 doi: 10.1039/B006677J – ident: ref40/cit40 doi: 10.1063/1.3359469 – ident: ref44/cit44 doi: 10.1063/1.2001632 – ident: ref39/cit39 doi: 10.1149/1.1517579 – ident: ref15/cit15 doi: 10.1016/j.electacta.2016.02.099 – ident: ref6/cit6 doi: 10.1016/j.electacta.2006.03.016 – ident: ref31/cit31 doi: 10.1021/jp211619y – ident: ref22/cit22 doi: 10.1149/1.1391827 – ident: ref28/cit28 doi: 10.1088/0957-4484/26/35/354003 – ident: ref21/cit21 doi: 10.1016/S0013-4686(96)00444-6 – ident: ref47/cit47 doi: 10.1002/9781118003350 – ident: ref10/cit10 doi: 10.1016/j.jpowsour.2006.02.077 – ident: ref23/cit23 doi: 10.1149/1.1837561 – ident: ref46/cit46 doi: 10.1103/PhysRevA.75.052503 – ident: ref38/cit38 doi: 10.1039/c3cp51682b |
SSID | ssj0025286 |
Score | 2.591856 |
Snippet | This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5691 |
SubjectTerms | anions cations density functional theory electrochemical stability window electrochemistry electrodes electrolyte ionic liquid ionic liquids lithium lithium batteries Lithium battery methodology oxidation oxidation potential redox potential reduction potential structure-activity relationships thermodynamics |
Title | Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries |
URI | http://dx.doi.org/10.1021/acs.jpcb.6b03433 https://www.ncbi.nlm.nih.gov/pubmed/27266487 https://www.proquest.com/docview/1801439132 https://www.proquest.com/docview/2000442155 https://www.osti.gov/biblio/1392110 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oPejF96O-siZ68EAFFpblqI1GjXrRRm9kHxDRtlSBmPrrnV1ojY8ar7C7gdmZzPdlJt8gtA8ZlXGmqOWFKrY8x6UWk0loeYkP6YLZKjTzU65v6HnHu3zwHz5lcr5X8F3niMu89TSQokWFTTxCptGMSyGGNQxq347Jle-aqY6QjjQdskclyd9O0IlI5l8SUSODgJoMMk2yOVuophblRqNQ95g8t8pCtOT7TwXHf_zHIpqvMSc-rpxkCU3F_WU02x6NeltB6Wk1DEfW6gEYIKhpmh3ie-Ds2RvOEnzRSxV_z7pp2bNOIPcpfKFldfFV-lKmKsc8x_Ux3SHgVwxoGN4Vj7AeVyqeQMpXUefs9K59btUzGCwOXKiAi_PiIODUE9JJvITZMrT9BFitUooEPmXUDrgtOaWAFDnwaU5owBNic99RJOFkDTX6WT_eQJi5XAjKqSJUAmtVTIFnCEmYUcX3RRMdgI2iOobyyJTHXScyD8FwUW24JjoaXVwkayFzPU-j-8eOw_GOQSXi8cfaLe0LEQAQraIrdbuRLCIAypoqN9HeyEUiuCNdXOH9OCvha7UMDwmB3E9e45r6OYAsv4nWK_8af48bAFQC9rj5TytsoTnAbrRqXdxGjeK1jHcAHxVi1wTGB9CnCXQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5UAvfdAWtvRhJHroIUsSJ45zpCvQbrtwoKBys_xI1JRlQ5tEFfz6jp1kKxCg9prYljMea75PM_kGYAcjKpfcMC9KTeZFQcg8rvPUi_IYwwX3Ter6pxwesclp9PksPluBoP8XBjdR4UqVS-L_VRcIdu2zH5dajZjyaUTpI1hFLBJap94bf11yrDh0zR0xKllW5PeZybtWsPFIVzfi0aDEe3U_1nQx5-ApHC9360pNzkdNrUb6-paQ4399zjN40iFQste6zHNYyRbrsDbuG7-9gGK_bY2jOy0BgoDUldBekW_I4MvfpMzJ9KIw8rqcF82F9wkjoSFTK7JLZsXPpjAVkRXplplfIZoliI3xXf0dx5NW0xMp-ks4Pdg_GU-8riODJ5EZ1XiMUZYkkkVKB3mUc1-nfpwjxzXG0CRmnPmJ9LVkDHGjRHYtKUtkTn0ZB4bmkr6CwaJcZJtAeCiVYpIZyjRyWMMN-onSlDuN_FgN4QPaSHQ3qhIuWR4Gwj1Ew4nOcEPY7c9P6E7W3HbXmD8w4-NyxmUr6fHA2C3rEgLhiNXU1bb4SNcCYbMlzkPY7j1F4BnZVItcZGWDu7WiPDRFqn__mNBl0xFyxUPYaN1suZ8wQeCEXPL1P1rhPaxNTg5nYjY9-rIFjxHVsbao8Q0M6l9N9haRU63eubvyB9uGEdU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VRQIulG-WFjASHDhkm8SxkxzbpasulAoJCr1Z_ohFYLtZSCLU_vqOnWQlEK3gmtjWxJ7RvKdx3gC8xIyayczwIMlNESRRzINM2zxILMN0kYUm9_1T3h_xg-Pk7Qk72QA2_AuDRtS4Uu2L-C6qV8b2CgPRjnv-baXVhKuQJpReg-uuaucce3f6cc2zWOwbPGJmcswoHKqTf1vB5SRd_5aTRhXG1uV40-ed2SZ8Xlvsr5t8n7SNmujzP8Qc__uT7sDtHomS3c517sJGsbwHN6dDA7j7UO53LXJ0rylAEJj6q7Rn5Asy-eoXqSyZn5ZGnleLsj0N9jAjGjJ3YrvksPzRlqYmsib9MoszRLUEMTK-a77ieNJpeyJVfwDHs_1P04Og78wQSGRIDR5nUqSp5InSkU1sFuo8ZBa5rjGGpoxnPExlqCXniB8lsmxJeSotDSWLDLWSPoTRsloWj4FksVSKS24o18hlTWbQX5SmmdfKZ2oMr3CPRB9ZtfBF8zgS_iFunOg3bgw7wxkK3cubuy4biytmvF7PWHXSHleM3XJuIRCWOG1d7S4h6UYgfHYEegwvBm8ReEau5CKXRdWitU6ch-ZI-S8fE_uqOkIvNoZHnaut7YlTBFDIKZ_84y48hxsf3szE4fzo3RbcQnDHu7uN2zBqfrbFUwRQjXrmw-UCsvkUWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Stability+Window+of+Imidazolium-Based+Ionic+Liquids+as+Electrolytes+for+Lithium+Batteries&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Kazemiabnavi%2C+Saeed&rft.au=Zhang%2C+Zhengcheng&rft.au=Thornton%2C+Katsuyo&rft.au=Banerjee%2C+Soumik&rft.date=2016-06-30&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=120&rft.issue=25&rft.spage=5691&rft_id=info:doi/10.1021%2Facs.jpcb.6b03433&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |