Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease
Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flav...
Saved in:
Published in | ACS omega Vol. 3; no. 12; pp. 18132 - 18141 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
31.12.2018
|
Online Access | Get full text |
ISSN | 2470-1343 2470-1343 |
DOI | 10.1021/acsomega.8b01002 |
Cover
Loading…
Abstract | Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells. |
---|---|
AbstractList | Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (
) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells. Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant ( K i ) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells. Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells. Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells. |
Author | Garg, Neha Singh, Sanjeev Kumar Mysorekar, Indira U Kumar, Ankur Liang, Brooke Aarthy, Murali Giri, Rajanish |
AuthorAffiliation | Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory Department of Pathology and Immunology BioX Center Department of Obstetrics and Gynecology Center for Reproductive Health Sciences |
AuthorAffiliation_xml | – name: Center for Reproductive Health Sciences – name: Department of Pathology and Immunology – name: Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory – name: BioX Center – name: Department of Obstetrics and Gynecology |
Author_xml | – sequence: 1 givenname: Ankur surname: Kumar fullname: Kumar, Ankur – sequence: 2 givenname: Brooke surname: Liang fullname: Liang, Brooke – sequence: 3 givenname: Murali surname: Aarthy fullname: Aarthy, Murali organization: Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory – sequence: 4 givenname: Sanjeev Kumar surname: Singh fullname: Singh, Sanjeev Kumar organization: Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory – sequence: 5 givenname: Neha orcidid: 0000-0003-2227-8292 surname: Garg fullname: Garg, Neha organization: BioX Center – sequence: 6 givenname: Indira U surname: Mysorekar fullname: Mysorekar, Indira U – sequence: 7 givenname: Rajanish orcidid: 0000-0002-2046-836X surname: Giri fullname: Giri, Rajanish email: rajanishgiri@iitmandi.ac.in organization: BioX Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30613818$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1UREvpnRPKkQMp_ortXJCgonSlqiAVOHCxJs5k10s2bu0Edf97vN1d1CLBydbMe7-x5z0nB0MYkJCXjJ4yytlbcCmscA6npqGMUv6EHHGpacmEFAcP7ofkJKUlpZQpww1Xz8ihoIoJw8wRMRfrNoa7tVv0IYbbyQ9YzIaFb_yYih_-JxTffZxScXXNP5RX16L4EsOIkPAFedpBn_Bkdx6Tb-cfv55dlJefP83O3l-WIOt6LI3pXCtqqXTbScNq3fFc55I55YSSilWi0x01lXYdYKN1VWGjUGRNrSupxTGZbbltgKW9iX4FcW0DeHtfCHFuIY7e9WjB8MpJkz-KtQRnAAUw6SjQxmRek1nvtqybqVlh63AYI_SPoI87g1_YefhllWBc3T_m9Q6w2RWm0a58ctj3MGCYkuVMyapSzKgsffVw1p8h-9VngdoKXAwpReys8yOMPmxG-94yajcx233MdhdzNtK_jHv2fyxvtpbcscswxSFH9m_5b7q5uY8 |
CitedBy_id | crossref_primary_10_1371_journal_pone_0307902 crossref_primary_10_2174_0929867327666200812215852 crossref_primary_10_1016_j_cmi_2020_05_016 crossref_primary_10_2174_1570180819666220106110133 crossref_primary_10_1016_j_antiviral_2020_104707 crossref_primary_10_3390_v13010013 crossref_primary_10_1016_j_abb_2020_108631 crossref_primary_10_1039_C9NJ05225A crossref_primary_10_1016_j_jiph_2020_03_016 crossref_primary_10_1038_s41598_020_65489_w crossref_primary_10_3390_ph15020115 crossref_primary_10_1080_07391102_2022_2045223 crossref_primary_10_1016_j_virol_2023_07_012 crossref_primary_10_1016_j_bmcl_2020_126965 crossref_primary_10_1080_07391102_2020_1845976 crossref_primary_10_3390_pathogens8030128 crossref_primary_10_12688_f1000research_23829_2 crossref_primary_10_1186_s12915_022_01344_w crossref_primary_10_12688_f1000research_23829_1 crossref_primary_10_1080_07391102_2020_1778535 crossref_primary_10_25259_JSSTD_39_2020 crossref_primary_10_1016_j_virusres_2024_199432 crossref_primary_10_3389_fphar_2020_01167 crossref_primary_10_3390_v15051068 crossref_primary_10_1080_07391102_2020_1797538 crossref_primary_10_1007_s40262_020_00924_9 crossref_primary_10_1007_s11684_021_0834_9 crossref_primary_10_1016_j_ejmech_2019_111925 crossref_primary_10_1016_j_bpc_2023_107042 crossref_primary_10_1002_rmv_2413 crossref_primary_10_1080_07391102_2023_2255648 crossref_primary_10_1016_j_virusres_2024_199419 crossref_primary_10_3390_microorganisms11102427 crossref_primary_10_1016_j_abb_2020_108342 crossref_primary_10_1016_j_intimp_2023_111088 crossref_primary_10_1016_j_virol_2020_07_017 crossref_primary_10_3390_v17010074 crossref_primary_10_1016_j_antiviral_2020_104876 crossref_primary_10_2147_IDR_S264882 crossref_primary_10_1016_j_virol_2023_04_012 crossref_primary_10_1016_j_autrev_2020_102567 crossref_primary_10_1155_2019_3947245 crossref_primary_10_1186_s12985_020_01342_w crossref_primary_10_1371_journal_pntd_0010291 crossref_primary_10_1002_jcb_30352 crossref_primary_10_1016_j_bioorg_2020_104205 crossref_primary_10_2147_JEP_S375349 crossref_primary_10_1016_j_msec_2021_112438 crossref_primary_10_1021_acsomega_0c01353 crossref_primary_10_1038_s41598_023_43185_9 crossref_primary_10_1007_s00296_020_04694_2 crossref_primary_10_3389_fimmu_2020_522047 crossref_primary_10_3390_v15051211 crossref_primary_10_1080_07391102_2019_1696231 crossref_primary_10_1080_07391102_2021_1943528 crossref_primary_10_1590_1678_4324_2022210032 crossref_primary_10_3390_v13010036 crossref_primary_10_1080_14728222_2021_1952987 crossref_primary_10_1039_D0CP02254C crossref_primary_10_3389_fmicb_2019_02725 crossref_primary_10_3389_fmed_2022_921060 crossref_primary_10_2174_1570193X18666210204113412 crossref_primary_10_3390_v14010044 crossref_primary_10_1016_j_ejps_2022_106220 crossref_primary_10_1016_j_xphs_2021_06_029 crossref_primary_10_1080_07391102_2019_1709546 crossref_primary_10_1080_21505594_2019_1656503 crossref_primary_10_2174_1568026623666221122121330 crossref_primary_10_1002_mco2_56 crossref_primary_10_1016_j_virol_2021_01_014 crossref_primary_10_1016_j_clim_2020_108393 crossref_primary_10_1016_j_jphs_2023_02_004 crossref_primary_10_1021_acs_jcim_9b00809 crossref_primary_10_1021_acs_jpcb_1c00609 crossref_primary_10_1007_s11262_022_01898_5 crossref_primary_10_1016_j_biochi_2019_05_004 crossref_primary_10_1080_22221751_2023_2174777 crossref_primary_10_1016_j_procbio_2022_07_026 crossref_primary_10_1080_01932691_2024_2302069 crossref_primary_10_1016_j_cbi_2023_110750 crossref_primary_10_1080_07391102_2019_1689851 crossref_primary_10_1080_07391102_2021_1948447 crossref_primary_10_1016_j_medidd_2021_100085 |
Cites_doi | 10.1080/14756366.2017.1306521 10.1016/j.antiviral.2016.12.018 10.1016/j.tmaid.2016.07.002 10.1128/AAC.03543-14 10.1038/srep21994 10.1016/S0140-6736(16)00562-6 10.1021/cr500233q 10.1128/JVI.00045-17 10.1016/j.ijbiomac.2016.10.008 10.1007/s00705-006-0903-z 10.1128/JVI.06225-11 10.1128/AAC.39.2.374 10.1007/978-3-540-79086-0_4 10.1016/S0140-6736(16)00257-9 10.1126/science.aag2419 10.1016/j.jmb.2017.10.018 10.2807/1560-7917.ES2014.19.9.20720 10.1056/NEJMsr1604338 10.1016/0042-6822(90)90099-D 10.1126/science.aaf5316 10.1016/j.jmb.2008.11.026 10.1186/1546-0096-7-9 10.1146/annurev-biophys-042910-155245 10.1021/acsomega.6b00086 10.12688/f1000research.8013.1 10.1021/acs.jmedchem.6b01021 10.1089/jir.2014.0038 10.1038/nrneurol.2016.30 10.1038/nrmicro1928 10.1016/j.bbrc.2012.09.112 10.1128/CMR.11.4.614 10.1016/j.ijbiomac.2017.01.098 10.3201/eid1408.080287 10.1093/nar/gkt1068 10.1016/j.antiviral.2009.11.009 10.1038/cr.2016.116 10.1016/j.antiviral.2016.12.016 10.1038/nrd1468 10.1073/pnas.1307337110 10.1016/j.antiviral.2017.02.002 10.1038/sj.jp.7211208 10.1021/jm070593p 10.1002/1873-3468.12443 10.1074/jbc.M107360200 10.1002/pro.2480 10.2217/fvl.10.39 10.1021/cr010184f 10.1128/AAC.00855-10 10.1038/cr.2017.88 10.1007/s12250-013-3390-x 10.1016/j.ijbiomac.2017.06.105 10.1002/art.11304 10.1126/science.2183354 10.1038/nsmb1073 10.1038/emi.2016.100 10.1084/jem.20170957 10.3390/v8120322 10.1128/AAC.01281-13 10.1016/j.bmc.2016.03.022 10.1002/cmdc.201200497 10.3389/fcimb.2016.00144 10.1080/07391102.2016.1190791 10.1016/j.cell.2016.05.008 10.1056/NEJMoa1600651 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society 2018 American Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society 2018 American Chemical Society |
DBID | N~. AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/acsomega.8b01002 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 18141 |
ExternalDocumentID | oai_doaj_org_article_a825c48001e94ac8ae3a14c0a0b8992b PMC6312647 30613818 10_1021_acsomega_8b01002 c578704239 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD091218 |
GroupedDBID | 53G ABUCX ACS ADACO ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS BCNDV EBS EJD GROUPED_DOAJ HYE N~. OK1 ROL RPM VF5 AAFWJ AAHBH AAYXX ABBLG ADUCK AFPKN AOIJS CITATION M~E NPM 7X8 5PM |
ID | FETCH-LOGICAL-a499t-88fcd39467df48197f2499241c6c3646153f7f0857cfaeb7755eb6e3992975473 |
IEDL.DBID | N~. |
ISSN | 2470-1343 |
IngestDate | Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 13:38:55 EDT 2025 Fri Jul 11 15:35:38 EDT 2025 Mon Jul 21 06:04:57 EDT 2025 Tue Jul 01 01:21:20 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Thu Aug 27 13:42:09 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-88fcd39467df48197f2499241c6c3646153f7f0857cfaeb7755eb6e3992975473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2227-8292 0000-0002-2046-836X |
OpenAccessLink | http://dx.doi.org/10.1021/acsomega.8b01002 |
PMID | 30613818 |
PQID | 2164556186 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a825c48001e94ac8ae3a14c0a0b8992b pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312647 proquest_miscellaneous_2164556186 pubmed_primary_30613818 crossref_citationtrail_10_1021_acsomega_8b01002 crossref_primary_10_1021_acsomega_8b01002 acs_journals_10_1021_acsomega_8b01002 |
ProviderPackageCode | ACS ABUCX AFEFF VF5 N~. CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Dec-31 |
PublicationDateYYYYMMDD | 2018-12-31 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref38/cit38 Anderson J. (ref24/cit24) 2009 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref45/cit45 doi: 10.1080/14756366.2017.1306521 – ident: ref54/cit54 doi: 10.1016/j.antiviral.2016.12.018 – ident: ref40/cit40 doi: 10.1016/j.tmaid.2016.07.002 – ident: ref44/cit44 doi: 10.1128/AAC.03543-14 – ident: ref22/cit22 doi: 10.1038/srep21994 – ident: ref4/cit4 doi: 10.1016/S0140-6736(16)00562-6 – ident: ref46/cit46 doi: 10.1021/cr500233q – ident: ref29/cit29 doi: 10.1128/JVI.00045-17 – ident: ref58/cit58 doi: 10.1016/j.ijbiomac.2016.10.008 – ident: ref8/cit8 doi: 10.1007/s00705-006-0903-z – ident: ref12/cit12 doi: 10.1128/JVI.06225-11 – ident: ref42/cit42 doi: 10.1128/AAC.39.2.374 – start-page: 85 volume-title: Antiviral Strategies year: 2009 ident: ref24/cit24 doi: 10.1007/978-3-540-79086-0_4 – ident: ref6/cit6 doi: 10.1016/S0140-6736(16)00257-9 – ident: ref13/cit13 doi: 10.1126/science.aag2419 – ident: ref17/cit17 doi: 10.1016/j.jmb.2017.10.018 – ident: ref3/cit3 doi: 10.2807/1560-7917.ES2014.19.9.20720 – ident: ref2/cit2 doi: 10.1056/NEJMsr1604338 – ident: ref52/cit52 doi: 10.1016/0042-6822(90)90099-D – ident: ref7/cit7 doi: 10.1126/science.aaf5316 – ident: ref50/cit50 doi: 10.1016/j.jmb.2008.11.026 – ident: ref36/cit36 doi: 10.1186/1546-0096-7-9 – ident: ref62/cit62 doi: 10.1146/annurev-biophys-042910-155245 – ident: ref59/cit59 doi: 10.1021/acsomega.6b00086 – ident: ref47/cit47 doi: 10.12688/f1000research.8013.1 – ident: ref49/cit49 doi: 10.1021/acs.jmedchem.6b01021 – ident: ref35/cit35 doi: 10.1089/jir.2014.0038 – ident: ref5/cit5 doi: 10.1038/nrneurol.2016.30 – ident: ref18/cit18 doi: 10.1038/nrmicro1928 – ident: ref19/cit19 doi: 10.1016/j.bbrc.2012.09.112 – ident: ref23/cit23 doi: 10.1128/CMR.11.4.614 – ident: ref57/cit57 doi: 10.1016/j.ijbiomac.2017.01.098 – ident: ref65/cit65 doi: 10.3201/eid1408.080287 – ident: ref55/cit55 doi: 10.1093/nar/gkt1068 – ident: ref10/cit10 doi: 10.1016/j.antiviral.2009.11.009 – ident: ref14/cit14 doi: 10.1038/cr.2016.116 – ident: ref15/cit15 doi: 10.1016/j.antiviral.2016.12.016 – ident: ref30/cit30 doi: 10.1038/nrd1468 – ident: ref20/cit20 doi: 10.1073/pnas.1307337110 – ident: ref28/cit28 doi: 10.1016/j.antiviral.2017.02.002 – ident: ref38/cit38 doi: 10.1038/sj.jp.7211208 – ident: ref56/cit56 doi: 10.1021/jm070593p – ident: ref48/cit48 doi: 10.1002/1873-3468.12443 – ident: ref31/cit31 doi: 10.1074/jbc.M107360200 – ident: ref27/cit27 doi: 10.1128/AAC.03543-14 – ident: ref21/cit21 doi: 10.1002/pro.2480 – ident: ref9/cit9 doi: 10.2217/fvl.10.39 – ident: ref25/cit25 doi: 10.1021/cr010184f – ident: ref26/cit26 doi: 10.1128/AAC.00855-10 – ident: ref33/cit33 doi: 10.1038/cr.2017.88 – ident: ref32/cit32 doi: 10.1007/s12250-013-3390-x – ident: ref63/cit63 doi: 10.1016/j.ijbiomac.2017.06.105 – ident: ref37/cit37 doi: 10.1002/art.11304 – ident: ref41/cit41 doi: 10.1126/science.2183354 – ident: ref11/cit11 doi: 10.1038/nsmb1073 – ident: ref39/cit39 doi: 10.1038/emi.2016.100 – ident: ref34/cit34 doi: 10.1084/jem.20170957 – ident: ref53/cit53 doi: 10.3390/v8120322 – ident: ref43/cit43 doi: 10.1128/AAC.01281-13 – ident: ref61/cit61 doi: 10.1016/j.bmc.2016.03.022 – ident: ref51/cit51 doi: 10.1002/cmdc.201200497 – ident: ref16/cit16 doi: 10.3389/fcimb.2016.00144 – ident: ref60/cit60 doi: 10.1080/07391102.2016.1190791 – ident: ref64/cit64 doi: 10.1016/j.cell.2016.05.008 – ident: ref1/cit1 doi: 10.1056/NEJMoa1600651 |
SSID | ssj0001682826 |
Score | 2.3923707 |
Snippet | Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important... Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18132 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZKLuWCoC2wPKqtVA49LFk_st4cSQRKKzVCSqkQF8t2bLJq2aBscuDfM7OPKEEoXLh67V1rZuT5Ptv7DSHfuaNjJ7mMmO_6SLBYR4DydQRY3jpU_IrLf2F-D5PBjfh127ldKfWFd8IqeeDKcG0NFMYKgDXUdYW2qXZcU2FjHRugCszg6gs5b4VMlbsrCTAJ1pxLQh5ra1tMH9y9Pk9NTMtdlC1oWstGpWj_a0jz5YXJlQx0tUt2augYXlRT3iMfXP6JfOw3Fds-k3TwNMZbKXYCJBxeDgAy_JlPMpPNi_Au-6fDv9lsUYTDEetFwxEPr1GkAdLYF3JzdfmnP4jqygiRBoYyj9LU2zHvwiI39gJyuvTAosDG1CaWJwJBnJcexeut185I2ek4kzgUoe1KrDa8T1r5NHeHJEwtitjR2FAPVNEIrSnznFmB1ali7QNyBnZSdWQXqjy0ZlQ19lS1PQPSbiypbC0vjlUu_m8Y8WM54rGS1tjQt4fOWfZDUeyyAUJF1aGi3gqVgHxrXKvAM3gyonM3XRSKAWnEOqFpEpCDytXLT3FEPABrAiLXgmBtLutP8mxSCnUnnALelEfvMfljsg1YLa00Jk9Iaz5buFPAQ3PztQz9Z4hWBsA priority: 102 providerName: Directory of Open Access Journals |
Title | Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease |
URI | http://dx.doi.org/10.1021/acsomega.8b01002 https://www.ncbi.nlm.nih.gov/pubmed/30613818 https://www.proquest.com/docview/2164556186 https://pubmed.ncbi.nlm.nih.gov/PMC6312647 https://doaj.org/article/a825c48001e94ac8ae3a14c0a0b8992b |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYmdtgu08bGlg2qTGIHDob4R2P3CBWom0SFVEBoF8t2bRptSyfSHnbhb-c9Ny0UIbRLDontRO-95H2f7XyPkF0R2DgooSiPvUglLywFlG8pYHkfUPGrSP_CnA7LwYX8cdW9upfJebyCz9mB9c30T7i2-9oVLOlGvuSlVhjBw9v9-_mUErhDqq7GpSooE1K0q5JPDYK5yDdruShJ9j-FMx9vl3yQf07ekjctcMwPF55-R16EepO86i_rtb0nevBvjHtS_AQoOAwO8DH_Xk8qV82a_Gf1y-aX1c28yYcjfkSHI5GfoUQDJLEP5OLk-Lw_oG1dBGqBn8yo1tGPRQ8-ceMoIaOrCBwKLMx86UUpEcJFFVG63kcbnFLdbnBlQAnansJaw1tko57W4RPJtUcJO1Y4FoEoOmkt41FwL7E2VWFjRr6BnUwb141JS9acmaU9TWvPjBwsLWl8Ky6ONS5-P9Njb9Xj70JY45m2R-icVTuUxE4nIE5M-4YZC1zXS8C_LPSk9doGYZn0hS0ccEruMvJ16VoDnsF1EVuH6bwxHCgjVgnVZUY-Lly9upVAvAOgJiNqLQjWnmX9Sl1Nkkx3KRigTfX5P034hbwGMKYXIpLbZGN2Mw87AHhmrgOAvz_qpOkCOJ7eHndS7N8BVub82A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0heqCXqgXaptCSSu2hB0P8sXH2CAi0tBAhARXqxbK9NhtBsxXZPfTS387YmywsQqhXx3asmUnmjcd-A_CFOzp0kkvCfN8TwTJNEOVrgljeusD4lcW7MCdlPrgQ3y97l0tAu7swuIgGZ2piEv-eXYDuYNv4t7vS24XJaKSPfIFYRARDLv9t32-r5BhCxCJrTMiMUC54m5x8apLgkmyz4JIic_9TcPPxqckHbujwNbxq8WO6O1P4G1hy9Sqs7Hdl29agGPwdhqMpdoSROE6OKDI9qkeVqSZN-qu61unP6nbapOUZ2yPlGU9PA1MD-rJ1uDg8ON8fkLY8AtEYpkxIUXg75H380w29QMcuPYZSKGhqc8tzEZCclz4w2FuvnZGy13Mmd4GJti9DyeG3sFyPa_ce0sIGJjuaGepRpEZoTZnnzIpQoirTPoGvKCfVmnejYuaaUdXJU7XyTGCnk6SyLcd4KHVx88yIb_MRf2b8Gs_03QvKmfcLzNixAW1FtR-a0hjyWoEwmLq-0LbQjmsqbKYzg6ElMwl87lSrUDMhPaJrN542imHkGIqFFnkC72aqnr-KB9iD2CYBuWAEC2tZfFJXo8jWnXOKoFN--E8RbsHK4PzkWB0flT824CXis2LGK7kJy5PbqfuIGGhiPkWrvwOR7f9f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuFW_S8ggSHDi4jR8bJ0daWG15RJVKUcXFsh2bjdpmq2b3wIXfztibLCyqKq6O7Vgz48w3GfsbgNfc0dpJLgnzpSeCZZogytcEsbx1gfEri3dhvlT55ER8PB2dbsBouAuDi-hwpi4m8cOuvqx9zzBA97B9duF-6N3CZDRSSN5CPFIGY65-7f75tZJjGBELrTEhM0K54H2C8rpJgluy3Zpbiuz910HOf09O_uWKxvdgq8eQ6bul0u_DhmsfwJ2DoXTbQygmP-twPMVOMRrHyRFJpofttDHNvEu_N2c6_dZcLbq0Omb7pDrm6VFga0B_9ghOxh--HkxIXyKBaAxV5qQovK15iV-72gt07tJjOIXCpja3PBcBzXnpA4u99doZKUcjZ3IX2GhLGcoOP4bNdta6p5AWNrDZ0cxQjzGjEVpT5jmzIpSpyrRP4A3KSfUm3qmYvWZUDfJUvTwT2BskqWzPMx7KXZzfMOLtasTlkmPjhr77QTmrfoEdOzagvah-symNYa8VCIWpK4W2hXZcU2EznRkML5lJ4NWgWoWaCSkS3brZolMMo8dQMLTIE3iyVPXqVTxAH8Q3Ccg1I1hby_qTtplGxu6cUwSecvs_RfgSbh-9H6vPh9WnHbiLEK1YUks-g8351cI9Rxg0Ny-i0f8GYnIAhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxychloroquine+Inhibits+Zika+Virus+NS2B-NS3+Protease&rft.jtitle=ACS+omega&rft.au=Kumar%2C+Ankur&rft.au=Liang%2C+Brooke&rft.au=Aarthy%2C+Murali&rft.au=Singh%2C+Sanjeev+Kumar&rft.date=2018-12-31&rft.pub=American+Chemical+Society&rft.eissn=2470-1343&rft.volume=3&rft.issue=12&rft.spage=18132&rft.epage=18141&rft_id=info:doi/10.1021%2Facsomega.8b01002&rft_id=info%3Apmid%2F30613818&rft.externalDocID=PMC6312647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |