Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease

Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flav...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 3; no. 12; pp. 18132 - 18141
Main Authors Kumar, Ankur, Liang, Brooke, Aarthy, Murali, Singh, Sanjeev Kumar, Garg, Neha, Mysorekar, Indira U, Giri, Rajanish
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.12.2018
Online AccessGet full text
ISSN2470-1343
2470-1343
DOI10.1021/acsomega.8b01002

Cover

Loading…
Abstract Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.
AbstractList Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant ( ) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.
Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant ( K i ) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.
Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.
Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.
Author Garg, Neha
Singh, Sanjeev Kumar
Mysorekar, Indira U
Kumar, Ankur
Liang, Brooke
Aarthy, Murali
Giri, Rajanish
AuthorAffiliation Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory
Department of Pathology and Immunology
BioX Center
Department of Obstetrics and Gynecology
Center for Reproductive Health Sciences
AuthorAffiliation_xml – name: Center for Reproductive Health Sciences
– name: Department of Pathology and Immunology
– name: Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory
– name: BioX Center
– name: Department of Obstetrics and Gynecology
Author_xml – sequence: 1
  givenname: Ankur
  surname: Kumar
  fullname: Kumar, Ankur
– sequence: 2
  givenname: Brooke
  surname: Liang
  fullname: Liang, Brooke
– sequence: 3
  givenname: Murali
  surname: Aarthy
  fullname: Aarthy, Murali
  organization: Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory
– sequence: 4
  givenname: Sanjeev Kumar
  surname: Singh
  fullname: Singh, Sanjeev Kumar
  organization: Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Laboratory
– sequence: 5
  givenname: Neha
  orcidid: 0000-0003-2227-8292
  surname: Garg
  fullname: Garg, Neha
  organization: BioX Center
– sequence: 6
  givenname: Indira U
  surname: Mysorekar
  fullname: Mysorekar, Indira U
– sequence: 7
  givenname: Rajanish
  orcidid: 0000-0002-2046-836X
  surname: Giri
  fullname: Giri, Rajanish
  email: rajanishgiri@iitmandi.ac.in
  organization: BioX Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30613818$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1UREvpnRPKkQMp_ortXJCgonSlqiAVOHCxJs5k10s2bu0Edf97vN1d1CLBydbMe7-x5z0nB0MYkJCXjJ4yytlbcCmscA6npqGMUv6EHHGpacmEFAcP7ofkJKUlpZQpww1Xz8ihoIoJw8wRMRfrNoa7tVv0IYbbyQ9YzIaFb_yYih_-JxTffZxScXXNP5RX16L4EsOIkPAFedpBn_Bkdx6Tb-cfv55dlJefP83O3l-WIOt6LI3pXCtqqXTbScNq3fFc55I55YSSilWi0x01lXYdYKN1VWGjUGRNrSupxTGZbbltgKW9iX4FcW0DeHtfCHFuIY7e9WjB8MpJkz-KtQRnAAUw6SjQxmRek1nvtqybqVlh63AYI_SPoI87g1_YefhllWBc3T_m9Q6w2RWm0a58ctj3MGCYkuVMyapSzKgsffVw1p8h-9VngdoKXAwpReys8yOMPmxG-94yajcx233MdhdzNtK_jHv2fyxvtpbcscswxSFH9m_5b7q5uY8
CitedBy_id crossref_primary_10_1371_journal_pone_0307902
crossref_primary_10_2174_0929867327666200812215852
crossref_primary_10_1016_j_cmi_2020_05_016
crossref_primary_10_2174_1570180819666220106110133
crossref_primary_10_1016_j_antiviral_2020_104707
crossref_primary_10_3390_v13010013
crossref_primary_10_1016_j_abb_2020_108631
crossref_primary_10_1039_C9NJ05225A
crossref_primary_10_1016_j_jiph_2020_03_016
crossref_primary_10_1038_s41598_020_65489_w
crossref_primary_10_3390_ph15020115
crossref_primary_10_1080_07391102_2022_2045223
crossref_primary_10_1016_j_virol_2023_07_012
crossref_primary_10_1016_j_bmcl_2020_126965
crossref_primary_10_1080_07391102_2020_1845976
crossref_primary_10_3390_pathogens8030128
crossref_primary_10_12688_f1000research_23829_2
crossref_primary_10_1186_s12915_022_01344_w
crossref_primary_10_12688_f1000research_23829_1
crossref_primary_10_1080_07391102_2020_1778535
crossref_primary_10_25259_JSSTD_39_2020
crossref_primary_10_1016_j_virusres_2024_199432
crossref_primary_10_3389_fphar_2020_01167
crossref_primary_10_3390_v15051068
crossref_primary_10_1080_07391102_2020_1797538
crossref_primary_10_1007_s40262_020_00924_9
crossref_primary_10_1007_s11684_021_0834_9
crossref_primary_10_1016_j_ejmech_2019_111925
crossref_primary_10_1016_j_bpc_2023_107042
crossref_primary_10_1002_rmv_2413
crossref_primary_10_1080_07391102_2023_2255648
crossref_primary_10_1016_j_virusres_2024_199419
crossref_primary_10_3390_microorganisms11102427
crossref_primary_10_1016_j_abb_2020_108342
crossref_primary_10_1016_j_intimp_2023_111088
crossref_primary_10_1016_j_virol_2020_07_017
crossref_primary_10_3390_v17010074
crossref_primary_10_1016_j_antiviral_2020_104876
crossref_primary_10_2147_IDR_S264882
crossref_primary_10_1016_j_virol_2023_04_012
crossref_primary_10_1016_j_autrev_2020_102567
crossref_primary_10_1155_2019_3947245
crossref_primary_10_1186_s12985_020_01342_w
crossref_primary_10_1371_journal_pntd_0010291
crossref_primary_10_1002_jcb_30352
crossref_primary_10_1016_j_bioorg_2020_104205
crossref_primary_10_2147_JEP_S375349
crossref_primary_10_1016_j_msec_2021_112438
crossref_primary_10_1021_acsomega_0c01353
crossref_primary_10_1038_s41598_023_43185_9
crossref_primary_10_1007_s00296_020_04694_2
crossref_primary_10_3389_fimmu_2020_522047
crossref_primary_10_3390_v15051211
crossref_primary_10_1080_07391102_2019_1696231
crossref_primary_10_1080_07391102_2021_1943528
crossref_primary_10_1590_1678_4324_2022210032
crossref_primary_10_3390_v13010036
crossref_primary_10_1080_14728222_2021_1952987
crossref_primary_10_1039_D0CP02254C
crossref_primary_10_3389_fmicb_2019_02725
crossref_primary_10_3389_fmed_2022_921060
crossref_primary_10_2174_1570193X18666210204113412
crossref_primary_10_3390_v14010044
crossref_primary_10_1016_j_ejps_2022_106220
crossref_primary_10_1016_j_xphs_2021_06_029
crossref_primary_10_1080_07391102_2019_1709546
crossref_primary_10_1080_21505594_2019_1656503
crossref_primary_10_2174_1568026623666221122121330
crossref_primary_10_1002_mco2_56
crossref_primary_10_1016_j_virol_2021_01_014
crossref_primary_10_1016_j_clim_2020_108393
crossref_primary_10_1016_j_jphs_2023_02_004
crossref_primary_10_1021_acs_jcim_9b00809
crossref_primary_10_1021_acs_jpcb_1c00609
crossref_primary_10_1007_s11262_022_01898_5
crossref_primary_10_1016_j_biochi_2019_05_004
crossref_primary_10_1080_22221751_2023_2174777
crossref_primary_10_1016_j_procbio_2022_07_026
crossref_primary_10_1080_01932691_2024_2302069
crossref_primary_10_1016_j_cbi_2023_110750
crossref_primary_10_1080_07391102_2019_1689851
crossref_primary_10_1080_07391102_2021_1948447
crossref_primary_10_1016_j_medidd_2021_100085
Cites_doi 10.1080/14756366.2017.1306521
10.1016/j.antiviral.2016.12.018
10.1016/j.tmaid.2016.07.002
10.1128/AAC.03543-14
10.1038/srep21994
10.1016/S0140-6736(16)00562-6
10.1021/cr500233q
10.1128/JVI.00045-17
10.1016/j.ijbiomac.2016.10.008
10.1007/s00705-006-0903-z
10.1128/JVI.06225-11
10.1128/AAC.39.2.374
10.1007/978-3-540-79086-0_4
10.1016/S0140-6736(16)00257-9
10.1126/science.aag2419
10.1016/j.jmb.2017.10.018
10.2807/1560-7917.ES2014.19.9.20720
10.1056/NEJMsr1604338
10.1016/0042-6822(90)90099-D
10.1126/science.aaf5316
10.1016/j.jmb.2008.11.026
10.1186/1546-0096-7-9
10.1146/annurev-biophys-042910-155245
10.1021/acsomega.6b00086
10.12688/f1000research.8013.1
10.1021/acs.jmedchem.6b01021
10.1089/jir.2014.0038
10.1038/nrneurol.2016.30
10.1038/nrmicro1928
10.1016/j.bbrc.2012.09.112
10.1128/CMR.11.4.614
10.1016/j.ijbiomac.2017.01.098
10.3201/eid1408.080287
10.1093/nar/gkt1068
10.1016/j.antiviral.2009.11.009
10.1038/cr.2016.116
10.1016/j.antiviral.2016.12.016
10.1038/nrd1468
10.1073/pnas.1307337110
10.1016/j.antiviral.2017.02.002
10.1038/sj.jp.7211208
10.1021/jm070593p
10.1002/1873-3468.12443
10.1074/jbc.M107360200
10.1002/pro.2480
10.2217/fvl.10.39
10.1021/cr010184f
10.1128/AAC.00855-10
10.1038/cr.2017.88
10.1007/s12250-013-3390-x
10.1016/j.ijbiomac.2017.06.105
10.1002/art.11304
10.1126/science.2183354
10.1038/nsmb1073
10.1038/emi.2016.100
10.1084/jem.20170957
10.3390/v8120322
10.1128/AAC.01281-13
10.1016/j.bmc.2016.03.022
10.1002/cmdc.201200497
10.3389/fcimb.2016.00144
10.1080/07391102.2016.1190791
10.1016/j.cell.2016.05.008
10.1056/NEJMoa1600651
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society 2018 American Chemical Society
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acsomega.8b01002
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 18141
ExternalDocumentID oai_doaj_org_article_a825c48001e94ac8ae3a14c0a0b8992b
PMC6312647
30613818
10_1021_acsomega_8b01002
c578704239
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD091218
GroupedDBID 53G
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
EJD
GROUPED_DOAJ
HYE
N~.
OK1
ROL
RPM
VF5
AAFWJ
AAHBH
AAYXX
ABBLG
ADUCK
AFPKN
AOIJS
CITATION
M~E
NPM
7X8
5PM
ID FETCH-LOGICAL-a499t-88fcd39467df48197f2499241c6c3646153f7f0857cfaeb7755eb6e3992975473
IEDL.DBID N~.
ISSN 2470-1343
IngestDate Wed Aug 27 01:30:18 EDT 2025
Thu Aug 21 13:38:55 EDT 2025
Fri Jul 11 15:35:38 EDT 2025
Mon Jul 21 06:04:57 EDT 2025
Tue Jul 01 01:21:20 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-88fcd39467df48197f2499241c6c3646153f7f0857cfaeb7755eb6e3992975473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2227-8292
0000-0002-2046-836X
OpenAccessLink http://dx.doi.org/10.1021/acsomega.8b01002
PMID 30613818
PQID 2164556186
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a825c48001e94ac8ae3a14c0a0b8992b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312647
proquest_miscellaneous_2164556186
pubmed_primary_30613818
crossref_citationtrail_10_1021_acsomega_8b01002
crossref_primary_10_1021_acsomega_8b01002
acs_journals_10_1021_acsomega_8b01002
ProviderPackageCode ACS
ABUCX
AFEFF
VF5
N~.
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Dec-31
PublicationDateYYYYMMDD 2018-12-31
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref38/cit38
Anderson J. (ref24/cit24) 2009
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref45/cit45
  doi: 10.1080/14756366.2017.1306521
– ident: ref54/cit54
  doi: 10.1016/j.antiviral.2016.12.018
– ident: ref40/cit40
  doi: 10.1016/j.tmaid.2016.07.002
– ident: ref44/cit44
  doi: 10.1128/AAC.03543-14
– ident: ref22/cit22
  doi: 10.1038/srep21994
– ident: ref4/cit4
  doi: 10.1016/S0140-6736(16)00562-6
– ident: ref46/cit46
  doi: 10.1021/cr500233q
– ident: ref29/cit29
  doi: 10.1128/JVI.00045-17
– ident: ref58/cit58
  doi: 10.1016/j.ijbiomac.2016.10.008
– ident: ref8/cit8
  doi: 10.1007/s00705-006-0903-z
– ident: ref12/cit12
  doi: 10.1128/JVI.06225-11
– ident: ref42/cit42
  doi: 10.1128/AAC.39.2.374
– start-page: 85
  volume-title: Antiviral Strategies
  year: 2009
  ident: ref24/cit24
  doi: 10.1007/978-3-540-79086-0_4
– ident: ref6/cit6
  doi: 10.1016/S0140-6736(16)00257-9
– ident: ref13/cit13
  doi: 10.1126/science.aag2419
– ident: ref17/cit17
  doi: 10.1016/j.jmb.2017.10.018
– ident: ref3/cit3
  doi: 10.2807/1560-7917.ES2014.19.9.20720
– ident: ref2/cit2
  doi: 10.1056/NEJMsr1604338
– ident: ref52/cit52
  doi: 10.1016/0042-6822(90)90099-D
– ident: ref7/cit7
  doi: 10.1126/science.aaf5316
– ident: ref50/cit50
  doi: 10.1016/j.jmb.2008.11.026
– ident: ref36/cit36
  doi: 10.1186/1546-0096-7-9
– ident: ref62/cit62
  doi: 10.1146/annurev-biophys-042910-155245
– ident: ref59/cit59
  doi: 10.1021/acsomega.6b00086
– ident: ref47/cit47
  doi: 10.12688/f1000research.8013.1
– ident: ref49/cit49
  doi: 10.1021/acs.jmedchem.6b01021
– ident: ref35/cit35
  doi: 10.1089/jir.2014.0038
– ident: ref5/cit5
  doi: 10.1038/nrneurol.2016.30
– ident: ref18/cit18
  doi: 10.1038/nrmicro1928
– ident: ref19/cit19
  doi: 10.1016/j.bbrc.2012.09.112
– ident: ref23/cit23
  doi: 10.1128/CMR.11.4.614
– ident: ref57/cit57
  doi: 10.1016/j.ijbiomac.2017.01.098
– ident: ref65/cit65
  doi: 10.3201/eid1408.080287
– ident: ref55/cit55
  doi: 10.1093/nar/gkt1068
– ident: ref10/cit10
  doi: 10.1016/j.antiviral.2009.11.009
– ident: ref14/cit14
  doi: 10.1038/cr.2016.116
– ident: ref15/cit15
  doi: 10.1016/j.antiviral.2016.12.016
– ident: ref30/cit30
  doi: 10.1038/nrd1468
– ident: ref20/cit20
  doi: 10.1073/pnas.1307337110
– ident: ref28/cit28
  doi: 10.1016/j.antiviral.2017.02.002
– ident: ref38/cit38
  doi: 10.1038/sj.jp.7211208
– ident: ref56/cit56
  doi: 10.1021/jm070593p
– ident: ref48/cit48
  doi: 10.1002/1873-3468.12443
– ident: ref31/cit31
  doi: 10.1074/jbc.M107360200
– ident: ref27/cit27
  doi: 10.1128/AAC.03543-14
– ident: ref21/cit21
  doi: 10.1002/pro.2480
– ident: ref9/cit9
  doi: 10.2217/fvl.10.39
– ident: ref25/cit25
  doi: 10.1021/cr010184f
– ident: ref26/cit26
  doi: 10.1128/AAC.00855-10
– ident: ref33/cit33
  doi: 10.1038/cr.2017.88
– ident: ref32/cit32
  doi: 10.1007/s12250-013-3390-x
– ident: ref63/cit63
  doi: 10.1016/j.ijbiomac.2017.06.105
– ident: ref37/cit37
  doi: 10.1002/art.11304
– ident: ref41/cit41
  doi: 10.1126/science.2183354
– ident: ref11/cit11
  doi: 10.1038/nsmb1073
– ident: ref39/cit39
  doi: 10.1038/emi.2016.100
– ident: ref34/cit34
  doi: 10.1084/jem.20170957
– ident: ref53/cit53
  doi: 10.3390/v8120322
– ident: ref43/cit43
  doi: 10.1128/AAC.01281-13
– ident: ref61/cit61
  doi: 10.1016/j.bmc.2016.03.022
– ident: ref51/cit51
  doi: 10.1002/cmdc.201200497
– ident: ref16/cit16
  doi: 10.3389/fcimb.2016.00144
– ident: ref60/cit60
  doi: 10.1080/07391102.2016.1190791
– ident: ref64/cit64
  doi: 10.1016/j.cell.2016.05.008
– ident: ref1/cit1
  doi: 10.1056/NEJMoa1600651
SSID ssj0001682826
Score 2.3923707
Snippet Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important...
Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18132
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZKLuWCoC2wPKqtVA49LFk_st4cSQRKKzVCSqkQF8t2bLJq2aBscuDfM7OPKEEoXLh67V1rZuT5Ptv7DSHfuaNjJ7mMmO_6SLBYR4DydQRY3jpU_IrLf2F-D5PBjfh127ldKfWFd8IqeeDKcG0NFMYKgDXUdYW2qXZcU2FjHRugCszg6gs5b4VMlbsrCTAJ1pxLQh5ra1tMH9y9Pk9NTMtdlC1oWstGpWj_a0jz5YXJlQx0tUt2augYXlRT3iMfXP6JfOw3Fds-k3TwNMZbKXYCJBxeDgAy_JlPMpPNi_Au-6fDv9lsUYTDEetFwxEPr1GkAdLYF3JzdfmnP4jqygiRBoYyj9LU2zHvwiI39gJyuvTAosDG1CaWJwJBnJcexeut185I2ek4kzgUoe1KrDa8T1r5NHeHJEwtitjR2FAPVNEIrSnznFmB1ali7QNyBnZSdWQXqjy0ZlQ19lS1PQPSbiypbC0vjlUu_m8Y8WM54rGS1tjQt4fOWfZDUeyyAUJF1aGi3gqVgHxrXKvAM3gyonM3XRSKAWnEOqFpEpCDytXLT3FEPABrAiLXgmBtLutP8mxSCnUnnALelEfvMfljsg1YLa00Jk9Iaz5buFPAQ3PztQz9Z4hWBsA
  priority: 102
  providerName: Directory of Open Access Journals
Title Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease
URI http://dx.doi.org/10.1021/acsomega.8b01002
https://www.ncbi.nlm.nih.gov/pubmed/30613818
https://www.proquest.com/docview/2164556186
https://pubmed.ncbi.nlm.nih.gov/PMC6312647
https://doaj.org/article/a825c48001e94ac8ae3a14c0a0b8992b
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYmdtgu08bGlg2qTGIHDob4R2P3CBWom0SFVEBoF8t2bRptSyfSHnbhb-c9Ny0UIbRLDontRO-95H2f7XyPkF0R2DgooSiPvUglLywFlG8pYHkfUPGrSP_CnA7LwYX8cdW9upfJebyCz9mB9c30T7i2-9oVLOlGvuSlVhjBw9v9-_mUErhDqq7GpSooE1K0q5JPDYK5yDdruShJ9j-FMx9vl3yQf07ekjctcMwPF55-R16EepO86i_rtb0nevBvjHtS_AQoOAwO8DH_Xk8qV82a_Gf1y-aX1c28yYcjfkSHI5GfoUQDJLEP5OLk-Lw_oG1dBGqBn8yo1tGPRQ8-ceMoIaOrCBwKLMx86UUpEcJFFVG63kcbnFLdbnBlQAnansJaw1tko57W4RPJtUcJO1Y4FoEoOmkt41FwL7E2VWFjRr6BnUwb141JS9acmaU9TWvPjBwsLWl8Ky6ONS5-P9Njb9Xj70JY45m2R-icVTuUxE4nIE5M-4YZC1zXS8C_LPSk9doGYZn0hS0ccEruMvJ16VoDnsF1EVuH6bwxHCgjVgnVZUY-Lly9upVAvAOgJiNqLQjWnmX9Sl1Nkkx3KRigTfX5P034hbwGMKYXIpLbZGN2Mw87AHhmrgOAvz_qpOkCOJ7eHndS7N8BVub82A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0heqCXqgXaptCSSu2hB0P8sXH2CAi0tBAhARXqxbK9NhtBsxXZPfTS387YmywsQqhXx3asmUnmjcd-A_CFOzp0kkvCfN8TwTJNEOVrgljeusD4lcW7MCdlPrgQ3y97l0tAu7swuIgGZ2piEv-eXYDuYNv4t7vS24XJaKSPfIFYRARDLv9t32-r5BhCxCJrTMiMUC54m5x8apLgkmyz4JIic_9TcPPxqckHbujwNbxq8WO6O1P4G1hy9Sqs7Hdl29agGPwdhqMpdoSROE6OKDI9qkeVqSZN-qu61unP6nbapOUZ2yPlGU9PA1MD-rJ1uDg8ON8fkLY8AtEYpkxIUXg75H380w29QMcuPYZSKGhqc8tzEZCclz4w2FuvnZGy13Mmd4GJti9DyeG3sFyPa_ce0sIGJjuaGepRpEZoTZnnzIpQoirTPoGvKCfVmnejYuaaUdXJU7XyTGCnk6SyLcd4KHVx88yIb_MRf2b8Gs_03QvKmfcLzNixAW1FtR-a0hjyWoEwmLq-0LbQjmsqbKYzg6ElMwl87lSrUDMhPaJrN542imHkGIqFFnkC72aqnr-KB9iD2CYBuWAEC2tZfFJXo8jWnXOKoFN--E8RbsHK4PzkWB0flT824CXis2LGK7kJy5PbqfuIGGhiPkWrvwOR7f9f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuFW_S8ggSHDi4jR8bJ0daWG15RJVKUcXFsh2bjdpmq2b3wIXfztibLCyqKq6O7Vgz48w3GfsbgNfc0dpJLgnzpSeCZZogytcEsbx1gfEri3dhvlT55ER8PB2dbsBouAuDi-hwpi4m8cOuvqx9zzBA97B9duF-6N3CZDRSSN5CPFIGY65-7f75tZJjGBELrTEhM0K54H2C8rpJgluy3Zpbiuz910HOf09O_uWKxvdgq8eQ6bul0u_DhmsfwJ2DoXTbQygmP-twPMVOMRrHyRFJpofttDHNvEu_N2c6_dZcLbq0Omb7pDrm6VFga0B_9ghOxh--HkxIXyKBaAxV5qQovK15iV-72gt07tJjOIXCpja3PBcBzXnpA4u99doZKUcjZ3IX2GhLGcoOP4bNdta6p5AWNrDZ0cxQjzGjEVpT5jmzIpSpyrRP4A3KSfUm3qmYvWZUDfJUvTwT2BskqWzPMx7KXZzfMOLtasTlkmPjhr77QTmrfoEdOzagvah-symNYa8VCIWpK4W2hXZcU2EznRkML5lJ4NWgWoWaCSkS3brZolMMo8dQMLTIE3iyVPXqVTxAH8Q3Ccg1I1hby_qTtplGxu6cUwSecvs_RfgSbh-9H6vPh9WnHbiLEK1YUks-g8351cI9Rxg0Ny-i0f8GYnIAhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxychloroquine+Inhibits+Zika+Virus+NS2B-NS3+Protease&rft.jtitle=ACS+omega&rft.au=Kumar%2C+Ankur&rft.au=Liang%2C+Brooke&rft.au=Aarthy%2C+Murali&rft.au=Singh%2C+Sanjeev+Kumar&rft.date=2018-12-31&rft.pub=American+Chemical+Society&rft.eissn=2470-1343&rft.volume=3&rft.issue=12&rft.spage=18132&rft.epage=18141&rft_id=info:doi/10.1021%2Facsomega.8b01002&rft_id=info%3Apmid%2F30613818&rft.externalDocID=PMC6312647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon