Disorder–Order Transitions in Conformational Selection of a Peptide by Ebola Virus Nucleoprotein
This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the S...
Saved in:
Published in | ACS omega Vol. 5; no. 11; pp. 5691 - 5697 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.03.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder–order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity. |
---|---|
AbstractList | This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder–order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity. This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder-order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder-order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity. This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 4 10 -helix-turn-3 10 -helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder–order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 4 10 -helix followed by an induced fit of the 3 10 -helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity. This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 4 -helix-turn-3 -helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder-order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 4 -helix followed by an induced fit of the 3 -helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity. |
Author | Olson, Mark A |
AuthorAffiliation | Systems and Structural Biology Division |
AuthorAffiliation_xml | – name: Systems and Structural Biology Division |
Author_xml | – sequence: 1 givenname: Mark A orcidid: 0000-0002-5259-0343 surname: Olson fullname: Olson, Mark A email: mark.a.olson1.civ@mail.mil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32226846$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVAR_aB3TshHDmzx2I5jX5DQtoVKFUWicLUcx1m8SuzFTpB64z_wD_klON1t1SLBZWY0896bkd4cor0Qg0PoBZATIBTeGJvj4FbmRDWEVRKeoAPKa7IAxtneg3ofHee8JoSAkFRS8QztM0qpkFwcoObU55hal37__HU1Z3ydTMh-9DFk7ANextDFNJi5YXr82fXOzjWOHTb4k9uMvnW4ucFnTewN_urTlPHHyfYublIcnQ_P0dPO9Nkd7_IR-nJ-dr38sLi8en-xfHe5MFypcVFVrK5o52TTQQfAFWU1SOFso6qOEGOgajvClZBSzrGlhBaiFZXjElrKjtDFVreNZq03yQ8m3ehovL5txLTSJo2-XKYtly0Ho6BRihvJDAfmZC0qAAUUoGi93WptpmZwrXVhTKZ_JPp4Evw3vYo_dE1ULZUsAq92Ail-n1we9eCzdX1vgotT1pRJLqmSQhToy4e77pfcmVQAZAuwKeacXHcPAaLnV9B3r6B3r1Ao4i-K9eOth-Va3_-P-HpLLBO9jlMqpud_w_8AiqzKCg |
CitedBy_id | crossref_primary_10_1063_5_0021491 |
Cites_doi | 10.1021/acs.chemrev.6b00163 10.1021/acs.jctc.8b01281 10.1021/ct0502864 10.1021/acs.jcim.7b00517 10.1006/jmbi.1996.0720 10.1039/c3cs60093a 10.1002/prot.21674 10.1111/cbdd.13342 10.1002/bip.360221211 10.1016/j.jmgm.2003.12.005 10.1021/cr400514h 10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y 10.1038/nrm3920 10.1371/journal.pone.0159528 10.1021/ct200529b 10.1093/nar/gks525 10.1002/jcc.20827 10.1021/acs.jcim.5b00566 10.1002/pro.2454 10.1073/pnas.1508380112 10.1038/nmeth.4067 10.3389/fmolb.2017.00003 10.1073/pnas.1800690115 10.1021/jacs.6b06543 10.1111/cbdd.12832 10.1002/(SICI)1097-0134(19980901)32:4<475::AID-PROT6>3.0.CO;2-F 10.1063/1.2978177 10.1110/ps.0217002 10.1073/pnas.0403643101 10.1073/pnas.092135699 10.1021/cr040425u 10.18388/abp.2004_3575 10.1023/B:JCAM.0000017486.83645.a0 10.1016/j.celrep.2015.03.034 10.1529/biophysj.104.044347 |
ContentType | Journal Article |
Copyright | Copyright © 2020 U.S. Government. Copyright © 2020 U.S. Government 2020 U.S. Government |
Copyright_xml | – notice: Copyright © 2020 U.S. Government. – notice: Copyright © 2020 U.S. Government 2020 U.S. Government |
DBID | N~. AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/acsomega.9b03581 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 5697 |
ExternalDocumentID | oai_doaj_org_article_c48d41a91b994a83a413e87651191211 PMC7097898 32226846 10_1021_acsomega_9b03581 d34697253 |
Genre | Journal Article |
GroupedDBID | 53G ABUCX ACS ADACO ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS BCNDV EBS GROUPED_DOAJ HYE N~. OK1 RPM VF5 AAFWJ AAHBH AAYXX ABBLG ADUCK AFPKN AOIJS CITATION M~E NPM 7X8 5PM |
ID | FETCH-LOGICAL-a499t-553752fe8bf1f1149237186ecb95f00aa15df04968884968d202499c65e481d23 |
IEDL.DBID | N~. |
ISSN | 2470-1343 |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Thu Aug 21 13:20:58 EDT 2025 Fri Jul 11 10:45:17 EDT 2025 Wed Feb 19 02:30:50 EST 2025 Tue Jul 01 01:21:43 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Thu Aug 27 22:10:49 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html Copyright © 2020 U.S. Government. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-553752fe8bf1f1149237186ecb95f00aa15df04968884968d202499c65e481d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5259-0343 |
OpenAccessLink | http://dx.doi.org/10.1021/acsomega.9b03581 |
PMID | 32226846 |
PQID | 2384829866 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c48d41a91b994a83a413e87651191211 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7097898 proquest_miscellaneous_2384829866 pubmed_primary_32226846 crossref_primary_10_1021_acsomega_9b03581 crossref_citationtrail_10_1021_acsomega_9b03581 acs_journals_10_1021_acsomega_9b03581 |
ProviderPackageCode | ACS ABUCX AFEFF VF5 N~. CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-24 |
PublicationDateYYYYMMDD | 2020-03-24 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Lee M. S. (ref37/cit37) 2011; 134 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 Liwo A. (ref29/cit29) 2008 ref7/cit7 |
References_xml | – volume: 134 start-page: 1244111 year: 2011 ident: ref37/cit37 publication-title: J. Chem. Phys. – ident: ref8/cit8 doi: 10.1021/acs.chemrev.6b00163 – ident: ref33/cit33 doi: 10.1021/acs.jctc.8b01281 – start-page: 107 volume-title: Coarse-Graining of Condensed Phase and Biomolecular Systems year: 2008 ident: ref29/cit29 – ident: ref23/cit23 doi: 10.1021/ct0502864 – ident: ref7/cit7 doi: 10.1021/acs.jcim.7b00517 – ident: ref11/cit11 doi: 10.1006/jmbi.1996.0720 – ident: ref28/cit28 doi: 10.1039/c3cs60093a – ident: ref14/cit14 doi: 10.1002/prot.21674 – ident: ref30/cit30 doi: 10.1111/cbdd.13342 – ident: ref35/cit35 doi: 10.1002/bip.360221211 – ident: ref36/cit36 doi: 10.1016/j.jmgm.2003.12.005 – ident: ref5/cit5 doi: 10.1021/cr400514h – ident: ref16/cit16 doi: 10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y – ident: ref4/cit4 doi: 10.1038/nrm3920 – ident: ref21/cit21 doi: 10.1371/journal.pone.0159528 – ident: ref27/cit27 doi: 10.1021/ct200529b – ident: ref19/cit19 doi: 10.1093/nar/gks525 – ident: ref17/cit17 doi: 10.1002/jcc.20827 – ident: ref24/cit24 doi: 10.1021/acs.jcim.5b00566 – ident: ref18/cit18 doi: 10.1002/pro.2454 – ident: ref3/cit3 doi: 10.1073/pnas.1508380112 – ident: ref22/cit22 doi: 10.1038/nmeth.4067 – ident: ref6/cit6 doi: 10.3389/fmolb.2017.00003 – ident: ref32/cit32 doi: 10.1073/pnas.1800690115 – ident: ref2/cit2 doi: 10.1021/jacs.6b06543 – ident: ref31/cit31 doi: 10.1111/cbdd.12832 – ident: ref12/cit12 doi: 10.1002/(SICI)1097-0134(19980901)32:4<475::AID-PROT6>3.0.CO;2-F – ident: ref25/cit25 doi: 10.1063/1.2978177 – ident: ref34/cit34 doi: 10.1110/ps.0217002 – ident: ref26/cit26 doi: 10.1073/pnas.0403643101 – ident: ref15/cit15 doi: 10.1073/pnas.092135699 – ident: ref9/cit9 doi: 10.1021/cr040425u – ident: ref10/cit10 doi: 10.18388/abp.2004_3575 – ident: ref13/cit13 doi: 10.1023/B:JCAM.0000017486.83645.a0 – ident: ref1/cit1 doi: 10.1016/j.celrep.2015.03.034 – ident: ref20/cit20 doi: 10.1529/biophysj.104.044347 |
SSID | ssj0001682826 |
Score | 2.1089213 |
Snippet | This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape... This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5691 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQl3JBpeWRvuRK9MAhbB62Ex9bBEKVCkhl0d4s27FhJZpUm90Dt_6H_sP-ks44yWoXVXDpJYnytCbjzPdl7G8IOTTa-CS3LHaau5gBAYhNoXUsrSl8zkVehGIw3y7E-Zh9nfDJSqkvHBPWyQN3hhtZVlYs1TI1UjJd5hq-ug66MOa_UJ4Mv74Q81bIVPi7IoBJZENeEuLYSNu2-eFu9bE0CWp-YTSy7Vo0CqL9_0KajwdMrkSgs5dku4eO9HPX5B2y4epX5MXJULHtNTGDlOafX78vcU1DJOoGZdFpTXF63zBZEe70PdTAgW3aeKrpFQ5wqRw1D_TUAOOlN9PZoqUXqHjcBD2Hab1Lxmen1yfncV9DIdbAZeYx53nBM-9K41MP3AfwHEQj4ayR3CeJ1imvPLAEAUwYl1WGGoLSCu4YQNks3yObdVO7A0JZ6bgw0gMHSlmlvc4FIHMvUsBMrLJlRD6BRVXfB1oV0ttZqgbLq97yERkNNle2FyLHehj3T1xxtLziZyfC8cS5X_A1Ls9D-eywA5xK9U6lnnOqiHwcnEDBO8Qciq5ds2gVIBxWZrIUIiL7nVMsH4VJKwF4LiLFmrustWX9SD29C5LeBU6nkeWb_9H4t2Qrw58CSR5n7B3ZnM8W7j0gp7n5EDrJX4UAFn8 priority: 102 providerName: Directory of Open Access Journals |
Title | Disorder–Order Transitions in Conformational Selection of a Peptide by Ebola Virus Nucleoprotein |
URI | http://dx.doi.org/10.1021/acsomega.9b03581 https://www.ncbi.nlm.nih.gov/pubmed/32226846 https://www.proquest.com/docview/2384829866 https://pubmed.ncbi.nlm.nih.gov/PMC7097898 https://doaj.org/article/c48d41a91b994a83a413e87651191211 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHLiAyn8orIwEBw5p4_gn9hFWW1VIXZBKUW-W7dhlJUhQs3vgUvEOvGGfpGMn2bJVVXFxosR2ohlb843H_gaht9bYUFDHcm-4zxk4ALmtjMmVs1WgXNAqJYM5nIuDY_bphJ9c0eRcj-CXZM-4rv3pT82uskUk67qL7pVCyjgJ5-e7V-spAnyHlF2tZFWRE8roEJW8qZNoi1y3YYsSZf9NOPP6dsl_7M_-Nno4AEf8odf0I3THN4_R_emYr-0JsiOR5sWfv5_jFSc71G_JwosGx8N941FF6OkoZcCBe9wGbPCXuL2l9tj-xjML_i7-tjhbdXge-Y7bxOawaJ6i4_3Z1-lBPmRQyA14Msucc1rxMnhpAwng-QCaA1skvLOKh6IwhvA6gI8A8pSxrMvIIKic4J4BkC3pM7TVtI1_gTCTngurAnhAhNUmGCoAlwdBADGx2skMvQOJ6mEGdDoFt0uiR8nrQfIZ2htlrt1AQx6zYfy4pcX7dYtfPQXHLXU_RjWu60Xy7PQARpQe5qJ2TNaMGEWsUsxIasCQe7AKMaQaGe8y9GYcBBp0GCMopvHtqtOAb5gslRQiQ8_7QbH-VAxZCUBzGao2hsvGv2y-aRbfE6F3FQ_TKPnyP0W4gx6AnmK6J97vXHyFtpZnK_8a4NHSTsA9mB5N0uIClIfns0maKZdo0w9U |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VcigXxH_Dr5HgwCFtnNhOfISq1QLtgkSLerPsxIaVIEHN7oEL4h14Q56EGW-yZVFVcUkix3Gssa35xuP5BuCZsy5kRS1Sb6VPBRoAqSutTXXtylBIVZQxGczRVE1OxJtTeboBfIyFwU702FIfnfjn7AJ8F8u6r_6T3dEuI86uK3AVsYiktTj9sXO-raLQhIhJ1nJRZikvRDE4Jy9qhFRS3a-ppMjcfxHc_PfU5F9q6OAGXB_wI3u5HPCbsOHbW7C1N6Ztuw1u5NP8_fPXO7qzqI6WJ7PYrGUU4zdGLGJLH2IiHHxmXWCWvadTLo1n7jvbd2j2so-zs0XPpkR73EVSh1l7B04O9o_3JumQSCG1aNDMUymLUubBVy7wgAYQgjpUScrXTsuQZdZy2QQ0FRSaw3RtciIS1LWSXiCezYu7sNl2rd8GJiovldMBDSEuGhtsoRCeB8UROImmrhJ4jhI1w0LoTfRx59yMkjeD5BPYHWVu6oGNnJJifLnkixerL74tmTguqfuKhnFVjzi0YwHOKjMsSVOLqhHcau60FrYqLOpzj8qBPKtEfJfA03ESGBxDcqTY1neL3iDMEVWuK6USuLecFKtfkedKIahLoFybLmt9WX_Tzj5HXu-SYmp0df8_RfgEtibHR4fm8PX07QO4ltNGAGWqEQ9hc3628I8QLc3d47g-_gB2dxEG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEviDfhaSQ4cEibxI_ERyhdlddSCYp6s-zEhpVKUjW7By6I_8A_5Jcw400WFlUVlyRyHMcaezTfeOxvAJ4460LGa5F6K30q0AFIXWltqmtXBi4VL2MymHdTtX8oXh_Jow2Q41kY7ESPLfUxiE9afdKEgWEg38Hy7qv_bLe1y4i36wJcRDSSkT5Ov2__WVpR6EbERGuFKLM054IPAcqzGiGzVPdrZimy958FOf_dOfmXKZpchSsDhmTPl4N-DTZ8ex0u746p226AGzk1f_34-Z7uLJqk5e4sNmsZnfMbTy1iSx9iMhx8Zl1glh3QTpfGM_eN7Tl0fdmn2emiZ1OiPu4iscOsvQmHk72Pu_vpkEwhtejUzFMpeSmL4CsX8oBOEAI7NEvK107LkGXW5rIJ6C4odInp2hREJqhrJb1ATFvwW7DZdq2_A0xUXiqnAzpDuWhssFwhRA8qR_AkmrpK4ClK1AzK0JsY5y5yM0reDJJPYGeUuakHRnJKjHF8zhfPVl-cLNk4zqn7goZxVY94tGMBziwzqKWpRdWI3OrcaS1sxS3adI8GgqKrRH6XwONxEhgcQwqm2NZ3i94g1BFVoSulEri9nBSrX1H0SiGwS6Bcmy5rfVl_086-RG7vks7V6Oruf4rwEVw6eDkxb19N39yDrYLWAjKeFuI-bM5PF_4BAqa5exjV4zdZnxIV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disorder%E2%80%93Order+Transitions+in+Conformational+Selection+of+a+Peptide+by+Ebola+Virus+Nucleoprotein&rft.jtitle=ACS+omega&rft.au=Olson%2C+Mark+A&rft.date=2020-03-24&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=5&rft.issue=11&rft.spage=5691&rft.epage=5697&rft_id=info:doi/10.1021%2Facsomega.9b03581&rft.externalDocID=d34697253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |