Disorder–Order Transitions in Conformational Selection of a Peptide by Ebola Virus Nucleoprotein

This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the S...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 5; no. 11; pp. 5691 - 5697
Main Author Olson, Mark A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.03.2020
Online AccessGet full text

Cover

Loading…
Abstract This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder–order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.
AbstractList This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder–order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.
This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder-order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 410-helix-turn-310-helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder-order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 410-helix followed by an induced fit of the 310-helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.
This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 4 10 -helix-turn-3 10 -helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder–order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 4 10 -helix followed by an induced fit of the 3 10 -helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.
This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape of a 28-residue intrinsically disordered peptide extracted from the Ebola virus protein VP35. The central issue is the applicability of the SICHO potential energy function and in general coarse-grained (CG) representations of intermediate resolution for modeling large-scale conformational heterogeneity that includes both folded and unstructured peptide states. Crystallographic data shows that the peptide folds in a 4 -helix-turn-3 -helix topology upon complex formation with the Ebola virus nucleoprotein, whereas in isolation, the peptide transitions to a disordered conformational ensemble as observed in circular dichroism experiments. The simulation reveals a potential of mean force that displays conformational diversity along the helix-forming reaction coordinate consistent with disorder-order transitions, yet unexpectedly the bound topology is poorly sampled, and a population shift to an unstructured state incurs a significant free-energy penalty. Applying an elastic network interpolation model suggests a hybrid binding mechanism through conformational selection of the 4 -helix followed by an induced fit of the 3 -helix. A comparison of the CG model with previously reported all-atom CHARMM-based simulations highlights a lattice-based approach that is computationally fast and with the correct parameterization yields good resolution to modeling conformational plasticity.
Author Olson, Mark A
AuthorAffiliation Systems and Structural Biology Division
AuthorAffiliation_xml – name: Systems and Structural Biology Division
Author_xml – sequence: 1
  givenname: Mark A
  orcidid: 0000-0002-5259-0343
  surname: Olson
  fullname: Olson, Mark A
  email: mark.a.olson1.civ@mail.mil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32226846$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVAR_aB3TshHDmzx2I5jX5DQtoVKFUWicLUcx1m8SuzFTpB64z_wD_klON1t1SLBZWY0896bkd4cor0Qg0PoBZATIBTeGJvj4FbmRDWEVRKeoAPKa7IAxtneg3ofHee8JoSAkFRS8QztM0qpkFwcoObU55hal37__HU1Z3ydTMh-9DFk7ANextDFNJi5YXr82fXOzjWOHTb4k9uMvnW4ucFnTewN_urTlPHHyfYublIcnQ_P0dPO9Nkd7_IR-nJ-dr38sLi8en-xfHe5MFypcVFVrK5o52TTQQfAFWU1SOFso6qOEGOgajvClZBSzrGlhBaiFZXjElrKjtDFVreNZq03yQ8m3ehovL5txLTSJo2-XKYtly0Ho6BRihvJDAfmZC0qAAUUoGi93WptpmZwrXVhTKZ_JPp4Evw3vYo_dE1ULZUsAq92Ail-n1we9eCzdX1vgotT1pRJLqmSQhToy4e77pfcmVQAZAuwKeacXHcPAaLnV9B3r6B3r1Ao4i-K9eOth-Va3_-P-HpLLBO9jlMqpud_w_8AiqzKCg
CitedBy_id crossref_primary_10_1063_5_0021491
Cites_doi 10.1021/acs.chemrev.6b00163
10.1021/acs.jctc.8b01281
10.1021/ct0502864
10.1021/acs.jcim.7b00517
10.1006/jmbi.1996.0720
10.1039/c3cs60093a
10.1002/prot.21674
10.1111/cbdd.13342
10.1002/bip.360221211
10.1016/j.jmgm.2003.12.005
10.1021/cr400514h
10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y
10.1038/nrm3920
10.1371/journal.pone.0159528
10.1021/ct200529b
10.1093/nar/gks525
10.1002/jcc.20827
10.1021/acs.jcim.5b00566
10.1002/pro.2454
10.1073/pnas.1508380112
10.1038/nmeth.4067
10.3389/fmolb.2017.00003
10.1073/pnas.1800690115
10.1021/jacs.6b06543
10.1111/cbdd.12832
10.1002/(SICI)1097-0134(19980901)32:4<475::AID-PROT6>3.0.CO;2-F
10.1063/1.2978177
10.1110/ps.0217002
10.1073/pnas.0403643101
10.1073/pnas.092135699
10.1021/cr040425u
10.18388/abp.2004_3575
10.1023/B:JCAM.0000017486.83645.a0
10.1016/j.celrep.2015.03.034
10.1529/biophysj.104.044347
ContentType Journal Article
Copyright Copyright © 2020 U.S. Government.
Copyright © 2020 U.S. Government 2020 U.S. Government
Copyright_xml – notice: Copyright © 2020 U.S. Government.
– notice: Copyright © 2020 U.S. Government 2020 U.S. Government
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acsomega.9b03581
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 5697
ExternalDocumentID oai_doaj_org_article_c48d41a91b994a83a413e87651191211
PMC7097898
32226846
10_1021_acsomega_9b03581
d34697253
Genre Journal Article
GroupedDBID 53G
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
GROUPED_DOAJ
HYE
N~.
OK1
RPM
VF5
AAFWJ
AAHBH
AAYXX
ABBLG
ADUCK
AFPKN
AOIJS
CITATION
M~E
NPM
7X8
5PM
ID FETCH-LOGICAL-a499t-553752fe8bf1f1149237186ecb95f00aa15df04968884968d202499c65e481d23
IEDL.DBID N~.
ISSN 2470-1343
IngestDate Wed Aug 27 01:31:48 EDT 2025
Thu Aug 21 13:20:58 EDT 2025
Fri Jul 11 10:45:17 EDT 2025
Wed Feb 19 02:30:50 EST 2025
Tue Jul 01 01:21:43 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Thu Aug 27 22:10:49 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
Copyright © 2020 U.S. Government.
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-553752fe8bf1f1149237186ecb95f00aa15df04968884968d202499c65e481d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5259-0343
OpenAccessLink http://dx.doi.org/10.1021/acsomega.9b03581
PMID 32226846
PQID 2384829866
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_c48d41a91b994a83a413e87651191211
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7097898
proquest_miscellaneous_2384829866
pubmed_primary_32226846
crossref_primary_10_1021_acsomega_9b03581
crossref_citationtrail_10_1021_acsomega_9b03581
acs_journals_10_1021_acsomega_9b03581
ProviderPackageCode ACS
ABUCX
AFEFF
VF5
N~.
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-24
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Lee M. S. (ref37/cit37) 2011; 134
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
Liwo A. (ref29/cit29) 2008
ref7/cit7
References_xml – volume: 134
  start-page: 1244111
  year: 2011
  ident: ref37/cit37
  publication-title: J. Chem. Phys.
– ident: ref8/cit8
  doi: 10.1021/acs.chemrev.6b00163
– ident: ref33/cit33
  doi: 10.1021/acs.jctc.8b01281
– start-page: 107
  volume-title: Coarse-Graining of Condensed Phase and Biomolecular Systems
  year: 2008
  ident: ref29/cit29
– ident: ref23/cit23
  doi: 10.1021/ct0502864
– ident: ref7/cit7
  doi: 10.1021/acs.jcim.7b00517
– ident: ref11/cit11
  doi: 10.1006/jmbi.1996.0720
– ident: ref28/cit28
  doi: 10.1039/c3cs60093a
– ident: ref14/cit14
  doi: 10.1002/prot.21674
– ident: ref30/cit30
  doi: 10.1111/cbdd.13342
– ident: ref35/cit35
  doi: 10.1002/bip.360221211
– ident: ref36/cit36
  doi: 10.1016/j.jmgm.2003.12.005
– ident: ref5/cit5
  doi: 10.1021/cr400514h
– ident: ref16/cit16
  doi: 10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y
– ident: ref4/cit4
  doi: 10.1038/nrm3920
– ident: ref21/cit21
  doi: 10.1371/journal.pone.0159528
– ident: ref27/cit27
  doi: 10.1021/ct200529b
– ident: ref19/cit19
  doi: 10.1093/nar/gks525
– ident: ref17/cit17
  doi: 10.1002/jcc.20827
– ident: ref24/cit24
  doi: 10.1021/acs.jcim.5b00566
– ident: ref18/cit18
  doi: 10.1002/pro.2454
– ident: ref3/cit3
  doi: 10.1073/pnas.1508380112
– ident: ref22/cit22
  doi: 10.1038/nmeth.4067
– ident: ref6/cit6
  doi: 10.3389/fmolb.2017.00003
– ident: ref32/cit32
  doi: 10.1073/pnas.1800690115
– ident: ref2/cit2
  doi: 10.1021/jacs.6b06543
– ident: ref31/cit31
  doi: 10.1111/cbdd.12832
– ident: ref12/cit12
  doi: 10.1002/(SICI)1097-0134(19980901)32:4<475::AID-PROT6>3.0.CO;2-F
– ident: ref25/cit25
  doi: 10.1063/1.2978177
– ident: ref34/cit34
  doi: 10.1110/ps.0217002
– ident: ref26/cit26
  doi: 10.1073/pnas.0403643101
– ident: ref15/cit15
  doi: 10.1073/pnas.092135699
– ident: ref9/cit9
  doi: 10.1021/cr040425u
– ident: ref10/cit10
  doi: 10.18388/abp.2004_3575
– ident: ref13/cit13
  doi: 10.1023/B:JCAM.0000017486.83645.a0
– ident: ref1/cit1
  doi: 10.1016/j.celrep.2015.03.034
– ident: ref20/cit20
  doi: 10.1529/biophysj.104.044347
SSID ssj0001682826
Score 2.1089213
Snippet This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape...
This study presents parallel-tempering lattice Monte Carlo simulations based on the side-chain-only (SICHO) model for calculating the conformational landscape...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5691
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQl3JBpeWRvuRK9MAhbB62Ex9bBEKVCkhl0d4s27FhJZpUm90Dt_6H_sP-ks44yWoXVXDpJYnytCbjzPdl7G8IOTTa-CS3LHaau5gBAYhNoXUsrSl8zkVehGIw3y7E-Zh9nfDJSqkvHBPWyQN3hhtZVlYs1TI1UjJd5hq-ug66MOa_UJ4Mv74Q81bIVPi7IoBJZENeEuLYSNu2-eFu9bE0CWp-YTSy7Vo0CqL9_0KajwdMrkSgs5dku4eO9HPX5B2y4epX5MXJULHtNTGDlOafX78vcU1DJOoGZdFpTXF63zBZEe70PdTAgW3aeKrpFQ5wqRw1D_TUAOOlN9PZoqUXqHjcBD2Hab1Lxmen1yfncV9DIdbAZeYx53nBM-9K41MP3AfwHEQj4ayR3CeJ1imvPLAEAUwYl1WGGoLSCu4YQNks3yObdVO7A0JZ6bgw0gMHSlmlvc4FIHMvUsBMrLJlRD6BRVXfB1oV0ttZqgbLq97yERkNNle2FyLHehj3T1xxtLziZyfC8cS5X_A1Ls9D-eywA5xK9U6lnnOqiHwcnEDBO8Qciq5ds2gVIBxWZrIUIiL7nVMsH4VJKwF4LiLFmrustWX9SD29C5LeBU6nkeWb_9H4t2Qrw58CSR5n7B3ZnM8W7j0gp7n5EDrJX4UAFn8
  priority: 102
  providerName: Directory of Open Access Journals
Title Disorder–Order Transitions in Conformational Selection of a Peptide by Ebola Virus Nucleoprotein
URI http://dx.doi.org/10.1021/acsomega.9b03581
https://www.ncbi.nlm.nih.gov/pubmed/32226846
https://www.proquest.com/docview/2384829866
https://pubmed.ncbi.nlm.nih.gov/PMC7097898
https://doaj.org/article/c48d41a91b994a83a413e87651191211
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHLiAyn8orIwEBw5p4_gn9hFWW1VIXZBKUW-W7dhlJUhQs3vgUvEOvGGfpGMn2bJVVXFxosR2ohlb843H_gaht9bYUFDHcm-4zxk4ALmtjMmVs1WgXNAqJYM5nIuDY_bphJ9c0eRcj-CXZM-4rv3pT82uskUk67qL7pVCyjgJ5-e7V-spAnyHlF2tZFWRE8roEJW8qZNoi1y3YYsSZf9NOPP6dsl_7M_-Nno4AEf8odf0I3THN4_R_emYr-0JsiOR5sWfv5_jFSc71G_JwosGx8N941FF6OkoZcCBe9wGbPCXuL2l9tj-xjML_i7-tjhbdXge-Y7bxOawaJ6i4_3Z1-lBPmRQyA14Msucc1rxMnhpAwng-QCaA1skvLOKh6IwhvA6gI8A8pSxrMvIIKic4J4BkC3pM7TVtI1_gTCTngurAnhAhNUmGCoAlwdBADGx2skMvQOJ6mEGdDoFt0uiR8nrQfIZ2htlrt1AQx6zYfy4pcX7dYtfPQXHLXU_RjWu60Xy7PQARpQe5qJ2TNaMGEWsUsxIasCQe7AKMaQaGe8y9GYcBBp0GCMopvHtqtOAb5gslRQiQ8_7QbH-VAxZCUBzGao2hsvGv2y-aRbfE6F3FQ_TKPnyP0W4gx6AnmK6J97vXHyFtpZnK_8a4NHSTsA9mB5N0uIClIfns0maKZdo0w9U
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VcigXxH_Dr5HgwCFtnNhOfISq1QLtgkSLerPsxIaVIEHN7oEL4h14Q56EGW-yZVFVcUkix3Gssa35xuP5BuCZsy5kRS1Sb6VPBRoAqSutTXXtylBIVZQxGczRVE1OxJtTeboBfIyFwU702FIfnfjn7AJ8F8u6r_6T3dEuI86uK3AVsYiktTj9sXO-raLQhIhJ1nJRZikvRDE4Jy9qhFRS3a-ppMjcfxHc_PfU5F9q6OAGXB_wI3u5HPCbsOHbW7C1N6Ztuw1u5NP8_fPXO7qzqI6WJ7PYrGUU4zdGLGJLH2IiHHxmXWCWvadTLo1n7jvbd2j2so-zs0XPpkR73EVSh1l7B04O9o_3JumQSCG1aNDMUymLUubBVy7wgAYQgjpUScrXTsuQZdZy2QQ0FRSaw3RtciIS1LWSXiCezYu7sNl2rd8GJiovldMBDSEuGhtsoRCeB8UROImmrhJ4jhI1w0LoTfRx59yMkjeD5BPYHWVu6oGNnJJifLnkixerL74tmTguqfuKhnFVjzi0YwHOKjMsSVOLqhHcau60FrYqLOpzj8qBPKtEfJfA03ESGBxDcqTY1neL3iDMEVWuK6USuLecFKtfkedKIahLoFybLmt9WX_Tzj5HXu-SYmp0df8_RfgEtibHR4fm8PX07QO4ltNGAGWqEQ9hc3628I8QLc3d47g-_gB2dxEG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEviDfhaSQ4cEibxI_ERyhdlddSCYp6s-zEhpVKUjW7By6I_8A_5Jcw400WFlUVlyRyHMcaezTfeOxvAJ4460LGa5F6K30q0AFIXWltqmtXBi4VL2MymHdTtX8oXh_Jow2Q41kY7ESPLfUxiE9afdKEgWEg38Hy7qv_bLe1y4i36wJcRDSSkT5Ov2__WVpR6EbERGuFKLM054IPAcqzGiGzVPdrZimy958FOf_dOfmXKZpchSsDhmTPl4N-DTZ8ex0u746p226AGzk1f_34-Z7uLJqk5e4sNmsZnfMbTy1iSx9iMhx8Zl1glh3QTpfGM_eN7Tl0fdmn2emiZ1OiPu4iscOsvQmHk72Pu_vpkEwhtejUzFMpeSmL4CsX8oBOEAI7NEvK107LkGXW5rIJ6C4odInp2hREJqhrJb1ATFvwW7DZdq2_A0xUXiqnAzpDuWhssFwhRA8qR_AkmrpK4ClK1AzK0JsY5y5yM0reDJJPYGeUuakHRnJKjHF8zhfPVl-cLNk4zqn7goZxVY94tGMBziwzqKWpRdWI3OrcaS1sxS3adI8GgqKrRH6XwONxEhgcQwqm2NZ3i94g1BFVoSulEri9nBSrX1H0SiGwS6Bcmy5rfVl_086-RG7vks7V6Oruf4rwEVw6eDkxb19N39yDrYLWAjKeFuI-bM5PF_4BAqa5exjV4zdZnxIV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disorder%E2%80%93Order+Transitions+in+Conformational+Selection+of+a+Peptide+by+Ebola+Virus+Nucleoprotein&rft.jtitle=ACS+omega&rft.au=Olson%2C+Mark+A&rft.date=2020-03-24&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=5&rft.issue=11&rft.spage=5691&rft.epage=5697&rft_id=info:doi/10.1021%2Facsomega.9b03581&rft.externalDocID=d34697253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon