A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment
Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effect...
Saved in:
Published in | ACS nano Vol. 15; no. 8; pp. 13019 - 13030 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation. |
---|---|
AbstractList | Heat
management is crucial in the design of nanoscale devices as
the operating temperature determines their efficiency and lifetime.
Past experimental and theoretical works exploring nanoscale heat transport
in semiconductors addressed known deviations from Fourier’s
law modeling by including
effective
parameters, such
as a size-dependent thermal conductivity. However, recent experiments
have qualitatively shown behavior that cannot be modeled in this way.
Here, we combine advanced experiment and theory to show that the cooling
of 1D- and 2D-confined nanoscale hot spots on silicon can be described
using a general hydrodynamic heat transport model, contrary to previous
understanding of heat flow in bulk silicon. We use a comprehensive
set of extreme ultraviolet scatterometry measurements of nondiffusive
transport from transiently heated nanolines and nanodots to validate
and generalize our
ab initio
model, that does not
need any geometry-dependent fitting parameters. This allows us to
uncover the existence of two distinct time scales and heat transport
mechanisms: an interface resistance regime that dominates on short
time scales and a hydrodynamic-like phonon transport regime that dominates
on longer time scales. Moreover, our model can predict the full thermomechanical
response on nanometer length scales and picosecond time scales for
arbitrary geometries, providing an advanced practical tool for thermal
management of nanoscale technologies. Furthermore, we derive analytical
expressions for the transport time scales, valid for a subset of geometries,
supplying a route for optimizing heat dissipation. Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation. |
Author | Sendra, Lluc Bafaluy, Javier Abad, Begoña Alvarez, F. Xavier Chao, Weilun Murnane, Margaret M Beardo, Albert Frazer, Travis D Hernandez-Charpak, Jorge N Camacho, Juan Kapteyn, Henry C Knobloch, Joshua L |
AuthorAffiliation | Department of Physics, JILA, and STROBE NSF Science & Technology Center Center for X-Ray Optics Physics Department |
AuthorAffiliation_xml | – name: Center for X-Ray Optics – name: Physics Department – name: Department of Physics, JILA, and STROBE NSF Science & Technology Center |
Author_xml | – sequence: 1 givenname: Albert orcidid: 0000-0003-1889-1588 surname: Beardo fullname: Beardo, Albert email: albert.beardo@uab.cat organization: Physics Department – sequence: 2 givenname: Joshua L orcidid: 0000-0002-4086-3746 surname: Knobloch fullname: Knobloch, Joshua L email: joshua.knobloch@colorado.edu organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center – sequence: 3 givenname: Lluc surname: Sendra fullname: Sendra, Lluc organization: Physics Department – sequence: 4 givenname: Javier surname: Bafaluy fullname: Bafaluy, Javier organization: Physics Department – sequence: 5 givenname: Travis D orcidid: 0000-0002-5162-4230 surname: Frazer fullname: Frazer, Travis D organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center – sequence: 6 givenname: Weilun orcidid: 0000-0002-9752-370X surname: Chao fullname: Chao, Weilun organization: Center for X-Ray Optics – sequence: 7 givenname: Jorge N surname: Hernandez-Charpak fullname: Hernandez-Charpak, Jorge N organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center – sequence: 8 givenname: Henry C surname: Kapteyn fullname: Kapteyn, Henry C organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center – sequence: 9 givenname: Begoña surname: Abad fullname: Abad, Begoña organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center – sequence: 10 givenname: Margaret M surname: Murnane fullname: Murnane, Margaret M organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center – sequence: 11 givenname: F. Xavier orcidid: 0000-0001-6746-2144 surname: Alvarez fullname: Alvarez, F. Xavier organization: Physics Department – sequence: 12 givenname: Juan surname: Camacho fullname: Camacho, Juan email: juan.camacho@uab.cat organization: Physics Department |
BackLink | https://www.osti.gov/biblio/1823186$$D View this record in Osti.gov |
BookMark | eNp1UU1PGzEQtSoqvsq5V6vXasFjezfeHiqhQCkSKhyC1JvlzM4SI2JHtoNKf30dEiH1wGlGM--9-XhHbC_EQIx9BnEKQsKZwxxciKeAAnrdfWCH0KuuEab7vfeWt3DAjnJ-FKKdmEm3zw6UVtJMoD9kf8_5FQVK7om7MPC7RIPH4p-J34eBUi616sMDjyOfLSgtK26WXMirmAofU1xyuGheqfKimcYw-kAD_1V3yiWtsawT5W8bakwvr7DLPytKfkmhfGIfR_eU6WQXj9n9j8vZ9Gdzc3t1PT2_aZzu-9IoNTqD7dipVhnU827QAqmVBDjvW63ASWwRhcZOOmMGKUEBELjOOUTdq2P2fau7Ws-XNGAdXc-1q7qFSy82Om__7wS_sA_x2Rpt6qO6KvBlK1Bv8jajL4QLjCEQFgtGKjAb0NkWhCnmnGh8GwDCbryyO6_szqvK-Lpl1IZ9jOsU6hfeRf8DvQCZ7A |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2022_123003 crossref_primary_10_1021_acs_jpclett_3c00653 crossref_primary_10_1063_5_0113257 crossref_primary_10_1088_1402_4896_ad1da7 crossref_primary_10_1103_PhysRevB_106_155301 crossref_primary_10_1016_j_physleta_2022_127944 crossref_primary_10_1088_1361_648X_ac49c9 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125464 crossref_primary_10_1103_PhysRevB_105_174302 crossref_primary_10_1007_s00033_024_02208_9 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125062 crossref_primary_10_35848_1882_0786_ac8f82 crossref_primary_10_1103_PhysRevE_106_014111 crossref_primary_10_1107_S1600576723004302 crossref_primary_10_1021_acs_nanolett_2c04419 crossref_primary_10_1063_5_0127119 crossref_primary_10_1364_OE_458955 crossref_primary_10_1103_PhysRevB_105_165303 crossref_primary_10_1016_j_jeurceramsoc_2023_09_035 crossref_primary_10_1016_j_physleta_2023_129231 crossref_primary_10_7498_aps_72_20231546 |
Cites_doi | 10.1063/1.4820572 10.1103/PhysRevMaterials.2.076001 10.1126/sciadv.aat3374 10.1103/PhysRevB.84.195206 10.1038/530144a 10.1063/1.4973331 10.1063/1.4904355 10.1016/j.cpc.2017.06.023 10.1103/PhysRev.148.766 10.1038/ncomms7400 10.1103/PhysRevB.97.035421 10.1016/j.cpc.2014.02.015 10.1103/PhysRevB.98.104304 10.1021/acsanm.9b01024 10.1063/1.2822891 10.1038/ncomms6075 10.1007/s12274-020-3129-6 10.1364/OL.32.000286 10.1021/acs.nanolett.7b04932 10.1063/1.4913311 10.1115/1.4030170 10.1103/PhysRevB.91.035432 10.1103/PhysRevX.10.011019 10.1063/1.2913057 10.1038/srep17131 10.1038/s41467-017-02652-4 10.1038/ncomms7290 10.1126/science.280.5368.1412 10.1103/PhysRevB.76.075207 10.1103/PhysRevApplied.11.024042 10.1103/PhysRevMaterials.1.054601 10.1103/PhysRevB.101.075303 10.1103/PhysRevB.97.014307 10.1103/PhysRevB.84.235207 10.1103/PhysRevLett.110.025901 10.1103/PhysRevB.91.085202 10.1103/PhysRevLett.107.095901 10.1103/PhysRevApplied.11.034003 10.1126/sciadv.aaw5805 10.1073/pnas.1503449112 10.1103/PhysRevX.6.041013 10.1103/PhysRevB.95.165407 10.1038/nmat2568 10.1038/nnano.2015.109 10.1021/nl201863n 10.1038/ncomms2630 10.1103/PhysRevApplied.10.054068 10.1007/s00161-016-0525-y |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society 2021 American Chemical Society 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society – notice: 2021 American Chemical Society 2021 American Chemical Society |
DBID | AAYXX CITATION OTOTI 5PM |
DOI | 10.1021/acsnano.1c01946 |
DatabaseName | CrossRef OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 13030 |
ExternalDocumentID | 1823186 10_1021_acsnano_1c01946 c668541682 |
GrantInformation_xml | – fundername: ; grantid: DMR-1548924 – fundername: ; grantid: NA – fundername: ; grantid: GBMF4538 – fundername: ; grantid: RTI2018-097876-B-C22 – fundername: ; grantid: DE-AC02-05CH11231 |
GroupedDBID | - .K2 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABJNI ABQRX ACBEA ACGFO ADHLV BAANH CITATION CUPRZ OTOTI 5PM |
ID | FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Tue Sep 17 21:23:15 EDT 2024 Thu May 18 22:32:36 EDT 2023 Fri Aug 23 02:58:37 EDT 2024 Sat Oct 02 10:53:52 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | phonon hydrodynamics pump−probe spectroscopy non-Fourier heat transport silicon high-order harmonic generation |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493 |
Notes | USDOE AC02-05CH11231 |
ORCID | 0000-0002-4086-3746 0000-0001-6746-2144 0000-0002-5162-4230 0000-0002-9752-370X 0000-0003-1889-1588 0000000318891588 0000000251624230 0000000167462144 0000000240863746 000000029752370X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8483436 |
PMID | 34328719 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483436 osti_scitechconnect_1823186 crossref_primary_10_1021_acsnano_1c01946 acs_journals_10_1021_acsnano_1c01946 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-24 |
PublicationDateYYYYMMDD | 2021-08-24 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 Beardo A. (ref51/cit51) 2021 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1063/1.4820572 – ident: ref38/cit38 doi: 10.1103/PhysRevMaterials.2.076001 – ident: ref27/cit27 doi: 10.1126/sciadv.aat3374 – ident: ref34/cit34 doi: 10.1103/PhysRevB.84.195206 – ident: ref41/cit41 doi: 10.1038/530144a – ident: ref18/cit18 doi: 10.1063/1.4973331 – ident: ref23/cit23 doi: 10.1063/1.4904355 – ident: ref30/cit30 doi: 10.1016/j.cpc.2017.06.023 – ident: ref16/cit16 doi: 10.1103/PhysRev.148.766 – ident: ref25/cit25 doi: 10.1038/ncomms7400 – ident: ref17/cit17 doi: 10.1103/PhysRevB.97.035421 – ident: ref29/cit29 doi: 10.1016/j.cpc.2014.02.015 – ident: ref40/cit40 – ident: ref42/cit42 doi: 10.1103/PhysRevB.98.104304 – ident: ref49/cit49 doi: 10.1021/acsanm.9b01024 – ident: ref31/cit31 doi: 10.1063/1.2822891 – ident: ref10/cit10 doi: 10.1038/ncomms6075 – ident: ref44/cit44 doi: 10.1007/s12274-020-3129-6 – ident: ref47/cit47 doi: 10.1364/OL.32.000286 – ident: ref20/cit20 doi: 10.1021/acs.nanolett.7b04932 – ident: ref11/cit11 doi: 10.1063/1.4913311 – ident: ref24/cit24 doi: 10.1115/1.4030170 – ident: ref45/cit45 doi: 10.1103/PhysRevB.91.035432 – ident: ref28/cit28 doi: 10.1103/PhysRevX.10.011019 – ident: ref35/cit35 doi: 10.1063/1.2913057 – ident: ref6/cit6 doi: 10.1038/srep17131 – ident: ref19/cit19 doi: 10.1038/s41467-017-02652-4 – ident: ref26/cit26 doi: 10.1038/ncomms7290 – ident: ref39/cit39 doi: 10.1103/PhysRevB.97.035421 – ident: ref46/cit46 doi: 10.1126/science.280.5368.1412 – ident: ref3/cit3 doi: 10.1103/PhysRevB.76.075207 – ident: ref9/cit9 doi: 10.1103/PhysRevApplied.11.024042 – ident: ref36/cit36 doi: 10.1103/PhysRevMaterials.1.054601 – year: 2021 ident: ref51/cit51 publication-title: arXiv (Materials Science) contributor: fullname: Beardo A. – ident: ref22/cit22 doi: 10.1103/PhysRevB.101.075303 – ident: ref32/cit32 doi: 10.1103/PhysRevB.97.014307 – ident: ref33/cit33 doi: 10.1103/PhysRevB.84.235207 – ident: ref2/cit2 doi: 10.1103/PhysRevLett.110.025901 – ident: ref13/cit13 doi: 10.1103/PhysRevB.91.085202 – ident: ref1/cit1 doi: 10.1103/PhysRevLett.107.095901 – ident: ref21/cit21 doi: 10.1103/PhysRevApplied.11.034003 – ident: ref48/cit48 doi: 10.1126/sciadv.aaw5805 – ident: ref8/cit8 doi: 10.1073/pnas.1503449112 – ident: ref15/cit15 doi: 10.1103/PhysRevX.6.041013 – ident: ref37/cit37 doi: 10.1103/PhysRevB.95.165407 – ident: ref7/cit7 doi: 10.1038/nmat2568 – ident: ref5/cit5 doi: 10.1038/nnano.2015.109 – ident: ref50/cit50 doi: 10.1021/nl201863n – ident: ref4/cit4 doi: 10.1038/ncomms2630 – ident: ref12/cit12 doi: 10.1103/PhysRevApplied.10.054068 – ident: ref43/cit43 doi: 10.1007/s00161-016-0525-y |
SSID | ssj0057876 |
Score | 2.5533879 |
Snippet | Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and... Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and... |
SourceID | pubmedcentral osti crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 13019 |
Title | A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment |
URI | http://dx.doi.org/10.1021/acsnano.1c01946 https://www.osti.gov/biblio/1823186 https://pubmed.ncbi.nlm.nih.gov/PMC8483436 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9lIOLX0g6BbkA4devI0d2_H2hngIIVEh0ZW4RZOxV0VUScUuF359Z5LsdheEytmOlXjGM99kZj4LcVAkchuZT6qAaJWtMFMhgFMANupxMg4c9ztf_PBnE3t-7a7_kUU_zuAb_Q1wVkPdjDQSGrF-Q7w2BR0NRkFHVwujy3rnuwQyBciEIpYsPk8WYDeEszU3NGjoOD2uilxxM6fvugKtWctOyNUlt6P7eTXCh6fcjf__gi3xtgeb8rDTjvfiVao_iM0VCsKP4uFQ9szTEuooL-84ccMmUE5W215kM5WkUWTFf8slH7rk3hSpj1X7qDlW3D5IS0dJNrvpmGnvKZz_LjsGgHbayfJKgU9icnry8-hM9fcxKKC4aK7yfAoB3ZQwSh7QVj7aDJMzSWM15p56MOgQM4veQAjRGObySRo8AKId59tiUDd12hFS5xGmeeVMhWBtHAef8lgEFzlALTDsigPatbI_T7OyTZUbXfZbWfZbuSu-LqRY_unYOZ6fOmQplwQsmB0XuYwI56XmNGig0WJN-MvVmH17faS--dWycAf-DZv7zy9706F4Y7gaJiO7ZL-IAYkg7RGcmVf7rSL_BXIU8yY |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5QAceKOW8vChBy5eYsd2vNyqPrRAW4HoSr1FztgrEFWC2O2lv56ZJBt2i5DgGjsjZzyeR2bmM8BekchsZC7JIkQjTYWZ9D5YGYKJapK0DZb7nU_P3HRmPlzYiy3IVr0wtIgFUVq0Sfzf6ALqLT2rQ92MFZJTYtwtuG0LMpfsDB18WeleFj_X5ZEpTiZnYgDz-YMAWyNcbFijUUOn6mZx5Jq1OX4An4d1tkUm38dXy2qM1zcgHP_nQx7C_d71FPudrDyCrVQ_hntrgIRP4Hpf9DjUItRRfPrJaRxWiGK23gQjmrkg-SKdfikGdHTBnSpCHcr2VX0ouZmQSEdBGrzpcGqvKLh_Jzo8gHba0XDBwFOYHR-dH0xlfzuDDBQlLWWez4NHOyePJfdoKhdNhsnqpLCacId90GgRM4NOB--j1ozsk1RwISCaSf4MRnVTp20QKo9hnldWVxiMiRPvUh4LbyOHqwX6HdgjrpX96VqUbeJcq7JnZdmzcgferDaz_NFhdfx96i5vdkluBmPlIhcV4bJUnBT1NFpsyMBAjbG4N0fqb19bTG7PP2Vz9_zfVvoa7kzPT0_Kk_dnH3fhruY6mYw0lnkBI9qO9JIcnWX1qpXtX9ib-4s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2DBjWw54d2nUPHXLYRaklS7KyW5A0yF5BgS1Ab4ZMyWixwi6a9NJfP9J2jaTDgO1qyYRMUXyY5CfGhllEs5HYKDIftNAFJMI5b4T3OshxVMYb6nf-vrSLlf5yZs66pjDqhcFFrJHSukni06m-CmWHMCCP8Xnlq3okAR0TbR-yRyaTTXJ2Mv1xp39JBG2bS8ZYGR2KHtDnDwJkkWC9Y5EGNZ6s-wWSWxZn_oyt-rU2hSa_RjebYgS392Ac__djnrOnnQvKJ63MvGAPYvWS7W0BE75itxPe4VFzXwV-ek3pHFKMfLXdDMPrkqOcoW6_5D1KOqeOFS5nonlVzQQ1FSLpwFGT1y1e7Q0G-Z94iwvQTDvpLxrYZ6v5yc_pQnS3NAiP0dJGpGnpHZgSPZfUgS5s0AlEo6KEYkyd9l6BAUg0WOWdC0oRwk-U3noPoMfpazao6ioeMC7T4Mu0MKoAr3UYOxvTkDkTKGzNwB2yIXIt707ZOm8S6ErmHSvzjpWH7OPdhuZXLWbH36ce0Ybn6G4QZi5QcRFscknJUYej2Y4c9NQIk3t3pLo4b7C5Hf2cTe2bf1vpB_b4dDbPv31efj1iTxSVyySouPRbNsDdiO_Q39kU7xvx_g3PUf4F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+and+Predictive+Understanding+of+Thermal+Transport+from+1D-+and+2D-Confined+Nanostructures%3A+Theory+and+Experiment&rft.jtitle=ACS+nano&rft.au=Beardo%2C+Albert&rft.au=Knobloch%2C+Joshua+L.&rft.au=Sendra%2C+Lluc&rft.au=Bafaluy%2C+Javier&rft.date=2021-08-24&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=8&rft.spage=13019&rft.epage=13030&rft_id=info:doi/10.1021%2Facsnano.1c01946&rft_id=info%3Apmid%2F34328719&rft.externalDBID=PMC8483436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |