A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment

Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effect...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 8; pp. 13019 - 13030
Main Authors Beardo, Albert, Knobloch, Joshua L, Sendra, Lluc, Bafaluy, Javier, Frazer, Travis D, Chao, Weilun, Hernandez-Charpak, Jorge N, Kapteyn, Henry C, Abad, Begoña, Murnane, Margaret M, Alvarez, F. Xavier, Camacho, Juan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.
AbstractList Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.
Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and theoretical works exploring nanoscale heat transport in semiconductors addressed known deviations from Fourier’s law modeling by including effective parameters, such as a size-dependent thermal conductivity. However, recent experiments have qualitatively shown behavior that cannot be modeled in this way. Here, we combine advanced experiment and theory to show that the cooling of 1D- and 2D-confined nanoscale hot spots on silicon can be described using a general hydrodynamic heat transport model, contrary to previous understanding of heat flow in bulk silicon. We use a comprehensive set of extreme ultraviolet scatterometry measurements of nondiffusive transport from transiently heated nanolines and nanodots to validate and generalize our ab initio model, that does not need any geometry-dependent fitting parameters. This allows us to uncover the existence of two distinct time scales and heat transport mechanisms: an interface resistance regime that dominates on short time scales and a hydrodynamic-like phonon transport regime that dominates on longer time scales. Moreover, our model can predict the full thermomechanical response on nanometer length scales and picosecond time scales for arbitrary geometries, providing an advanced practical tool for thermal management of nanoscale technologies. Furthermore, we derive analytical expressions for the transport time scales, valid for a subset of geometries, supplying a route for optimizing heat dissipation.
Author Sendra, Lluc
Bafaluy, Javier
Abad, Begoña
Alvarez, F. Xavier
Chao, Weilun
Murnane, Margaret M
Beardo, Albert
Frazer, Travis D
Hernandez-Charpak, Jorge N
Camacho, Juan
Kapteyn, Henry C
Knobloch, Joshua L
AuthorAffiliation Department of Physics, JILA, and STROBE NSF Science & Technology Center
Center for X-Ray Optics
Physics Department
AuthorAffiliation_xml – name: Center for X-Ray Optics
– name: Physics Department
– name: Department of Physics, JILA, and STROBE NSF Science & Technology Center
Author_xml – sequence: 1
  givenname: Albert
  orcidid: 0000-0003-1889-1588
  surname: Beardo
  fullname: Beardo, Albert
  email: albert.beardo@uab.cat
  organization: Physics Department
– sequence: 2
  givenname: Joshua L
  orcidid: 0000-0002-4086-3746
  surname: Knobloch
  fullname: Knobloch, Joshua L
  email: joshua.knobloch@colorado.edu
  organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center
– sequence: 3
  givenname: Lluc
  surname: Sendra
  fullname: Sendra, Lluc
  organization: Physics Department
– sequence: 4
  givenname: Javier
  surname: Bafaluy
  fullname: Bafaluy, Javier
  organization: Physics Department
– sequence: 5
  givenname: Travis D
  orcidid: 0000-0002-5162-4230
  surname: Frazer
  fullname: Frazer, Travis D
  organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center
– sequence: 6
  givenname: Weilun
  orcidid: 0000-0002-9752-370X
  surname: Chao
  fullname: Chao, Weilun
  organization: Center for X-Ray Optics
– sequence: 7
  givenname: Jorge N
  surname: Hernandez-Charpak
  fullname: Hernandez-Charpak, Jorge N
  organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center
– sequence: 8
  givenname: Henry C
  surname: Kapteyn
  fullname: Kapteyn, Henry C
  organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center
– sequence: 9
  givenname: Begoña
  surname: Abad
  fullname: Abad, Begoña
  organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center
– sequence: 10
  givenname: Margaret M
  surname: Murnane
  fullname: Murnane, Margaret M
  organization: Department of Physics, JILA, and STROBE NSF Science & Technology Center
– sequence: 11
  givenname: F. Xavier
  orcidid: 0000-0001-6746-2144
  surname: Alvarez
  fullname: Alvarez, F. Xavier
  organization: Physics Department
– sequence: 12
  givenname: Juan
  surname: Camacho
  fullname: Camacho, Juan
  email: juan.camacho@uab.cat
  organization: Physics Department
BackLink https://www.osti.gov/biblio/1823186$$D View this record in Osti.gov
BookMark eNp1UU1PGzEQtSoqvsq5V6vXasFjezfeHiqhQCkSKhyC1JvlzM4SI2JHtoNKf30dEiH1wGlGM--9-XhHbC_EQIx9BnEKQsKZwxxciKeAAnrdfWCH0KuuEab7vfeWt3DAjnJ-FKKdmEm3zw6UVtJMoD9kf8_5FQVK7om7MPC7RIPH4p-J34eBUi616sMDjyOfLSgtK26WXMirmAofU1xyuGheqfKimcYw-kAD_1V3yiWtsawT5W8bakwvr7DLPytKfkmhfGIfR_eU6WQXj9n9j8vZ9Gdzc3t1PT2_aZzu-9IoNTqD7dipVhnU827QAqmVBDjvW63ASWwRhcZOOmMGKUEBELjOOUTdq2P2fau7Ws-XNGAdXc-1q7qFSy82Om__7wS_sA_x2Rpt6qO6KvBlK1Bv8jajL4QLjCEQFgtGKjAb0NkWhCnmnGh8GwDCbryyO6_szqvK-Lpl1IZ9jOsU6hfeRf8DvQCZ7A
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2022_123003
crossref_primary_10_1021_acs_jpclett_3c00653
crossref_primary_10_1063_5_0113257
crossref_primary_10_1088_1402_4896_ad1da7
crossref_primary_10_1103_PhysRevB_106_155301
crossref_primary_10_1016_j_physleta_2022_127944
crossref_primary_10_1088_1361_648X_ac49c9
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125464
crossref_primary_10_1103_PhysRevB_105_174302
crossref_primary_10_1007_s00033_024_02208_9
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125062
crossref_primary_10_35848_1882_0786_ac8f82
crossref_primary_10_1103_PhysRevE_106_014111
crossref_primary_10_1107_S1600576723004302
crossref_primary_10_1021_acs_nanolett_2c04419
crossref_primary_10_1063_5_0127119
crossref_primary_10_1364_OE_458955
crossref_primary_10_1103_PhysRevB_105_165303
crossref_primary_10_1016_j_jeurceramsoc_2023_09_035
crossref_primary_10_1016_j_physleta_2023_129231
crossref_primary_10_7498_aps_72_20231546
Cites_doi 10.1063/1.4820572
10.1103/PhysRevMaterials.2.076001
10.1126/sciadv.aat3374
10.1103/PhysRevB.84.195206
10.1038/530144a
10.1063/1.4973331
10.1063/1.4904355
10.1016/j.cpc.2017.06.023
10.1103/PhysRev.148.766
10.1038/ncomms7400
10.1103/PhysRevB.97.035421
10.1016/j.cpc.2014.02.015
10.1103/PhysRevB.98.104304
10.1021/acsanm.9b01024
10.1063/1.2822891
10.1038/ncomms6075
10.1007/s12274-020-3129-6
10.1364/OL.32.000286
10.1021/acs.nanolett.7b04932
10.1063/1.4913311
10.1115/1.4030170
10.1103/PhysRevB.91.035432
10.1103/PhysRevX.10.011019
10.1063/1.2913057
10.1038/srep17131
10.1038/s41467-017-02652-4
10.1038/ncomms7290
10.1126/science.280.5368.1412
10.1103/PhysRevB.76.075207
10.1103/PhysRevApplied.11.024042
10.1103/PhysRevMaterials.1.054601
10.1103/PhysRevB.101.075303
10.1103/PhysRevB.97.014307
10.1103/PhysRevB.84.235207
10.1103/PhysRevLett.110.025901
10.1103/PhysRevB.91.085202
10.1103/PhysRevLett.107.095901
10.1103/PhysRevApplied.11.034003
10.1126/sciadv.aaw5805
10.1073/pnas.1503449112
10.1103/PhysRevX.6.041013
10.1103/PhysRevB.95.165407
10.1038/nmat2568
10.1038/nnano.2015.109
10.1021/nl201863n
10.1038/ncomms2630
10.1103/PhysRevApplied.10.054068
10.1007/s00161-016-0525-y
ContentType Journal Article
Copyright 2021 American Chemical Society
2021 American Chemical Society 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
– notice: 2021 American Chemical Society 2021 American Chemical Society
DBID AAYXX
CITATION
OTOTI
5PM
DOI 10.1021/acsnano.1c01946
DatabaseName CrossRef
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 13030
ExternalDocumentID 1823186
10_1021_acsnano_1c01946
c668541682
GrantInformation_xml – fundername: ;
  grantid: DMR-1548924
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: GBMF4538
– fundername: ;
  grantid: RTI2018-097876-B-C22
– fundername: ;
  grantid: DE-AC02-05CH11231
GroupedDBID -
.K2
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
BAANH
CITATION
CUPRZ
OTOTI
5PM
ID FETCH-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Tue Sep 17 21:23:15 EDT 2024
Thu May 18 22:32:36 EDT 2023
Fri Aug 23 02:58:37 EDT 2024
Sat Oct 02 10:53:52 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords phonon hydrodynamics
pump−probe spectroscopy
non-Fourier heat transport
silicon
high-order harmonic generation
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-33fa8c5f63538c4b6d40ce52e1cb95431a2c5cc04c62a88d221311e1a6aacc493
Notes USDOE
AC02-05CH11231
ORCID 0000-0002-4086-3746
0000-0001-6746-2144
0000-0002-5162-4230
0000-0002-9752-370X
0000-0003-1889-1588
0000000318891588
0000000251624230
0000000167462144
0000000240863746
000000029752370X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8483436
PMID 34328719
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483436
osti_scitechconnect_1823186
crossref_primary_10_1021_acsnano_1c01946
acs_journals_10_1021_acsnano_1c01946
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-08-24
PublicationDateYYYYMMDD 2021-08-24
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
Beardo A. (ref51/cit51) 2021
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1063/1.4820572
– ident: ref38/cit38
  doi: 10.1103/PhysRevMaterials.2.076001
– ident: ref27/cit27
  doi: 10.1126/sciadv.aat3374
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.84.195206
– ident: ref41/cit41
  doi: 10.1038/530144a
– ident: ref18/cit18
  doi: 10.1063/1.4973331
– ident: ref23/cit23
  doi: 10.1063/1.4904355
– ident: ref30/cit30
  doi: 10.1016/j.cpc.2017.06.023
– ident: ref16/cit16
  doi: 10.1103/PhysRev.148.766
– ident: ref25/cit25
  doi: 10.1038/ncomms7400
– ident: ref17/cit17
  doi: 10.1103/PhysRevB.97.035421
– ident: ref29/cit29
  doi: 10.1016/j.cpc.2014.02.015
– ident: ref40/cit40
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.98.104304
– ident: ref49/cit49
  doi: 10.1021/acsanm.9b01024
– ident: ref31/cit31
  doi: 10.1063/1.2822891
– ident: ref10/cit10
  doi: 10.1038/ncomms6075
– ident: ref44/cit44
  doi: 10.1007/s12274-020-3129-6
– ident: ref47/cit47
  doi: 10.1364/OL.32.000286
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.7b04932
– ident: ref11/cit11
  doi: 10.1063/1.4913311
– ident: ref24/cit24
  doi: 10.1115/1.4030170
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.91.035432
– ident: ref28/cit28
  doi: 10.1103/PhysRevX.10.011019
– ident: ref35/cit35
  doi: 10.1063/1.2913057
– ident: ref6/cit6
  doi: 10.1038/srep17131
– ident: ref19/cit19
  doi: 10.1038/s41467-017-02652-4
– ident: ref26/cit26
  doi: 10.1038/ncomms7290
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.97.035421
– ident: ref46/cit46
  doi: 10.1126/science.280.5368.1412
– ident: ref3/cit3
  doi: 10.1103/PhysRevB.76.075207
– ident: ref9/cit9
  doi: 10.1103/PhysRevApplied.11.024042
– ident: ref36/cit36
  doi: 10.1103/PhysRevMaterials.1.054601
– year: 2021
  ident: ref51/cit51
  publication-title: arXiv (Materials Science)
  contributor:
    fullname: Beardo A.
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.101.075303
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.97.014307
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.84.235207
– ident: ref2/cit2
  doi: 10.1103/PhysRevLett.110.025901
– ident: ref13/cit13
  doi: 10.1103/PhysRevB.91.085202
– ident: ref1/cit1
  doi: 10.1103/PhysRevLett.107.095901
– ident: ref21/cit21
  doi: 10.1103/PhysRevApplied.11.034003
– ident: ref48/cit48
  doi: 10.1126/sciadv.aaw5805
– ident: ref8/cit8
  doi: 10.1073/pnas.1503449112
– ident: ref15/cit15
  doi: 10.1103/PhysRevX.6.041013
– ident: ref37/cit37
  doi: 10.1103/PhysRevB.95.165407
– ident: ref7/cit7
  doi: 10.1038/nmat2568
– ident: ref5/cit5
  doi: 10.1038/nnano.2015.109
– ident: ref50/cit50
  doi: 10.1021/nl201863n
– ident: ref4/cit4
  doi: 10.1038/ncomms2630
– ident: ref12/cit12
  doi: 10.1103/PhysRevApplied.10.054068
– ident: ref43/cit43
  doi: 10.1007/s00161-016-0525-y
SSID ssj0057876
Score 2.5533879
Snippet Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and...
Heat management is crucial in the design of nanoscale devices as the operating temperature determines their efficiency and lifetime. Past experimental and...
SourceID pubmedcentral
osti
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 13019
Title A General and Predictive Understanding of Thermal Transport from 1D- and 2D-Confined Nanostructures: Theory and Experiment
URI http://dx.doi.org/10.1021/acsnano.1c01946
https://www.osti.gov/biblio/1823186
https://pubmed.ncbi.nlm.nih.gov/PMC8483436
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9lIOLX0g6BbkA4devI0d2_H2hngIIVEh0ZW4RZOxV0VUScUuF359Z5LsdheEytmOlXjGM99kZj4LcVAkchuZT6qAaJWtMFMhgFMANupxMg4c9ztf_PBnE3t-7a7_kUU_zuAb_Q1wVkPdjDQSGrF-Q7w2BR0NRkFHVwujy3rnuwQyBciEIpYsPk8WYDeEszU3NGjoOD2uilxxM6fvugKtWctOyNUlt6P7eTXCh6fcjf__gi3xtgeb8rDTjvfiVao_iM0VCsKP4uFQ9szTEuooL-84ccMmUE5W215kM5WkUWTFf8slH7rk3hSpj1X7qDlW3D5IS0dJNrvpmGnvKZz_LjsGgHbayfJKgU9icnry8-hM9fcxKKC4aK7yfAoB3ZQwSh7QVj7aDJMzSWM15p56MOgQM4veQAjRGObySRo8AKId59tiUDd12hFS5xGmeeVMhWBtHAef8lgEFzlALTDsigPatbI_T7OyTZUbXfZbWfZbuSu-LqRY_unYOZ6fOmQplwQsmB0XuYwI56XmNGig0WJN-MvVmH17faS--dWycAf-DZv7zy9706F4Y7gaJiO7ZL-IAYkg7RGcmVf7rSL_BXIU8yY
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5QAceKOW8vChBy5eYsd2vNyqPrRAW4HoSr1FztgrEFWC2O2lv56ZJBt2i5DgGjsjZzyeR2bmM8BekchsZC7JIkQjTYWZ9D5YGYKJapK0DZb7nU_P3HRmPlzYiy3IVr0wtIgFUVq0Sfzf6ALqLT2rQ92MFZJTYtwtuG0LMpfsDB18WeleFj_X5ZEpTiZnYgDz-YMAWyNcbFijUUOn6mZx5Jq1OX4An4d1tkUm38dXy2qM1zcgHP_nQx7C_d71FPudrDyCrVQ_hntrgIRP4Hpf9DjUItRRfPrJaRxWiGK23gQjmrkg-SKdfikGdHTBnSpCHcr2VX0ouZmQSEdBGrzpcGqvKLh_Jzo8gHba0XDBwFOYHR-dH0xlfzuDDBQlLWWez4NHOyePJfdoKhdNhsnqpLCacId90GgRM4NOB--j1ozsk1RwISCaSf4MRnVTp20QKo9hnldWVxiMiRPvUh4LbyOHqwX6HdgjrpX96VqUbeJcq7JnZdmzcgferDaz_NFhdfx96i5vdkluBmPlIhcV4bJUnBT1NFpsyMBAjbG4N0fqb19bTG7PP2Vz9_zfVvoa7kzPT0_Kk_dnH3fhruY6mYw0lnkBI9qO9JIcnWX1qpXtX9ib-4s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2DBjWw54d2nUPHXLYRaklS7KyW5A0yF5BgS1Ab4ZMyWixwi6a9NJfP9J2jaTDgO1qyYRMUXyY5CfGhllEs5HYKDIftNAFJMI5b4T3OshxVMYb6nf-vrSLlf5yZs66pjDqhcFFrJHSukni06m-CmWHMCCP8Xnlq3okAR0TbR-yRyaTTXJ2Mv1xp39JBG2bS8ZYGR2KHtDnDwJkkWC9Y5EGNZ6s-wWSWxZn_oyt-rU2hSa_RjebYgS392Ac__djnrOnnQvKJ63MvGAPYvWS7W0BE75itxPe4VFzXwV-ek3pHFKMfLXdDMPrkqOcoW6_5D1KOqeOFS5nonlVzQQ1FSLpwFGT1y1e7Q0G-Z94iwvQTDvpLxrYZ6v5yc_pQnS3NAiP0dJGpGnpHZgSPZfUgS5s0AlEo6KEYkyd9l6BAUg0WOWdC0oRwk-U3noPoMfpazao6ioeMC7T4Mu0MKoAr3UYOxvTkDkTKGzNwB2yIXIt707ZOm8S6ErmHSvzjpWH7OPdhuZXLWbH36ce0Ybn6G4QZi5QcRFscknJUYej2Y4c9NQIk3t3pLo4b7C5Hf2cTe2bf1vpB_b4dDbPv31efj1iTxSVyySouPRbNsDdiO_Q39kU7xvx_g3PUf4F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+and+Predictive+Understanding+of+Thermal+Transport+from+1D-+and+2D-Confined+Nanostructures%3A+Theory+and+Experiment&rft.jtitle=ACS+nano&rft.au=Beardo%2C+Albert&rft.au=Knobloch%2C+Joshua+L.&rft.au=Sendra%2C+Lluc&rft.au=Bafaluy%2C+Javier&rft.date=2021-08-24&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=8&rft.spage=13019&rft.epage=13030&rft_id=info:doi/10.1021%2Facsnano.1c01946&rft_id=info%3Apmid%2F34328719&rft.externalDBID=PMC8483436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon