Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants
Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4 •–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO3 2–, this...
Saved in:
Published in | Environmental science & technology Vol. 53; no. 2; pp. 894 - 902 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4 •–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO3 2–, this study evaluated the oxidation performance of the Fe(VI)–CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4 •– nor •OH was the active species in the Fe(VI)–CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO3 2– via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)–CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)–CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment. |
---|---|
AbstractList | Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4•–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO32–, this study evaluated the oxidation performance of the Fe(VI)–CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4•– nor •OH was the active species in the Fe(VI)–CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO32– via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)–CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)–CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment. Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO / OH) involved in this process are still under debate. By employing sparingly soluble CaSO as a slow-releasing source of SO , this study evaluated the oxidation performance of the Fe(VI)-CaSO process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1-173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO nor OH was the active species in the Fe(VI)-CaSO process. The accelerating effect of CaSO was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H O , which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)-CaSO process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)-CaSO process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment. Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4 •–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO3 2–, this study evaluated the oxidation performance of the Fe(VI)–CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4 •– nor •OH was the active species in the Fe(VI)–CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO3 2– via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)–CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)–CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment. Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4•-/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO32-, this study evaluated the oxidation performance of the Fe(VI)-CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1-173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4•- nor •OH was the active species in the Fe(VI)-CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO32- via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)-CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)-CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4•-/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO32-, this study evaluated the oxidation performance of the Fe(VI)-CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1-173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4•- nor •OH was the active species in the Fe(VI)-CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO32- via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)-CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)-CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment. Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO₄•–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO₃ as a slow-releasing source of SO₃²–, this study evaluated the oxidation performance of the Fe(VI)–CaSO₃ process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO₃ dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO₄•– nor •OH was the active species in the Fe(VI)–CaSO₃ process. The accelerating effect of CaSO₃ was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO₃²– via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H₂O₂, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)–CaSO₃ process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)–CaSO₃ process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment. |
Author | Shao, Binbin Guan, Xiaohong Sun, Bo Dong, Hongyu |
AuthorAffiliation | Department of Civil and Environmental Engineering Shanghai Institute of Pollution Control and Ecological Security The Hong Kong University of Science and Technology State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering Tongji University International Joint Research Center for Sustainable Urban Water System |
AuthorAffiliation_xml | – name: Shanghai Institute of Pollution Control and Ecological Security – name: Department of Civil and Environmental Engineering – name: International Joint Research Center for Sustainable Urban Water System – name: State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering – name: The Hong Kong University of Science and Technology – name: Tongji University |
Author_xml | – sequence: 1 givenname: Binbin surname: Shao fullname: Shao, Binbin organization: Shanghai Institute of Pollution Control and Ecological Security – sequence: 2 givenname: Hongyu surname: Dong fullname: Dong, Hongyu organization: Shanghai Institute of Pollution Control and Ecological Security – sequence: 3 givenname: Bo surname: Sun fullname: Sun, Bo organization: The Hong Kong University of Science and Technology – sequence: 4 givenname: Xiaohong orcidid: 0000-0001-5296-423X surname: Guan fullname: Guan, Xiaohong email: guanxh@tongji.edu.cn organization: Tongji University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30570262$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1r3DAQxUVJaDZpz70VQS8JxRt9WJZ8DEvSLgQW-kVvZizLqYItpZIcmkv_9srd7QYCLT2JYX5vNG_eMTpw3hmEXlGypITRc9BxaWJaqpaUdU2eoQUVjBRCCXqAFoRQXtS8-nqEjmO8JYQwTtRzdMSJkIRVbIF-fvCDwb7HVyYESOZ0_eUMg-v2dS6twxc62XtI1t08NtZnuH3AKxi0nUb8cRp6mwzufcCX7hs4bTq8-WG7rPJu_mETbsBZjVfeJRitA5fiC3TYwxDNy917gj5fXX5avS-uN-_Wq4vrArKtVNBWqLYvuSSKcymhlDT7JdCRWnaaycoQ4D3QSirITUFNrZXmleKdgE5LfoJOt3Pvgv8-5Ys1o43aDAM446fYMKpqUZZM1v-BipqzsuQz-uYJeuun4LKRTMm8KC2ZytTrHTW1o-mau2BHCA_NnxAycL4FdPAxBtPvEUqaOeYmx9zM43cxZ4V4otA2_T50CmCHf-jebnVzY7_r3-hfZri5nw |
CitedBy_id | crossref_primary_10_1021_acsestengg_4c00629 crossref_primary_10_2139_ssrn_4159509 crossref_primary_10_1016_j_watres_2022_118765 crossref_primary_10_1021_acs_estlett_2c00165 crossref_primary_10_1021_acssensors_4c00156 crossref_primary_10_1021_acs_est_0c04674 crossref_primary_10_2139_ssrn_3979637 crossref_primary_10_1016_j_scitotenv_2022_159562 crossref_primary_10_1016_j_cej_2024_157539 crossref_primary_10_1016_j_scitotenv_2022_161080 crossref_primary_10_1016_j_jhazmat_2021_126991 crossref_primary_10_1016_j_jhazmat_2022_128772 crossref_primary_10_1007_s11356_022_18949_x crossref_primary_10_1016_j_apcatb_2024_124840 crossref_primary_10_1016_j_jece_2024_114982 crossref_primary_10_1016_j_cej_2023_147555 crossref_primary_10_1021_acsestwater_1c00156 crossref_primary_10_1021_acs_est_1c06276 crossref_primary_10_1016_j_cej_2024_158290 crossref_primary_10_1016_j_scitotenv_2021_151441 crossref_primary_10_1016_j_apcatb_2023_122706 crossref_primary_10_1021_acsestengg_1c00124 crossref_primary_10_1021_acs_est_0c03212 crossref_primary_10_1039_D3CS00627A crossref_primary_10_1021_acs_est_4c05343 crossref_primary_10_1016_j_chemosphere_2020_128035 crossref_primary_10_1016_j_jhazmat_2023_132413 crossref_primary_10_1016_j_jhazmat_2024_135740 crossref_primary_10_1016_j_cej_2023_147670 crossref_primary_10_1016_j_jhazmat_2022_128421 crossref_primary_10_1016_j_seppur_2024_126997 crossref_primary_10_1016_j_cej_2023_145012 crossref_primary_10_1016_j_chemosphere_2019_05_069 crossref_primary_10_1016_j_seppur_2023_125979 crossref_primary_10_1016_j_cej_2020_126124 crossref_primary_10_1016_j_cej_2020_124864 crossref_primary_10_1007_s11356_022_22967_0 crossref_primary_10_1016_j_jhazmat_2024_136980 crossref_primary_10_1039_D2EW00109H crossref_primary_10_1016_j_watres_2022_118182 crossref_primary_10_1016_j_ccr_2024_215840 crossref_primary_10_1016_j_envpol_2024_123862 crossref_primary_10_1016_j_jes_2023_09_002 crossref_primary_10_1016_j_cej_2024_148918 crossref_primary_10_1016_j_cej_2022_134674 crossref_primary_10_1016_j_cej_2024_151085 crossref_primary_10_3390_w13131724 crossref_primary_10_1016_j_seppur_2024_129578 crossref_primary_10_3390_w15040699 crossref_primary_10_1016_j_cej_2019_124007 crossref_primary_10_1016_j_cej_2022_140671 crossref_primary_10_1016_j_diamond_2023_110114 crossref_primary_10_1039_C9EN00528E crossref_primary_10_1021_acsestwater_2c00468 crossref_primary_10_1021_acs_jpca_3c00134 crossref_primary_10_1016_j_watres_2022_119025 crossref_primary_10_1021_acs_est_1c02015 crossref_primary_10_3390_molecules26041154 crossref_primary_10_1016_j_cej_2023_141796 crossref_primary_10_1016_j_scitotenv_2024_171430 crossref_primary_10_1016_j_watres_2023_120674 crossref_primary_10_1016_j_cej_2021_134385 crossref_primary_10_1016_j_apcatb_2025_125208 crossref_primary_10_1021_acs_est_3c03165 crossref_primary_10_1021_acs_est_0c08805 crossref_primary_10_1016_j_envint_2019_105195 crossref_primary_10_1016_j_cej_2019_123167 crossref_primary_10_1016_j_cej_2021_132408 crossref_primary_10_1021_acs_est_9b03356 crossref_primary_10_2139_ssrn_4076116 crossref_primary_10_1016_j_scitotenv_2021_147492 crossref_primary_10_1016_j_ese_2024_100405 crossref_primary_10_1016_j_seppur_2021_118420 crossref_primary_10_1016_j_cej_2024_151861 crossref_primary_10_1007_s11356_020_08502_z crossref_primary_10_1016_j_cej_2022_137044 crossref_primary_10_2139_ssrn_3981644 crossref_primary_10_1016_j_cej_2024_151180 crossref_primary_10_1016_j_apcatb_2024_123717 crossref_primary_10_1016_j_cej_2022_140216 crossref_primary_10_1016_j_apcatb_2022_122062 crossref_primary_10_1016_j_seppur_2024_129794 crossref_primary_10_1016_j_chemosphere_2021_131544 crossref_primary_10_1016_j_seppur_2023_124788 crossref_primary_10_1016_j_cej_2023_143161 crossref_primary_10_1007_s10311_024_01706_6 crossref_primary_10_1016_j_seppur_2023_125636 crossref_primary_10_1016_j_jece_2025_115413 crossref_primary_10_1039_D3TA01950K crossref_primary_10_1016_j_cej_2020_124077 crossref_primary_10_1016_j_watres_2022_118792 crossref_primary_10_1016_j_watres_2022_119520 crossref_primary_10_1039_D0EW00483A crossref_primary_10_1016_j_watres_2022_119400 crossref_primary_10_1016_j_cej_2023_146549 crossref_primary_10_1021_acs_est_1c00375 crossref_primary_10_1007_s11783_020_1373_3 crossref_primary_10_1016_j_cej_2020_125603 crossref_primary_10_1016_j_memsci_2024_123404 crossref_primary_10_1016_j_ces_2024_121159 crossref_primary_10_1016_j_cej_2020_125607 crossref_primary_10_1016_j_chemosphere_2019_125005 crossref_primary_10_1016_j_chemosphere_2019_125124 crossref_primary_10_1016_j_seppur_2024_127121 crossref_primary_10_1021_acs_est_0c06808 crossref_primary_10_1016_j_scitotenv_2022_159893 crossref_primary_10_1021_acsestengg_0c00229 crossref_primary_10_1016_j_chemosphere_2023_138964 crossref_primary_10_1016_j_eehl_2023_12_002 crossref_primary_10_1016_j_seppur_2024_129781 crossref_primary_10_1016_j_jece_2023_109774 crossref_primary_10_1021_acs_est_1c04616 crossref_primary_10_1016_j_jece_2022_108706 crossref_primary_10_1016_j_watres_2022_118317 crossref_primary_10_1016_j_jece_2020_104625 crossref_primary_10_1016_j_jhazmat_2021_125297 crossref_primary_10_1016_j_jhazmat_2023_132739 crossref_primary_10_2139_ssrn_4149197 crossref_primary_10_1016_j_chemosphere_2022_136168 crossref_primary_10_1016_j_cej_2023_145571 crossref_primary_10_1021_acs_est_3c06370 crossref_primary_10_1007_s13738_024_02993_0 crossref_primary_10_1002_smll_202203269 crossref_primary_10_1016_j_cej_2021_131917 crossref_primary_10_1016_j_cej_2023_141880 crossref_primary_10_1016_j_envpol_2020_114789 crossref_primary_10_1016_j_jhazmat_2019_121303 crossref_primary_10_1016_j_cej_2023_143820 crossref_primary_10_1021_acsestengg_3c00198 crossref_primary_10_1016_j_ces_2025_121320 crossref_primary_10_1016_j_envres_2024_119268 crossref_primary_10_1016_j_envint_2020_105641 crossref_primary_10_1016_j_jwpe_2023_104211 crossref_primary_10_1016_j_apcatb_2023_123535 crossref_primary_10_1016_j_cej_2025_159612 crossref_primary_10_1016_j_chemosphere_2022_136377 crossref_primary_10_3390_molecules29122868 crossref_primary_10_1016_j_seppur_2024_126939 crossref_primary_10_1016_j_cej_2020_124771 crossref_primary_10_1016_j_jece_2024_114286 crossref_primary_10_1007_s11783_021_1501_8 crossref_primary_10_1016_j_psep_2023_03_011 crossref_primary_10_1021_acs_est_1c08790 crossref_primary_10_1016_j_apcatb_2021_120593 crossref_primary_10_1016_j_jhazmat_2023_131983 crossref_primary_10_1021_acs_est_0c06825 crossref_primary_10_1016_j_watres_2021_116973 crossref_primary_10_1002_jctb_7734 crossref_primary_10_3390_ijerph192214726 crossref_primary_10_1016_j_cej_2021_128872 crossref_primary_10_1016_j_seppur_2024_127589 crossref_primary_10_1016_j_psep_2023_10_037 crossref_primary_10_1021_acs_est_1c04367 crossref_primary_10_1021_acsestengg_2c00287 crossref_primary_10_1016_j_chemosphere_2024_142752 crossref_primary_10_1016_j_scitotenv_2024_177824 crossref_primary_10_1016_j_seppur_2022_122322 crossref_primary_10_1016_j_watres_2022_118243 crossref_primary_10_1021_acsestwater_1c00302 crossref_primary_10_1016_j_watres_2021_117796 crossref_primary_10_1016_j_cej_2025_159830 crossref_primary_10_1016_j_cej_2024_157255 crossref_primary_10_1016_j_jhazmat_2023_131274 crossref_primary_10_1021_acs_est_3c01395 crossref_primary_10_1021_acs_est_3c03212 crossref_primary_10_1016_j_jhazmat_2023_132009 crossref_primary_10_1016_j_jhazmat_2023_131955 crossref_primary_10_1016_j_jhazmat_2023_132920 crossref_primary_10_1016_j_jhazmat_2022_129462 crossref_primary_10_1016_j_jhazmat_2024_133614 crossref_primary_10_1016_j_seppur_2022_121910 crossref_primary_10_1021_acs_est_9b02991 crossref_primary_10_1016_j_seppur_2024_129757 crossref_primary_10_1016_j_seppur_2022_121479 crossref_primary_10_1016_j_cej_2023_146622 crossref_primary_10_1016_j_seppur_2023_123827 crossref_primary_10_1016_j_watres_2022_118113 crossref_primary_10_1016_j_cej_2024_148669 crossref_primary_10_1016_j_watres_2020_116054 crossref_primary_10_1016_j_emcon_2023_100273 crossref_primary_10_1016_j_jece_2024_111872 crossref_primary_10_1016_j_jhazmat_2024_134254 crossref_primary_10_1016_j_apcatb_2020_119414 crossref_primary_10_1016_j_jwpe_2025_107530 crossref_primary_10_1016_j_cej_2024_158211 crossref_primary_10_1021_acs_est_1c03725 crossref_primary_10_1021_acs_est_2c02381 crossref_primary_10_1016_j_chemosphere_2021_130365 crossref_primary_10_1016_j_cej_2023_147157 crossref_primary_10_1021_acs_est_2c09336 crossref_primary_10_2139_ssrn_4098425 crossref_primary_10_1016_j_jece_2024_112991 crossref_primary_10_1039_D4EN00026A crossref_primary_10_1016_j_jhazmat_2023_131927 crossref_primary_10_1016_j_jece_2023_111582 crossref_primary_10_1016_j_watres_2023_120827 crossref_primary_10_1007_s11356_022_19174_2 crossref_primary_10_1073_pnas_2322283121 crossref_primary_10_1016_j_cej_2022_135002 crossref_primary_10_1016_j_seppur_2024_128087 crossref_primary_10_1021_acs_est_2c06290 crossref_primary_10_1016_j_jhazmat_2021_126572 crossref_primary_10_1016_j_watres_2023_119834 crossref_primary_10_1021_acs_est_9b05489 crossref_primary_10_1016_j_seppur_2023_125337 crossref_primary_10_1016_j_watres_2023_120034 crossref_primary_10_1016_j_watres_2022_118331 crossref_primary_10_1021_acs_est_3c05509 crossref_primary_10_1016_j_jhazmat_2023_131818 crossref_primary_10_1016_j_watres_2024_122631 crossref_primary_10_1016_j_jhazmat_2019_121735 crossref_primary_10_1016_j_cej_2023_141951 crossref_primary_10_1021_acsestengg_3c00283 crossref_primary_10_1021_acs_est_0c07792 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1016_j_jwpe_2023_104122 crossref_primary_10_1021_acscatal_2c04287 crossref_primary_10_1021_acs_est_9b03754 crossref_primary_10_2139_ssrn_4006983 crossref_primary_10_1016_j_chemosphere_2023_138788 crossref_primary_10_1016_j_scitotenv_2022_157695 crossref_primary_10_1016_j_cej_2022_140048 crossref_primary_10_1016_j_jcis_2024_04_056 crossref_primary_10_1016_j_jece_2024_114918 crossref_primary_10_1016_j_jhazmat_2024_133982 crossref_primary_10_1016_j_cclet_2024_110548 crossref_primary_10_1016_j_watres_2024_122991 crossref_primary_10_1016_j_cej_2021_133339 crossref_primary_10_1016_j_jhazmat_2023_132117 crossref_primary_10_1016_j_cej_2020_127167 crossref_primary_10_1016_j_seppur_2024_129844 crossref_primary_10_1021_acs_estlett_0c00025 crossref_primary_10_1016_j_cej_2024_150934 crossref_primary_10_1016_j_jhazmat_2022_129428 crossref_primary_10_1016_j_molliq_2023_121259 crossref_primary_10_1016_j_seppur_2021_120102 crossref_primary_10_1016_j_scitotenv_2021_150383 crossref_primary_10_1016_j_apcatb_2023_122618 crossref_primary_10_1021_acs_est_3c04589 crossref_primary_10_1016_j_cej_2025_159477 crossref_primary_10_1016_j_memsci_2023_122208 crossref_primary_10_1021_acs_est_3c05798 crossref_primary_10_1016_j_cej_2022_139742 crossref_primary_10_1016_j_cej_2023_146716 crossref_primary_10_1021_acsestwater_0c00255 crossref_primary_10_1016_j_envres_2025_120912 crossref_primary_10_1016_j_apcatb_2021_120282 crossref_primary_10_1021_acs_est_1c01618 crossref_primary_10_1016_j_chemosphere_2022_134257 crossref_primary_10_1016_j_jenvman_2022_115328 crossref_primary_10_1016_j_seppur_2023_125112 crossref_primary_10_2139_ssrn_4055901 crossref_primary_10_1016_j_apcatb_2021_120722 crossref_primary_10_1016_j_seppur_2023_125358 crossref_primary_10_1021_acsestwater_3c00410 crossref_primary_10_1016_j_jiec_2024_12_074 crossref_primary_10_1021_acsestwater_3c00771 crossref_primary_10_1016_j_seppur_2021_120104 crossref_primary_10_1016_j_apcatb_2022_121256 crossref_primary_10_5004_dwt_2020_25804 crossref_primary_10_1021_jacs_2c08048 crossref_primary_10_1016_j_scitotenv_2023_168860 crossref_primary_10_1021_acsestengg_2c00236 crossref_primary_10_1016_j_jhazmat_2024_136079 crossref_primary_10_1021_acsestwater_1c00110 crossref_primary_10_1016_j_cej_2022_140859 crossref_primary_10_1016_j_seppur_2024_127093 crossref_primary_10_1016_j_cej_2021_132384 crossref_primary_10_1021_acs_iecr_0c04546 crossref_primary_10_1016_j_jhazmat_2023_131240 crossref_primary_10_1016_j_seppur_2023_125240 crossref_primary_10_1016_j_jhazmat_2023_133303 crossref_primary_10_1016_j_jhazmat_2021_128045 crossref_primary_10_1021_acs_est_2c08965 crossref_primary_10_1021_acsestwater_2c00337 crossref_primary_10_1016_j_watres_2021_117094 crossref_primary_10_1007_s10311_023_01584_4 crossref_primary_10_1016_j_watres_2024_121353 crossref_primary_10_1016_j_jece_2024_112954 crossref_primary_10_1016_j_watres_2019_02_057 crossref_primary_10_1021_acs_est_3c01850 crossref_primary_10_1016_j_jwpe_2022_103446 crossref_primary_10_1021_acs_est_0c06676 crossref_primary_10_1016_j_cej_2022_136011 crossref_primary_10_1016_j_watres_2023_120506 crossref_primary_10_1016_j_cej_2022_140516 crossref_primary_10_1021_acs_est_0c00218 crossref_primary_10_1016_j_cej_2022_134753 crossref_primary_10_1016_j_envpol_2023_122449 crossref_primary_10_1016_j_efmat_2024_12_003 crossref_primary_10_1016_j_envres_2023_117849 crossref_primary_10_1021_acs_est_1c03813 crossref_primary_10_1016_j_cej_2022_137904 crossref_primary_10_1016_j_watres_2025_123133 crossref_primary_10_1039_D2TA03510C crossref_primary_10_1016_j_chemosphere_2023_139442 crossref_primary_10_1016_j_jece_2022_108537 crossref_primary_10_1016_j_cej_2020_124382 crossref_primary_10_1016_j_cej_2020_124134 crossref_primary_10_1016_j_cej_2024_150921 crossref_primary_10_1016_j_watres_2022_118377 crossref_primary_10_1016_j_watres_2024_121100 crossref_primary_10_1021_acs_est_2c04109 crossref_primary_10_1016_j_cej_2020_124814 crossref_primary_10_1016_j_watres_2024_121907 crossref_primary_10_1016_j_cej_2024_159042 crossref_primary_10_1016_j_cej_2022_136387 crossref_primary_10_1016_j_jhazmat_2022_130070 crossref_primary_10_1016_j_seppur_2024_129489 crossref_primary_10_1016_j_watres_2021_117548 crossref_primary_10_1016_j_jhazmat_2023_131104 crossref_primary_10_1016_j_cej_2021_132169 crossref_primary_10_1021_acs_est_2c08266 crossref_primary_10_1016_j_cej_2023_147573 crossref_primary_10_1016_j_resconrec_2024_107880 |
Cites_doi | 10.1021/acs.est.5b03275 10.1080/17415993.2015.1028939 10.1016/j.apcatb.2017.09.001 10.1063/1.555805 10.1021/jp901994x 10.1021/es060351z 10.1021/acs.est.7b05563 10.1021/acs.est.8b03770 10.1021/acs.est.5b03111 10.1021/es035121o 10.1016/j.jhazmat.2016.11.029 10.1021/es0263792 10.1007/s10311-017-0696-1 10.3891/acta.chem.scand.53-0584 10.1021/ic951141i 10.1021/jp011255h 10.1016/j.watres.2016.03.065 10.1016/j.watres.2012.01.047 10.1016/j.watres.2017.03.054 10.1021/acs.est.8b01565 10.3109/10715769509145647 10.1016/j.cattod.2017.12.004 10.1002/jctb.4525 10.1016/j.cej.2017.09.082 10.1021/ie3020389 10.1016/j.cej.2015.04.139 10.1021/tx2003323 10.1016/j.cej.2018.04.016 10.1021/ie400469u 10.1289/ehp.8564209 10.1063/1.555808 10.1126/science.1133417 10.1021/acs.est.6b05513 10.1016/j.chemosphere.2010.12.053 10.1016/j.chemosphere.2017.12.194 10.1016/j.watres.2014.03.016 10.1039/c39860001301 10.1016/j.cej.2018.01.131 10.1039/j39710000701 10.1007/s11356-016-6672-7 10.1021/es051198w 10.1021/es505516w 10.1021/acs.inorgchem.7b02208 10.1016/j.jenvman.2010.11.026 10.1021/acs.est.5b05207 10.1021/es102401d 10.1016/j.apcatb.2016.04.003 10.1021/acs.est.7b03705 10.1016/j.watres.2017.12.046 10.1016/j.cej.2018.01.112 10.1021/es1005187 10.1021/ja01172a078 10.1016/j.jhazmat.2016.01.012 10.1021/es403199p 10.1016/j.chemosphere.2017.07.102 10.1016/j.jhazmat.2018.03.024 10.1021/es500804g 10.1016/j.chemosphere.2016.04.093 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Jan 15, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society Jan 15, 2019 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.8b04990 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 902 |
ExternalDocumentID | 30570262 10_1021_acs_est_8b04990 a14978883 |
Genre | Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a499t-1b58bf437083377a4710490ad097dc276e0a3fa1678aa4751e9c8c3683d5adc73 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 09:12:19 EDT 2025 Fri Jul 11 15:34:01 EDT 2025 Mon Jun 30 04:17:50 EDT 2025 Wed Feb 19 02:36:07 EST 2025 Thu Apr 24 22:50:08 EDT 2025 Tue Jul 01 02:58:01 EDT 2025 Thu Aug 27 13:43:29 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-1b58bf437083377a4710490ad097dc276e0a3fa1678aa4751e9c8c3683d5adc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5296-423X |
PMID | 30570262 |
PQID | 2173771428 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2189544279 proquest_miscellaneous_2159324439 proquest_journals_2173771428 pubmed_primary_30570262 crossref_primary_10_1021_acs_est_8b04990 crossref_citationtrail_10_1021_acs_est_8b04990 acs_journals_10_1021_acs_est_8b04990 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Eberson L. (ref52/cit52) 1999; 53 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 Schwarzenbach R. P. (ref45/cit45) 2005 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1021/acs.est.5b03275 – ident: ref5/cit5 doi: 10.1080/17415993.2015.1028939 – ident: ref18/cit18 doi: 10.1016/j.apcatb.2017.09.001 – ident: ref46/cit46 doi: 10.1063/1.555805 – ident: ref58/cit58 doi: 10.1021/jp901994x – ident: ref37/cit37 doi: 10.1021/es060351z – ident: ref24/cit24 doi: 10.1021/acs.est.7b05563 – ident: ref25/cit25 doi: 10.1021/acs.est.8b03770 – ident: ref31/cit31 doi: 10.1021/acs.est.5b03111 – ident: ref1/cit1 doi: 10.1021/es035121o – ident: ref17/cit17 doi: 10.1016/j.jhazmat.2016.11.029 – ident: ref49/cit49 doi: 10.1021/es0263792 – ident: ref19/cit19 doi: 10.1007/s10311-017-0696-1 – volume: 53 start-page: 584 year: 1999 ident: ref52/cit52 publication-title: Acta Chem. Scand. doi: 10.3891/acta.chem.scand.53-0584 – ident: ref14/cit14 doi: 10.1021/ic951141i – ident: ref20/cit20 doi: 10.1021/jp011255h – ident: ref42/cit42 doi: 10.1016/j.watres.2016.03.065 – ident: ref28/cit28 doi: 10.1016/j.watres.2012.01.047 – ident: ref38/cit38 doi: 10.1016/j.watres.2017.03.054 – ident: ref43/cit43 doi: 10.1021/acs.est.8b01565 – ident: ref26/cit26 doi: 10.3109/10715769509145647 – ident: ref9/cit9 doi: 10.1016/j.cattod.2017.12.004 – ident: ref21/cit21 doi: 10.1002/jctb.4525 – ident: ref34/cit34 doi: 10.1016/j.cej.2017.09.082 – ident: ref4/cit4 doi: 10.1021/ie3020389 – ident: ref36/cit36 doi: 10.1016/j.cej.2015.04.139 – ident: ref54/cit54 doi: 10.1021/tx2003323 – ident: ref3/cit3 doi: 10.1016/j.cej.2018.04.016 – ident: ref8/cit8 doi: 10.1021/ie400469u – ident: ref44/cit44 doi: 10.1289/ehp.8564209 – volume-title: Environmental Organic Chemistry year: 2005 ident: ref45/cit45 – ident: ref47/cit47 doi: 10.1063/1.555808 – ident: ref22/cit22 doi: 10.1126/science.1133417 – ident: ref50/cit50 doi: 10.1021/acs.est.6b05513 – ident: ref56/cit56 doi: 10.1016/j.chemosphere.2010.12.053 – ident: ref13/cit13 doi: 10.1016/j.chemosphere.2017.12.194 – ident: ref6/cit6 doi: 10.1016/j.watres.2014.03.016 – ident: ref51/cit51 doi: 10.1039/c39860001301 – ident: ref32/cit32 doi: 10.1016/j.cej.2018.01.131 – ident: ref53/cit53 doi: 10.1039/j39710000701 – ident: ref15/cit15 doi: 10.1007/s11356-016-6672-7 – ident: ref39/cit39 doi: 10.1021/es051198w – ident: ref41/cit41 doi: 10.1021/es505516w – ident: ref23/cit23 doi: 10.1021/acs.inorgchem.7b02208 – ident: ref27/cit27 doi: 10.1016/j.jenvman.2010.11.026 – ident: ref30/cit30 doi: 10.1021/acs.est.5b05207 – ident: ref55/cit55 doi: 10.1021/es102401d – ident: ref2/cit2 doi: 10.1016/j.apcatb.2016.04.003 – ident: ref10/cit10 doi: 10.1021/acs.est.7b03705 – ident: ref16/cit16 doi: 10.1016/j.watres.2017.12.046 – ident: ref35/cit35 doi: 10.1016/j.cej.2018.01.112 – ident: ref57/cit57 doi: 10.1021/es1005187 – ident: ref48/cit48 doi: 10.1021/ja01172a078 – ident: ref12/cit12 doi: 10.1016/j.jhazmat.2016.01.012 – ident: ref7/cit7 doi: 10.1021/es403199p – ident: ref33/cit33 doi: 10.1016/j.chemosphere.2017.07.102 – ident: ref29/cit29 doi: 10.1016/j.jhazmat.2018.03.024 – ident: ref40/cit40 doi: 10.1021/es500804g – ident: ref59/cit59 doi: 10.1016/j.chemosphere.2016.04.093 |
SSID | ssj0002308 |
Score | 2.6667573 |
Snippet | Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus... Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO... Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus... Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 894 |
SubjectTerms | Anions Antibiotics Calcium Contaminants Contamination drugs Hydrogen peroxide hydroxyl radicals Iron Organic contaminants Oxidants Oxidation Oxidizing agents Pesticides Pollutant removal pollutants pollution control Species Sulfite sulfites Water pollution Water treatment |
Title | Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants |
URI | http://dx.doi.org/10.1021/acs.est.8b04990 https://www.ncbi.nlm.nih.gov/pubmed/30570262 https://www.proquest.com/docview/2173771428 https://www.proquest.com/docview/2159324439 https://www.proquest.com/docview/2189544279 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcmuGyHMdgYZYA8iQMcktVJHDtHVLWCSdukMabeoucvVq2kiDQS24G_neckTQeo225x_Jz46_n9LD__HiGHKgNtnZKBcTwLkjQ1gQR8crgSRn1ADF2P9KfP6elF8nHMx0uy6Mcn-BH7ALoMcYEMpfLoHHfn61GKKuxR0OC8W3QRSctFsIIsTscdi8-TD3gzpMuHZmgFtqxtzGij8c4qa2pC71ryM6zmKtS_nxI3_rv6r8jLFmnSk2ZqbJJnttgiL_7gH9wi28PlNTcUbfW8fE3uvs6mls4cHdkbzyVxdPb9mEJhujQmJwU90U1wtOJymXF2TNUvOoCpnlRX9LyaOgS1FKExHRY_ancD-uV20kRy8n9oLoNq6mmyoPXLeUMuRsNvg9OgjdQQADZqHjDFpXJJLBDQxUIAWjx_ogimnwmjI5HaPsQOGFpGwEzObKaljlMZGw5Gi3ibrBWzwu4QqlgmtNOcxy7DraNRKSjJwCBsSqxlskcOsUvzVtPKvD5Ej1juX2I_520_90i4GN9ct2znPujGdHWBo67AdUP0sVp0bzFhlvXArR223PPX9cj7Lht11R_AQGFnlZfhCJcTxIB_k5EZT5JIoMzbZjJ29cG1WeCeOdr9vz54R54jvPPucAHje2RtflPZfYRQc3VQK889rK4Vbw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-axgE48DEYFAYYaYftkFIncewcq6pVC9sQbEO9Rf7cKkqKlkbaOPC385ykKR8qgltsPzvPn-9n2f49gH2VSm2dEoFxLA3iJDGBkPjlcCUMexIxdNXTxyfJ-Dx-O2XTLeit3sKgEgWWVFSH-Gt2AfrGx-E62RXKg3TcpN9CKBL6Md0fnLZrLwJqsfJZkEbJtCXz-aMAb4108as12gAxK1Mzug8fWiWrGyafu-VSdfW33_gb_6cWD-BegztJvx4oD2HL5jtw9yc2wh3YHa4fvaFoM-uLR_D942JuycKRkb3yzBIHk0-HROamDWNwlpO-rl2l5RfrhMkhUTdkIOd6Vn4hp-XcIcQlCJTJML-sLh-Q99ez2q-T_0P9NFQTT5olm1s6j-F8NDwbjIPGb0MgsVLLgComlIsjjvAu4lyi_fPni9L0Um50yBPbk5GTFO2kxERGbaqFjhIRGSaN5tEubOeL3D4FomjKtdOMRS7FjaRRiVSCSoMgKraWig7sY5NmzbwrsupIPaSZj8R2zpp27kB31c2ZbrjPvQuO-eYMB22GrzXtx2bRvdW4WeuBGz2suWez68DrNhlnrj-OkbldlF6GIXiOERH-TUakLI5DjjJP6jHZ6oMrNccddPjs39rgFdwenx0fZUeTk3fP4Q4CP39RLqBsD7aXV6V9geBqqV5W8-kHGdId0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLemTZrgMGAwVjbASDtsh5Q6iWPnWJVWK4OBGEW9Rf6EipJOSyNtO-xv5zlx042pCG5x_Jz46_n9rGf_HkIHMhXKWMkDbWkaxEmiAy7gycJKGHYEYOhqpD-eJsej-P2Yjv2lMHcXBipRwJeKyonvtPpcW88wQN6697BWtrl0QB026hvOaefmdbd31qy_AKr5Im5BGiXjhtDn3gecRVLFXYu0AmZW5mbwCI2ailanTH62y7lsq-s_OBz_tyWP0ZbHn7hbT5gnaM3k2-jhLVbCbbTTX15-A1Gv_cVTdPNlNjV4ZvHAXDiGicPhtyMsct2kITnJcVfVIdPy78uM4RGWV7gnpmpS_sJn5dQC1MUAmHE__1EdQsCfLid1fCf3h_qKqMKOPEv40zrP0GjQ_9o7Dnz8hkBAo-YBkZRLG0cMYF7EmAA76PyMQndSplXIEtMRkRUE7KWATEpMqriKEh5pKrRi0Q5az2e52UVYkpQpqyiNbAobSi0TITkRGsBUbAzhLXQAXZp5_SuyyrUeksy9hH7OfD-3UHsx1JnyHOguFMd0dYHDpsB5Tf-xWnR_MXeW9YANH7Tcsdq10JsmGzTYuWVEbmalk6EAomNAhn-T4SmN45CBzPN6Xjb1gRWbwU46fPFvffAabX5-N8g-DE9P9tADwH_uvFxA6D5an1-U5iVgrLl8VanUb1N-IFM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Ferrate%28IV%29+and+Ferrate%28V%29+in+Activating+Ferrate%28VI%29+by+Calcium+Sulfite+for+Enhanced+Oxidation+of+Organic+Contaminants&rft.jtitle=Environmental+science+%26+technology&rft.au=Shao%2C+Binbin&rft.au=Dong%2C+Hongyu&rft.au=Sun%2C+Bo&rft.au=Guan%2C+Xiaohong&rft.date=2019-01-15&rft.issn=1520-5851&rft.volume=53&rft.issue=2+p.894-902&rft.spage=894&rft.epage=902&rft_id=info:doi/10.1021%2Facs.est.8b04990&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |