Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants

Although the Fe­(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe­(IV)/Fe­(V) versus SO4 •–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO3 2–, this...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 53; no. 2; pp. 894 - 902
Main Authors Shao, Binbin, Dong, Hongyu, Sun, Bo, Guan, Xiaohong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the Fe­(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe­(IV)/Fe­(V) versus SO4 •–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO3 2–, this study evaluated the oxidation performance of the Fe­(VI)–CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe­(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4 •– nor •OH was the active species in the Fe­(VI)–CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe­(IV)/Fe­(V) species from the reaction of Fe­(VI) with soluble SO3 2– via one-electron steps as well as the indirect generation of Fe­(IV)/Fe­(V) species from the self-decay of Fe­(VI) and Fe­(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe­(III). Besides, the Fe­(VI)–CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe­(VI)–CaSO3 process with Fe­(IV)/Fe­(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.
AbstractList Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4•–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO32–, this study evaluated the oxidation performance of the Fe(VI)–CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4•– nor •OH was the active species in the Fe(VI)–CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO32– via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)–CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)–CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.
Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO / OH) involved in this process are still under debate. By employing sparingly soluble CaSO as a slow-releasing source of SO , this study evaluated the oxidation performance of the Fe(VI)-CaSO process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1-173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO nor OH was the active species in the Fe(VI)-CaSO process. The accelerating effect of CaSO was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H O , which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)-CaSO process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)-CaSO process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.
Although the Fe­(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe­(IV)/Fe­(V) versus SO4 •–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO3 2–, this study evaluated the oxidation performance of the Fe­(VI)–CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe­(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4 •– nor •OH was the active species in the Fe­(VI)–CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe­(IV)/Fe­(V) species from the reaction of Fe­(VI) with soluble SO3 2– via one-electron steps as well as the indirect generation of Fe­(IV)/Fe­(V) species from the self-decay of Fe­(VI) and Fe­(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe­(III). Besides, the Fe­(VI)–CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe­(VI)–CaSO3 process with Fe­(IV)/Fe­(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.
Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4•-/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO32-, this study evaluated the oxidation performance of the Fe(VI)-CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1-173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4•- nor •OH was the active species in the Fe(VI)-CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO32- via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)-CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)-CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4•-/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO32-, this study evaluated the oxidation performance of the Fe(VI)-CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1-173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4•- nor •OH was the active species in the Fe(VI)-CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO32- via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)-CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)-CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.
Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO₄•–/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO₃ as a slow-releasing source of SO₃²–, this study evaluated the oxidation performance of the Fe(VI)–CaSO₃ process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1–173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO₃ dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO₄•– nor •OH was the active species in the Fe(VI)–CaSO₃ process. The accelerating effect of CaSO₃ was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO₃²– via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H₂O₂, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)–CaSO₃ process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)–CaSO₃ process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.
Author Shao, Binbin
Guan, Xiaohong
Sun, Bo
Dong, Hongyu
AuthorAffiliation Department of Civil and Environmental Engineering
Shanghai Institute of Pollution Control and Ecological Security
The Hong Kong University of Science and Technology
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering
Tongji University
International Joint Research Center for Sustainable Urban Water System
AuthorAffiliation_xml – name: Shanghai Institute of Pollution Control and Ecological Security
– name: Department of Civil and Environmental Engineering
– name: International Joint Research Center for Sustainable Urban Water System
– name: State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering
– name: The Hong Kong University of Science and Technology
– name: Tongji University
Author_xml – sequence: 1
  givenname: Binbin
  surname: Shao
  fullname: Shao, Binbin
  organization: Shanghai Institute of Pollution Control and Ecological Security
– sequence: 2
  givenname: Hongyu
  surname: Dong
  fullname: Dong, Hongyu
  organization: Shanghai Institute of Pollution Control and Ecological Security
– sequence: 3
  givenname: Bo
  surname: Sun
  fullname: Sun, Bo
  organization: The Hong Kong University of Science and Technology
– sequence: 4
  givenname: Xiaohong
  orcidid: 0000-0001-5296-423X
  surname: Guan
  fullname: Guan, Xiaohong
  email: guanxh@tongji.edu.cn
  organization: Tongji University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30570262$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1r3DAQxUVJaDZpz70VQS8JxRt9WJZ8DEvSLgQW-kVvZizLqYItpZIcmkv_9srd7QYCLT2JYX5vNG_eMTpw3hmEXlGypITRc9BxaWJaqpaUdU2eoQUVjBRCCXqAFoRQXtS8-nqEjmO8JYQwTtRzdMSJkIRVbIF-fvCDwb7HVyYESOZ0_eUMg-v2dS6twxc62XtI1t08NtZnuH3AKxi0nUb8cRp6mwzufcCX7hs4bTq8-WG7rPJu_mETbsBZjVfeJRitA5fiC3TYwxDNy917gj5fXX5avS-uN-_Wq4vrArKtVNBWqLYvuSSKcymhlDT7JdCRWnaaycoQ4D3QSirITUFNrZXmleKdgE5LfoJOt3Pvgv8-5Ys1o43aDAM446fYMKpqUZZM1v-BipqzsuQz-uYJeuun4LKRTMm8KC2ZytTrHTW1o-mau2BHCA_NnxAycL4FdPAxBtPvEUqaOeYmx9zM43cxZ4V4otA2_T50CmCHf-jebnVzY7_r3-hfZri5nw
CitedBy_id crossref_primary_10_1021_acsestengg_4c00629
crossref_primary_10_2139_ssrn_4159509
crossref_primary_10_1016_j_watres_2022_118765
crossref_primary_10_1021_acs_estlett_2c00165
crossref_primary_10_1021_acssensors_4c00156
crossref_primary_10_1021_acs_est_0c04674
crossref_primary_10_2139_ssrn_3979637
crossref_primary_10_1016_j_scitotenv_2022_159562
crossref_primary_10_1016_j_cej_2024_157539
crossref_primary_10_1016_j_scitotenv_2022_161080
crossref_primary_10_1016_j_jhazmat_2021_126991
crossref_primary_10_1016_j_jhazmat_2022_128772
crossref_primary_10_1007_s11356_022_18949_x
crossref_primary_10_1016_j_apcatb_2024_124840
crossref_primary_10_1016_j_jece_2024_114982
crossref_primary_10_1016_j_cej_2023_147555
crossref_primary_10_1021_acsestwater_1c00156
crossref_primary_10_1021_acs_est_1c06276
crossref_primary_10_1016_j_cej_2024_158290
crossref_primary_10_1016_j_scitotenv_2021_151441
crossref_primary_10_1016_j_apcatb_2023_122706
crossref_primary_10_1021_acsestengg_1c00124
crossref_primary_10_1021_acs_est_0c03212
crossref_primary_10_1039_D3CS00627A
crossref_primary_10_1021_acs_est_4c05343
crossref_primary_10_1016_j_chemosphere_2020_128035
crossref_primary_10_1016_j_jhazmat_2023_132413
crossref_primary_10_1016_j_jhazmat_2024_135740
crossref_primary_10_1016_j_cej_2023_147670
crossref_primary_10_1016_j_jhazmat_2022_128421
crossref_primary_10_1016_j_seppur_2024_126997
crossref_primary_10_1016_j_cej_2023_145012
crossref_primary_10_1016_j_chemosphere_2019_05_069
crossref_primary_10_1016_j_seppur_2023_125979
crossref_primary_10_1016_j_cej_2020_126124
crossref_primary_10_1016_j_cej_2020_124864
crossref_primary_10_1007_s11356_022_22967_0
crossref_primary_10_1016_j_jhazmat_2024_136980
crossref_primary_10_1039_D2EW00109H
crossref_primary_10_1016_j_watres_2022_118182
crossref_primary_10_1016_j_ccr_2024_215840
crossref_primary_10_1016_j_envpol_2024_123862
crossref_primary_10_1016_j_jes_2023_09_002
crossref_primary_10_1016_j_cej_2024_148918
crossref_primary_10_1016_j_cej_2022_134674
crossref_primary_10_1016_j_cej_2024_151085
crossref_primary_10_3390_w13131724
crossref_primary_10_1016_j_seppur_2024_129578
crossref_primary_10_3390_w15040699
crossref_primary_10_1016_j_cej_2019_124007
crossref_primary_10_1016_j_cej_2022_140671
crossref_primary_10_1016_j_diamond_2023_110114
crossref_primary_10_1039_C9EN00528E
crossref_primary_10_1021_acsestwater_2c00468
crossref_primary_10_1021_acs_jpca_3c00134
crossref_primary_10_1016_j_watres_2022_119025
crossref_primary_10_1021_acs_est_1c02015
crossref_primary_10_3390_molecules26041154
crossref_primary_10_1016_j_cej_2023_141796
crossref_primary_10_1016_j_scitotenv_2024_171430
crossref_primary_10_1016_j_watres_2023_120674
crossref_primary_10_1016_j_cej_2021_134385
crossref_primary_10_1016_j_apcatb_2025_125208
crossref_primary_10_1021_acs_est_3c03165
crossref_primary_10_1021_acs_est_0c08805
crossref_primary_10_1016_j_envint_2019_105195
crossref_primary_10_1016_j_cej_2019_123167
crossref_primary_10_1016_j_cej_2021_132408
crossref_primary_10_1021_acs_est_9b03356
crossref_primary_10_2139_ssrn_4076116
crossref_primary_10_1016_j_scitotenv_2021_147492
crossref_primary_10_1016_j_ese_2024_100405
crossref_primary_10_1016_j_seppur_2021_118420
crossref_primary_10_1016_j_cej_2024_151861
crossref_primary_10_1007_s11356_020_08502_z
crossref_primary_10_1016_j_cej_2022_137044
crossref_primary_10_2139_ssrn_3981644
crossref_primary_10_1016_j_cej_2024_151180
crossref_primary_10_1016_j_apcatb_2024_123717
crossref_primary_10_1016_j_cej_2022_140216
crossref_primary_10_1016_j_apcatb_2022_122062
crossref_primary_10_1016_j_seppur_2024_129794
crossref_primary_10_1016_j_chemosphere_2021_131544
crossref_primary_10_1016_j_seppur_2023_124788
crossref_primary_10_1016_j_cej_2023_143161
crossref_primary_10_1007_s10311_024_01706_6
crossref_primary_10_1016_j_seppur_2023_125636
crossref_primary_10_1016_j_jece_2025_115413
crossref_primary_10_1039_D3TA01950K
crossref_primary_10_1016_j_cej_2020_124077
crossref_primary_10_1016_j_watres_2022_118792
crossref_primary_10_1016_j_watres_2022_119520
crossref_primary_10_1039_D0EW00483A
crossref_primary_10_1016_j_watres_2022_119400
crossref_primary_10_1016_j_cej_2023_146549
crossref_primary_10_1021_acs_est_1c00375
crossref_primary_10_1007_s11783_020_1373_3
crossref_primary_10_1016_j_cej_2020_125603
crossref_primary_10_1016_j_memsci_2024_123404
crossref_primary_10_1016_j_ces_2024_121159
crossref_primary_10_1016_j_cej_2020_125607
crossref_primary_10_1016_j_chemosphere_2019_125005
crossref_primary_10_1016_j_chemosphere_2019_125124
crossref_primary_10_1016_j_seppur_2024_127121
crossref_primary_10_1021_acs_est_0c06808
crossref_primary_10_1016_j_scitotenv_2022_159893
crossref_primary_10_1021_acsestengg_0c00229
crossref_primary_10_1016_j_chemosphere_2023_138964
crossref_primary_10_1016_j_eehl_2023_12_002
crossref_primary_10_1016_j_seppur_2024_129781
crossref_primary_10_1016_j_jece_2023_109774
crossref_primary_10_1021_acs_est_1c04616
crossref_primary_10_1016_j_jece_2022_108706
crossref_primary_10_1016_j_watres_2022_118317
crossref_primary_10_1016_j_jece_2020_104625
crossref_primary_10_1016_j_jhazmat_2021_125297
crossref_primary_10_1016_j_jhazmat_2023_132739
crossref_primary_10_2139_ssrn_4149197
crossref_primary_10_1016_j_chemosphere_2022_136168
crossref_primary_10_1016_j_cej_2023_145571
crossref_primary_10_1021_acs_est_3c06370
crossref_primary_10_1007_s13738_024_02993_0
crossref_primary_10_1002_smll_202203269
crossref_primary_10_1016_j_cej_2021_131917
crossref_primary_10_1016_j_cej_2023_141880
crossref_primary_10_1016_j_envpol_2020_114789
crossref_primary_10_1016_j_jhazmat_2019_121303
crossref_primary_10_1016_j_cej_2023_143820
crossref_primary_10_1021_acsestengg_3c00198
crossref_primary_10_1016_j_ces_2025_121320
crossref_primary_10_1016_j_envres_2024_119268
crossref_primary_10_1016_j_envint_2020_105641
crossref_primary_10_1016_j_jwpe_2023_104211
crossref_primary_10_1016_j_apcatb_2023_123535
crossref_primary_10_1016_j_cej_2025_159612
crossref_primary_10_1016_j_chemosphere_2022_136377
crossref_primary_10_3390_molecules29122868
crossref_primary_10_1016_j_seppur_2024_126939
crossref_primary_10_1016_j_cej_2020_124771
crossref_primary_10_1016_j_jece_2024_114286
crossref_primary_10_1007_s11783_021_1501_8
crossref_primary_10_1016_j_psep_2023_03_011
crossref_primary_10_1021_acs_est_1c08790
crossref_primary_10_1016_j_apcatb_2021_120593
crossref_primary_10_1016_j_jhazmat_2023_131983
crossref_primary_10_1021_acs_est_0c06825
crossref_primary_10_1016_j_watres_2021_116973
crossref_primary_10_1002_jctb_7734
crossref_primary_10_3390_ijerph192214726
crossref_primary_10_1016_j_cej_2021_128872
crossref_primary_10_1016_j_seppur_2024_127589
crossref_primary_10_1016_j_psep_2023_10_037
crossref_primary_10_1021_acs_est_1c04367
crossref_primary_10_1021_acsestengg_2c00287
crossref_primary_10_1016_j_chemosphere_2024_142752
crossref_primary_10_1016_j_scitotenv_2024_177824
crossref_primary_10_1016_j_seppur_2022_122322
crossref_primary_10_1016_j_watres_2022_118243
crossref_primary_10_1021_acsestwater_1c00302
crossref_primary_10_1016_j_watres_2021_117796
crossref_primary_10_1016_j_cej_2025_159830
crossref_primary_10_1016_j_cej_2024_157255
crossref_primary_10_1016_j_jhazmat_2023_131274
crossref_primary_10_1021_acs_est_3c01395
crossref_primary_10_1021_acs_est_3c03212
crossref_primary_10_1016_j_jhazmat_2023_132009
crossref_primary_10_1016_j_jhazmat_2023_131955
crossref_primary_10_1016_j_jhazmat_2023_132920
crossref_primary_10_1016_j_jhazmat_2022_129462
crossref_primary_10_1016_j_jhazmat_2024_133614
crossref_primary_10_1016_j_seppur_2022_121910
crossref_primary_10_1021_acs_est_9b02991
crossref_primary_10_1016_j_seppur_2024_129757
crossref_primary_10_1016_j_seppur_2022_121479
crossref_primary_10_1016_j_cej_2023_146622
crossref_primary_10_1016_j_seppur_2023_123827
crossref_primary_10_1016_j_watres_2022_118113
crossref_primary_10_1016_j_cej_2024_148669
crossref_primary_10_1016_j_watres_2020_116054
crossref_primary_10_1016_j_emcon_2023_100273
crossref_primary_10_1016_j_jece_2024_111872
crossref_primary_10_1016_j_jhazmat_2024_134254
crossref_primary_10_1016_j_apcatb_2020_119414
crossref_primary_10_1016_j_jwpe_2025_107530
crossref_primary_10_1016_j_cej_2024_158211
crossref_primary_10_1021_acs_est_1c03725
crossref_primary_10_1021_acs_est_2c02381
crossref_primary_10_1016_j_chemosphere_2021_130365
crossref_primary_10_1016_j_cej_2023_147157
crossref_primary_10_1021_acs_est_2c09336
crossref_primary_10_2139_ssrn_4098425
crossref_primary_10_1016_j_jece_2024_112991
crossref_primary_10_1039_D4EN00026A
crossref_primary_10_1016_j_jhazmat_2023_131927
crossref_primary_10_1016_j_jece_2023_111582
crossref_primary_10_1016_j_watres_2023_120827
crossref_primary_10_1007_s11356_022_19174_2
crossref_primary_10_1073_pnas_2322283121
crossref_primary_10_1016_j_cej_2022_135002
crossref_primary_10_1016_j_seppur_2024_128087
crossref_primary_10_1021_acs_est_2c06290
crossref_primary_10_1016_j_jhazmat_2021_126572
crossref_primary_10_1016_j_watres_2023_119834
crossref_primary_10_1021_acs_est_9b05489
crossref_primary_10_1016_j_seppur_2023_125337
crossref_primary_10_1016_j_watres_2023_120034
crossref_primary_10_1016_j_watres_2022_118331
crossref_primary_10_1021_acs_est_3c05509
crossref_primary_10_1016_j_jhazmat_2023_131818
crossref_primary_10_1016_j_watres_2024_122631
crossref_primary_10_1016_j_jhazmat_2019_121735
crossref_primary_10_1016_j_cej_2023_141951
crossref_primary_10_1021_acsestengg_3c00283
crossref_primary_10_1021_acs_est_0c07792
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1016_j_jwpe_2023_104122
crossref_primary_10_1021_acscatal_2c04287
crossref_primary_10_1021_acs_est_9b03754
crossref_primary_10_2139_ssrn_4006983
crossref_primary_10_1016_j_chemosphere_2023_138788
crossref_primary_10_1016_j_scitotenv_2022_157695
crossref_primary_10_1016_j_cej_2022_140048
crossref_primary_10_1016_j_jcis_2024_04_056
crossref_primary_10_1016_j_jece_2024_114918
crossref_primary_10_1016_j_jhazmat_2024_133982
crossref_primary_10_1016_j_cclet_2024_110548
crossref_primary_10_1016_j_watres_2024_122991
crossref_primary_10_1016_j_cej_2021_133339
crossref_primary_10_1016_j_jhazmat_2023_132117
crossref_primary_10_1016_j_cej_2020_127167
crossref_primary_10_1016_j_seppur_2024_129844
crossref_primary_10_1021_acs_estlett_0c00025
crossref_primary_10_1016_j_cej_2024_150934
crossref_primary_10_1016_j_jhazmat_2022_129428
crossref_primary_10_1016_j_molliq_2023_121259
crossref_primary_10_1016_j_seppur_2021_120102
crossref_primary_10_1016_j_scitotenv_2021_150383
crossref_primary_10_1016_j_apcatb_2023_122618
crossref_primary_10_1021_acs_est_3c04589
crossref_primary_10_1016_j_cej_2025_159477
crossref_primary_10_1016_j_memsci_2023_122208
crossref_primary_10_1021_acs_est_3c05798
crossref_primary_10_1016_j_cej_2022_139742
crossref_primary_10_1016_j_cej_2023_146716
crossref_primary_10_1021_acsestwater_0c00255
crossref_primary_10_1016_j_envres_2025_120912
crossref_primary_10_1016_j_apcatb_2021_120282
crossref_primary_10_1021_acs_est_1c01618
crossref_primary_10_1016_j_chemosphere_2022_134257
crossref_primary_10_1016_j_jenvman_2022_115328
crossref_primary_10_1016_j_seppur_2023_125112
crossref_primary_10_2139_ssrn_4055901
crossref_primary_10_1016_j_apcatb_2021_120722
crossref_primary_10_1016_j_seppur_2023_125358
crossref_primary_10_1021_acsestwater_3c00410
crossref_primary_10_1016_j_jiec_2024_12_074
crossref_primary_10_1021_acsestwater_3c00771
crossref_primary_10_1016_j_seppur_2021_120104
crossref_primary_10_1016_j_apcatb_2022_121256
crossref_primary_10_5004_dwt_2020_25804
crossref_primary_10_1021_jacs_2c08048
crossref_primary_10_1016_j_scitotenv_2023_168860
crossref_primary_10_1021_acsestengg_2c00236
crossref_primary_10_1016_j_jhazmat_2024_136079
crossref_primary_10_1021_acsestwater_1c00110
crossref_primary_10_1016_j_cej_2022_140859
crossref_primary_10_1016_j_seppur_2024_127093
crossref_primary_10_1016_j_cej_2021_132384
crossref_primary_10_1021_acs_iecr_0c04546
crossref_primary_10_1016_j_jhazmat_2023_131240
crossref_primary_10_1016_j_seppur_2023_125240
crossref_primary_10_1016_j_jhazmat_2023_133303
crossref_primary_10_1016_j_jhazmat_2021_128045
crossref_primary_10_1021_acs_est_2c08965
crossref_primary_10_1021_acsestwater_2c00337
crossref_primary_10_1016_j_watres_2021_117094
crossref_primary_10_1007_s10311_023_01584_4
crossref_primary_10_1016_j_watres_2024_121353
crossref_primary_10_1016_j_jece_2024_112954
crossref_primary_10_1016_j_watres_2019_02_057
crossref_primary_10_1021_acs_est_3c01850
crossref_primary_10_1016_j_jwpe_2022_103446
crossref_primary_10_1021_acs_est_0c06676
crossref_primary_10_1016_j_cej_2022_136011
crossref_primary_10_1016_j_watres_2023_120506
crossref_primary_10_1016_j_cej_2022_140516
crossref_primary_10_1021_acs_est_0c00218
crossref_primary_10_1016_j_cej_2022_134753
crossref_primary_10_1016_j_envpol_2023_122449
crossref_primary_10_1016_j_efmat_2024_12_003
crossref_primary_10_1016_j_envres_2023_117849
crossref_primary_10_1021_acs_est_1c03813
crossref_primary_10_1016_j_cej_2022_137904
crossref_primary_10_1016_j_watres_2025_123133
crossref_primary_10_1039_D2TA03510C
crossref_primary_10_1016_j_chemosphere_2023_139442
crossref_primary_10_1016_j_jece_2022_108537
crossref_primary_10_1016_j_cej_2020_124382
crossref_primary_10_1016_j_cej_2020_124134
crossref_primary_10_1016_j_cej_2024_150921
crossref_primary_10_1016_j_watres_2022_118377
crossref_primary_10_1016_j_watres_2024_121100
crossref_primary_10_1021_acs_est_2c04109
crossref_primary_10_1016_j_cej_2020_124814
crossref_primary_10_1016_j_watres_2024_121907
crossref_primary_10_1016_j_cej_2024_159042
crossref_primary_10_1016_j_cej_2022_136387
crossref_primary_10_1016_j_jhazmat_2022_130070
crossref_primary_10_1016_j_seppur_2024_129489
crossref_primary_10_1016_j_watres_2021_117548
crossref_primary_10_1016_j_jhazmat_2023_131104
crossref_primary_10_1016_j_cej_2021_132169
crossref_primary_10_1021_acs_est_2c08266
crossref_primary_10_1016_j_cej_2023_147573
crossref_primary_10_1016_j_resconrec_2024_107880
Cites_doi 10.1021/acs.est.5b03275
10.1080/17415993.2015.1028939
10.1016/j.apcatb.2017.09.001
10.1063/1.555805
10.1021/jp901994x
10.1021/es060351z
10.1021/acs.est.7b05563
10.1021/acs.est.8b03770
10.1021/acs.est.5b03111
10.1021/es035121o
10.1016/j.jhazmat.2016.11.029
10.1021/es0263792
10.1007/s10311-017-0696-1
10.3891/acta.chem.scand.53-0584
10.1021/ic951141i
10.1021/jp011255h
10.1016/j.watres.2016.03.065
10.1016/j.watres.2012.01.047
10.1016/j.watres.2017.03.054
10.1021/acs.est.8b01565
10.3109/10715769509145647
10.1016/j.cattod.2017.12.004
10.1002/jctb.4525
10.1016/j.cej.2017.09.082
10.1021/ie3020389
10.1016/j.cej.2015.04.139
10.1021/tx2003323
10.1016/j.cej.2018.04.016
10.1021/ie400469u
10.1289/ehp.8564209
10.1063/1.555808
10.1126/science.1133417
10.1021/acs.est.6b05513
10.1016/j.chemosphere.2010.12.053
10.1016/j.chemosphere.2017.12.194
10.1016/j.watres.2014.03.016
10.1039/c39860001301
10.1016/j.cej.2018.01.131
10.1039/j39710000701
10.1007/s11356-016-6672-7
10.1021/es051198w
10.1021/es505516w
10.1021/acs.inorgchem.7b02208
10.1016/j.jenvman.2010.11.026
10.1021/acs.est.5b05207
10.1021/es102401d
10.1016/j.apcatb.2016.04.003
10.1021/acs.est.7b03705
10.1016/j.watres.2017.12.046
10.1016/j.cej.2018.01.112
10.1021/es1005187
10.1021/ja01172a078
10.1016/j.jhazmat.2016.01.012
10.1021/es403199p
10.1016/j.chemosphere.2017.07.102
10.1016/j.jhazmat.2018.03.024
10.1021/es500804g
10.1016/j.chemosphere.2016.04.093
ContentType Journal Article
Copyright Copyright American Chemical Society Jan 15, 2019
Copyright_xml – notice: Copyright American Chemical Society Jan 15, 2019
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.8b04990
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 902
ExternalDocumentID 30570262
10_1021_acs_est_8b04990
a14978883
Genre Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a499t-1b58bf437083377a4710490ad097dc276e0a3fa1678aa4751e9c8c3683d5adc73
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 09:12:19 EDT 2025
Fri Jul 11 15:34:01 EDT 2025
Mon Jun 30 04:17:50 EDT 2025
Wed Feb 19 02:36:07 EST 2025
Thu Apr 24 22:50:08 EDT 2025
Tue Jul 01 02:58:01 EDT 2025
Thu Aug 27 13:43:29 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-1b58bf437083377a4710490ad097dc276e0a3fa1678aa4751e9c8c3683d5adc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5296-423X
PMID 30570262
PQID 2173771428
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_2189544279
proquest_miscellaneous_2159324439
proquest_journals_2173771428
pubmed_primary_30570262
crossref_primary_10_1021_acs_est_8b04990
crossref_citationtrail_10_1021_acs_est_8b04990
acs_journals_10_1021_acs_est_8b04990
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Eberson L. (ref52/cit52) 1999; 53
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Schwarzenbach R. P. (ref45/cit45) 2005
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1021/acs.est.5b03275
– ident: ref5/cit5
  doi: 10.1080/17415993.2015.1028939
– ident: ref18/cit18
  doi: 10.1016/j.apcatb.2017.09.001
– ident: ref46/cit46
  doi: 10.1063/1.555805
– ident: ref58/cit58
  doi: 10.1021/jp901994x
– ident: ref37/cit37
  doi: 10.1021/es060351z
– ident: ref24/cit24
  doi: 10.1021/acs.est.7b05563
– ident: ref25/cit25
  doi: 10.1021/acs.est.8b03770
– ident: ref31/cit31
  doi: 10.1021/acs.est.5b03111
– ident: ref1/cit1
  doi: 10.1021/es035121o
– ident: ref17/cit17
  doi: 10.1016/j.jhazmat.2016.11.029
– ident: ref49/cit49
  doi: 10.1021/es0263792
– ident: ref19/cit19
  doi: 10.1007/s10311-017-0696-1
– volume: 53
  start-page: 584
  year: 1999
  ident: ref52/cit52
  publication-title: Acta Chem. Scand.
  doi: 10.3891/acta.chem.scand.53-0584
– ident: ref14/cit14
  doi: 10.1021/ic951141i
– ident: ref20/cit20
  doi: 10.1021/jp011255h
– ident: ref42/cit42
  doi: 10.1016/j.watres.2016.03.065
– ident: ref28/cit28
  doi: 10.1016/j.watres.2012.01.047
– ident: ref38/cit38
  doi: 10.1016/j.watres.2017.03.054
– ident: ref43/cit43
  doi: 10.1021/acs.est.8b01565
– ident: ref26/cit26
  doi: 10.3109/10715769509145647
– ident: ref9/cit9
  doi: 10.1016/j.cattod.2017.12.004
– ident: ref21/cit21
  doi: 10.1002/jctb.4525
– ident: ref34/cit34
  doi: 10.1016/j.cej.2017.09.082
– ident: ref4/cit4
  doi: 10.1021/ie3020389
– ident: ref36/cit36
  doi: 10.1016/j.cej.2015.04.139
– ident: ref54/cit54
  doi: 10.1021/tx2003323
– ident: ref3/cit3
  doi: 10.1016/j.cej.2018.04.016
– ident: ref8/cit8
  doi: 10.1021/ie400469u
– ident: ref44/cit44
  doi: 10.1289/ehp.8564209
– volume-title: Environmental Organic Chemistry
  year: 2005
  ident: ref45/cit45
– ident: ref47/cit47
  doi: 10.1063/1.555808
– ident: ref22/cit22
  doi: 10.1126/science.1133417
– ident: ref50/cit50
  doi: 10.1021/acs.est.6b05513
– ident: ref56/cit56
  doi: 10.1016/j.chemosphere.2010.12.053
– ident: ref13/cit13
  doi: 10.1016/j.chemosphere.2017.12.194
– ident: ref6/cit6
  doi: 10.1016/j.watres.2014.03.016
– ident: ref51/cit51
  doi: 10.1039/c39860001301
– ident: ref32/cit32
  doi: 10.1016/j.cej.2018.01.131
– ident: ref53/cit53
  doi: 10.1039/j39710000701
– ident: ref15/cit15
  doi: 10.1007/s11356-016-6672-7
– ident: ref39/cit39
  doi: 10.1021/es051198w
– ident: ref41/cit41
  doi: 10.1021/es505516w
– ident: ref23/cit23
  doi: 10.1021/acs.inorgchem.7b02208
– ident: ref27/cit27
  doi: 10.1016/j.jenvman.2010.11.026
– ident: ref30/cit30
  doi: 10.1021/acs.est.5b05207
– ident: ref55/cit55
  doi: 10.1021/es102401d
– ident: ref2/cit2
  doi: 10.1016/j.apcatb.2016.04.003
– ident: ref10/cit10
  doi: 10.1021/acs.est.7b03705
– ident: ref16/cit16
  doi: 10.1016/j.watres.2017.12.046
– ident: ref35/cit35
  doi: 10.1016/j.cej.2018.01.112
– ident: ref57/cit57
  doi: 10.1021/es1005187
– ident: ref48/cit48
  doi: 10.1021/ja01172a078
– ident: ref12/cit12
  doi: 10.1016/j.jhazmat.2016.01.012
– ident: ref7/cit7
  doi: 10.1021/es403199p
– ident: ref33/cit33
  doi: 10.1016/j.chemosphere.2017.07.102
– ident: ref29/cit29
  doi: 10.1016/j.jhazmat.2018.03.024
– ident: ref40/cit40
  doi: 10.1021/es500804g
– ident: ref59/cit59
  doi: 10.1016/j.chemosphere.2016.04.093
SSID ssj0002308
Score 2.6667573
Snippet Although the Fe­(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe­(IV)/Fe­(V) versus...
Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO...
Although the Fe(VI)–sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus...
Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 894
SubjectTerms Anions
Antibiotics
Calcium
Contaminants
Contamination
drugs
Hydrogen peroxide
hydroxyl radicals
Iron
Organic contaminants
Oxidants
Oxidation
Oxidizing agents
Pesticides
Pollutant removal
pollutants
pollution control
Species
Sulfite
sulfites
Water pollution
Water treatment
Title Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants
URI http://dx.doi.org/10.1021/acs.est.8b04990
https://www.ncbi.nlm.nih.gov/pubmed/30570262
https://www.proquest.com/docview/2173771428
https://www.proquest.com/docview/2159324439
https://www.proquest.com/docview/2189544279
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcmuGyHMdgYZYA8iQMcktVJHDtHVLWCSdukMabeoucvVq2kiDQS24G_neckTQeo225x_Jz46_n9LD__HiGHKgNtnZKBcTwLkjQ1gQR8crgSRn1ADF2P9KfP6elF8nHMx0uy6Mcn-BH7ALoMcYEMpfLoHHfn61GKKuxR0OC8W3QRSctFsIIsTscdi8-TD3gzpMuHZmgFtqxtzGij8c4qa2pC71ryM6zmKtS_nxI3_rv6r8jLFmnSk2ZqbJJnttgiL_7gH9wi28PlNTcUbfW8fE3uvs6mls4cHdkbzyVxdPb9mEJhujQmJwU90U1wtOJymXF2TNUvOoCpnlRX9LyaOgS1FKExHRY_ancD-uV20kRy8n9oLoNq6mmyoPXLeUMuRsNvg9OgjdQQADZqHjDFpXJJLBDQxUIAWjx_ogimnwmjI5HaPsQOGFpGwEzObKaljlMZGw5Gi3ibrBWzwu4QqlgmtNOcxy7DraNRKSjJwCBsSqxlskcOsUvzVtPKvD5Ej1juX2I_520_90i4GN9ct2znPujGdHWBo67AdUP0sVp0bzFhlvXArR223PPX9cj7Lht11R_AQGFnlZfhCJcTxIB_k5EZT5JIoMzbZjJ29cG1WeCeOdr9vz54R54jvPPucAHje2RtflPZfYRQc3VQK889rK4Vbw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-axgE48DEYFAYYaYftkFIncewcq6pVC9sQbEO9Rf7cKkqKlkbaOPC385ykKR8qgltsPzvPn-9n2f49gH2VSm2dEoFxLA3iJDGBkPjlcCUMexIxdNXTxyfJ-Dx-O2XTLeit3sKgEgWWVFSH-Gt2AfrGx-E62RXKg3TcpN9CKBL6Md0fnLZrLwJqsfJZkEbJtCXz-aMAb4108as12gAxK1Mzug8fWiWrGyafu-VSdfW33_gb_6cWD-BegztJvx4oD2HL5jtw9yc2wh3YHa4fvaFoM-uLR_D942JuycKRkb3yzBIHk0-HROamDWNwlpO-rl2l5RfrhMkhUTdkIOd6Vn4hp-XcIcQlCJTJML-sLh-Q99ez2q-T_0P9NFQTT5olm1s6j-F8NDwbjIPGb0MgsVLLgComlIsjjvAu4lyi_fPni9L0Um50yBPbk5GTFO2kxERGbaqFjhIRGSaN5tEubOeL3D4FomjKtdOMRS7FjaRRiVSCSoMgKraWig7sY5NmzbwrsupIPaSZj8R2zpp27kB31c2ZbrjPvQuO-eYMB22GrzXtx2bRvdW4WeuBGz2suWez68DrNhlnrj-OkbldlF6GIXiOERH-TUakLI5DjjJP6jHZ6oMrNccddPjs39rgFdwenx0fZUeTk3fP4Q4CP39RLqBsD7aXV6V9geBqqV5W8-kHGdId0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLemTZrgMGAwVjbASDtsh5Q6iWPnWJVWK4OBGEW9Rf6EipJOSyNtO-xv5zlx042pCG5x_Jz46_n9rGf_HkIHMhXKWMkDbWkaxEmiAy7gycJKGHYEYOhqpD-eJsej-P2Yjv2lMHcXBipRwJeKyonvtPpcW88wQN6697BWtrl0QB026hvOaefmdbd31qy_AKr5Im5BGiXjhtDn3gecRVLFXYu0AmZW5mbwCI2ailanTH62y7lsq-s_OBz_tyWP0ZbHn7hbT5gnaM3k2-jhLVbCbbTTX15-A1Gv_cVTdPNlNjV4ZvHAXDiGicPhtyMsct2kITnJcVfVIdPy78uM4RGWV7gnpmpS_sJn5dQC1MUAmHE__1EdQsCfLid1fCf3h_qKqMKOPEv40zrP0GjQ_9o7Dnz8hkBAo-YBkZRLG0cMYF7EmAA76PyMQndSplXIEtMRkRUE7KWATEpMqriKEh5pKrRi0Q5az2e52UVYkpQpqyiNbAobSi0TITkRGsBUbAzhLXQAXZp5_SuyyrUeksy9hH7OfD-3UHsx1JnyHOguFMd0dYHDpsB5Tf-xWnR_MXeW9YANH7Tcsdq10JsmGzTYuWVEbmalk6EAomNAhn-T4SmN45CBzPN6Xjb1gRWbwU46fPFvffAabX5-N8g-DE9P9tADwH_uvFxA6D5an1-U5iVgrLl8VanUb1N-IFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Ferrate%28IV%29+and+Ferrate%28V%29+in+Activating+Ferrate%28VI%29+by+Calcium+Sulfite+for+Enhanced+Oxidation+of+Organic+Contaminants&rft.jtitle=Environmental+science+%26+technology&rft.au=Shao%2C+Binbin&rft.au=Dong%2C+Hongyu&rft.au=Sun%2C+Bo&rft.au=Guan%2C+Xiaohong&rft.date=2019-01-15&rft.issn=1520-5851&rft.volume=53&rft.issue=2+p.894-902&rft.spage=894&rft.epage=902&rft_id=info:doi/10.1021%2Facs.est.8b04990&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon