Real-Time Intravital Imaging of RGD−Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature

Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) f...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 8; no. 9; pp. 2599 - 2606
Main Authors Smith, Bryan Ronain, Cheng, Zhen, De, Abhijit, Koh, Ai Leen, Sinclair, Robert, Gambhir, Sanjiv Sam
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine−glycine−aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing αvβ3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular (∼0.5 µm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects.
AbstractList Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine-glycine-aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing alpha vbeta 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular ( approximately 0.5 microm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects.
Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine−glycine−aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing αvβ3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular (∼0.5 µm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects.
Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine–glycine–aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing α v β 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular (∼0.5 μ m) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects.
Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine-glycine-aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing alpha vbeta 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular ( approximately 0.5 microm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects.Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine-glycine-aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing alpha vbeta 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular ( approximately 0.5 microm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects.
Author Sinclair, Robert
Cheng, Zhen
De, Abhijit
Smith, Bryan Ronain
Koh, Ai Leen
Gambhir, Sanjiv Sam
AuthorAffiliation Department of Bioengineering, Stanford University School of Medicine, Stanford, California 94305
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program
AuthorAffiliation_xml – name: Department of Bioengineering, Stanford University School of Medicine, Stanford, California 94305
– name: Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
– name: The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program
Author_xml – sequence: 1
  givenname: Bryan Ronain
  surname: Smith
  fullname: Smith, Bryan Ronain
– sequence: 2
  givenname: Zhen
  surname: Cheng
  fullname: Cheng, Zhen
– sequence: 3
  givenname: Abhijit
  surname: De
  fullname: De, Abhijit
– sequence: 4
  givenname: Ai Leen
  surname: Koh
  fullname: Koh, Ai Leen
– sequence: 5
  givenname: Robert
  surname: Sinclair
  fullname: Sinclair, Robert
– sequence: 6
  givenname: Sanjiv Sam
  surname: Gambhir
  fullname: Gambhir, Sanjiv Sam
  email: sgambhir@stanford.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20660293$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18386933$$D View this record in MEDLINE/PubMed
BookMark eNptkctuFDEQRS0URB6w4AeQNyCxaOJXe7o3SJCEMNIAIhrWlttdPXHktoPdHok_YM0n8iW4lWF4KKsqqY5v-dY9Rgc-eEDoKSWvKGH01DvSECro8AAd0ZqTSrYtO9j3jThExyndEEJaXpNH6JA2vJEt50fIX4F21dqOgJd-inprJ-3wctQb6zc4DPjq8vzn9x-fs_ZTHvF5mPBb6_t5OAW8yqP1hb_wfZiuwdmCWI8_hJwAr_MYIv4IYauTyU5POcJj9HDQLsGTXT1BX95drM_eV6tPl8uzN6tKi7adKloTIWHR9UYIvpBANXSyk4yBpHXX9rXggzSUAatb0ReQUTCyB2q4XmjW8BP0-k73Nncj9AZmb07dRjvq-E0FbdW_E2-v1SZslaCSUl4XgRc7gRi-ZkiTGm0y4Jz2UNwp2dZ8UYsZfPb3pv2K3ycuwPMdUM6g3RC1NzbtOUakJKyduZd3nIkhpQjDHymi5pjVPubCnv7HmpLbZMNsxrp7X-x-oU1SNyHHElu6h_sF7Yu3vg
CitedBy_id crossref_primary_10_1021_bc800449s
crossref_primary_10_3390_pharmaceutics11060294
crossref_primary_10_1002_slct_202402149
crossref_primary_10_1016_j_ijbiomac_2015_10_047
crossref_primary_10_1021_nn300558p
crossref_primary_10_3109_21691401_2014_998826
crossref_primary_10_1021_acsnano_0c00245
crossref_primary_10_1002_wnan_106
crossref_primary_10_1517_17425255_2013_807797
crossref_primary_10_1172_JCI66895
crossref_primary_10_3390_cancers11111783
crossref_primary_10_1039_c0an00233j
crossref_primary_10_1039_c3nr02019c
crossref_primary_10_1016_j_biotechadv_2019_01_004
crossref_primary_10_1039_C0CC03753B
crossref_primary_10_1016_j_colsurfa_2018_03_059
crossref_primary_10_1016_j_biomaterials_2013_02_054
crossref_primary_10_1021_nn1028696
crossref_primary_10_1021_nn304347g
crossref_primary_10_1039_C8MH01527A
crossref_primary_10_3390_pharmaceutics10040244
crossref_primary_10_1007_s11426_017_9076_y
crossref_primary_10_2217_rme_12_21
crossref_primary_10_1016_j_aca_2012_09_025
crossref_primary_10_1021_acschemneuro_5b00022
crossref_primary_10_2217_nnm_11_64
crossref_primary_10_1038_nnano_2009_231
crossref_primary_10_1039_b914836a
crossref_primary_10_1021_nn406258m
crossref_primary_10_1039_c2jm31692g
crossref_primary_10_1039_C4CS00532E
crossref_primary_10_1016_j_molmed_2010_08_006
crossref_primary_10_3390_ma6020483
crossref_primary_10_1517_17425240903167934
crossref_primary_10_1098_rsif_2009_0243
crossref_primary_10_1016_j_biomaterials_2016_06_007
crossref_primary_10_1021_jp904343s
crossref_primary_10_1016_j_actbio_2018_05_004
crossref_primary_10_1021_acs_chemrev_5b00049
crossref_primary_10_1080_1061186X_2018_1473409
crossref_primary_10_1016_j_polymer_2011_02_032
crossref_primary_10_1016_j_actbio_2019_05_022
crossref_primary_10_2217_nnm_13_106
crossref_primary_10_1021_am3020108
crossref_primary_10_3389_fmed_2024_1355058
crossref_primary_10_4155_tde_10_27
crossref_primary_10_1049_iet_nbt_2012_0028
crossref_primary_10_1007_s00418_010_0692_z
crossref_primary_10_1016_j_trecan_2020_01_008
crossref_primary_10_1021_ac901960d
crossref_primary_10_1016_j_nano_2012_01_005
crossref_primary_10_1155_2010_676839
crossref_primary_10_1155_2011_834139
crossref_primary_10_1002_smll_201001022
crossref_primary_10_1007_s00216_010_3847_9
crossref_primary_10_1142_S1793292011002561
crossref_primary_10_1007_s11172_019_2705_y
crossref_primary_10_1016_j_biomaterials_2010_02_074
crossref_primary_10_1016_j_nantod_2015_11_009
crossref_primary_10_1016_j_mser_2013_03_001
crossref_primary_10_1016_j_jconrel_2023_05_028
crossref_primary_10_1039_c0cp02891f
crossref_primary_10_4161_intv_21769
crossref_primary_10_1002_ijch_201200079
crossref_primary_10_3389_fphar_2020_00629
crossref_primary_10_1016_j_addr_2016_05_023
crossref_primary_10_1016_j_nano_2011_12_002
crossref_primary_10_1021_jz2006572
crossref_primary_10_3389_fnano_2024_1433591
crossref_primary_10_1016_j_nantod_2012_10_007
crossref_primary_10_1039_b820576k
crossref_primary_10_1002_0471142956_cy1227s60
crossref_primary_10_1042_AN20120042
crossref_primary_10_1002_wnan_85
crossref_primary_10_1021_mz200034f
crossref_primary_10_1016_j_addr_2014_08_002
crossref_primary_10_1038_nnano_2014_62
crossref_primary_10_1073_pnas_0813327106
crossref_primary_10_1016_j_chembiol_2010_11_013
crossref_primary_10_2310_7290_2011_00057
crossref_primary_10_1109_TNB_2009_2017321
crossref_primary_10_1007_s00259_010_1667_y
crossref_primary_10_1007_s10456_008_9124_2
crossref_primary_10_1021_bc800421f
crossref_primary_10_1039_D0TB00260G
crossref_primary_10_1038_nmat3565
crossref_primary_10_1021_acsbiomaterials_3c00828
crossref_primary_10_1021_acs_nanolett_0c04122
crossref_primary_10_1016_j_addr_2016_09_006
crossref_primary_10_1039_C7CS00793K
crossref_primary_10_1016_j_ejpb_2021_03_010
crossref_primary_10_1117_1_3486538
crossref_primary_10_1021_acs_bioconjchem_7b00086
crossref_primary_10_3390_s111211736
crossref_primary_10_1016_j_addr_2010_09_009
crossref_primary_10_1007_s11307_013_0648_5
crossref_primary_10_1007_s00259_010_1452_y
crossref_primary_10_1039_c3tb20894j
crossref_primary_10_1021_nn900663r
crossref_primary_10_1158_0008_5472_CAN_12_2579
crossref_primary_10_1016_j_mattod_2020_03_021
crossref_primary_10_1039_C6RA08447H
crossref_primary_10_1016_j_ejso_2009_10_014
crossref_primary_10_1016_j_nantod_2021_101119
crossref_primary_10_32604_biocell_2021_014338
crossref_primary_10_1021_nl203526f
crossref_primary_10_1021_acsanm_2c00861
crossref_primary_10_1083_jcb_201212130
crossref_primary_10_3390_cancers14102456
crossref_primary_10_1016_j_jconrel_2015_10_033
crossref_primary_10_1021_acs_chemrev_6b00073
crossref_primary_10_1073_pnas_1010013108
crossref_primary_10_1002_ppsc_201300291
crossref_primary_10_1039_D1MA00069A
crossref_primary_10_1371_journal_pone_0056876
crossref_primary_10_4333_KPS_2011_41_2_059
crossref_primary_10_1021_ja503939n
crossref_primary_10_3389_fmolb_2014_00015
crossref_primary_10_1021_la8035083
crossref_primary_10_1021_nn301670a
crossref_primary_10_1016_j_addr_2012_08_016
crossref_primary_10_2217_nnm_11_19
crossref_primary_10_1039_c2jm33560c
crossref_primary_10_1021_acsami_9b06194
crossref_primary_10_1021_nn901919w
crossref_primary_10_1021_ja904843x
crossref_primary_10_1186_1471_2342_10_22
crossref_primary_10_1016_j_molmed_2010_09_004
crossref_primary_10_1021_acs_nanolett_9b02544
crossref_primary_10_1007_s00216_008_2410_4
crossref_primary_10_1142_S1088424615300037
crossref_primary_10_1152_physrev_00049_2010
crossref_primary_10_1021_nl204175t
crossref_primary_10_1016_J_ENG_2016_01_027
crossref_primary_10_1016_j_jcis_2010_01_015
crossref_primary_10_1021_acsnano_9b08693
crossref_primary_10_1016_j_nantod_2013_02_004
crossref_primary_10_1002_adfm_202105662
crossref_primary_10_1021_nn9010973
crossref_primary_10_1016_j_jics_2021_100254
crossref_primary_10_1021_cr300213b
crossref_primary_10_1021_ja412001e
crossref_primary_10_1038_s41598_019_52127_3
crossref_primary_10_1038_s41569_021_00594_5
crossref_primary_10_1016_j_jdermsci_2015_08_005
crossref_primary_10_1039_C9NH00514E
crossref_primary_10_1016_j_nano_2013_08_008
crossref_primary_10_1021_acs_langmuir_5b04111
crossref_primary_10_1016_j_nano_2016_02_014
crossref_primary_10_1038_srep02184
Cites_doi 10.1038/nbt1340
10.1038/89997
10.1007/s10439-005-9072-6
10.1046/j.1525-1373.1999.d01-122.x
10.1038/labinvest.3700404
10.1016/j.soc.2007.03.002
10.1038/nrd2115
10.1016/j.biomaterials.2007.09.025
10.1158/0008-5472.CAN-06-1185
10.1114/1.1376697
10.1038/ni1275
10.1166/jnn.2007.628
10.1038/nmat1390
10.1016/j.biomaterials.2007.02.013
10.1021/bc0501698
10.1002/(SICI)1097-0215(19970502)71:3<320::AID-IJC2>3.0.CO;2-#
10.1016/j.athoracsur.2004.06.055
10.1093/toxsci/kfm074
10.1038/nm1096
10.1126/science.1104274
10.1021/bc060261j
10.1021/jm060515m
10.1038/nbt994
10.1021/bc050002e
10.1038/nm1247
10.1073/pnas.95.8.4607
10.2967/jnumed.107.039859
10.1073/pnas.152463399
10.1021/nl052405t
10.1021/nl0502569
10.1038/nrc1566
10.2967/jnumed.107.040071
ContentType Journal Article
Copyright Copyright © 2008 American Chemical Society
2008 INIST-CNRS
Copyright 2008 by the American Chemical Society 2008
Copyright_xml – notice: Copyright © 2008 American Chemical Society
– notice: 2008 INIST-CNRS
– notice: Copyright 2008 by the American Chemical Society 2008
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/nl080141f
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 2606
ExternalDocumentID PMC4161135
18386933
20660293
10_1021_nl080141f
b765587613
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA119367
– fundername: NCI NIH HHS
  grantid: R25 CA118681
– fundername: NCI NIH HHS
  grantid: P50 CA114747
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
6P2
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a499t-15046e7bdc44376e1aeb6b622e615b9d543f6c12e2594de7b21ec6de1c3a7a283
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Thu Aug 21 14:36:43 EDT 2025
Fri Jul 11 01:06:03 EDT 2025
Mon Jul 21 05:42:29 EDT 2025
Mon Jul 21 09:17:50 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 00:42:27 EDT 2025
Thu Aug 27 13:51:23 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Peptides
Brightness
Quantum dots
Amino acids
Nanostructures
Glycine
Real time
Nanoparticles
Nanometer scale
Arginine
Fluorescent material
Tumours
Nanostructured materials
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a499t-15046e7bdc44376e1aeb6b622e615b9d543f6c12e2594de7b21ec6de1c3a7a283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4161135
PMID 18386933
PQID 69537545
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4161135
proquest_miscellaneous_69537545
pubmed_primary_18386933
pascalfrancis_primary_20660293
crossref_primary_10_1021_nl080141f
crossref_citationtrail_10_1021_nl080141f
acs_journals_10_1021_nl080141f
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2008
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Li Z. B. (ref7/cit7) 2007; 7
Decuzzi P. (ref36/cit36) 2007; 29
Akerman M. E. (ref3/cit3) 2002; 99
Veiseh O. (ref17/cit17) 2005; 5
Stroh M. (ref23/cit23) 2005; 11
Voura E. B. (ref26/cit26) 2004; 10
Gao X. (ref1/cit1) 2004; 22
ref11/cit11
Mizejewski G. J. (ref27/cit27) 1999; 222
Medintz I. L. (ref8/cit8) 2005; 4
Choi H. S. (ref14/cit14) 2007; 25
Ballou B. (ref10/cit10) 2007; 18
Brown E. B. (ref21/cit21) 2001; 7
Montet X. (ref29/cit29) 2006; 86
Ferrari M. (ref15/cit15) 2005; 5
Frangioni J. V. (ref12/cit12) 2007; 374
Gopee N. V. (ref13/cit13) 2007; 98
Yuan F. (ref24/cit24) 1994; 54
Schipper M. L. (ref33/cit33) 2007; 48
Luster A. D. (ref22/cit22) 2005; 6
Blackwell J. E. (ref35/cit35) 2001; 29
Folkman J. (ref20/cit20) 2007; 6
Li Z. B. (ref31/cit31) 2007; 48
Max R. (ref28/cit28) 1997; 71
Soltesz E. G. (ref9/cit9) 2005; 79
Decuzzi P. (ref38/cit38) 2007; 28
Montet X. (ref4/cit4) 2006; 8
McDonald D. M. (ref19/cit19) 2002; 62
Yuan F. (ref34/cit34) 1995; 55
Montet X. (ref32/cit32) 2006; 49
Panchapakesan B. (ref16/cit16) 2007; 16
Tsourkas A. (ref25/cit25) 2005; 16
Cai W. (ref5/cit5) 2006; 6
Tada H. (ref2/cit2) 2007; 67
Michalet X. (ref6/cit6) 2005; 307
Hobbs S. K. (ref18/cit18) 1998; 95
Cheng Z. (ref30/cit30) 2005; 16
Decuzzi P. (ref37/cit37) 2006; 34
17704240 - J Nucl Med. 2007 Sep;48(9):1511-8
11459346 - Ann Biomed Eng. 2001 Jun;29(6):523-33
9139861 - Int J Cancer. 1997 May 2;71(3):320-4
7641188 - Cancer Res. 1995 Sep 1;55(17):3752-6
17363051 - Biomaterials. 2007 Jun;28(18):2915-22
16611415 - Neoplasia. 2006 Mar;8(3):214-22
17560513 - Surg Oncol Clin N Am. 2007 Apr;16(2):293-305
17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86
15928695 - Nat Mater. 2005 Jun;4(6):435-46
15681376 - Science. 2005 Jan 28;307(5709):538-44
15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81
17404394 - Toxicol Sci. 2007 Jul;98(1):249-57
16608262 - Nano Lett. 2006 Apr;6(4):669-76
16369557 - Nat Immunol. 2005 Dec;6(12):1182-90
15258594 - Nat Biotechnol. 2004 Aug;22(8):969-76
16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41
15943433 - Nano Lett. 2005 Jun;5(6):1003-8
17685272 - J Nanosci Nanotechnol. 2007 Aug;7(8):2567-81
17646044 - Eur Urol. 2007 Dec;52(6):1700-8
17574975 - J Nucl Med. 2007 Jul;48(7):1162-71
15880117 - Nat Med. 2005 Jun;11(6):678-82
12235356 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12617-21
9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12
11433354 - Nat Med. 2001 Jul;7(7):864-8
15620956 - Ann Thorac Surg. 2005 Jan;79(1):269-77; discussion 269-77
15334072 - Nat Med. 2004 Sep;10(9):993-8
17283148 - Cancer Res. 2007 Feb 1;67(3):1138-44
17891134 - Nat Biotechnol. 2007 Oct;25(10):1165-70
15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71
17936897 - Biomaterials. 2008 Jan;29(3):377-84
16568349 - Ann Biomed Eng. 2006 Apr;34(4):633-41
8012948 - Cancer Res. 1994 Jul 1;54(13):3352-6
17263568 - Bioconjug Chem. 2007 Mar-Apr;18(2):389-96
16568109 - Lab Invest. 2006 May;86(5):517-25
17237537 - Methods Mol Biol. 2007;374:147-59
10564536 - Proc Soc Exp Biol Med. 1999 Nov;222(2):124-38
17004722 - J Med Chem. 2006 Oct 5;49(20):6087-93
12235011 - Cancer Res. 2002 Sep 15;62(18):5381-5
References_xml – volume: 25
  start-page: 1165
  year: 2007
  ident: ref14/cit14
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1340
– volume: 7
  start-page: 864
  year: 2001
  ident: ref21/cit21
  publication-title: Nature Med.
  doi: 10.1038/89997
– volume: 34
  start-page: 633
  year: 2006
  ident: ref37/cit37
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-9072-6
– volume: 222
  start-page: 124
  year: 1999
  ident: ref27/cit27
  publication-title: Proc. Soc. Exp. Biol. Med.
  doi: 10.1046/j.1525-1373.1999.d01-122.x
– volume: 54
  start-page: 3352
  year: 1994
  ident: ref24/cit24
  publication-title: Cancer Res.
– volume: 86
  start-page: 517
  year: 2006
  ident: ref29/cit29
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3700404
– volume: 16
  start-page: 293
  year: 2007
  ident: ref16/cit16
  publication-title: Surg. Oncol. Clinics North America
  doi: 10.1016/j.soc.2007.03.002
– volume: 6
  start-page: 273
  year: 2007
  ident: ref20/cit20
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2115
– volume: 29
  start-page: 377
  year: 2007
  ident: ref36/cit36
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.09.025
– volume: 67
  start-page: 1138
  year: 2007
  ident: ref2/cit2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-1185
– volume: 29
  start-page: 523
  year: 2001
  ident: ref35/cit35
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1376697
– volume: 6
  start-page: 1182
  year: 2005
  ident: ref22/cit22
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1275
– volume: 7
  start-page: 2567
  year: 2007
  ident: ref7/cit7
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2007.628
– volume: 4
  start-page: 435
  year: 2005
  ident: ref8/cit8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1390
– volume: 28
  start-page: 2915
  year: 2007
  ident: ref38/cit38
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.02.013
– volume: 16
  start-page: 1433
  year: 2005
  ident: ref30/cit30
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc0501698
– ident: ref11/cit11
– volume: 71
  start-page: 320
  year: 1997
  ident: ref28/cit28
  publication-title: Int. J. Cancer
  doi: 10.1002/(SICI)1097-0215(19970502)71:3<320::AID-IJC2>3.0.CO;2-#
– volume: 55
  start-page: 3752
  year: 1995
  ident: ref34/cit34
  publication-title: Cancer Res.
– volume: 79
  start-page: 269
  year: 2005
  ident: ref9/cit9
  publication-title: Ann. Thoracic Surg.
  doi: 10.1016/j.athoracsur.2004.06.055
– volume: 98
  start-page: 249
  year: 2007
  ident: ref13/cit13
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfm074
– volume: 10
  start-page: 993
  year: 2004
  ident: ref26/cit26
  publication-title: Nature Med.
  doi: 10.1038/nm1096
– volume: 307
  start-page: 538
  year: 2005
  ident: ref6/cit6
  publication-title: Science
  doi: 10.1126/science.1104274
– volume: 18
  start-page: 389
  year: 2007
  ident: ref10/cit10
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc060261j
– volume: 49
  start-page: 6087
  year: 2006
  ident: ref32/cit32
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060515m
– volume: 22
  start-page: 969
  year: 2004
  ident: ref1/cit1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt994
– volume: 16
  start-page: 576
  year: 2005
  ident: ref25/cit25
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc050002e
– volume: 11
  start-page: 678
  year: 2005
  ident: ref23/cit23
  publication-title: Nature Med.
  doi: 10.1038/nm1247
– volume: 62
  start-page: 5381
  year: 2002
  ident: ref19/cit19
  publication-title: Cancer Res.
– volume: 8
  start-page: 214
  year: 2006
  ident: ref4/cit4
  publication-title: Neoplasia (Ann Arbor, MI, U.S.)
– volume: 95
  start-page: 4607
  year: 1998
  ident: ref18/cit18
  publication-title: Proc. Natl. Acsd. Sci. U.S.A.
  doi: 10.1073/pnas.95.8.4607
– volume: 48
  start-page: 1162
  year: 2007
  ident: ref31/cit31
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.107.039859
– volume: 99
  start-page: 12617
  year: 2002
  ident: ref3/cit3
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.152463399
– volume: 6
  start-page: 669
  year: 2006
  ident: ref5/cit5
  publication-title: Nano Lett.
  doi: 10.1021/nl052405t
– volume: 374
  start-page: 147
  year: 2007
  ident: ref12/cit12
  publication-title: Methods Mol. Biol.
– volume: 5
  start-page: 1003
  year: 2005
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl0502569
– volume: 5
  start-page: 161
  year: 2005
  ident: ref15/cit15
  publication-title: Nat. Rev.
  doi: 10.1038/nrc1566
– volume: 48
  start-page: 1511
  year: 2007
  ident: ref33/cit33
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.107.040071
– reference: 17685272 - J Nanosci Nanotechnol. 2007 Aug;7(8):2567-81
– reference: 16608262 - Nano Lett. 2006 Apr;6(4):669-76
– reference: 15258594 - Nat Biotechnol. 2004 Aug;22(8):969-76
– reference: 12235011 - Cancer Res. 2002 Sep 15;62(18):5381-5
– reference: 17704240 - J Nucl Med. 2007 Sep;48(9):1511-8
– reference: 15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81
– reference: 8012948 - Cancer Res. 1994 Jul 1;54(13):3352-6
– reference: 16369557 - Nat Immunol. 2005 Dec;6(12):1182-90
– reference: 17936897 - Biomaterials. 2008 Jan;29(3):377-84
– reference: 16568349 - Ann Biomed Eng. 2006 Apr;34(4):633-41
– reference: 15880117 - Nat Med. 2005 Jun;11(6):678-82
– reference: 12235356 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12617-21
– reference: 17646044 - Eur Urol. 2007 Dec;52(6):1700-8
– reference: 11433354 - Nat Med. 2001 Jul;7(7):864-8
– reference: 10564536 - Proc Soc Exp Biol Med. 1999 Nov;222(2):124-38
– reference: 7641188 - Cancer Res. 1995 Sep 1;55(17):3752-6
– reference: 16568109 - Lab Invest. 2006 May;86(5):517-25
– reference: 17574975 - J Nucl Med. 2007 Jul;48(7):1162-71
– reference: 17404394 - Toxicol Sci. 2007 Jul;98(1):249-57
– reference: 16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41
– reference: 15334072 - Nat Med. 2004 Sep;10(9):993-8
– reference: 15943433 - Nano Lett. 2005 Jun;5(6):1003-8
– reference: 9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12
– reference: 17004722 - J Med Chem. 2006 Oct 5;49(20):6087-93
– reference: 17237537 - Methods Mol Biol. 2007;374:147-59
– reference: 17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86
– reference: 17363051 - Biomaterials. 2007 Jun;28(18):2915-22
– reference: 17891134 - Nat Biotechnol. 2007 Oct;25(10):1165-70
– reference: 15928695 - Nat Mater. 2005 Jun;4(6):435-46
– reference: 9139861 - Int J Cancer. 1997 May 2;71(3):320-4
– reference: 11459346 - Ann Biomed Eng. 2001 Jun;29(6):523-33
– reference: 15620956 - Ann Thorac Surg. 2005 Jan;79(1):269-77; discussion 269-77
– reference: 15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71
– reference: 16611415 - Neoplasia. 2006 Mar;8(3):214-22
– reference: 17263568 - Bioconjug Chem. 2007 Mar-Apr;18(2):389-96
– reference: 17283148 - Cancer Res. 2007 Feb 1;67(3):1138-44
– reference: 17560513 - Surg Oncol Clin N Am. 2007 Apr;16(2):293-305
– reference: 15681376 - Science. 2005 Jan 28;307(5709):538-44
SSID ssj0009350
Score 2.3881738
Snippet Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2599
SubjectTerms Animals
Applied sciences
Biological and medical sciences
Biotechnology
Cross-disciplinary physics: materials science; rheology
Electronics
Endothelium, Vascular - metabolism
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Materials science
Methods. Procedures. Technologies
Mice
Microscopy, Electron, Transmission
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Neoplasms, Experimental - blood supply
Oligopeptides - metabolism
Others
Physics
Protein Binding
Quantum Dots
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Spectrometry, Fluorescence
Various methods and equipments
Title Real-Time Intravital Imaging of RGD−Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature
URI http://dx.doi.org/10.1021/nl080141f
https://www.ncbi.nlm.nih.gov/pubmed/18386933
https://www.proquest.com/docview/69537545
https://pubmed.ncbi.nlm.nih.gov/PMC4161135
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwEB4BvYAq-kN_lrZbq-XQS2AdO05yBBYKCJCgIHGL7NhRV911EJtw4Ak484g8CeNks-zCtr1FythJPDPxN_LMNwBrTGCMoGXmqYxJj2ccr3yuPYm6VqEWqiarPjoWe-f84CK4mIPvfznB9-mG7XccwwnN5uGFL9B5Hf7Z_vXIrMuqNqzouRgHxRFv6IMmh7qtJx1ObT0vL-UQVyGr21fMwpdP0yQn9p3dV9BtqnfqdJM_62Wh1tOb52SO__qk17A8wp1kszaUNzBn7FtYmmAjXAF7iqDRczUhZN-9yrXrJ0L2B1UfI5Jn5PRn9_727qREZZQD0s0LstWrimJIkZPDsmoPRnasdkVd_R6K9Cw5ysuhIWflIL8ix6ZJfHXHFu_gfHfnbHvPG7Vj8CSGRYWH0JELEyqdco6_JUOlUUIJ3zeIilSsA84ykVLfYETFNQr61KRCG5oyGUqEMe9hwebWfASS6RBnM6FUKuaRDmSIs1HGJaKxSAW0BW3UVzJyp2FSnZT7NBkvXAt-NKpM0hGZueup0Z8l-m0selkzeMwSak_Zw1jSsd13EBK14GtjIAk6oDtVkdbgEiYiDlwb4aAFH2pzeXxKxCIRMxwbThnSWMBRe0_fsb3fFcW3CzspC1b_tw6fYLFJYOnQz7BQXJXmC6KkQrUrL3kAfJ0O7Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgLACh8i5DYWohFmzSjmPHSZZ9MgMzI1GmUneRHTti1BmnahIWfAFrPpEv6bWTzKMaCXaRcuM419fxubr2OQh9pBxyBCUyT2ZUeCxjcOUz5QkYaxkqLmuy6tGY9y_Yl8vgsqHJsWdhoBMFtFS4Iv6SXYAcmFnPEp2Q7D56ACDEt9F8ePx9SbBLnRorTGBIh-KItSxCq4_aFSgt1lagJ9eiAGdktYrFJph5d7fkyvJz9rTWMXIdd7tOrvarUu6nv-5wOv7flz1D2w0KxYd12DxH97R5gR6vcBO-ROYcIKRnT4jgge3RT6suggdzp2qE8wyffz75-_vPtwqGpprjk7zER1N3RAaXOR5WTiwMnxplj3jNpmAyNXiUV4XGk2qe3-CxbrfB2iLGK3Rxdjo57nuNOIMnIEkqPQCSjOtQqpQx-ElpIrTkkvu-BowkYxUwmvGU-BryK6bA0Cc65UqTlIpQAKh5jbZMbvQbhDMVQms6FFLGLFKBCKE1QpkAbBbJgHRQF_yWNJOrSFzd3CfJwnEd9Kkd0SRtqM2twsZsk-mHhel1zeexyai7FhYLS8t93wOA1EF7bZwkMB1tjUUYDS5MeBxYUeGgg3bqqFm-JaIRjyk8G67F08LAEn2v3zHTH47w2yahhAZv_-WHPfSwPxkNk-Fg_HUXPWq3tvTIO7RV3lT6PeCnUnbdxLkF-MAXTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAhU8YYuj62FOHBJu04cJzmWbpcutAuUVuotsmNbrNh1Vk3SQ38BZ34iv4Sx8-hutRLcImXiOOOZ-BvN-BuE3gUMYgTJtSd0wD2qKVz5VHoc1lpEkomarPp4wg7P6Kfz8LwJFO1ZGJhEASMVLolvvXohdcMwQHbNbGDJToi-je7YdJ216L3979cku4HryApODCFREtOWSWj5UbsLZcXKLrS54AUoRNedLNZBzZsVk0tb0Ogh-tJN3lWe_NypSrGTXd3gdfz_r3uEHjRoFO_V5vMY3VLmCbq_xFH4FJkTgJKePSmCx3ZWl7bLCB7PXXcjnGt88nH459fvbxUsUTXHw7zEH6buqAwuc3xUuaZh-MBIe9RrNgWRqcHHeVUofFrN8ws8UW05rE1mPENno4PT_UOvadLgcQiWSg8AJWUqEjKjFH5WinAlmGC-rwAriUSGNNAsI76COItKEPSJyphUJAt4xAHcPEcbJjdqC2EtIxhNRVyIhMYy5BGMRgLKAaPFIiQ91AfdpY2TFanLn_sk7RTXQ-_bVU2zhuLcdtqYrRN924kual6PdUL9FdPoJC0H_gCAUg9tt7aSglvaXAs3ClSYsiS0zYXDHnpRW871W-IgZkkAz0YrNtUJWMLv1Ttm-sMRf9tglAThy3_pYRvd_TocpUfjyedX6F5b4TIgr9FGeVGpNwCjStF3vvMX5j4Z0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Intravital+Imaging+of+RGD-Quantum+Dot+Binding+to+Luminal+Endothelium+in+Mouse+Tumor+Neovasculature&rft.jtitle=Nano+letters&rft.au=SMITH%2C+Bryan+Ronain&rft.au=ZHEN+CHENG&rft.au=DE%2C+Abhijit&rft.au=AI+LEEN+KOH&rft.date=2008-09-01&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=8&rft.issue=9&rft.spage=2599&rft.epage=2606&rft_id=info:doi/10.1021%2Fnl080141f&rft.externalDBID=n%2Fa&rft.externalDocID=20660293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon