Real-Time Intravital Imaging of RGD−Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature
Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) f...
Saved in:
Published in | Nano letters Vol. 8; no. 9; pp. 2599 - 2606 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.09.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine−glycine−aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing αvβ3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular (∼0.5 µm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects. |
---|---|
AbstractList | Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine-glycine-aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing alpha vbeta 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular ( approximately 0.5 microm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects. Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine−glycine−aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing αvβ3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular (∼0.5 µm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects. Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine–glycine–aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing α v β 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular (∼0.5 μ m) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects. Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine-glycine-aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing alpha vbeta 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular ( approximately 0.5 microm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects.Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth in cellular-level understanding of how nanoparticles interact within the tumor environment in living subjects. Adopting quantum dots (qdots) for their excellent brightness, photostability, monodispersity, and fluorescent yield, we link arginine-glycine-aspartic acid (RGD) peptides to target qdots specifically to newly formed/forming blood vessels expressing alpha vbeta 3 integrins. Using this model nanoparticle system, we exploit intravital microscopy with subcellular ( approximately 0.5 microm) resolution to directly observe and record, for the first time, the binding of nanoparticle conjugates to tumor blood vessels in living subjects. This generalizable method enabled us to show that in this model qdots do not extravasate and, unexpectedly, that they only bind as aggregates rather than individually. This level of understanding is critical on the path toward ensuring regulatory approval of nanoparticles in humans for disease diagnostics and therapeutics. Equally vital, the work provides a platform by which to design and optimize molecularly targeted nanoparticles including quantum dots for applications in living subjects. |
Author | Sinclair, Robert Cheng, Zhen De, Abhijit Smith, Bryan Ronain Koh, Ai Leen Gambhir, Sanjiv Sam |
AuthorAffiliation | Department of Bioengineering, Stanford University School of Medicine, Stanford, California 94305 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program |
AuthorAffiliation_xml | – name: Department of Bioengineering, Stanford University School of Medicine, Stanford, California 94305 – name: Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 – name: The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program |
Author_xml | – sequence: 1 givenname: Bryan Ronain surname: Smith fullname: Smith, Bryan Ronain – sequence: 2 givenname: Zhen surname: Cheng fullname: Cheng, Zhen – sequence: 3 givenname: Abhijit surname: De fullname: De, Abhijit – sequence: 4 givenname: Ai Leen surname: Koh fullname: Koh, Ai Leen – sequence: 5 givenname: Robert surname: Sinclair fullname: Sinclair, Robert – sequence: 6 givenname: Sanjiv Sam surname: Gambhir fullname: Gambhir, Sanjiv Sam email: sgambhir@stanford.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20660293$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18386933$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctuFDEQRS0URB6w4AeQNyCxaOJXe7o3SJCEMNIAIhrWlttdPXHktoPdHok_YM0n8iW4lWF4KKsqqY5v-dY9Rgc-eEDoKSWvKGH01DvSECro8AAd0ZqTSrYtO9j3jThExyndEEJaXpNH6JA2vJEt50fIX4F21dqOgJd-inprJ-3wctQb6zc4DPjq8vzn9x-fs_ZTHvF5mPBb6_t5OAW8yqP1hb_wfZiuwdmCWI8_hJwAr_MYIv4IYauTyU5POcJj9HDQLsGTXT1BX95drM_eV6tPl8uzN6tKi7adKloTIWHR9UYIvpBANXSyk4yBpHXX9rXggzSUAatb0ReQUTCyB2q4XmjW8BP0-k73Nncj9AZmb07dRjvq-E0FbdW_E2-v1SZslaCSUl4XgRc7gRi-ZkiTGm0y4Jz2UNwp2dZ8UYsZfPb3pv2K3ycuwPMdUM6g3RC1NzbtOUakJKyduZd3nIkhpQjDHymi5pjVPubCnv7HmpLbZMNsxrp7X-x-oU1SNyHHElu6h_sF7Yu3vg |
CitedBy_id | crossref_primary_10_1021_bc800449s crossref_primary_10_3390_pharmaceutics11060294 crossref_primary_10_1002_slct_202402149 crossref_primary_10_1016_j_ijbiomac_2015_10_047 crossref_primary_10_1021_nn300558p crossref_primary_10_3109_21691401_2014_998826 crossref_primary_10_1021_acsnano_0c00245 crossref_primary_10_1002_wnan_106 crossref_primary_10_1517_17425255_2013_807797 crossref_primary_10_1172_JCI66895 crossref_primary_10_3390_cancers11111783 crossref_primary_10_1039_c0an00233j crossref_primary_10_1039_c3nr02019c crossref_primary_10_1016_j_biotechadv_2019_01_004 crossref_primary_10_1039_C0CC03753B crossref_primary_10_1016_j_colsurfa_2018_03_059 crossref_primary_10_1016_j_biomaterials_2013_02_054 crossref_primary_10_1021_nn1028696 crossref_primary_10_1021_nn304347g crossref_primary_10_1039_C8MH01527A crossref_primary_10_3390_pharmaceutics10040244 crossref_primary_10_1007_s11426_017_9076_y crossref_primary_10_2217_rme_12_21 crossref_primary_10_1016_j_aca_2012_09_025 crossref_primary_10_1021_acschemneuro_5b00022 crossref_primary_10_2217_nnm_11_64 crossref_primary_10_1038_nnano_2009_231 crossref_primary_10_1039_b914836a crossref_primary_10_1021_nn406258m crossref_primary_10_1039_c2jm31692g crossref_primary_10_1039_C4CS00532E crossref_primary_10_1016_j_molmed_2010_08_006 crossref_primary_10_3390_ma6020483 crossref_primary_10_1517_17425240903167934 crossref_primary_10_1098_rsif_2009_0243 crossref_primary_10_1016_j_biomaterials_2016_06_007 crossref_primary_10_1021_jp904343s crossref_primary_10_1016_j_actbio_2018_05_004 crossref_primary_10_1021_acs_chemrev_5b00049 crossref_primary_10_1080_1061186X_2018_1473409 crossref_primary_10_1016_j_polymer_2011_02_032 crossref_primary_10_1016_j_actbio_2019_05_022 crossref_primary_10_2217_nnm_13_106 crossref_primary_10_1021_am3020108 crossref_primary_10_3389_fmed_2024_1355058 crossref_primary_10_4155_tde_10_27 crossref_primary_10_1049_iet_nbt_2012_0028 crossref_primary_10_1007_s00418_010_0692_z crossref_primary_10_1016_j_trecan_2020_01_008 crossref_primary_10_1021_ac901960d crossref_primary_10_1016_j_nano_2012_01_005 crossref_primary_10_1155_2010_676839 crossref_primary_10_1155_2011_834139 crossref_primary_10_1002_smll_201001022 crossref_primary_10_1007_s00216_010_3847_9 crossref_primary_10_1142_S1793292011002561 crossref_primary_10_1007_s11172_019_2705_y crossref_primary_10_1016_j_biomaterials_2010_02_074 crossref_primary_10_1016_j_nantod_2015_11_009 crossref_primary_10_1016_j_mser_2013_03_001 crossref_primary_10_1016_j_jconrel_2023_05_028 crossref_primary_10_1039_c0cp02891f crossref_primary_10_4161_intv_21769 crossref_primary_10_1002_ijch_201200079 crossref_primary_10_3389_fphar_2020_00629 crossref_primary_10_1016_j_addr_2016_05_023 crossref_primary_10_1016_j_nano_2011_12_002 crossref_primary_10_1021_jz2006572 crossref_primary_10_3389_fnano_2024_1433591 crossref_primary_10_1016_j_nantod_2012_10_007 crossref_primary_10_1039_b820576k crossref_primary_10_1002_0471142956_cy1227s60 crossref_primary_10_1042_AN20120042 crossref_primary_10_1002_wnan_85 crossref_primary_10_1021_mz200034f crossref_primary_10_1016_j_addr_2014_08_002 crossref_primary_10_1038_nnano_2014_62 crossref_primary_10_1073_pnas_0813327106 crossref_primary_10_1016_j_chembiol_2010_11_013 crossref_primary_10_2310_7290_2011_00057 crossref_primary_10_1109_TNB_2009_2017321 crossref_primary_10_1007_s00259_010_1667_y crossref_primary_10_1007_s10456_008_9124_2 crossref_primary_10_1021_bc800421f crossref_primary_10_1039_D0TB00260G crossref_primary_10_1038_nmat3565 crossref_primary_10_1021_acsbiomaterials_3c00828 crossref_primary_10_1021_acs_nanolett_0c04122 crossref_primary_10_1016_j_addr_2016_09_006 crossref_primary_10_1039_C7CS00793K crossref_primary_10_1016_j_ejpb_2021_03_010 crossref_primary_10_1117_1_3486538 crossref_primary_10_1021_acs_bioconjchem_7b00086 crossref_primary_10_3390_s111211736 crossref_primary_10_1016_j_addr_2010_09_009 crossref_primary_10_1007_s11307_013_0648_5 crossref_primary_10_1007_s00259_010_1452_y crossref_primary_10_1039_c3tb20894j crossref_primary_10_1021_nn900663r crossref_primary_10_1158_0008_5472_CAN_12_2579 crossref_primary_10_1016_j_mattod_2020_03_021 crossref_primary_10_1039_C6RA08447H crossref_primary_10_1016_j_ejso_2009_10_014 crossref_primary_10_1016_j_nantod_2021_101119 crossref_primary_10_32604_biocell_2021_014338 crossref_primary_10_1021_nl203526f crossref_primary_10_1021_acsanm_2c00861 crossref_primary_10_1083_jcb_201212130 crossref_primary_10_3390_cancers14102456 crossref_primary_10_1016_j_jconrel_2015_10_033 crossref_primary_10_1021_acs_chemrev_6b00073 crossref_primary_10_1073_pnas_1010013108 crossref_primary_10_1002_ppsc_201300291 crossref_primary_10_1039_D1MA00069A crossref_primary_10_1371_journal_pone_0056876 crossref_primary_10_4333_KPS_2011_41_2_059 crossref_primary_10_1021_ja503939n crossref_primary_10_3389_fmolb_2014_00015 crossref_primary_10_1021_la8035083 crossref_primary_10_1021_nn301670a crossref_primary_10_1016_j_addr_2012_08_016 crossref_primary_10_2217_nnm_11_19 crossref_primary_10_1039_c2jm33560c crossref_primary_10_1021_acsami_9b06194 crossref_primary_10_1021_nn901919w crossref_primary_10_1021_ja904843x crossref_primary_10_1186_1471_2342_10_22 crossref_primary_10_1016_j_molmed_2010_09_004 crossref_primary_10_1021_acs_nanolett_9b02544 crossref_primary_10_1007_s00216_008_2410_4 crossref_primary_10_1142_S1088424615300037 crossref_primary_10_1152_physrev_00049_2010 crossref_primary_10_1021_nl204175t crossref_primary_10_1016_J_ENG_2016_01_027 crossref_primary_10_1016_j_jcis_2010_01_015 crossref_primary_10_1021_acsnano_9b08693 crossref_primary_10_1016_j_nantod_2013_02_004 crossref_primary_10_1002_adfm_202105662 crossref_primary_10_1021_nn9010973 crossref_primary_10_1016_j_jics_2021_100254 crossref_primary_10_1021_cr300213b crossref_primary_10_1021_ja412001e crossref_primary_10_1038_s41598_019_52127_3 crossref_primary_10_1038_s41569_021_00594_5 crossref_primary_10_1016_j_jdermsci_2015_08_005 crossref_primary_10_1039_C9NH00514E crossref_primary_10_1016_j_nano_2013_08_008 crossref_primary_10_1021_acs_langmuir_5b04111 crossref_primary_10_1016_j_nano_2016_02_014 crossref_primary_10_1038_srep02184 |
Cites_doi | 10.1038/nbt1340 10.1038/89997 10.1007/s10439-005-9072-6 10.1046/j.1525-1373.1999.d01-122.x 10.1038/labinvest.3700404 10.1016/j.soc.2007.03.002 10.1038/nrd2115 10.1016/j.biomaterials.2007.09.025 10.1158/0008-5472.CAN-06-1185 10.1114/1.1376697 10.1038/ni1275 10.1166/jnn.2007.628 10.1038/nmat1390 10.1016/j.biomaterials.2007.02.013 10.1021/bc0501698 10.1002/(SICI)1097-0215(19970502)71:3<320::AID-IJC2>3.0.CO;2-# 10.1016/j.athoracsur.2004.06.055 10.1093/toxsci/kfm074 10.1038/nm1096 10.1126/science.1104274 10.1021/bc060261j 10.1021/jm060515m 10.1038/nbt994 10.1021/bc050002e 10.1038/nm1247 10.1073/pnas.95.8.4607 10.2967/jnumed.107.039859 10.1073/pnas.152463399 10.1021/nl052405t 10.1021/nl0502569 10.1038/nrc1566 10.2967/jnumed.107.040071 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society 2008 INIST-CNRS Copyright 2008 by the American Chemical Society 2008 |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society – notice: 2008 INIST-CNRS – notice: Copyright 2008 by the American Chemical Society 2008 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/nl080141f |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1530-6992 |
EndPage | 2606 |
ExternalDocumentID | PMC4161135 18386933 20660293 10_1021_nl080141f b765587613 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA119367 – fundername: NCI NIH HHS grantid: R25 CA118681 – fundername: NCI NIH HHS grantid: P50 CA114747 |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G 6P2 IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a499t-15046e7bdc44376e1aeb6b622e615b9d543f6c12e2594de7b21ec6de1c3a7a283 |
IEDL.DBID | ACS |
ISSN | 1530-6984 |
IngestDate | Thu Aug 21 14:36:43 EDT 2025 Fri Jul 11 01:06:03 EDT 2025 Mon Jul 21 05:42:29 EDT 2025 Mon Jul 21 09:17:50 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Jul 01 00:42:27 EDT 2025 Thu Aug 27 13:51:23 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Peptides Brightness Quantum dots Amino acids Nanostructures Glycine Real time Nanoparticles Nanometer scale Arginine Fluorescent material Tumours Nanostructured materials |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a499t-15046e7bdc44376e1aeb6b622e615b9d543f6c12e2594de7b21ec6de1c3a7a283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4161135 |
PMID | 18386933 |
PQID | 69537545 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4161135 proquest_miscellaneous_69537545 pubmed_primary_18386933 pascalfrancis_primary_20660293 crossref_primary_10_1021_nl080141f crossref_citationtrail_10_1021_nl080141f acs_journals_10_1021_nl080141f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-09-01 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2008 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Li Z. B. (ref7/cit7) 2007; 7 Decuzzi P. (ref36/cit36) 2007; 29 Akerman M. E. (ref3/cit3) 2002; 99 Veiseh O. (ref17/cit17) 2005; 5 Stroh M. (ref23/cit23) 2005; 11 Voura E. B. (ref26/cit26) 2004; 10 Gao X. (ref1/cit1) 2004; 22 ref11/cit11 Mizejewski G. J. (ref27/cit27) 1999; 222 Medintz I. L. (ref8/cit8) 2005; 4 Choi H. S. (ref14/cit14) 2007; 25 Ballou B. (ref10/cit10) 2007; 18 Brown E. B. (ref21/cit21) 2001; 7 Montet X. (ref29/cit29) 2006; 86 Ferrari M. (ref15/cit15) 2005; 5 Frangioni J. V. (ref12/cit12) 2007; 374 Gopee N. V. (ref13/cit13) 2007; 98 Yuan F. (ref24/cit24) 1994; 54 Schipper M. L. (ref33/cit33) 2007; 48 Luster A. D. (ref22/cit22) 2005; 6 Blackwell J. E. (ref35/cit35) 2001; 29 Folkman J. (ref20/cit20) 2007; 6 Li Z. B. (ref31/cit31) 2007; 48 Max R. (ref28/cit28) 1997; 71 Soltesz E. G. (ref9/cit9) 2005; 79 Decuzzi P. (ref38/cit38) 2007; 28 Montet X. (ref4/cit4) 2006; 8 McDonald D. M. (ref19/cit19) 2002; 62 Yuan F. (ref34/cit34) 1995; 55 Montet X. (ref32/cit32) 2006; 49 Panchapakesan B. (ref16/cit16) 2007; 16 Tsourkas A. (ref25/cit25) 2005; 16 Cai W. (ref5/cit5) 2006; 6 Tada H. (ref2/cit2) 2007; 67 Michalet X. (ref6/cit6) 2005; 307 Hobbs S. K. (ref18/cit18) 1998; 95 Cheng Z. (ref30/cit30) 2005; 16 Decuzzi P. (ref37/cit37) 2006; 34 17704240 - J Nucl Med. 2007 Sep;48(9):1511-8 11459346 - Ann Biomed Eng. 2001 Jun;29(6):523-33 9139861 - Int J Cancer. 1997 May 2;71(3):320-4 7641188 - Cancer Res. 1995 Sep 1;55(17):3752-6 17363051 - Biomaterials. 2007 Jun;28(18):2915-22 16611415 - Neoplasia. 2006 Mar;8(3):214-22 17560513 - Surg Oncol Clin N Am. 2007 Apr;16(2):293-305 17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86 15928695 - Nat Mater. 2005 Jun;4(6):435-46 15681376 - Science. 2005 Jan 28;307(5709):538-44 15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81 17404394 - Toxicol Sci. 2007 Jul;98(1):249-57 16608262 - Nano Lett. 2006 Apr;6(4):669-76 16369557 - Nat Immunol. 2005 Dec;6(12):1182-90 15258594 - Nat Biotechnol. 2004 Aug;22(8):969-76 16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41 15943433 - Nano Lett. 2005 Jun;5(6):1003-8 17685272 - J Nanosci Nanotechnol. 2007 Aug;7(8):2567-81 17646044 - Eur Urol. 2007 Dec;52(6):1700-8 17574975 - J Nucl Med. 2007 Jul;48(7):1162-71 15880117 - Nat Med. 2005 Jun;11(6):678-82 12235356 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12617-21 9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12 11433354 - Nat Med. 2001 Jul;7(7):864-8 15620956 - Ann Thorac Surg. 2005 Jan;79(1):269-77; discussion 269-77 15334072 - Nat Med. 2004 Sep;10(9):993-8 17283148 - Cancer Res. 2007 Feb 1;67(3):1138-44 17891134 - Nat Biotechnol. 2007 Oct;25(10):1165-70 15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71 17936897 - Biomaterials. 2008 Jan;29(3):377-84 16568349 - Ann Biomed Eng. 2006 Apr;34(4):633-41 8012948 - Cancer Res. 1994 Jul 1;54(13):3352-6 17263568 - Bioconjug Chem. 2007 Mar-Apr;18(2):389-96 16568109 - Lab Invest. 2006 May;86(5):517-25 17237537 - Methods Mol Biol. 2007;374:147-59 10564536 - Proc Soc Exp Biol Med. 1999 Nov;222(2):124-38 17004722 - J Med Chem. 2006 Oct 5;49(20):6087-93 12235011 - Cancer Res. 2002 Sep 15;62(18):5381-5 |
References_xml | – volume: 25 start-page: 1165 year: 2007 ident: ref14/cit14 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1340 – volume: 7 start-page: 864 year: 2001 ident: ref21/cit21 publication-title: Nature Med. doi: 10.1038/89997 – volume: 34 start-page: 633 year: 2006 ident: ref37/cit37 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-9072-6 – volume: 222 start-page: 124 year: 1999 ident: ref27/cit27 publication-title: Proc. Soc. Exp. Biol. Med. doi: 10.1046/j.1525-1373.1999.d01-122.x – volume: 54 start-page: 3352 year: 1994 ident: ref24/cit24 publication-title: Cancer Res. – volume: 86 start-page: 517 year: 2006 ident: ref29/cit29 publication-title: Lab. Invest. doi: 10.1038/labinvest.3700404 – volume: 16 start-page: 293 year: 2007 ident: ref16/cit16 publication-title: Surg. Oncol. Clinics North America doi: 10.1016/j.soc.2007.03.002 – volume: 6 start-page: 273 year: 2007 ident: ref20/cit20 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2115 – volume: 29 start-page: 377 year: 2007 ident: ref36/cit36 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.09.025 – volume: 67 start-page: 1138 year: 2007 ident: ref2/cit2 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-1185 – volume: 29 start-page: 523 year: 2001 ident: ref35/cit35 publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1376697 – volume: 6 start-page: 1182 year: 2005 ident: ref22/cit22 publication-title: Nat. Immunol. doi: 10.1038/ni1275 – volume: 7 start-page: 2567 year: 2007 ident: ref7/cit7 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2007.628 – volume: 4 start-page: 435 year: 2005 ident: ref8/cit8 publication-title: Nat. Mater. doi: 10.1038/nmat1390 – volume: 28 start-page: 2915 year: 2007 ident: ref38/cit38 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.02.013 – volume: 16 start-page: 1433 year: 2005 ident: ref30/cit30 publication-title: Bioconjugate Chem. doi: 10.1021/bc0501698 – ident: ref11/cit11 – volume: 71 start-page: 320 year: 1997 ident: ref28/cit28 publication-title: Int. J. Cancer doi: 10.1002/(SICI)1097-0215(19970502)71:3<320::AID-IJC2>3.0.CO;2-# – volume: 55 start-page: 3752 year: 1995 ident: ref34/cit34 publication-title: Cancer Res. – volume: 79 start-page: 269 year: 2005 ident: ref9/cit9 publication-title: Ann. Thoracic Surg. doi: 10.1016/j.athoracsur.2004.06.055 – volume: 98 start-page: 249 year: 2007 ident: ref13/cit13 publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfm074 – volume: 10 start-page: 993 year: 2004 ident: ref26/cit26 publication-title: Nature Med. doi: 10.1038/nm1096 – volume: 307 start-page: 538 year: 2005 ident: ref6/cit6 publication-title: Science doi: 10.1126/science.1104274 – volume: 18 start-page: 389 year: 2007 ident: ref10/cit10 publication-title: Bioconjugate Chem. doi: 10.1021/bc060261j – volume: 49 start-page: 6087 year: 2006 ident: ref32/cit32 publication-title: J. Med. Chem. doi: 10.1021/jm060515m – volume: 22 start-page: 969 year: 2004 ident: ref1/cit1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt994 – volume: 16 start-page: 576 year: 2005 ident: ref25/cit25 publication-title: Bioconjugate Chem. doi: 10.1021/bc050002e – volume: 11 start-page: 678 year: 2005 ident: ref23/cit23 publication-title: Nature Med. doi: 10.1038/nm1247 – volume: 62 start-page: 5381 year: 2002 ident: ref19/cit19 publication-title: Cancer Res. – volume: 8 start-page: 214 year: 2006 ident: ref4/cit4 publication-title: Neoplasia (Ann Arbor, MI, U.S.) – volume: 95 start-page: 4607 year: 1998 ident: ref18/cit18 publication-title: Proc. Natl. Acsd. Sci. U.S.A. doi: 10.1073/pnas.95.8.4607 – volume: 48 start-page: 1162 year: 2007 ident: ref31/cit31 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.039859 – volume: 99 start-page: 12617 year: 2002 ident: ref3/cit3 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.152463399 – volume: 6 start-page: 669 year: 2006 ident: ref5/cit5 publication-title: Nano Lett. doi: 10.1021/nl052405t – volume: 374 start-page: 147 year: 2007 ident: ref12/cit12 publication-title: Methods Mol. Biol. – volume: 5 start-page: 1003 year: 2005 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl0502569 – volume: 5 start-page: 161 year: 2005 ident: ref15/cit15 publication-title: Nat. Rev. doi: 10.1038/nrc1566 – volume: 48 start-page: 1511 year: 2007 ident: ref33/cit33 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.040071 – reference: 17685272 - J Nanosci Nanotechnol. 2007 Aug;7(8):2567-81 – reference: 16608262 - Nano Lett. 2006 Apr;6(4):669-76 – reference: 15258594 - Nat Biotechnol. 2004 Aug;22(8):969-76 – reference: 12235011 - Cancer Res. 2002 Sep 15;62(18):5381-5 – reference: 17704240 - J Nucl Med. 2007 Sep;48(9):1511-8 – reference: 15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81 – reference: 8012948 - Cancer Res. 1994 Jul 1;54(13):3352-6 – reference: 16369557 - Nat Immunol. 2005 Dec;6(12):1182-90 – reference: 17936897 - Biomaterials. 2008 Jan;29(3):377-84 – reference: 16568349 - Ann Biomed Eng. 2006 Apr;34(4):633-41 – reference: 15880117 - Nat Med. 2005 Jun;11(6):678-82 – reference: 12235356 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12617-21 – reference: 17646044 - Eur Urol. 2007 Dec;52(6):1700-8 – reference: 11433354 - Nat Med. 2001 Jul;7(7):864-8 – reference: 10564536 - Proc Soc Exp Biol Med. 1999 Nov;222(2):124-38 – reference: 7641188 - Cancer Res. 1995 Sep 1;55(17):3752-6 – reference: 16568109 - Lab Invest. 2006 May;86(5):517-25 – reference: 17574975 - J Nucl Med. 2007 Jul;48(7):1162-71 – reference: 17404394 - Toxicol Sci. 2007 Jul;98(1):249-57 – reference: 16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41 – reference: 15334072 - Nat Med. 2004 Sep;10(9):993-8 – reference: 15943433 - Nano Lett. 2005 Jun;5(6):1003-8 – reference: 9539785 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12 – reference: 17004722 - J Med Chem. 2006 Oct 5;49(20):6087-93 – reference: 17237537 - Methods Mol Biol. 2007;374:147-59 – reference: 17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86 – reference: 17363051 - Biomaterials. 2007 Jun;28(18):2915-22 – reference: 17891134 - Nat Biotechnol. 2007 Oct;25(10):1165-70 – reference: 15928695 - Nat Mater. 2005 Jun;4(6):435-46 – reference: 9139861 - Int J Cancer. 1997 May 2;71(3):320-4 – reference: 11459346 - Ann Biomed Eng. 2001 Jun;29(6):523-33 – reference: 15620956 - Ann Thorac Surg. 2005 Jan;79(1):269-77; discussion 269-77 – reference: 15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71 – reference: 16611415 - Neoplasia. 2006 Mar;8(3):214-22 – reference: 17263568 - Bioconjug Chem. 2007 Mar-Apr;18(2):389-96 – reference: 17283148 - Cancer Res. 2007 Feb 1;67(3):1138-44 – reference: 17560513 - Surg Oncol Clin N Am. 2007 Apr;16(2):293-305 – reference: 15681376 - Science. 2005 Jan 28;307(5709):538-44 |
SSID | ssj0009350 |
Score | 2.3881738 |
Snippet | Nanoscale materials have increasingly become subject to intense investigation for use in cancer diagnosis and therapy. However, there is a fundamental dearth... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2599 |
SubjectTerms | Animals Applied sciences Biological and medical sciences Biotechnology Cross-disciplinary physics: materials science; rheology Electronics Endothelium, Vascular - metabolism Exact sciences and technology Fundamental and applied biological sciences. Psychology Materials science Methods. Procedures. Technologies Mice Microscopy, Electron, Transmission Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Neoplasms, Experimental - blood supply Oligopeptides - metabolism Others Physics Protein Binding Quantum Dots Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Spectrometry, Fluorescence Various methods and equipments |
Title | Real-Time Intravital Imaging of RGD−Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature |
URI | http://dx.doi.org/10.1021/nl080141f https://www.ncbi.nlm.nih.gov/pubmed/18386933 https://www.proquest.com/docview/69537545 https://pubmed.ncbi.nlm.nih.gov/PMC4161135 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwEB4BvYAq-kN_lrZbq-XQS2AdO05yBBYKCJCgIHGL7NhRV911EJtw4Ak484g8CeNks-zCtr1FythJPDPxN_LMNwBrTGCMoGXmqYxJj2ccr3yuPYm6VqEWqiarPjoWe-f84CK4mIPvfznB9-mG7XccwwnN5uGFL9B5Hf7Z_vXIrMuqNqzouRgHxRFv6IMmh7qtJx1ObT0vL-UQVyGr21fMwpdP0yQn9p3dV9BtqnfqdJM_62Wh1tOb52SO__qk17A8wp1kszaUNzBn7FtYmmAjXAF7iqDRczUhZN-9yrXrJ0L2B1UfI5Jn5PRn9_727qREZZQD0s0LstWrimJIkZPDsmoPRnasdkVd_R6K9Cw5ysuhIWflIL8ix6ZJfHXHFu_gfHfnbHvPG7Vj8CSGRYWH0JELEyqdco6_JUOlUUIJ3zeIilSsA84ykVLfYETFNQr61KRCG5oyGUqEMe9hwebWfASS6RBnM6FUKuaRDmSIs1HGJaKxSAW0BW3UVzJyp2FSnZT7NBkvXAt-NKpM0hGZueup0Z8l-m0selkzeMwSak_Zw1jSsd13EBK14GtjIAk6oDtVkdbgEiYiDlwb4aAFH2pzeXxKxCIRMxwbThnSWMBRe0_fsb3fFcW3CzspC1b_tw6fYLFJYOnQz7BQXJXmC6KkQrUrL3kAfJ0O7Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgLACh8i5DYWohFmzSjmPHSZZ9MgMzI1GmUneRHTti1BmnahIWfAFrPpEv6bWTzKMaCXaRcuM419fxubr2OQh9pBxyBCUyT2ZUeCxjcOUz5QkYaxkqLmuy6tGY9y_Yl8vgsqHJsWdhoBMFtFS4Iv6SXYAcmFnPEp2Q7D56ACDEt9F8ePx9SbBLnRorTGBIh-KItSxCq4_aFSgt1lagJ9eiAGdktYrFJph5d7fkyvJz9rTWMXIdd7tOrvarUu6nv-5wOv7flz1D2w0KxYd12DxH97R5gR6vcBO-ROYcIKRnT4jgge3RT6suggdzp2qE8wyffz75-_vPtwqGpprjk7zER1N3RAaXOR5WTiwMnxplj3jNpmAyNXiUV4XGk2qe3-CxbrfB2iLGK3Rxdjo57nuNOIMnIEkqPQCSjOtQqpQx-ElpIrTkkvu-BowkYxUwmvGU-BryK6bA0Cc65UqTlIpQAKh5jbZMbvQbhDMVQms6FFLGLFKBCKE1QpkAbBbJgHRQF_yWNJOrSFzd3CfJwnEd9Kkd0SRtqM2twsZsk-mHhel1zeexyai7FhYLS8t93wOA1EF7bZwkMB1tjUUYDS5MeBxYUeGgg3bqqFm-JaIRjyk8G67F08LAEn2v3zHTH47w2yahhAZv_-WHPfSwPxkNk-Fg_HUXPWq3tvTIO7RV3lT6PeCnUnbdxLkF-MAXTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAhU8YYuj62FOHBJu04cJzmWbpcutAuUVuotsmNbrNh1Vk3SQ38BZ34iv4Sx8-hutRLcImXiOOOZ-BvN-BuE3gUMYgTJtSd0wD2qKVz5VHoc1lpEkomarPp4wg7P6Kfz8LwJFO1ZGJhEASMVLolvvXohdcMwQHbNbGDJToi-je7YdJ216L3979cku4HryApODCFREtOWSWj5UbsLZcXKLrS54AUoRNedLNZBzZsVk0tb0Ogh-tJN3lWe_NypSrGTXd3gdfz_r3uEHjRoFO_V5vMY3VLmCbq_xFH4FJkTgJKePSmCx3ZWl7bLCB7PXXcjnGt88nH459fvbxUsUTXHw7zEH6buqAwuc3xUuaZh-MBIe9RrNgWRqcHHeVUofFrN8ws8UW05rE1mPENno4PT_UOvadLgcQiWSg8AJWUqEjKjFH5WinAlmGC-rwAriUSGNNAsI76COItKEPSJyphUJAt4xAHcPEcbJjdqC2EtIxhNRVyIhMYy5BGMRgLKAaPFIiQ91AfdpY2TFanLn_sk7RTXQ-_bVU2zhuLcdtqYrRN924kual6PdUL9FdPoJC0H_gCAUg9tt7aSglvaXAs3ClSYsiS0zYXDHnpRW871W-IgZkkAz0YrNtUJWMLv1Ttm-sMRf9tglAThy3_pYRvd_TocpUfjyedX6F5b4TIgr9FGeVGpNwCjStF3vvMX5j4Z0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Intravital+Imaging+of+RGD-Quantum+Dot+Binding+to+Luminal+Endothelium+in+Mouse+Tumor+Neovasculature&rft.jtitle=Nano+letters&rft.au=SMITH%2C+Bryan+Ronain&rft.au=ZHEN+CHENG&rft.au=DE%2C+Abhijit&rft.au=AI+LEEN+KOH&rft.date=2008-09-01&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=8&rft.issue=9&rft.spage=2599&rft.epage=2606&rft_id=info:doi/10.1021%2Fnl080141f&rft.externalDBID=n%2Fa&rft.externalDocID=20660293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |