Long Electron−Hole Separation of ZnO-CdS Core−Shell Quantum Dots

The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While control of the emission property of QDs in wavelength has been studied extensively, control of the emission lifetime of QDs has not been explored...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 113; no. 45; pp. 19419 - 19423
Main Authors Xu, Fen, Volkov, Vyacheslav, Zhu, Yimei, Bai, Hanying, Rea, Anthony, Valappil, Nikesh V, Su, Wei, Gao, Xueyun, Kuskovsky, Igor L, Matsui, Hiroshi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While control of the emission property of QDs in wavelength has been studied extensively, control of the emission lifetime of QDs has not been explored in depth. In this report, ZnO-CdS core−shell QDs were synthesized in a two-step process, in which we initially synthesized ZnO core particles, and then stepwise slow growth of CdS shells followed. The coating of a CdS shell on a ZnO core increased the exciton lifetime more than 100 times that of the core ZnO QD, and the lifetime was further extended as the thickness of shell increased. This long electron−hole recombination lifetime is due to a unique staggered band alignment between the ZnO core and CdS shell, so-called type II band alignment, where the carrier excitation holes and electrons are spatially separated at the core and shell, and the exciton lifetime becomes extremely sensitive to the thickness of the shell. Here, we demonstrated that the emission lifetime becomes controllable with the thickness of the shell in ZnO-CdS core−shell QDs. The longer excitonic lifetime of type II QDs could be beneficial in fluorescence-based sensors, medical imaging, solar cells photovoltaics, and lasers.
AbstractList The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While control of the emission property of QDs in wavelength has been studied extensively, control of the emission lifetime of QDs has not been explored in depth. In this report, ZnO-CdS core-shell QDs were synthesized in a two-step process, in which we initially synthesized ZnO core particles, and then stepwise slow growth of CdS shells followed. The coating of a CdS shell on a ZnO core increased the exciton lifetime more than 100 times that of the core ZnO QD, and the lifetime was further extended as the thickness of shell increased. This long electron-hole recombination lifetime is due to a unique staggered band alignment between the ZnO core and CdS shell, so-called type II band alignment, where the carrier excitation holes and electrons are spatially separated at the core and shell, and the exciton lifetime becomes extremely sensitive to the thickness of the shell. Here, we demonstrated that the emission lifetime becomes controllable with the thickness of the shell in ZnO-CdS core-shell QDs. The longer excitonic lifetime of type II QDs could be beneficial in fluorescence-based sensors, medical imaging, solar cells photovoltaics, and lasers.
The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While control of the emission property of QDs in wavelength has been studied extensively, control of the emission lifetime of QDs has not been explored in depth. In this report, ZnO-CdS core−shell QDs were synthesized in a two-step process, in which we initially synthesized ZnO core particles, and then stepwise slow growth of CdS shells followed. The coating of a CdS shell on a ZnO core increased the exciton lifetime more than 100 times that of the core ZnO QD, and the lifetime was further extended as the thickness of shell increased. This long electron−hole recombination lifetime is due to a unique staggered band alignment between the ZnO core and CdS shell, so-called type II band alignment, where the carrier excitation holes and electrons are spatially separated at the core and shell, and the exciton lifetime becomes extremely sensitive to the thickness of the shell. Here, we demonstrated that the emission lifetime becomes controllable with the thickness of the shell in ZnO-CdS core−shell QDs. The longer excitonic lifetime of type II QDs could be beneficial in fluorescence-based sensors, medical imaging, solar cells photovoltaics, and lasers.
The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While control of the emission property of QDs in wavelength has been studied extensively, control of the emission lifetime of QDs has not been explored in depth. In this report, ZnO-CdS core-shell QDs were synthesized in a two-step process, in which we initially synthesized ZnO core particles, and then stepwise slow growth of CdS shells followed. The coating of a CdS shell on a ZnO core increased the exciton lifetime more than 100 times that of the core ZnO QD, and the lifetime was further extended as the thickness of shell increased. This long electron-hole recombination lifetime is due to a unique staggered band alignment between the ZnO core and CdS shell, so-called type II band alignment, where the carrier excitation holes and electrons are spatially separated at the core and shell, and the exciton lifetime becomes extremely sensitive to the thickness of the shell. Here, we demonstrated that the emission lifetime becomes controllable with the thickness of the shell in ZnO-CdS core-shell QDs. The longer excitonic lifetime of type II QDs could be beneficial in fluorescence-based sensors, medical imaging, solar cells photovoltaics, and lasers.The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While control of the emission property of QDs in wavelength has been studied extensively, control of the emission lifetime of QDs has not been explored in depth. In this report, ZnO-CdS core-shell QDs were synthesized in a two-step process, in which we initially synthesized ZnO core particles, and then stepwise slow growth of CdS shells followed. The coating of a CdS shell on a ZnO core increased the exciton lifetime more than 100 times that of the core ZnO QD, and the lifetime was further extended as the thickness of shell increased. This long electron-hole recombination lifetime is due to a unique staggered band alignment between the ZnO core and CdS shell, so-called type II band alignment, where the carrier excitation holes and electrons are spatially separated at the core and shell, and the exciton lifetime becomes extremely sensitive to the thickness of the shell. Here, we demonstrated that the emission lifetime becomes controllable with the thickness of the shell in ZnO-CdS core-shell QDs. The longer excitonic lifetime of type II QDs could be beneficial in fluorescence-based sensors, medical imaging, solar cells photovoltaics, and lasers.
Author Gao, Xueyun
Volkov, Vyacheslav
Kuskovsky, Igor L
Matsui, Hiroshi
Valappil, Nikesh V
Xu, Fen
Bai, Hanying
Zhu, Yimei
Rea, Anthony
Su, Wei
AuthorAffiliation Brookhaven National Laboratory (BNL)
The City University of New York - Queens College
The City University of New York - Hunter College
AuthorAffiliation_xml – name: The City University of New York - Hunter College
– name: The City University of New York - Queens College
– name: Brookhaven National Laboratory (BNL)
Author_xml – sequence: 1
  givenname: Fen
  surname: Xu
  fullname: Xu, Fen
– sequence: 2
  givenname: Vyacheslav
  surname: Volkov
  fullname: Volkov, Vyacheslav
– sequence: 3
  givenname: Yimei
  surname: Zhu
  fullname: Zhu, Yimei
– sequence: 4
  givenname: Hanying
  surname: Bai
  fullname: Bai, Hanying
– sequence: 5
  givenname: Anthony
  surname: Rea
  fullname: Rea, Anthony
– sequence: 6
  givenname: Nikesh V
  surname: Valappil
  fullname: Valappil, Nikesh V
– sequence: 7
  givenname: Wei
  surname: Su
  fullname: Su, Wei
– sequence: 8
  givenname: Xueyun
  surname: Gao
  fullname: Gao, Xueyun
– sequence: 9
  givenname: Igor L
  surname: Kuskovsky
  fullname: Kuskovsky, Igor L
  email: hmatsui@hunter.cuny.edu, Igor.Kuskovsky@qc.cuny.edu
– sequence: 10
  givenname: Hiroshi
  surname: Matsui
  fullname: Matsui, Hiroshi
  email: hmatsui@hunter.cuny.edu, Igor.Kuskovsky@qc.cuny.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30873252$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1040307$$D View this record in Osti.gov
BookMark eNptkd9qFDEUxoO02D964QvIIAh6Me05yWRmciPIttrCQpHVG29CNnOmO8tssiYZwTfw2kf0SYxuXaz0KoH8zpfzfd8JO3DeEWPPEM4QOJ6vtwpEi2L1iB2jErxsKikP9veqOWInMa4BpAAUj9mRgLYRXPJjdjH37ra4HMmm4N3P7z-u_EjFgrYmmDR4V_i--Oxuylm3KGY-UCYWKxrH4sNkXJo2xYVP8Qk77M0Y6endeco-vbv8OLsq5zfvr2dv56WpVJtKQgSkrqor1Qgwola8VX3NmyUZ3tddbZVsDfZLjr0CCbICktBSJ9RSmVaKU_Zmp7udlhvqLLkUzKi3YdiY8E17M-j7L25Y6Vv_VdcVColtFnixE_AxDTraIZFdWe9ctq8RKhDQZOjV3S_Bf5koJr0Zos2ejSM_Rc1zrFhLiZjR5_8utN_kb74ZeL0DbPAxBur3CIL-3Z3ed5fZ8__YvN-fErKXYXxw4uVuwtio134KLqf_APcLzSenSA
CitedBy_id crossref_primary_10_1002_adfm_201403065
crossref_primary_10_1016_S1003_6326_11_61365_4
crossref_primary_10_1016_j_jscs_2015_07_001
crossref_primary_10_1039_c3ta15191c
crossref_primary_10_1016_j_jpcs_2011_07_010
crossref_primary_10_1039_C5NJ00351B
crossref_primary_10_1016_j_bios_2015_06_030
crossref_primary_10_1039_C4TC02880E
crossref_primary_10_1021_nn401232k
crossref_primary_10_1039_c2nr11869f
crossref_primary_10_1021_jp3083419
crossref_primary_10_1002_aelm_202201068
crossref_primary_10_1016_j_jallcom_2014_07_203
crossref_primary_10_1021_jp207452c
crossref_primary_10_1039_c002460k
crossref_primary_10_1039_c0ee00723d
crossref_primary_10_1016_j_aej_2022_09_049
crossref_primary_10_1021_jp310495j
crossref_primary_10_1002_anie_201404481
crossref_primary_10_1007_s10854_017_6688_x
crossref_primary_10_1007_s11051_014_2452_9
crossref_primary_10_1080_14328917_2016_1191782
crossref_primary_10_1016_j_mssp_2014_02_032
crossref_primary_10_1016_j_matpr_2015_04_035
crossref_primary_10_1039_C9CC09559D
crossref_primary_10_1007_s10854_013_1321_0
crossref_primary_10_1016_j_jcis_2017_05_006
crossref_primary_10_3390_cryst6110148
crossref_primary_10_1002_adma_201002290
crossref_primary_10_1007_s10971_024_06353_5
crossref_primary_10_1021_acs_jpcc_0c06833
crossref_primary_10_1016_j_materresbull_2012_03_044
crossref_primary_10_3390_coatings13071197
crossref_primary_10_4028_www_scientific_net_KEM_575_576_306
crossref_primary_10_4313_TEEM_2010_11_1_001
crossref_primary_10_1021_jp312728t
crossref_primary_10_4028_www_scientific_net_KEM_608_224
crossref_primary_10_1002_ange_201404481
crossref_primary_10_1002_smll_201503958
crossref_primary_10_1002_smm2_1176
crossref_primary_10_1039_c2ra21065g
crossref_primary_10_1021_acsami_1c06350
crossref_primary_10_1016_j_apsusc_2013_02_050
crossref_primary_10_1002_cssc_201800249
crossref_primary_10_1016_j_jcis_2011_08_001
crossref_primary_10_1016_j_jmst_2020_02_061
crossref_primary_10_1007_s13738_023_02789_8
crossref_primary_10_1016_j_cplett_2020_138009
crossref_primary_10_1002_jcc_22945
crossref_primary_10_1007_s10854_013_1256_5
crossref_primary_10_3390_ma10010037
crossref_primary_10_1039_C4NR06946C
Cites_doi 10.1103/PhysRevB.60.R2177
10.1021/ja0163321
10.1126/science.1069156
10.1021/ja068351m
10.1038/nature05839
10.1021/ja0361749
10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
10.1126/science.287.5455.1011
10.1021/ja970754m
10.1126/science.1103755
10.1063/1.123972
10.1038/90228
10.1021/jp0483371
10.1021/jp710852q
10.1103/PhysRevB.75.035330
10.1039/B511591D
10.1063/1.1704877
10.1039/b503681j
10.1002/smll.200500227
10.1103/PhysRevB.48.4643
10.1063/1.1542940
10.1002/adma.200501029
10.1021/nl049146c
10.1109/68.634699
10.1016/S0009-2614(00)00990-8
10.1021/jp9530562
10.1063/1.114291
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
Copyright_xml – notice: Copyright © 2009 American Chemical Society
CorporateAuthor BROOKHAVEN NATIONAL LABORATORY (BNL)
CorporateAuthor_xml – name: BROOKHAVEN NATIONAL LABORATORY (BNL)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
5PM
DOI 10.1021/jp903813h
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate ZnO-CdS Core−Shell Quantum Dots
EISSN 1932-7455
EndPage 19423
ExternalDocumentID PMC6413518
1040307
30873252
10_1021_jp903813h
a076555803
Genre Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: G12 RR003037
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
UQL
VF5
VG9
VQA
W1F
ZCG
6TJ
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
VXZ
7X8
ABFRP
OTOTI
5PM
ID FETCH-LOGICAL-a498t-e1101ed4649730a369289f627bea2f6d6c958a1fb21f9050540e508ed39b9a853
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Thu Aug 21 14:00:43 EDT 2025
Thu May 18 22:32:49 EDT 2023
Fri Jul 11 05:36:41 EDT 2025
Wed Feb 19 02:34:59 EST 2025
Thu Apr 24 23:07:28 EDT 2025
Tue Jul 01 03:35:28 EDT 2025
Thu Aug 27 13:42:07 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a498t-e1101ed4649730a369289f627bea2f6d6c958a1fb21f9050540e508ed39b9a853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
DE-AC02-98CH10886
BNL-91012-2010-JA
USDOE SC OFFICE OF SCIENCE (SC)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6413518
PMID 30873252
PQID 2193165511
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6413518
osti_scitechconnect_1040307
proquest_miscellaneous_2193165511
pubmed_primary_30873252
crossref_primary_10_1021_jp903813h
crossref_citationtrail_10_1021_jp903813h
acs_journals_10_1021_jp903813h
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-12
PublicationDateYYYYMMDD 2009-11-12
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-12
  day: 12
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Han M. Y. (ref3/cit3) 2001; 19
Xie R. G. (ref16/cit16) 2005; 17
Klimov V. I. (ref12/cit12) 1999; 60
Sandros M. G. (ref4/cit4) 2006; 131
Kim S. (ref17/cit17) 2003; 125
Sajinovic D. (ref27/cit27) 2000; 329
Balet L. P. (ref19/cit19) 2004; 4
Huynh W. U. (ref1/cit1) 1999; 11
Oron D. (ref11/cit11) 2007; 75
Huynh W. U. (ref7/cit7) 2002; 295
Rorison J. M. (ref25/cit25) 1993; 48
Cheng C. T. (ref15/cit15) 2005; 15
Shim M. (ref20/cit20) 2001; 123
Ivanov S. A. (ref10/cit10) 2007; 129
Klimov V. I. (ref13/cit13) 2000; 287
Weinhardt L. (ref22/cit22) 2004; 84
Zegrya G. G. (ref9/cit9) 1995; 67
Ivanov S. A. (ref8/cit8) 2004; 108
Peng X. G. (ref5/cit5) 1997; 119
Hines M. A. (ref6/cit6) 1996; 100
Felix C. L. (ref26/cit26) 1997; 9
Chen C. Y. (ref14/cit14) 2005; 1
Ouyang J. Y. (ref21/cit21) 2008; 112
Hikmet R. A. M. (ref2/cit2) 2003; 93
Klimov V. I. (ref18/cit18) 2007; 447
Son D. H. (ref23/cit23) 2004; 306
Wong E. M. (ref24/cit24) 1999; 74
References_xml – volume: 60
  start-page: R2177
  year: 1999
  ident: ref12/cit12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.R2177
– volume: 123
  start-page: 11651
  year: 2001
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0163321
– volume: 295
  start-page: 2425
  year: 2002
  ident: ref7/cit7
  publication-title: Science
  doi: 10.1126/science.1069156
– volume: 129
  start-page: 11708
  year: 2007
  ident: ref10/cit10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068351m
– volume: 447
  start-page: 441
  year: 2007
  ident: ref18/cit18
  publication-title: Nature
  doi: 10.1038/nature05839
– volume: 125
  start-page: 11466
  year: 2003
  ident: ref17/cit17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0361749
– volume: 11
  start-page: 923
  year: 1999
  ident: ref1/cit1
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
– volume: 287
  start-page: 1011
  year: 2000
  ident: ref13/cit13
  publication-title: Science
  doi: 10.1126/science.287.5455.1011
– volume: 119
  start-page: 7019
  year: 1997
  ident: ref5/cit5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970754m
– volume: 306
  start-page: 1009
  year: 2004
  ident: ref23/cit23
  publication-title: Science
  doi: 10.1126/science.1103755
– volume: 74
  start-page: 2939
  year: 1999
  ident: ref24/cit24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123972
– volume: 19
  start-page: 631
  year: 2001
  ident: ref3/cit3
  publication-title: Nat. Biotechnol.
  doi: 10.1038/90228
– volume: 108
  start-page: 10625
  year: 2004
  ident: ref8/cit8
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0483371
– volume: 112
  start-page: 4908
  year: 2008
  ident: ref21/cit21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710852q
– volume: 75
  start-page: 035330
  year: 2007
  ident: ref11/cit11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.035330
– volume: 131
  start-page: 229
  year: 2006
  ident: ref4/cit4
  publication-title: Analyst
  doi: 10.1039/B511591D
– volume: 84
  start-page: 3175
  year: 2004
  ident: ref22/cit22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1704877
– volume: 15
  start-page: 3409
  year: 2005
  ident: ref15/cit15
  publication-title: J. Mater. Chem.
  doi: 10.1039/b503681j
– volume: 1
  start-page: 1215
  year: 2005
  ident: ref14/cit14
  publication-title: Small
  doi: 10.1002/smll.200500227
– volume: 48
  start-page: 4643
  year: 1993
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.4643
– volume: 93
  start-page: 3509
  year: 2003
  ident: ref2/cit2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1542940
– volume: 17
  start-page: 2741
  year: 2005
  ident: ref16/cit16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501029
– volume: 4
  start-page: 1485
  year: 2004
  ident: ref19/cit19
  publication-title: Nano Lett.
  doi: 10.1021/nl049146c
– volume: 9
  start-page: 1433
  year: 1997
  ident: ref26/cit26
  publication-title: IEEE Photon Technol. Lett.
  doi: 10.1109/68.634699
– volume: 329
  start-page: 168
  year: 2000
  ident: ref27/cit27
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00990-8
– volume: 100
  start-page: 468
  year: 1996
  ident: ref6/cit6
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9530562
– volume: 67
  start-page: 2681
  year: 1995
  ident: ref9/cit9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.114291
SSID ssj0053013
Score 2.2078488
Snippet The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19419
SubjectTerms ALIGNMENT
C: Nanops and Nanostructures
COATINGS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
ELECTRONS
EXCITATION
EXCITONS
LASERS
LIFETIME
OPTICAL PROPERTIES
QUANTUM DOTS
RECOMBINATION
SENSORS
SOLAR CELLS
SOLAR ENERGY
THICKNESS
WAVELENGTHS
Title Long Electron−Hole Separation of ZnO-CdS Core−Shell Quantum Dots
URI http://dx.doi.org/10.1021/jp903813h
https://www.ncbi.nlm.nih.gov/pubmed/30873252
https://www.proquest.com/docview/2193165511
https://www.osti.gov/biblio/1040307
https://pubmed.ncbi.nlm.nih.gov/PMC6413518
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwEB7B9tBe6H9JaZGhPXAJrB3Hjo8oC1pVpajaIiEukZ04UKAxYpNLn6DnPmKfpONNsmLbbTlnoijz4_lGM_4G4H1pMG-ZIVpAUhbyRJhQKZtjxCelxOIt1tTfHT76JMYn_MNpfLoC7_7RwWd07_JG-W5WdLEKD5hIpK-w9tNJf9zG6KFR2zpGqMi57OmD7r7qU08-XUg9A4chtAxW_jkdeSfdHD6GUX9pp50yudptarObf_-bw_F_f_IE1jq4SfZb_3gKK7Z6Bg_Tfsvbcxh9dNU5OeiW4fz68XPsri2Z2JYS3FXEleSsOg7TYkJSd2tRYuJnR8nnBm3SfCMjV09fwMnhwZd0HHabFULNVVKHFpM-tQUXXGGE60gorLtKwaSxmpWiELmKE01Lw2ip_K47PrSI5GwRKaM0ZviXMKhcZdeBcJ5LJgrG0LRc68JIk3CDKMFQbqnUAWyi6rMuMqbZrOnNsOjolRHATm-VLO94yf16jOtlottz0ZuWjGOZ0IY3bYYIwtPg5n5eKK9RiPvzLICt3uIZatp3R3RlXTPN8OiOqEAASQN41XrA_COeNjFiMQtALvjGXMCTdC8-qb5ezMi6Bfc7EJPX96lhAx7NGlV-wpC9gUF929i3iHdqsznz998I4PnG
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5Vy6Fc-P8JhWIQSFxSasdx4gOHKttqS7dFaFup4pLaiUOBklRNoqo8AWeOfZW-DU_COD9Lt1qJUyXOO9okk28832gm3wC8yjTmLb2KbyCgzOWh0K6UJsGID7MAizdfUfvt8PaOGO3x9_v-_gKc99_C4E2U-E9l08T_qy5A3349lrap5R12A5Rb5uwUy7Py3eYQ3-VrxjbWd6OR220QcBWXYeUaTG7UpFxwiUhWnpBYX2SCBdoololUJNIPFc00o5m0O934qkHGYlJPaqlCuxECj_cbSHqYLezWokl_yvsYGF7bsUaGynnQqxZdvlWb8ZJyJuMNCozceWz26lDmpSy3cRsupv5phlu-rdSVXkl-XJGO_D8deAdudeSarLXRcBcWTH4PFqN-p919GI6L_DNZ71b__P75a1QcGTIxrQB6kZMiI5_yD26UTkhUnBi0mNhJWfKxRgTW38mwqMoHsHctD_EQBnmRm8dAOE8CJlLGEMhcqVQHOuQaOZGm3NBAObCMvo-7c6CMmxY_wxKrd74Db3owxEmnwm6XgRzNM305NT1upUfmGS1ZRMXIl6zob2Kno5IKjbg9vR140QMtRk_bXpDKTVGXMSYqjwqky9SBRy3wphexIpEe85kDwQwkpwZWknz2l_zLYSNNLrjd-Bg--ZcbnsPiaHd7HI83d7aW4GbTorOzlewpDKqT2jxDplfp5SbkCBxcN0T_ACRwWg0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5VWwm48P8TCsUgkLik1I7jxAcOVbarLS0FtFSqegl24lCgJKsmUQVPwJkH4FV4lz5Jx_lZdauVOFXinFHijL_xzGjG3wA8zzT6Lb2OOxBQ5vJQaFdKk6DFh1mAyZuvqL07_HZXjPf4m31_fwn-9HdhcBElvqlsivjWqqdp1jEM0Fdfp9IWtrzDroly2_w4wRStfL01xP18wdho82M0drspAq7iMqxcgw6OmpQLLhHNyhMSc4xMsEAbxTKRikT6oaKZZjSTdq4bXzcYtZjUk1qq0E6FwCN-2ZYHbXK3EU36k95H4_DaqjVGqZwHPXPR-aVar5eUc15vUKD1LopoLzZmnvN0oxvwd6ajpsHl21pd6bXk5wX6yP9XiTfhehdkk43WKm7Bkslvw9Won213B4Y7Rf6ZbHYjgE5__R4XR4ZMTEuEXuSkyMhB_s6N0gmJimODEhPbMUs-1IjE-jsZFlV5F_Yu5SfuwSAvcvMACOdJwETKGAKaK5XqQIdcY2ykKTc0UA6sov7j7jwo46bUzzDV6pXvwMseEHHSsbHboSBHi0SfzUSnLQXJIqEVi6oY4yZL_pvYLqmkQiFuT3EHnvZgi1HTtiakclPUZYwOy6MCw2bqwP0WfLOPWLJIj_nMgWAOljMBS00-_yT_cthQlAtuJz-GD_-lhidw5f1wFO9s7W6vwLWmUmdbLNkjGFTHtXmMAV-lVxurI_DpshF6BqHuXJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+Electron-Hole+Separation+of+ZnO-CdS+Core-Shell+Quantum+Dots&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Xu%2C+Fen&rft.au=Volkov%2C+Vyacheslav&rft.au=Zhu%2C+Yimei&rft.au=Bai%2C+Hanying&rft.date=2009-11-12&rft.issn=1932-7447&rft.volume=113&rft.issue=45&rft.spage=19419&rft_id=info:doi/10.1021%2Fjp903813h&rft_id=info%3Apmid%2F30873252&rft.externalDocID=30873252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon