A Novel Clinically Translatable Fluorescent Nanoparticle for Targeted Molecular Imaging of Tumors in Living Subjects
The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprob...
Saved in:
Published in | Nano letters Vol. 12; no. 1; pp. 281 - 286 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
11.01.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD2 to integrin αvβ3-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. |
---|---|
AbstractList | The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QDs as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding non-tumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD
2
to integrin α
v
β
3
–positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable
in vivo
pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron based nanoprobes in the clinical setting in the near future. The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)β(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future.The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)β(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD2 to integrin αvβ3-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)β(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD sub(2) to integrin alpha sub(v) beta sub(3)-posi tive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. |
Author | Cheng, Zhen Chen, Kai Mao, Hua Gao, Jinhao Bouley, Donna M Gambhir, Sanjiv S Qiao, Tiecheng Luong, Richard |
AuthorAffiliation | Stanford University Xiamen University Department of Comparative Medicine Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program |
AuthorAffiliation_xml | – name: Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program – name: Department of Comparative Medicine – name: Xiamen University – name: Stanford University – name: Molecular Imaging Program at Stanford, Department of Radiology, and Bio-X Program, School of Medicine, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484, USA – name: Department of Comparative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA – name: Department of Chemical Biology, The Key Laboratory for Chemical Biology of Fujian Province, and State Key Laboratory of Physical Chemistry of Solid Surfaces, Colloge of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – name: NN-Labs, Fayetteville, AR 72702-2168, USA |
Author_xml | – sequence: 1 givenname: Jinhao surname: Gao fullname: Gao, Jinhao – sequence: 2 givenname: Kai surname: Chen fullname: Chen, Kai – sequence: 3 givenname: Richard surname: Luong fullname: Luong, Richard – sequence: 4 givenname: Donna M surname: Bouley fullname: Bouley, Donna M – sequence: 5 givenname: Hua surname: Mao fullname: Mao, Hua – sequence: 6 givenname: Tiecheng surname: Qiao fullname: Qiao, Tiecheng – sequence: 7 givenname: Sanjiv S surname: Gambhir fullname: Gambhir, Sanjiv S – sequence: 8 givenname: Zhen surname: Cheng fullname: Cheng, Zhen email: zcheng@stanford.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25476165$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22172022$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk2PFCEQholZ437owT9guBj1MC7QTXdz2WQzcXWTcT04nkk1DSMTGkagJ9l_L50dx49sPEGqHqre4q1zdOKD1wi9pOQ9JYxeesdIxVljnqAzyiuyaIRgJ8d7V5-i85S2hBBRcfIMnTJGW0YYO0P5Gt-FvXZ46ay3Cpy7x-sIPjnI0DuNb9wUok5K-4zvwIcdxGxVSZgQ8RriRmc94M_BaTU5iPh2hI31GxwMXk9jiAlbj1d2P8e-Tv1Wq5yeo6cGXNIvDucF-nbzYb38tFh9-Xi7vF4toBZdXrBONIIJygQDwYe6HhhvGsV7aGtaEcLJ0JpemK7uFG9hYAMdBDVG0RKvlaou0NVD3d3Uj3qYZ4jg5C7aEeK9DGDl3xlvv8tN2MuqNGKClAJvDgVi-DHplOVoy1c4B16HKUlBZ67qukK-_S9J24YRzhivC_rqT1VHOb9MKcDrAwCpOGKKHcqm3xyv24Y2vHDvHjgVQ0pRmyNCiZwXQx4Xo7CX_7DKZsg2zINb9-iLgwpQSW7DFH2x6hHuJ8shxwQ |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2014_03_007 crossref_primary_10_1016_j_coph_2014_01_006 crossref_primary_10_1038_nrc3566 crossref_primary_10_1016_j_addr_2013_09_008 crossref_primary_10_1517_17425255_2013_807797 crossref_primary_10_1016_j_addr_2016_09_006 crossref_primary_10_1021_acs_chemmater_5b01222 crossref_primary_10_1039_D0CS00461H crossref_primary_10_1039_D0CS00384K crossref_primary_10_1021_nl404391r crossref_primary_10_1021_nn303955n crossref_primary_10_2174_1874471016666230621120453 crossref_primary_10_1016_j_nantod_2012_10_010 crossref_primary_10_2217_nnm_14_196 crossref_primary_10_1021_cm303242h crossref_primary_10_1021_ja307124m crossref_primary_10_1002_cbic_201600219 crossref_primary_10_1016_j_bbrc_2023_149311 crossref_primary_10_1016_j_synthmet_2013_10_029 crossref_primary_10_1016_j_biomaterials_2014_05_017 crossref_primary_10_1039_C5TB00205B crossref_primary_10_1021_ac301191j crossref_primary_10_1080_24701556_2021_2025085 crossref_primary_10_1039_C9NR02296A crossref_primary_10_1007_s00604_014_1204_y crossref_primary_10_1021_acsami_5b08539 crossref_primary_10_1039_C8NR07769J crossref_primary_10_1039_c2jm31692g crossref_primary_10_1039_C2NR33024E crossref_primary_10_1002_ppsc_202000270 crossref_primary_10_1016_j_snb_2014_09_009 crossref_primary_10_1080_23746149_2016_1165629 crossref_primary_10_1002_biot_201500219 crossref_primary_10_1021_nn305991e crossref_primary_10_1007_s11307_019_01432_4 crossref_primary_10_1021_acsbiomedchemau_3c00021 crossref_primary_10_1021_acs_molpharmaceut_9b00332 crossref_primary_10_1002_smll_201200733 crossref_primary_10_1002_smll_201401450 crossref_primary_10_1021_ac3031724 crossref_primary_10_1016_j_jconrel_2021_01_033 crossref_primary_10_1021_acsanm_8b00137 crossref_primary_10_1021_am302030a crossref_primary_10_1016_j_biomaterials_2012_08_034 crossref_primary_10_1007_s00253_017_8140_9 crossref_primary_10_1039_c3ib40165k crossref_primary_10_1007_s00604_015_1554_0 crossref_primary_10_1016_j_biomaterials_2017_10_036 crossref_primary_10_1021_acsami_7b02641 crossref_primary_10_1039_C3NR04243J crossref_primary_10_1039_C4NR03003F crossref_primary_10_1002_anie_201206059 crossref_primary_10_1039_c2nr33543c crossref_primary_10_1016_j_colsurfb_2013_05_038 crossref_primary_10_3923_ijct_2013_1_9 crossref_primary_10_1021_acsnano_7b03369 crossref_primary_10_1007_s12274_024_6926_5 crossref_primary_10_1039_C4TB01981D crossref_primary_10_1002_cbic_201600357 crossref_primary_10_1039_c4ra01355g crossref_primary_10_1002_adma_201402964 crossref_primary_10_1039_c3ra23169k crossref_primary_10_1016_j_synthmet_2016_04_002 crossref_primary_10_1021_acs_molpharmaceut_1c00715 crossref_primary_10_1021_acsami_7b08751 crossref_primary_10_1021_sb4000838 crossref_primary_10_1039_c2nr31616a crossref_primary_10_1039_D0CS00462F crossref_primary_10_1021_acs_analchem_5b02985 crossref_primary_10_1021_nn401911k crossref_primary_10_1002_ange_201206059 crossref_primary_10_1016_j_mser_2013_03_001 crossref_primary_10_1039_c3ic90018e crossref_primary_10_1016_J_ENG_2016_01_027 crossref_primary_10_1021_acsami_6b03259 crossref_primary_10_1016_j_addr_2012_09_036 crossref_primary_10_1098_rsfs_2012_0103 crossref_primary_10_1021_am302933x crossref_primary_10_1021_acsami_0c17492 crossref_primary_10_1002_smll_201501923 crossref_primary_10_1007_s12274_017_1472_z crossref_primary_10_1021_acs_chemrev_0c00779 crossref_primary_10_1021_cr3002627 crossref_primary_10_1021_nn501028b crossref_primary_10_3390_molecules17055564 crossref_primary_10_3390_genes12030428 crossref_primary_10_1016_j_biomaterials_2012_08_012 crossref_primary_10_1016_j_addr_2014_08_002 crossref_primary_10_1021_acs_chemrev_6b00290 crossref_primary_10_1002_adfm_201704634 crossref_primary_10_1002_ppsc_201400243 crossref_primary_10_1016_j_nano_2016_02_014 crossref_primary_10_1016_j_trac_2014_02_013 |
Cites_doi | 10.1126/scitranslmed.3001963 10.1021/nn8008933 10.1002/smll.200700351 10.1016/j.addr.2009.03.010 10.1021/ja076363h 10.1016/j.progpolymsci.2010.04.006 10.1021/cr900327d 10.1021/nl080141f 10.1002/smll.200700595 10.1016/j.cbpa.2009.09.029 10.1038/nbt1340 10.1126/science.1104274 10.1038/nbt1159 10.1002/anie.200400651 10.1038/nmat1390 10.1021/ja028469c 10.2967/jnumed.107.043216 10.1002/smll.200901672 10.1016/j.addr.2008.03.015 10.1038/nnano.2008.68 10.2967/jnumed.107.040071 10.2174/156802610791384162 10.1038/nbt872 10.1038/nprot.2007.478 10.1038/nmat2442 10.1021/ja016711u 10.1002/smll.200900626 10.1002/anie.200800169 10.1038/nbt920 10.1021/ar9000026 10.1021/ja903558r 10.1038/nbt994 10.1021/bc900323v 10.1038/nnano.2007.433 10.1021/cm034341y 10.1539/joh.44.99 10.1126/science.281.5385.2013 10.1021/ja908250r 10.1002/anie.200905133 10.1021/nl052405t 10.1126/science.1069040 10.1038/nmat2398 10.1021/ja0579816 10.1016/j.biomaterials.2010.11.053 10.1038/nnano.2009.314 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS – notice: 2011 American Chemical Society |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1021/nl203526f |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1530-6992 |
EndPage | 286 |
ExternalDocumentID | PMC3256290 22172022 25476165 10_1021_nl203526f b548750523 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA119367 – fundername: NCI NIH HHS grantid: R21 CA121842 – fundername: National Cancer Institute : NCI grantid: R21 CA121842-03 || CA – fundername: National Cancer Institute : NCI grantid: U54 CA119367-05 || CA |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-a498t-28969291292a95d44d2566c5ba74130050d7fb9f848c57ad2d1d91ffc1d7f4cc3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Aug 21 13:27:38 EDT 2025 Fri Jul 11 08:18:05 EDT 2025 Fri Jul 11 08:15:24 EDT 2025 Sat May 31 02:07:35 EDT 2025 Mon Jul 21 09:14:57 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Tue Jul 01 00:42:45 EDT 2025 Fri Feb 05 20:53:47 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | renal clearance clinical translation Nanoprobes molecular imaging fluorescence Doses Tumor cells Quantum dots Size stability Core shell structure Toxicity Infrared spectra III-V compound Indium phosphide Nanoparticles Near infrared radiation Zinc sulfide In vivo Fluorescent material II-VI semiconductors Near infrared spectrum Tumours Imaging Biocompatibility Nanostructured materials Nanoprobe III-V semiconductors |
Language | English |
License | CC BY 4.0 2011 American Chemical Society |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a498t-28969291292a95d44d2566c5ba74130050d7fb9f848c57ad2d1d91ffc1d7f4cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22172022 |
PQID | 1762052254 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3256290 proquest_miscellaneous_915629388 proquest_miscellaneous_1762052254 pubmed_primary_22172022 pascalfrancis_primary_25476165 crossref_primary_10_1021_nl203526f crossref_citationtrail_10_1021_nl203526f acs_journals_10_1021_nl203526f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-11 |
PublicationDateYYYYMMDD | 2012-01-11 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Xiong J. P. (ref37/cit37) 2002; 296 Gao J. H. (ref8/cit8) 2010; 10 Hauck T. S. (ref32/cit32) 2010; 6 Wang Y. A. (ref28/cit28) 2002; 124 Smith B. R. (ref41/cit41) 2008; 8 Guo W. H. (ref29/cit29) 2003; 125 Choi H. S. (ref22/cit22) 2010; 5 Xie R. G. (ref13/cit13) 2009; 131 Medintz I. L. (ref6/cit6) 2005; 4 Kim S. (ref12/cit12) 2004; 22 Bruchez M. (ref5/cit5) 1998; 281 Aillon K. L. (ref15/cit15) 2009; 61 Minchin R. (ref18/cit18) 2008; 3 Xie R. G. (ref23/cit23) 2007; 129 Park J. H. (ref19/cit19) 2009; 8 Smith A. M. (ref44/cit44) 2008; 60 Gill R. (ref45/cit45) 2008; 47 Cai W. B. (ref17/cit17) 2008; 3 Choi H. S. (ref10/cit10) 2007; 25 Gao J. H. (ref20/cit20) 2010; 6 Oliveira J. M. (ref26/cit26) 2010; 35 Astruc D. (ref27/cit27) 2010; 110 Tanaka A. (ref33/cit33) 2002; 44 Weissleder R. (ref38/cit38) 2005; 23 Katz E. (ref2/cit2) 2004; 43 Cai W. B. (ref40/cit40) 2007; 48 Gao J. H. (ref42/cit42) 2010; 21 Cheng Z. L. (ref16/cit16) 2010; 49 ref35/cit35 Gao X. H. (ref36/cit36) 2004; 22 He X. X. (ref11/cit11) 2010; 12 Schipper M. L. (ref31/cit31) 2007; 48 Yong K. T. (ref24/cit24) 2009; 3 Gao J. H. (ref43/cit43) 2011; 32 Hilderbrand S. A. (ref46/cit46) 2010; 14 Guo W. Z. (ref30/cit30) 2003; 15 Gao J. H. (ref4/cit4) 2009; 42 Cai W. B. (ref3/cit3) 2007; 3 Lewinski N. (ref9/cit9) 2008; 4 Zimmer J. P. (ref25/cit25) 2006; 128 Schipper M. L. (ref34/cit34) 2008; 3 Whitesides G. M. (ref1/cit1) 2003; 21 Michalet X. (ref7/cit7) 2005; 307 Cai W. B. (ref39/cit39) 2006; 6 Allen P. M. (ref14/cit14) 2010; 132 Nel A. E. (ref21/cit21) 2009; 8 |
References_xml | – ident: ref35/cit35 doi: 10.1126/scitranslmed.3001963 – volume: 3 start-page: 502 year: 2009 ident: ref24/cit24 publication-title: ACS Nano doi: 10.1021/nn8008933 – volume: 3 start-page: 1840 year: 2007 ident: ref3/cit3 publication-title: Small doi: 10.1002/smll.200700351 – volume: 61 start-page: 457 year: 2009 ident: ref15/cit15 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2009.03.010 – volume: 129 start-page: 15432 year: 2007 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076363h – volume: 35 start-page: 1163 year: 2010 ident: ref26/cit26 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2010.04.006 – volume: 110 start-page: 1857 year: 2010 ident: ref27/cit27 publication-title: Chem. Rev. doi: 10.1021/cr900327d – volume: 8 start-page: 2599 year: 2008 ident: ref41/cit41 publication-title: Nano Lett. doi: 10.1021/nl080141f – volume: 4 start-page: 26 year: 2008 ident: ref9/cit9 publication-title: Small doi: 10.1002/smll.200700595 – volume: 14 start-page: 71 year: 2010 ident: ref46/cit46 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2009.09.029 – volume: 25 start-page: 1165 year: 2007 ident: ref10/cit10 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1340 – volume: 307 start-page: 538 year: 2005 ident: ref7/cit7 publication-title: Science doi: 10.1126/science.1104274 – volume: 23 start-page: 1418 year: 2005 ident: ref38/cit38 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1159 – volume: 43 start-page: 6042 year: 2004 ident: ref2/cit2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200400651 – volume: 4 start-page: 435 year: 2005 ident: ref6/cit6 publication-title: Nat. Mater. doi: 10.1038/nmat1390 – volume: 125 start-page: 3901 year: 2003 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028469c – volume: 48 start-page: 1862 year: 2007 ident: ref40/cit40 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.043216 – volume: 6 start-page: 256 year: 2010 ident: ref20/cit20 publication-title: Small doi: 10.1002/smll.200901672 – volume: 60 start-page: 1226 year: 2008 ident: ref44/cit44 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2008.03.015 – volume: 3 start-page: 216 year: 2008 ident: ref34/cit34 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.68 – volume: 48 start-page: 1511 year: 2007 ident: ref31/cit31 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.040071 – volume: 10 start-page: 1147 year: 2010 ident: ref8/cit8 publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802610791384162 – volume: 21 start-page: 1161 year: 2003 ident: ref1/cit1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt872 – volume: 12 start-page: 574 year: 2010 ident: ref11/cit11 publication-title: Trends Mol. Med. – volume: 3 start-page: 89 year: 2008 ident: ref17/cit17 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.478 – volume: 8 start-page: 543 year: 2009 ident: ref21/cit21 publication-title: Nat. Mater. doi: 10.1038/nmat2442 – volume: 124 start-page: 2293 year: 2002 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja016711u – volume: 6 start-page: 138 year: 2010 ident: ref32/cit32 publication-title: Small doi: 10.1002/smll.200900626 – volume: 47 start-page: 7602 year: 2008 ident: ref45/cit45 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200800169 – volume: 22 start-page: 93 year: 2004 ident: ref12/cit12 publication-title: Nat. Biotechnol. doi: 10.1038/nbt920 – volume: 42 start-page: 1097 year: 2009 ident: ref4/cit4 publication-title: Acc. Chem. Res. doi: 10.1021/ar9000026 – volume: 131 start-page: 10645 year: 2009 ident: ref13/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903558r – volume: 22 start-page: 969 year: 2004 ident: ref36/cit36 publication-title: Nat. Biotechnol. doi: 10.1038/nbt994 – volume: 21 start-page: 604 year: 2010 ident: ref42/cit42 publication-title: Bioconjugate Chem. doi: 10.1021/bc900323v – volume: 3 start-page: 12 year: 2008 ident: ref18/cit18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.433 – volume: 15 start-page: 3125 year: 2003 ident: ref30/cit30 publication-title: Chem. Mater. doi: 10.1021/cm034341y – volume: 44 start-page: 99 year: 2002 ident: ref33/cit33 publication-title: J. Occup. Health doi: 10.1539/joh.44.99 – volume: 281 start-page: 2013 year: 1998 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.281.5385.2013 – volume: 132 start-page: 470 year: 2010 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908250r – volume: 49 start-page: 346 year: 2010 ident: ref16/cit16 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905133 – volume: 6 start-page: 669 year: 2006 ident: ref39/cit39 publication-title: Nano Lett. doi: 10.1021/nl052405t – volume: 296 start-page: 151 year: 2002 ident: ref37/cit37 publication-title: Science doi: 10.1126/science.1069040 – volume: 8 start-page: 331 year: 2009 ident: ref19/cit19 publication-title: Nat. Mater. doi: 10.1038/nmat2398 – volume: 128 start-page: 2526 year: 2006 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0579816 – volume: 32 start-page: 2141 year: 2011 ident: ref43/cit43 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.11.053 – volume: 5 start-page: 42 year: 2010 ident: ref22/cit22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.314 |
SSID | ssj0009350 |
Score | 2.4223228 |
Snippet | The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 281 |
SubjectTerms | Animals Applied sciences Biocompatibility Cross-disciplinary physics: materials science; rheology Electronics Exact sciences and technology General equipment and techniques Imaging Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Mice Mice, Inbred BALB C Mice, Nude Microscopy, Fluorescence - methods Molecular electronics, nanoelectronics Molecular Imaging - methods Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Neoplasms, Experimental - pathology Physics Quantum Dots Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing Stability Surgical implants Toxicity Tumors Uptakes Whole Body Imaging - methods |
Title | A Novel Clinically Translatable Fluorescent Nanoparticle for Targeted Molecular Imaging of Tumors in Living Subjects |
URI | http://dx.doi.org/10.1021/nl203526f https://www.ncbi.nlm.nih.gov/pubmed/22172022 https://www.proquest.com/docview/1762052254 https://www.proquest.com/docview/915629388 https://pubmed.ncbi.nlm.nih.gov/PMC3256290 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEh3oXwWJnHgUtK7LXzOFZtVwVBL2yl3iI_xappUm0SJPj1jPPY7sIWrsnEie2ZzDf2-BuA9xrn2BqlQsVTF3IMlEOlbRI6IyxjksXaddkWp_HJGf98Ls534N0NO_iMfiwL5jk7Y3cLbrMYjdfjn8Nv18y6064MK1ouxkFZykf6oPVHvevR9YbruXclaxwF15ev2IYv_0yTXPM7swdwNJ7e6dNNLvbbRu3rX3-TOf6rSw_h_oA7yUGvKI9gx5aP4e4aG-ETaA7IafXDFmTgCi2Kn6RzZYVs_AErMivaatnTPxH8K2O43bdGEPiSeZdSbg35OhbcJZ8uuxJIpHJk3l5Wy5osSvJl4ZcwCP6w_ApQ_RTOZsfzw5NwKMoQSp6lTYgBWoyQCmECk5kwnBsETbEWSibeH0YiMolTmUt5qkUiDTPUZNQ5TfE613q6B7tlVdrnQBxGbxLjJUQo6COdh6qaOuEoi1WU2SiACc5aPhhVnXf75Yzmq-EL4MM4obkeKM19ZY1im-jblehVz-OxTWiyoRUrSYyiUYtjEcCbUU1yNEO_tyJLW7X4behUIuyJ4AGQG2QyjJURXaVpAM96zbp-ga8ThnAqgGRD51YCngV88065-N6xgU-ZbzV68b_Begl3EOz5PJyQ0lew2yxb-xoBVaMmnUH9BlZSHDc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCvB-BshjEgUvaxGvncVxVXW1huxe2Um9R_BKrpkm1SZDg1zN2sq9qEVyTiePH2PONPf4G4LPEMdZKCF-wxPgMHWVfSB37RnFNaU4jaVy0xSyaXLCvl_yyp8mxd2GwEjWWVLtD_A27QHhcFtRSd0bmLtxDEEKtNo9Ovm8IdocuGytOYHSH0oStWIS2P7UWSNY7FujRTV5jZ5gui8U-mHk7WnLL_IyfdHmMXMVd1MnVUduII_n7Fqfj_7XsKTzuUSgZdWrzDO7o8jk83OImfAHNiMyqn7ogPXNoUfwizrAVeWOvW5Fx0VbLjgyK4BqNzndXGkEYTOYuwFwrcr5Kv0vOrl1CJFIZMm-vq2VNFiWZLuyGBsHly-4H1S_hYnw6P5n4fYoGP2dp0vjorkUIsBA00DzlijGFECqSXOSxtY4BD1RsRGoSlkge54qqUKWhMTLE50zK4Ss4KKtSvwFi0JfL0XtCvIIW01jgKkPDTUgjEaQ68GCAvZf1U6zO3Ok5DbN193nwZTWumewJzm2ejWKf6Ke16E3H6rFPaLCjHGtJ9KlRpyPuwceVtmQ4Ke1JS17qqsW6oYkJsCWceUD-IpOi54xYK0k8eN0p2OYHNmsYgisP4h3VWwtYTvDdN-Xih-MGH1JbavD2X531Ae5P5ufTbHo2-_YOHiAMtBE6fhgewkGzbPV7hFqNGLg59gdi5iSY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB5BkRAV4j7MERbEAy8u3s36eowKUQslIJFKfbPWe4iorh3FNhL8embXjptUQfDqTNbr9Yzn-7zjbwDeSrzHWuW5n_PE-ByJsp9LHftGhZoxwSJpXLXFLDo65Z_OwrOeKNpvYXASNY5Uu018G9VLZXqFAfq-LJiV74zMdbhht-usR08Ov1-K7I5dR1YMYqREacLXSkKbf7VZSNZbWej2UtS4IKbrZLELal6tmNxIQdO78HWYvKs8OT9om_xA_r6i6_j_V3cP7vRolEw697kP13T5APY3NAofQjMhs-qnLkivIFoUv4hLcIVo7GdXZFq01aoThSL4rEYS3o1GEA6TuSs014p8WbfhJccXrjESqQyZtxfVqiaLkpws7IsNgo8x-16ofgSn04_zwyO_b9XgC54mjY-0LUKgheCBiTRUnCuEUpEMcxHbLBmEgYpNnpqEJzKMhWKKqpQaIyke51KOH8NeWZX6KRCDnE4gi0LcgpnTWAArqQkNZVEepDrwYIQrmPWhVmduF53RbFg-D96t720me6Fz22-j2GX6ZjBdduoeu4xGWw4yWCK3Rt-OQg9erz0mw-C0Oy6i1FWLc8NUE-CVhNwD8hebFBk0Yq4k8eBJ52SXJ7DdwxBkeRBvud9gYLXBt38pFz-cRviY2VGDZ_9arFdw89uHaXZyPPv8HG4hGrSFOj6lL2CvWbX6JSKuJh-5MPsDwYsnGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Clinically+Translatable+Fluorescent+Nanoparticle+for+Targeted+Molecular+Imaging+of+Tumors+in+Living+Subjects&rft.jtitle=Nano+letters&rft.au=Gao%2C+Jinhao&rft.au=Chen%2C+Kai&rft.au=Luong%2C+Richard&rft.au=Bouley%2C+Donna+M.&rft.date=2012-01-11&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=1&rft.spage=281&rft.epage=286&rft_id=info:doi/10.1021%2Fnl203526f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl203526f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |