Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis
Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmenta...
Saved in:
Published in | Environmental science & technology Vol. 53; no. 9; pp. 4683 - 4694 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV–vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments. |
---|---|
AbstractList | Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV-vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments. Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV-vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments.Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV-vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments. |
Author | Chen, Wei Teng, Chun-Ying Qian, Chen Yu, Han-Qing |
AuthorAffiliation | School of Metallurgy and Environment CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry |
AuthorAffiliation_xml | – name: School of Metallurgy and Environment – name: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry – sequence: 2 givenname: Chun-Ying surname: Teng fullname: Teng, Chun-Ying organization: School of Metallurgy and Environment – sequence: 3 givenname: Chen surname: Qian fullname: Qian, Chen organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry – sequence: 4 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30998320$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9LHDEUxUOx1NX2uW8l0JdCmTV_ZmYnj3a1tqBYqELfhruZG43MJmOS3aIfwU_djLv2QRB8CuH-zknuOXtkx3mHhHzkbMqZ4Aeg4xRjmqoF45zJN2TCK8GKqqn4DpkwxmWhZP1nl-zFeMMYE5I178iuZEo1UrAJeZhfQwCdMNh7667or-AHDMlipOA6euzWNni3RJegp9_wGtbWh0i9oUc2Rt-vsaPn4Qqc1fQMUvahl3E0uvjriyObhdF6l7VzHwL2kPKN_h5Qp-Cj9kOWHebxXbTxPXlroI_4YXvuk8vvxxfzH8Xp-cnP-eFpAaWapQKlMBz0DDslAZgstRCdKPNCwCVKI1U5M1UjuBANLrDSXHcLY3RtFHZolNwnXza-Q_C3q5xeu7RRY9-DQ7-KrRAz3lSyZvIVKOeqYnU9un5-ht74VcirjZRQdclrMVKfttRqscSuHYJdQrhrnwrJQLUBdM4nBjSttukxtRTA9i1n7Vh8m4tvx0e2xWfdwTPdk_XLiq8bxTj4_9eX6H-708L8 |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_122228 crossref_primary_10_1016_j_watres_2023_120681 crossref_primary_10_1016_j_geoderma_2024_116877 crossref_primary_10_1016_j_scitotenv_2024_178117 crossref_primary_10_1016_j_fuel_2022_124191 crossref_primary_10_1016_j_jclepro_2021_129406 crossref_primary_10_1039_D4EM00621F crossref_primary_10_1016_j_jwpe_2025_107268 crossref_primary_10_1007_s11783_020_1297_y crossref_primary_10_1016_j_watres_2022_118921 crossref_primary_10_1016_j_chemosphere_2023_138138 crossref_primary_10_1016_j_envpol_2019_113467 crossref_primary_10_1016_j_jece_2021_106459 crossref_primary_10_1016_j_colsurfa_2021_127000 crossref_primary_10_1016_j_biortech_2023_129543 crossref_primary_10_1007_s11356_023_25933_6 crossref_primary_10_1016_j_ecolind_2023_109872 crossref_primary_10_1007_s11783_022_1520_0 crossref_primary_10_1016_j_fuel_2021_122852 crossref_primary_10_3390_w16162249 crossref_primary_10_1016_j_jece_2024_113412 crossref_primary_10_1016_j_watres_2024_122978 crossref_primary_10_1016_j_cej_2022_137770 crossref_primary_10_1016_j_envres_2023_116185 crossref_primary_10_1016_j_watres_2020_116052 crossref_primary_10_3390_agronomy13030630 crossref_primary_10_1016_j_cej_2024_154893 crossref_primary_10_1016_j_seppur_2022_121909 crossref_primary_10_1016_j_cej_2024_156676 crossref_primary_10_1016_j_jhazmat_2023_133220 crossref_primary_10_1016_j_scitotenv_2022_156462 crossref_primary_10_1016_j_jhazmat_2022_130298 crossref_primary_10_1016_j_combustflame_2022_112383 crossref_primary_10_1016_j_molstruc_2024_138128 crossref_primary_10_1016_j_watres_2023_119628 crossref_primary_10_1016_j_jenvman_2024_123550 crossref_primary_10_1016_j_scitotenv_2021_150467 crossref_primary_10_1016_j_cej_2022_134827 crossref_primary_10_1021_acs_est_9b02883 crossref_primary_10_1016_j_scitotenv_2024_174139 crossref_primary_10_1016_j_envres_2024_119900 crossref_primary_10_1016_j_envres_2022_113285 crossref_primary_10_1016_j_scitotenv_2023_169101 crossref_primary_10_1016_j_scitotenv_2024_174657 crossref_primary_10_1016_j_watres_2023_120424 crossref_primary_10_1016_j_envres_2023_117129 crossref_primary_10_3390_molecules28114558 crossref_primary_10_1016_j_watres_2023_119678 crossref_primary_10_1016_j_watres_2024_121718 crossref_primary_10_1016_j_scitotenv_2024_176670 crossref_primary_10_1016_j_watres_2024_122409 crossref_primary_10_1016_j_chemosphere_2020_127055 crossref_primary_10_1016_j_chemosphere_2024_141560 crossref_primary_10_1016_j_jclepro_2022_132831 crossref_primary_10_2139_ssrn_4052330 crossref_primary_10_1016_j_ecoenv_2021_112811 crossref_primary_10_1177_00037028241254093 crossref_primary_10_1016_j_jenvman_2025_124431 crossref_primary_10_1016_j_watres_2020_116246 crossref_primary_10_1021_acsestwater_3c00071 crossref_primary_10_1016_j_scitotenv_2020_143550 crossref_primary_10_1016_j_envres_2019_109052 crossref_primary_10_1016_j_jclepro_2022_130370 crossref_primary_10_1021_acs_estlett_1c00484 crossref_primary_10_1007_s11356_021_18431_0 crossref_primary_10_1016_j_cej_2024_149166 crossref_primary_10_1039_D1EW00887K crossref_primary_10_1021_acsestwater_3c00218 crossref_primary_10_1016_j_jhazmat_2021_125512 crossref_primary_10_1016_j_cej_2020_124734 crossref_primary_10_1016_j_rser_2021_111761 crossref_primary_10_1016_j_chemosphere_2024_142383 crossref_primary_10_1016_j_scitotenv_2021_146712 crossref_primary_10_1016_j_jwpe_2025_107434 crossref_primary_10_1016_j_envres_2023_116041 crossref_primary_10_1016_j_jenvman_2021_113041 crossref_primary_10_1016_j_watres_2022_118052 crossref_primary_10_1016_j_seppur_2024_126572 crossref_primary_10_1016_j_jes_2022_12_012 crossref_primary_10_1016_j_apcatb_2022_121943 crossref_primary_10_1016_j_watres_2020_116759 crossref_primary_10_1016_j_scitotenv_2021_152047 crossref_primary_10_1016_j_scitotenv_2022_153258 crossref_primary_10_1021_acs_est_2c02631 crossref_primary_10_1021_acs_est_1c00083 crossref_primary_10_1016_j_chemosphere_2020_127956 crossref_primary_10_3390_toxics12090654 crossref_primary_10_1007_s11356_020_11422_7 crossref_primary_10_1021_acs_est_1c08400 crossref_primary_10_1016_j_watres_2024_122829 crossref_primary_10_1016_j_envpol_2023_122032 crossref_primary_10_1016_j_jes_2021_09_018 crossref_primary_10_1016_j_jhazmat_2024_135273 crossref_primary_10_1016_j_jwpe_2024_105047 crossref_primary_10_2166_wst_2021_112 crossref_primary_10_1016_j_envres_2025_121284 crossref_primary_10_1007_s11356_020_11573_7 crossref_primary_10_1016_j_jhazmat_2023_133413 crossref_primary_10_1016_j_scitotenv_2021_151906 crossref_primary_10_1016_j_scitotenv_2023_163620 crossref_primary_10_3390_plants10122684 crossref_primary_10_1016_j_watres_2023_120133 crossref_primary_10_1016_j_scitotenv_2022_154733 crossref_primary_10_1016_j_watres_2019_114873 crossref_primary_10_1021_acs_est_2c02229 crossref_primary_10_1016_j_ecoenv_2023_115734 crossref_primary_10_1016_j_envpol_2022_119949 crossref_primary_10_1021_acs_analchem_2c04636 crossref_primary_10_1080_03650340_2022_2084084 crossref_primary_10_1016_j_atmosenv_2022_119262 crossref_primary_10_1016_j_jwpe_2025_107299 crossref_primary_10_1016_j_jhazmat_2023_132056 crossref_primary_10_1016_j_renene_2023_119448 crossref_primary_10_1016_j_molstruc_2020_128405 crossref_primary_10_1016_j_desal_2022_115711 crossref_primary_10_1016_j_jenvman_2025_124462 crossref_primary_10_1016_j_scitotenv_2023_162887 crossref_primary_10_1016_j_teac_2021_e00134 crossref_primary_10_1016_j_envpol_2021_118044 crossref_primary_10_1016_j_watcyc_2022_11_002 crossref_primary_10_1021_acs_jafc_2c06013 crossref_primary_10_1016_j_jclepro_2022_130448 crossref_primary_10_1016_j_ecoenv_2022_113699 crossref_primary_10_1016_j_watres_2021_117525 crossref_primary_10_1016_j_scitotenv_2023_163210 crossref_primary_10_1039_D0EN01142H crossref_primary_10_1016_j_saa_2019_117856 crossref_primary_10_1016_j_jece_2025_116062 crossref_primary_10_1016_j_scitotenv_2022_160081 crossref_primary_10_1016_j_seppur_2023_123349 crossref_primary_10_1016_j_cej_2023_141881 crossref_primary_10_1016_j_cej_2024_148833 crossref_primary_10_1007_s11356_022_21791_w crossref_primary_10_1016_j_chemosphere_2022_134869 crossref_primary_10_1016_j_scitotenv_2023_169427 crossref_primary_10_1021_acs_est_0c00850 crossref_primary_10_1016_j_scitotenv_2023_162509 crossref_primary_10_1021_acs_est_0c02872 crossref_primary_10_1016_j_fuel_2022_126310 crossref_primary_10_1016_j_eti_2025_104136 crossref_primary_10_1002_ldr_5014 crossref_primary_10_1016_j_jhazmat_2024_135977 crossref_primary_10_1016_j_scitotenv_2023_167129 crossref_primary_10_1021_acs_est_1c01918 crossref_primary_10_1021_acs_est_9b04595 crossref_primary_10_2139_ssrn_4056690 crossref_primary_10_1016_j_geoderma_2022_115806 crossref_primary_10_1021_acs_est_1c05203 crossref_primary_10_1021_acs_est_3c00019 crossref_primary_10_1016_j_biortech_2023_129366 crossref_primary_10_1016_j_chemosphere_2021_132838 crossref_primary_10_1007_s00343_022_2254_3 crossref_primary_10_3390_nano13040727 crossref_primary_10_1016_j_scitotenv_2021_148376 crossref_primary_10_1016_j_memsci_2022_120913 crossref_primary_10_1016_j_scitotenv_2020_140906 crossref_primary_10_1016_j_jwpe_2021_102220 crossref_primary_10_1016_j_jhazmat_2025_137124 crossref_primary_10_1021_acs_jafc_9b06857 crossref_primary_10_1016_j_jhazmat_2020_122425 crossref_primary_10_1016_j_jes_2021_03_021 crossref_primary_10_1007_s11356_022_24922_5 crossref_primary_10_1016_j_scitotenv_2020_138154 crossref_primary_10_1016_j_jece_2022_107158 crossref_primary_10_1016_j_biortech_2022_126868 crossref_primary_10_1016_j_jes_2022_09_009 crossref_primary_10_3389_fsoil_2022_847623 crossref_primary_10_1021_acs_est_3c01463 crossref_primary_10_1016_j_watres_2022_119108 crossref_primary_10_1038_s41545_023_00245_x crossref_primary_10_1016_j_scitotenv_2022_155918 crossref_primary_10_1080_03650340_2024_2406288 crossref_primary_10_1016_j_jes_2023_10_004 crossref_primary_10_1016_j_scitotenv_2024_170933 |
Cites_doi | 10.1016/j.watres.2013.10.016 10.1021/es5041738 10.1007/s11356-017-0167-z 10.1039/C5RA13069G 10.1016/j.molstruc.2014.01.025 10.1016/j.chemosphere.2016.07.016 10.1016/j.watres.2011.03.013 10.1021/jp404573q 10.1021/jp103288x 10.1016/j.molstruc.2014.01.016 10.1007/s11356-014-3759-x 10.1016/j.wasman.2018.06.001 10.1016/j.watres.2017.04.023 10.1007/s10661-016-5580-0 10.1016/j.gca.2013.03.036 10.1016/j.envpol.2017.01.046 10.1016/j.biortech.2018.01.113 10.1021/acs.est.6b05228 10.1007/s11356-016-6173-8 10.1016/j.chemosphere.2015.09.015 10.1016/j.chemosphere.2017.08.112 10.1016/j.envpol.2017.01.011 10.1016/j.biortech.2014.02.085 10.1016/j.coesh.2017.11.003 10.1002/0470012404 10.1016/j.envpol.2017.04.099 10.1016/j.saa.2008.07.015 10.1021/es100898x 10.1016/j.molstruc.2009.11.047 10.1071/EN16135 10.1016/j.ecoenv.2016.11.008 10.1038/srep24444 10.1016/j.molstruc.2014.03.038 10.1016/B978-0-12-849883-5.00010-3 10.1016/j.jhazmat.2016.12.019 10.1021/jz200285c 10.1007/s00216-012-6363-2 10.1016/j.jcis.2012.09.039 10.1021/acs.est.6b00066 10.1021/jp300918g 10.1016/j.biortech.2017.10.015 10.1016/j.chemosphere.2014.09.060 10.1038/ngeo2440 10.1016/j.envpol.2017.10.027 10.1016/j.jcis.2016.12.006 10.1016/j.chemosphere.2016.04.033 10.1016/j.vibspec.2012.01.006 10.1021/ac5038329 10.1021/es5049495 10.1021/jp0638282 10.1021/acs.est.7b04311 10.1021/es3002212 10.1016/j.chempr.2018.03.011 10.1016/j.envpol.2017.03.047 10.1016/j.jhazmat.2013.09.042 10.1016/j.molstruc.2014.01.024 10.1016/j.scitotenv.2017.10.190 10.1021/es502502n 10.1021/acs.est.6b01286 10.1016/j.molstruc.2018.04.099 10.1016/j.jhazmat.2017.10.022 10.1016/j.molliq.2018.05.025 10.1016/j.chemgeo.2018.07.029 10.1021/ac020769p 10.1016/j.biortech.2017.10.013 10.1016/j.watres.2015.04.018 10.1016/j.envpol.2017.10.120 10.1016/j.vibspec.2013.12.001 10.1080/05704920600845868 10.1021/es502342r 10.1021/acs.analchem.7b00592 10.1021/acs.est.6b00129 10.1016/j.jhazmat.2014.09.027 10.1016/j.watres.2018.08.019 10.1366/0003702904087398 10.1021/es201483f 10.1016/j.envpol.2017.02.048 10.1177/0003702818775737 10.1016/j.scitotenv.2018.04.140 10.1016/j.scitotenv.2018.06.229 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society May 7, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society May 7, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.9b01103 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 4694 |
ExternalDocumentID | 30998320 10_1021_acs_est_9b01103 d46209016 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a497t-e32f1ac7ed93aa034c22d24998a13e3f3947f5821228ebe5c1cdbffc6f9edef93 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 05:31:08 EDT 2025 Fri Jul 11 05:33:34 EDT 2025 Mon Jun 30 10:57:41 EDT 2025 Mon Jul 21 05:56:05 EDT 2025 Tue Jul 01 02:58:03 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Thu Aug 27 13:44:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a497t-e32f1ac7ed93aa034c22d24998a13e3f3947f5821228ebe5c1cdbffc6f9edef93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5247-6244 |
PMID | 30998320 |
PQID | 2229641629 |
PQPubID | 45412 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2271853603 proquest_miscellaneous_2211950669 proquest_journals_2229641629 pubmed_primary_30998320 crossref_citationtrail_10_1021_acs_est_9b01103 crossref_primary_10_1021_acs_est_9b01103 acs_journals_10_1021_acs_est_9b01103 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-07 |
PublicationDateYYYYMMDD | 2019-05-07 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 Noda I. (ref7/cit7) 2004 ref42/cit42 ref46/cit46 Xu Y. (ref9/cit9) 2018 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 |
References_xml | – ident: ref43/cit43 doi: 10.1016/j.watres.2013.10.016 – ident: ref48/cit48 doi: 10.1021/es5041738 – ident: ref59/cit59 doi: 10.1007/s11356-017-0167-z – ident: ref38/cit38 doi: 10.1039/C5RA13069G – ident: ref10/cit10 doi: 10.1016/j.molstruc.2014.01.025 – ident: ref72/cit72 doi: 10.1016/j.chemosphere.2016.07.016 – ident: ref44/cit44 doi: 10.1016/j.watres.2011.03.013 – ident: ref16/cit16 doi: 10.1021/jp404573q – ident: ref20/cit20 doi: 10.1021/jp103288x – ident: ref11/cit11 doi: 10.1016/j.molstruc.2014.01.016 – ident: ref3/cit3 doi: 10.1007/s11356-014-3759-x – ident: ref36/cit36 doi: 10.1016/j.wasman.2018.06.001 – ident: ref50/cit50 doi: 10.1016/j.watres.2017.04.023 – ident: ref34/cit34 doi: 10.1007/s10661-016-5580-0 – ident: ref23/cit23 doi: 10.1016/j.gca.2013.03.036 – ident: ref57/cit57 doi: 10.1016/j.envpol.2017.01.046 – ident: ref47/cit47 doi: 10.1016/j.biortech.2018.01.113 – ident: ref74/cit74 doi: 10.1021/acs.est.6b05228 – ident: ref45/cit45 doi: 10.1007/s11356-016-6173-8 – ident: ref35/cit35 doi: 10.1016/j.chemosphere.2015.09.015 – ident: ref71/cit71 doi: 10.1016/j.chemosphere.2017.08.112 – ident: ref31/cit31 doi: 10.1016/j.envpol.2017.01.011 – ident: ref37/cit37 doi: 10.1016/j.biortech.2014.02.085 – ident: ref27/cit27 doi: 10.1016/j.coesh.2017.11.003 – volume-title: Two-Dimensional Correlation Spectroscopy - Applications in Vibrational and Optical Spectroscopy. year: 2004 ident: ref7/cit7 doi: 10.1002/0470012404 – ident: ref55/cit55 doi: 10.1016/j.envpol.2017.04.099 – ident: ref8/cit8 doi: 10.1016/j.saa.2008.07.015 – ident: ref33/cit33 doi: 10.1021/es100898x – ident: ref25/cit25 doi: 10.1016/j.molstruc.2009.11.047 – ident: ref63/cit63 doi: 10.1071/EN16135 – ident: ref73/cit73 doi: 10.1016/j.ecoenv.2016.11.008 – ident: ref76/cit76 doi: 10.1038/srep24444 – ident: ref13/cit13 doi: 10.1016/j.molstruc.2014.03.038 – start-page: 217 volume-title: Molecular and Laser Spectroscopy year: 2018 ident: ref9/cit9 doi: 10.1016/B978-0-12-849883-5.00010-3 – ident: ref66/cit66 doi: 10.1016/j.jhazmat.2016.12.019 – ident: ref19/cit19 doi: 10.1021/jz200285c – ident: ref2/cit2 doi: 10.1007/s00216-012-6363-2 – ident: ref70/cit70 doi: 10.1016/j.jcis.2012.09.039 – ident: ref54/cit54 doi: 10.1021/acs.est.6b00066 – ident: ref24/cit24 doi: 10.1021/jp300918g – ident: ref58/cit58 doi: 10.1016/j.biortech.2017.10.015 – ident: ref39/cit39 doi: 10.1016/j.chemosphere.2014.09.060 – ident: ref1/cit1 doi: 10.1038/ngeo2440 – ident: ref53/cit53 doi: 10.1016/j.envpol.2017.10.027 – ident: ref64/cit64 doi: 10.1016/j.jcis.2016.12.006 – ident: ref77/cit77 doi: 10.1016/j.chemosphere.2016.04.033 – ident: ref14/cit14 doi: 10.1016/j.vibspec.2012.01.006 – ident: ref22/cit22 doi: 10.1021/ac5038329 – ident: ref56/cit56 doi: 10.1021/es5049495 – ident: ref17/cit17 doi: 10.1021/jp0638282 – ident: ref49/cit49 doi: 10.1021/acs.est.7b04311 – ident: ref40/cit40 doi: 10.1021/es3002212 – ident: ref52/cit52 doi: 10.1016/j.chempr.2018.03.011 – ident: ref61/cit61 doi: 10.1016/j.envpol.2017.03.047 – ident: ref68/cit68 doi: 10.1016/j.jhazmat.2013.09.042 – ident: ref26/cit26 doi: 10.1016/j.molstruc.2014.01.024 – ident: ref28/cit28 doi: 10.1016/j.scitotenv.2017.10.190 – ident: ref29/cit29 doi: 10.1021/es502502n – ident: ref51/cit51 doi: 10.1021/acs.est.6b01286 – ident: ref12/cit12 doi: 10.1016/j.molstruc.2018.04.099 – ident: ref67/cit67 doi: 10.1016/j.jhazmat.2017.10.022 – ident: ref75/cit75 doi: 10.1016/j.molliq.2018.05.025 – ident: ref32/cit32 doi: 10.1016/j.chemgeo.2018.07.029 – ident: ref21/cit21 doi: 10.1021/ac020769p – ident: ref46/cit46 doi: 10.1016/j.biortech.2017.10.013 – ident: ref5/cit5 doi: 10.1016/j.watres.2015.04.018 – ident: ref62/cit62 doi: 10.1016/j.envpol.2017.10.120 – ident: ref79/cit79 doi: 10.1016/j.vibspec.2013.12.001 – ident: ref18/cit18 doi: 10.1080/05704920600845868 – ident: ref4/cit4 doi: 10.1021/es502342r – ident: ref80/cit80 doi: 10.1021/acs.analchem.7b00592 – ident: ref65/cit65 doi: 10.1021/acs.est.6b00129 – ident: ref69/cit69 doi: 10.1016/j.jhazmat.2014.09.027 – ident: ref78/cit78 doi: 10.1016/j.watres.2018.08.019 – ident: ref6/cit6 doi: 10.1366/0003702904087398 – ident: ref15/cit15 doi: 10.1021/es201483f – ident: ref30/cit30 doi: 10.1016/j.envpol.2017.02.048 – ident: ref42/cit42 doi: 10.1177/0003702818775737 – ident: ref41/cit41 doi: 10.1016/j.scitotenv.2018.04.140 – ident: ref60/cit60 doi: 10.1016/j.scitotenv.2018.06.229 |
SSID | ssj0002308 |
Score | 2.6349688 |
SecondaryResourceType | review_article |
Snippet | Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4683 |
SubjectTerms | Correlation analysis Dissolved organic matter Environmental behavior Environmental cleanup Environmental Restoration and Remediation Fluorescence Humic Substances Infrared analysis Infrared signatures Infrared spectra pollutants Pollution control Properties (attributes) Raman spectra Raman spectroscopy remediation spectral analysis Spectral resolution Spectrometry, Fluorescence Spectroscopy, Fourier Transform Infrared Spectrum analysis State-of-the-art reviews Two dimensional analysis ultraviolet-visible spectroscopy Water treatment |
Title | Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis |
URI | http://dx.doi.org/10.1021/acs.est.9b01103 https://www.ncbi.nlm.nih.gov/pubmed/30998320 https://www.proquest.com/docview/2229641629 https://www.proquest.com/docview/2211950669 https://www.proquest.com/docview/2271853603 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZauNADlFdZSitX4sAl6cZ27PhYLSBUiaoSIO0tcvyQqlZZtNkFiZ_QX90ZJ5vloW17TWYSazJjf7FnviHkOJN-6HIjkkoon4i8CEmlAk-CF4a5EPLC49bA5Td5cSO-jvPxkiz6-Qk-yz4b26QwQaa6wqWKvybrTEIIIwoaXfWTLiDpYtGsQHM57ll8XjwAlyHbPF2GVmDLuMacb7XZWU2kJsTUkp_pfFal9uElceO_h_-WbHZIk35pXWObvPL1DnnziH9wh-yfLcvcQLSL82aX_B71PM4PIEm_45b9FLlXqakdfarWUSxOGzoJ9PQHevOdd7St8rT0MjJ40pibQK_vJ8kpNhRoyUDoCJuDtOl49Oo2duTBOhlQW7Cl7JGb87Pr0UXSdW1IjNBqlnjOQmas8k5zY4ZcWMYc_OTpwuCOa-BaqIDluYwV4EG5zayrQrAyaO980HyfrNWT2h8QWkmkouF5pR08G6CTyYzyCoSEG1pvBuQYzFt2UdeU8UCdZSVeBJuXnc0HJF1869J2zOfYgOPXaoWTXuG2Jf1YLXq0cJ7lOLBHugSky_SAfOpvQ9ziYYyp_WSOMrEDr5R_lVEIpyS-5l3rmP14OEB7mI2Hh_9ng_dkA6Cejqma6oiszaZz_wHg1Kz6GAPpD4jcHxA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOPAotCwWM1AOXbJM4ieNjtW21QLcCdSvtLXL8kBBVttrsgtSfwK9mxnksBS2CazLjOM6M54vt-QbgIMpsaFKVBGUibJCkuQtK4XjgbKJi41yaW1oamJxn48vkwyydbUHY5cJgJ2psqfab-Gt2geiQruE8OZQlRSx-B-4iFInJpo9GF_3ci4A672oWSJ7NejKfPxqgaKTr29FoA8T0oeb0EXzuO-lPmHwdrpblUN_8xt_4P2_xGB62uJMdNYbyBLZstQMPfmEj3IHdk3XSG4q2Xl8_hR-jntX5BiXZJ1rAXxATK1OVYbfVWsLFRc3mjh1_Idv-Zg1rcj41m3g-T-ZPKrDp93lwTOUFGmoQNqJSIc3hPHZx7evzUNYMqnXcKc_g8vRkOhoHbQ2HQCVSLAPLYxcpLayRXKmQJzqODf7yyVzR-qvjMhGOknXjOEd7SnWkTemczpy0xjrJd2G7mlf2ObAyI2IanpbSYNsIpFSkhBUolJhQWzWAAxzeovXBuvDb63FU0EUc86Id8wEMu09e6JYHncpxXG1WeNcrXDcUIJtF9zsbWveDKqZniHtjOYC3_W30YtqaUZWdr0jG1-PNsr_KCAJXGT1mr7HPvj8cgT7OzeGLfxuDN3BvPJ2cFWfvzz--hPsIAqU_xCn2YXu5WNlXCLSW5WvvWz8BsS4ncQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAge-BgMOgYYaQ-8pGtix44fp3bV-Ng0aavUt8jxh4RAadW0IO1P4K_eneNmG1MRvCZnx3HufL_Yd78jZD8VbmBzzZOKS5fwvPBJJT1LvOM6s97nhcOtgZNTcTzhn6f5NCaFYS4MDKKBnppwiI9WPbc-MgykB3gd1sq-qtBrsfvkAR7aoV4fDs-79RdAdbGuW6CYmHaEPnc6QI9kmtseaQPMDO5m_JRMuoGGKJPv_dWy6pvLPzgc__dNnpEnEX_Sw1ZhnpN7rt4mj2-wEm6TnaPr5DcQjdbfvCC_hx278yVI0jPcyF8gIyvVtaW3m0XixUVDZ56OvqGO_3SWtrmfhp4EXk8aIhboxa9ZMsIyAy1FCB1iyZA2SI-ez0OdHsyegWZrDpWXZDI-uhgeJ7GWQ6K5ksvEscyn2khnFdN6wLjJMgu_fqrQuA_rmeLSY9JulhWgV7lJja28N8IrZ51XbIds1bPavSa0EkhQw_JKWegbAJVOtXQShLgdGKd7ZB-mt4y22JThmD1LS7wIc17GOe-R_vqzlybyoWNZjh-bG3zsGsxbKpDNontrPboeB1ZOF4B_M9UjH7rbYM14RKNrN1uhTKjLK8RfZSSCLIGPedXqaDceBoAf1ujB7r_NwXvy8Gw0Lr9-Ov3yhjwCLKhCLKfcI1vLxcq9Bby1rN4F87oCB1kp9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+Properties+and+Environmental+Behaviors+of+Dissolved+Organic+Matter+Using+Two-Dimensional+Correlation+Spectroscopic+Analysis&rft.jtitle=Environmental+science+%26+technology&rft.au=Chen%2C+Wei&rft.au=Teng%2C+Chun-Ying&rft.au=Qian%2C+Chen&rft.au=Yu%2C+Han-Qing&rft.date=2019-05-07&rft.issn=1520-5851&rft.eissn=1520-5851&rft.volume=53&rft.issue=9&rft.spage=4683&rft_id=info:doi/10.1021%2Facs.est.9b01103&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |