Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis

Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmenta...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 53; no. 9; pp. 4683 - 4694
Main Authors Chen, Wei, Teng, Chun-Ying, Qian, Chen, Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV–vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments.
AbstractList Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV-vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments.
Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV-vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments.Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical cycling. Understanding its properties and environmental behaviors is critically important to develop water treatment processes and environmental remediation strategies. Generalized two-dimensional correlation spectroscopy (2DCOS), which has numerous advantages, including enhancing spectral resolution and discerning specific order of structural change under an external perturbation, could be used as a powerful tool to interpret a wide range of spectroscopic signatures relating to DOM. A suite of spectroscopic signatures, such as UV-vis, fluorescence, infrared, and Raman spectra that can be analyzed by 2DCOS, is able to provide additional structural information hiding behind the conventional one-dimensional spectra. In this article, the most recent advances in 2DCOS applications for analyzing DOM-related environmental processes are reviewed, and the state-of-the-art novel spectroscopic techniques in 2DCOS are highlighted. Furthermore, the main limitations and requirements of current approaches for exploring DOM-related environmental processes and how these limitations and drawbacks can be addressed are explored. Finally, suggestions and new approaches are proposed to significantly advance the development of 2DCOS in analyzing the properties and behaviors of DOM in natural and engineered environments.
Author Chen, Wei
Teng, Chun-Ying
Qian, Chen
Yu, Han-Qing
AuthorAffiliation School of Metallurgy and Environment
CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
AuthorAffiliation_xml – name: School of Metallurgy and Environment
– name: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
– sequence: 2
  givenname: Chun-Ying
  surname: Teng
  fullname: Teng, Chun-Ying
  organization: School of Metallurgy and Environment
– sequence: 3
  givenname: Chen
  surname: Qian
  fullname: Qian, Chen
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
– sequence: 4
  givenname: Han-Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han-Qing
  email: hqyu@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30998320$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9LHDEUxUOx1NX2uW8l0JdCmTV_ZmYnj3a1tqBYqELfhruZG43MJmOS3aIfwU_djLv2QRB8CuH-zknuOXtkx3mHhHzkbMqZ4Aeg4xRjmqoF45zJN2TCK8GKqqn4DpkwxmWhZP1nl-zFeMMYE5I178iuZEo1UrAJeZhfQwCdMNh7667or-AHDMlipOA6euzWNni3RJegp9_wGtbWh0i9oUc2Rt-vsaPn4Qqc1fQMUvahl3E0uvjriyObhdF6l7VzHwL2kPKN_h5Qp-Cj9kOWHebxXbTxPXlroI_4YXvuk8vvxxfzH8Xp-cnP-eFpAaWapQKlMBz0DDslAZgstRCdKPNCwCVKI1U5M1UjuBANLrDSXHcLY3RtFHZolNwnXza-Q_C3q5xeu7RRY9-DQ7-KrRAz3lSyZvIVKOeqYnU9un5-ht74VcirjZRQdclrMVKfttRqscSuHYJdQrhrnwrJQLUBdM4nBjSttukxtRTA9i1n7Vh8m4tvx0e2xWfdwTPdk_XLiq8bxTj4_9eX6H-708L8
CitedBy_id crossref_primary_10_1016_j_watres_2024_122228
crossref_primary_10_1016_j_watres_2023_120681
crossref_primary_10_1016_j_geoderma_2024_116877
crossref_primary_10_1016_j_scitotenv_2024_178117
crossref_primary_10_1016_j_fuel_2022_124191
crossref_primary_10_1016_j_jclepro_2021_129406
crossref_primary_10_1039_D4EM00621F
crossref_primary_10_1016_j_jwpe_2025_107268
crossref_primary_10_1007_s11783_020_1297_y
crossref_primary_10_1016_j_watres_2022_118921
crossref_primary_10_1016_j_chemosphere_2023_138138
crossref_primary_10_1016_j_envpol_2019_113467
crossref_primary_10_1016_j_jece_2021_106459
crossref_primary_10_1016_j_colsurfa_2021_127000
crossref_primary_10_1016_j_biortech_2023_129543
crossref_primary_10_1007_s11356_023_25933_6
crossref_primary_10_1016_j_ecolind_2023_109872
crossref_primary_10_1007_s11783_022_1520_0
crossref_primary_10_1016_j_fuel_2021_122852
crossref_primary_10_3390_w16162249
crossref_primary_10_1016_j_jece_2024_113412
crossref_primary_10_1016_j_watres_2024_122978
crossref_primary_10_1016_j_cej_2022_137770
crossref_primary_10_1016_j_envres_2023_116185
crossref_primary_10_1016_j_watres_2020_116052
crossref_primary_10_3390_agronomy13030630
crossref_primary_10_1016_j_cej_2024_154893
crossref_primary_10_1016_j_seppur_2022_121909
crossref_primary_10_1016_j_cej_2024_156676
crossref_primary_10_1016_j_jhazmat_2023_133220
crossref_primary_10_1016_j_scitotenv_2022_156462
crossref_primary_10_1016_j_jhazmat_2022_130298
crossref_primary_10_1016_j_combustflame_2022_112383
crossref_primary_10_1016_j_molstruc_2024_138128
crossref_primary_10_1016_j_watres_2023_119628
crossref_primary_10_1016_j_jenvman_2024_123550
crossref_primary_10_1016_j_scitotenv_2021_150467
crossref_primary_10_1016_j_cej_2022_134827
crossref_primary_10_1021_acs_est_9b02883
crossref_primary_10_1016_j_scitotenv_2024_174139
crossref_primary_10_1016_j_envres_2024_119900
crossref_primary_10_1016_j_envres_2022_113285
crossref_primary_10_1016_j_scitotenv_2023_169101
crossref_primary_10_1016_j_scitotenv_2024_174657
crossref_primary_10_1016_j_watres_2023_120424
crossref_primary_10_1016_j_envres_2023_117129
crossref_primary_10_3390_molecules28114558
crossref_primary_10_1016_j_watres_2023_119678
crossref_primary_10_1016_j_watres_2024_121718
crossref_primary_10_1016_j_scitotenv_2024_176670
crossref_primary_10_1016_j_watres_2024_122409
crossref_primary_10_1016_j_chemosphere_2020_127055
crossref_primary_10_1016_j_chemosphere_2024_141560
crossref_primary_10_1016_j_jclepro_2022_132831
crossref_primary_10_2139_ssrn_4052330
crossref_primary_10_1016_j_ecoenv_2021_112811
crossref_primary_10_1177_00037028241254093
crossref_primary_10_1016_j_jenvman_2025_124431
crossref_primary_10_1016_j_watres_2020_116246
crossref_primary_10_1021_acsestwater_3c00071
crossref_primary_10_1016_j_scitotenv_2020_143550
crossref_primary_10_1016_j_envres_2019_109052
crossref_primary_10_1016_j_jclepro_2022_130370
crossref_primary_10_1021_acs_estlett_1c00484
crossref_primary_10_1007_s11356_021_18431_0
crossref_primary_10_1016_j_cej_2024_149166
crossref_primary_10_1039_D1EW00887K
crossref_primary_10_1021_acsestwater_3c00218
crossref_primary_10_1016_j_jhazmat_2021_125512
crossref_primary_10_1016_j_cej_2020_124734
crossref_primary_10_1016_j_rser_2021_111761
crossref_primary_10_1016_j_chemosphere_2024_142383
crossref_primary_10_1016_j_scitotenv_2021_146712
crossref_primary_10_1016_j_jwpe_2025_107434
crossref_primary_10_1016_j_envres_2023_116041
crossref_primary_10_1016_j_jenvman_2021_113041
crossref_primary_10_1016_j_watres_2022_118052
crossref_primary_10_1016_j_seppur_2024_126572
crossref_primary_10_1016_j_jes_2022_12_012
crossref_primary_10_1016_j_apcatb_2022_121943
crossref_primary_10_1016_j_watres_2020_116759
crossref_primary_10_1016_j_scitotenv_2021_152047
crossref_primary_10_1016_j_scitotenv_2022_153258
crossref_primary_10_1021_acs_est_2c02631
crossref_primary_10_1021_acs_est_1c00083
crossref_primary_10_1016_j_chemosphere_2020_127956
crossref_primary_10_3390_toxics12090654
crossref_primary_10_1007_s11356_020_11422_7
crossref_primary_10_1021_acs_est_1c08400
crossref_primary_10_1016_j_watres_2024_122829
crossref_primary_10_1016_j_envpol_2023_122032
crossref_primary_10_1016_j_jes_2021_09_018
crossref_primary_10_1016_j_jhazmat_2024_135273
crossref_primary_10_1016_j_jwpe_2024_105047
crossref_primary_10_2166_wst_2021_112
crossref_primary_10_1016_j_envres_2025_121284
crossref_primary_10_1007_s11356_020_11573_7
crossref_primary_10_1016_j_jhazmat_2023_133413
crossref_primary_10_1016_j_scitotenv_2021_151906
crossref_primary_10_1016_j_scitotenv_2023_163620
crossref_primary_10_3390_plants10122684
crossref_primary_10_1016_j_watres_2023_120133
crossref_primary_10_1016_j_scitotenv_2022_154733
crossref_primary_10_1016_j_watres_2019_114873
crossref_primary_10_1021_acs_est_2c02229
crossref_primary_10_1016_j_ecoenv_2023_115734
crossref_primary_10_1016_j_envpol_2022_119949
crossref_primary_10_1021_acs_analchem_2c04636
crossref_primary_10_1080_03650340_2022_2084084
crossref_primary_10_1016_j_atmosenv_2022_119262
crossref_primary_10_1016_j_jwpe_2025_107299
crossref_primary_10_1016_j_jhazmat_2023_132056
crossref_primary_10_1016_j_renene_2023_119448
crossref_primary_10_1016_j_molstruc_2020_128405
crossref_primary_10_1016_j_desal_2022_115711
crossref_primary_10_1016_j_jenvman_2025_124462
crossref_primary_10_1016_j_scitotenv_2023_162887
crossref_primary_10_1016_j_teac_2021_e00134
crossref_primary_10_1016_j_envpol_2021_118044
crossref_primary_10_1016_j_watcyc_2022_11_002
crossref_primary_10_1021_acs_jafc_2c06013
crossref_primary_10_1016_j_jclepro_2022_130448
crossref_primary_10_1016_j_ecoenv_2022_113699
crossref_primary_10_1016_j_watres_2021_117525
crossref_primary_10_1016_j_scitotenv_2023_163210
crossref_primary_10_1039_D0EN01142H
crossref_primary_10_1016_j_saa_2019_117856
crossref_primary_10_1016_j_jece_2025_116062
crossref_primary_10_1016_j_scitotenv_2022_160081
crossref_primary_10_1016_j_seppur_2023_123349
crossref_primary_10_1016_j_cej_2023_141881
crossref_primary_10_1016_j_cej_2024_148833
crossref_primary_10_1007_s11356_022_21791_w
crossref_primary_10_1016_j_chemosphere_2022_134869
crossref_primary_10_1016_j_scitotenv_2023_169427
crossref_primary_10_1021_acs_est_0c00850
crossref_primary_10_1016_j_scitotenv_2023_162509
crossref_primary_10_1021_acs_est_0c02872
crossref_primary_10_1016_j_fuel_2022_126310
crossref_primary_10_1016_j_eti_2025_104136
crossref_primary_10_1002_ldr_5014
crossref_primary_10_1016_j_jhazmat_2024_135977
crossref_primary_10_1016_j_scitotenv_2023_167129
crossref_primary_10_1021_acs_est_1c01918
crossref_primary_10_1021_acs_est_9b04595
crossref_primary_10_2139_ssrn_4056690
crossref_primary_10_1016_j_geoderma_2022_115806
crossref_primary_10_1021_acs_est_1c05203
crossref_primary_10_1021_acs_est_3c00019
crossref_primary_10_1016_j_biortech_2023_129366
crossref_primary_10_1016_j_chemosphere_2021_132838
crossref_primary_10_1007_s00343_022_2254_3
crossref_primary_10_3390_nano13040727
crossref_primary_10_1016_j_scitotenv_2021_148376
crossref_primary_10_1016_j_memsci_2022_120913
crossref_primary_10_1016_j_scitotenv_2020_140906
crossref_primary_10_1016_j_jwpe_2021_102220
crossref_primary_10_1016_j_jhazmat_2025_137124
crossref_primary_10_1021_acs_jafc_9b06857
crossref_primary_10_1016_j_jhazmat_2020_122425
crossref_primary_10_1016_j_jes_2021_03_021
crossref_primary_10_1007_s11356_022_24922_5
crossref_primary_10_1016_j_scitotenv_2020_138154
crossref_primary_10_1016_j_jece_2022_107158
crossref_primary_10_1016_j_biortech_2022_126868
crossref_primary_10_1016_j_jes_2022_09_009
crossref_primary_10_3389_fsoil_2022_847623
crossref_primary_10_1021_acs_est_3c01463
crossref_primary_10_1016_j_watres_2022_119108
crossref_primary_10_1038_s41545_023_00245_x
crossref_primary_10_1016_j_scitotenv_2022_155918
crossref_primary_10_1080_03650340_2024_2406288
crossref_primary_10_1016_j_jes_2023_10_004
crossref_primary_10_1016_j_scitotenv_2024_170933
Cites_doi 10.1016/j.watres.2013.10.016
10.1021/es5041738
10.1007/s11356-017-0167-z
10.1039/C5RA13069G
10.1016/j.molstruc.2014.01.025
10.1016/j.chemosphere.2016.07.016
10.1016/j.watres.2011.03.013
10.1021/jp404573q
10.1021/jp103288x
10.1016/j.molstruc.2014.01.016
10.1007/s11356-014-3759-x
10.1016/j.wasman.2018.06.001
10.1016/j.watres.2017.04.023
10.1007/s10661-016-5580-0
10.1016/j.gca.2013.03.036
10.1016/j.envpol.2017.01.046
10.1016/j.biortech.2018.01.113
10.1021/acs.est.6b05228
10.1007/s11356-016-6173-8
10.1016/j.chemosphere.2015.09.015
10.1016/j.chemosphere.2017.08.112
10.1016/j.envpol.2017.01.011
10.1016/j.biortech.2014.02.085
10.1016/j.coesh.2017.11.003
10.1002/0470012404
10.1016/j.envpol.2017.04.099
10.1016/j.saa.2008.07.015
10.1021/es100898x
10.1016/j.molstruc.2009.11.047
10.1071/EN16135
10.1016/j.ecoenv.2016.11.008
10.1038/srep24444
10.1016/j.molstruc.2014.03.038
10.1016/B978-0-12-849883-5.00010-3
10.1016/j.jhazmat.2016.12.019
10.1021/jz200285c
10.1007/s00216-012-6363-2
10.1016/j.jcis.2012.09.039
10.1021/acs.est.6b00066
10.1021/jp300918g
10.1016/j.biortech.2017.10.015
10.1016/j.chemosphere.2014.09.060
10.1038/ngeo2440
10.1016/j.envpol.2017.10.027
10.1016/j.jcis.2016.12.006
10.1016/j.chemosphere.2016.04.033
10.1016/j.vibspec.2012.01.006
10.1021/ac5038329
10.1021/es5049495
10.1021/jp0638282
10.1021/acs.est.7b04311
10.1021/es3002212
10.1016/j.chempr.2018.03.011
10.1016/j.envpol.2017.03.047
10.1016/j.jhazmat.2013.09.042
10.1016/j.molstruc.2014.01.024
10.1016/j.scitotenv.2017.10.190
10.1021/es502502n
10.1021/acs.est.6b01286
10.1016/j.molstruc.2018.04.099
10.1016/j.jhazmat.2017.10.022
10.1016/j.molliq.2018.05.025
10.1016/j.chemgeo.2018.07.029
10.1021/ac020769p
10.1016/j.biortech.2017.10.013
10.1016/j.watres.2015.04.018
10.1016/j.envpol.2017.10.120
10.1016/j.vibspec.2013.12.001
10.1080/05704920600845868
10.1021/es502342r
10.1021/acs.analchem.7b00592
10.1021/acs.est.6b00129
10.1016/j.jhazmat.2014.09.027
10.1016/j.watres.2018.08.019
10.1366/0003702904087398
10.1021/es201483f
10.1016/j.envpol.2017.02.048
10.1177/0003702818775737
10.1016/j.scitotenv.2018.04.140
10.1016/j.scitotenv.2018.06.229
ContentType Journal Article
Copyright Copyright American Chemical Society May 7, 2019
Copyright_xml – notice: Copyright American Chemical Society May 7, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.9b01103
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA
Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 4694
ExternalDocumentID 30998320
10_1021_acs_est_9b01103
d46209016
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a497t-e32f1ac7ed93aa034c22d24998a13e3f3947f5821228ebe5c1cdbffc6f9edef93
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 05:31:08 EDT 2025
Fri Jul 11 05:33:34 EDT 2025
Mon Jun 30 10:57:41 EDT 2025
Mon Jul 21 05:56:05 EDT 2025
Tue Jul 01 02:58:03 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Thu Aug 27 13:44:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a497t-e32f1ac7ed93aa034c22d24998a13e3f3947f5821228ebe5c1cdbffc6f9edef93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5247-6244
PMID 30998320
PQID 2229641629
PQPubID 45412
PageCount 12
ParticipantIDs proquest_miscellaneous_2271853603
proquest_miscellaneous_2211950669
proquest_journals_2229641629
pubmed_primary_30998320
crossref_citationtrail_10_1021_acs_est_9b01103
crossref_primary_10_1021_acs_est_9b01103
acs_journals_10_1021_acs_est_9b01103
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-07
PublicationDateYYYYMMDD 2019-05-07
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
Noda I. (ref7/cit7) 2004
ref42/cit42
ref46/cit46
Xu Y. (ref9/cit9) 2018
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
References_xml – ident: ref43/cit43
  doi: 10.1016/j.watres.2013.10.016
– ident: ref48/cit48
  doi: 10.1021/es5041738
– ident: ref59/cit59
  doi: 10.1007/s11356-017-0167-z
– ident: ref38/cit38
  doi: 10.1039/C5RA13069G
– ident: ref10/cit10
  doi: 10.1016/j.molstruc.2014.01.025
– ident: ref72/cit72
  doi: 10.1016/j.chemosphere.2016.07.016
– ident: ref44/cit44
  doi: 10.1016/j.watres.2011.03.013
– ident: ref16/cit16
  doi: 10.1021/jp404573q
– ident: ref20/cit20
  doi: 10.1021/jp103288x
– ident: ref11/cit11
  doi: 10.1016/j.molstruc.2014.01.016
– ident: ref3/cit3
  doi: 10.1007/s11356-014-3759-x
– ident: ref36/cit36
  doi: 10.1016/j.wasman.2018.06.001
– ident: ref50/cit50
  doi: 10.1016/j.watres.2017.04.023
– ident: ref34/cit34
  doi: 10.1007/s10661-016-5580-0
– ident: ref23/cit23
  doi: 10.1016/j.gca.2013.03.036
– ident: ref57/cit57
  doi: 10.1016/j.envpol.2017.01.046
– ident: ref47/cit47
  doi: 10.1016/j.biortech.2018.01.113
– ident: ref74/cit74
  doi: 10.1021/acs.est.6b05228
– ident: ref45/cit45
  doi: 10.1007/s11356-016-6173-8
– ident: ref35/cit35
  doi: 10.1016/j.chemosphere.2015.09.015
– ident: ref71/cit71
  doi: 10.1016/j.chemosphere.2017.08.112
– ident: ref31/cit31
  doi: 10.1016/j.envpol.2017.01.011
– ident: ref37/cit37
  doi: 10.1016/j.biortech.2014.02.085
– ident: ref27/cit27
  doi: 10.1016/j.coesh.2017.11.003
– volume-title: Two-Dimensional Correlation Spectroscopy - Applications in Vibrational and Optical Spectroscopy.
  year: 2004
  ident: ref7/cit7
  doi: 10.1002/0470012404
– ident: ref55/cit55
  doi: 10.1016/j.envpol.2017.04.099
– ident: ref8/cit8
  doi: 10.1016/j.saa.2008.07.015
– ident: ref33/cit33
  doi: 10.1021/es100898x
– ident: ref25/cit25
  doi: 10.1016/j.molstruc.2009.11.047
– ident: ref63/cit63
  doi: 10.1071/EN16135
– ident: ref73/cit73
  doi: 10.1016/j.ecoenv.2016.11.008
– ident: ref76/cit76
  doi: 10.1038/srep24444
– ident: ref13/cit13
  doi: 10.1016/j.molstruc.2014.03.038
– start-page: 217
  volume-title: Molecular and Laser Spectroscopy
  year: 2018
  ident: ref9/cit9
  doi: 10.1016/B978-0-12-849883-5.00010-3
– ident: ref66/cit66
  doi: 10.1016/j.jhazmat.2016.12.019
– ident: ref19/cit19
  doi: 10.1021/jz200285c
– ident: ref2/cit2
  doi: 10.1007/s00216-012-6363-2
– ident: ref70/cit70
  doi: 10.1016/j.jcis.2012.09.039
– ident: ref54/cit54
  doi: 10.1021/acs.est.6b00066
– ident: ref24/cit24
  doi: 10.1021/jp300918g
– ident: ref58/cit58
  doi: 10.1016/j.biortech.2017.10.015
– ident: ref39/cit39
  doi: 10.1016/j.chemosphere.2014.09.060
– ident: ref1/cit1
  doi: 10.1038/ngeo2440
– ident: ref53/cit53
  doi: 10.1016/j.envpol.2017.10.027
– ident: ref64/cit64
  doi: 10.1016/j.jcis.2016.12.006
– ident: ref77/cit77
  doi: 10.1016/j.chemosphere.2016.04.033
– ident: ref14/cit14
  doi: 10.1016/j.vibspec.2012.01.006
– ident: ref22/cit22
  doi: 10.1021/ac5038329
– ident: ref56/cit56
  doi: 10.1021/es5049495
– ident: ref17/cit17
  doi: 10.1021/jp0638282
– ident: ref49/cit49
  doi: 10.1021/acs.est.7b04311
– ident: ref40/cit40
  doi: 10.1021/es3002212
– ident: ref52/cit52
  doi: 10.1016/j.chempr.2018.03.011
– ident: ref61/cit61
  doi: 10.1016/j.envpol.2017.03.047
– ident: ref68/cit68
  doi: 10.1016/j.jhazmat.2013.09.042
– ident: ref26/cit26
  doi: 10.1016/j.molstruc.2014.01.024
– ident: ref28/cit28
  doi: 10.1016/j.scitotenv.2017.10.190
– ident: ref29/cit29
  doi: 10.1021/es502502n
– ident: ref51/cit51
  doi: 10.1021/acs.est.6b01286
– ident: ref12/cit12
  doi: 10.1016/j.molstruc.2018.04.099
– ident: ref67/cit67
  doi: 10.1016/j.jhazmat.2017.10.022
– ident: ref75/cit75
  doi: 10.1016/j.molliq.2018.05.025
– ident: ref32/cit32
  doi: 10.1016/j.chemgeo.2018.07.029
– ident: ref21/cit21
  doi: 10.1021/ac020769p
– ident: ref46/cit46
  doi: 10.1016/j.biortech.2017.10.013
– ident: ref5/cit5
  doi: 10.1016/j.watres.2015.04.018
– ident: ref62/cit62
  doi: 10.1016/j.envpol.2017.10.120
– ident: ref79/cit79
  doi: 10.1016/j.vibspec.2013.12.001
– ident: ref18/cit18
  doi: 10.1080/05704920600845868
– ident: ref4/cit4
  doi: 10.1021/es502342r
– ident: ref80/cit80
  doi: 10.1021/acs.analchem.7b00592
– ident: ref65/cit65
  doi: 10.1021/acs.est.6b00129
– ident: ref69/cit69
  doi: 10.1016/j.jhazmat.2014.09.027
– ident: ref78/cit78
  doi: 10.1016/j.watres.2018.08.019
– ident: ref6/cit6
  doi: 10.1366/0003702904087398
– ident: ref15/cit15
  doi: 10.1021/es201483f
– ident: ref30/cit30
  doi: 10.1016/j.envpol.2017.02.048
– ident: ref42/cit42
  doi: 10.1177/0003702818775737
– ident: ref41/cit41
  doi: 10.1016/j.scitotenv.2018.04.140
– ident: ref60/cit60
  doi: 10.1016/j.scitotenv.2018.06.229
SSID ssj0002308
Score 2.6349688
SecondaryResourceType review_article
Snippet Dissolved organic matter (DOM) exists ubiquitously in environments and plays critical roles in pollutant mitigation, transformation, and organic geochemical...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4683
SubjectTerms Correlation analysis
Dissolved organic matter
Environmental behavior
Environmental cleanup
Environmental Restoration and Remediation
Fluorescence
Humic Substances
Infrared analysis
Infrared signatures
Infrared spectra
pollutants
Pollution control
Properties (attributes)
Raman spectra
Raman spectroscopy
remediation
spectral analysis
Spectral resolution
Spectrometry, Fluorescence
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
State-of-the-art reviews
Two dimensional analysis
ultraviolet-visible spectroscopy
Water treatment
Title Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis
URI http://dx.doi.org/10.1021/acs.est.9b01103
https://www.ncbi.nlm.nih.gov/pubmed/30998320
https://www.proquest.com/docview/2229641629
https://www.proquest.com/docview/2211950669
https://www.proquest.com/docview/2271853603
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhfRPDgpXWbtGlzlFURQRFU2FtJ0wRE6S7bXQV_gr_ambTb9cGq13bShulM5ksz8w0hRzLjkRaZ8ayy3AvBFz0FqBWZEVU7yiGiMKxGvr4Rlw_hVTfqTsiiv5_gs-BE6dKHBdKXGYYqPkvmmUhi3Geddu6aRReQdDJuViC56DYsPj8egGFIl1_D0BRs6WLMxXKVnVU6akJMLXnyR8PM128_iRv_nv4KWaqRJj2tTGOVzJhijSx-4h9cI5vnkzI3EK39vFwn752Gx_kNJOkt_rIfIPcqVUVOvw6rKRYHJe1ZevaI1vxiclpVeWp67Rg8qctNoPevPe8MGwpUZCC0g81BqnQ8etd3HXmwTgaGjdlSNsjDxfl959KruzZ4KpTx0DOc2UDp2OSSK9XmoWYsh02eTBT-cbVchrHF8lzGErCgSAc6z6zVwkqTGyv5JpkreoXZJjSMAhui1pJYwULDJWwubSJsbvFAU7Zb5AjUm9ZeV6buQJ0FKV4Enae1zlvEH3_rVNfM59iA43n6gONmQL8i_Zguujc2nsk8sEe6AKTLZIscNrfBb_EwRhWmN0IZ14FXiF9lYoRTAl-zVRlmMx8O0B5W4_bO_3SwSxYA6kmXqhnvkbnhYGT2AU4NswPnSB_hxRzy
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOPAotCwWM1AOXbBM7ceJjtW21QLcCdSvtLXIcW0JU2WqzC1J_Ar-aGeexFLQIrsk4cSYzns-P-QbgQBUiMbKwgdNOBDH6YqARtRIzog6TEiMKp2zkybkcX8YfZslsC8IuFwY7UeOTar-Jv2YXiA7pGo6TQ1VQxBJ34C5CEU7TraPRRT_2IqDOupoFSshZT-bzxwMoGpn6djTaADF9qDl9BJ_7TvoTJl-Hq2UxNDe_8Tf-z1c8hoct7mRHjaE8gS1b7cCDX9gId2D3ZJ30hqKt19dP4ceoZ3W-QUn2iRbwF8TEynRVstvNWsLFRc3mjh1_Idv-ZkvW5HwaNvF8nsyfVGDT7_PgmMoLNNQgbESlQprDeezi2tfnoawZbNZxpzyDy9OT6WgctDUcAh2rdBlYwV2kTWpLJbQORWw4L3HKpzJN669OqDh1lKzLeYb2lJjIlIVzRjplS-uU2IXtal7Z58DiJHIxaS1LNQ47QuFU02XSlY62N1U4gANUb976YJ377XUe5XQRdZ63Oh_AsPvluWl50Kkcx9XmBu_6BtcNBchm0f3Ohtb9oIrpEnEvVwN4299GL6atGV3Z-YpkfD1eKf8qkxK4kvSavcY--_4IBPo4Nocv_k0Hb-DeeDo5y8_en398CfcRBCp_iDPdh-3lYmVfIdBaFq-9b_0E5UglUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkRAceBQKKQUWqQcuTmOvvfYeq6RRebSq1EbKzVrvQ0IgJ4oTkPoT-NWdWW_clioIrvasvZnM7Hzr2fkGYF9WPNOispFTjkcp-mKkELUSM6IaZAYjSkLVyCen4niSfp5m01AURrUwOIkGn9T4JD559dy4wDAQH9B1XCv7sqKoxe_DA0ra0ZbrcHjerb8Iqot13wLJxbQj9LnzAIpIurkdkTbATB9uxk9h0k3UnzL53l8tq76-_IPD8X9_yTN4EvAnO2wN5jncs_U2PL7BSrgNO0fXxW8oGry_eQG_hx278yVKsjP6kL8gRlamasNuDwvEi4uGzRwbfSMb_2kNa2s_NTvxvJ7Mn1hgF79m0YjaDLQUIWxILUPaQ3rsfO779FD1DA5bc6i8hMn46GJ4HIVeDpFKZb6MLE9crHRujeRKDXiqk8Tg1k8Wir7DOi7T3FHRbpIUaFeZjrWpnNPCSWusk3wHtupZbV8DS7PYpaS1Ile4_HCJW05XCGccpTnloAf7qN4y-GJT-jR7Epd0EXVeBp33oL_-20sd-NCpLcePzQM-dgPmLRXIZtG9tR1dz4M6pwvEv4nswYfuNnozpWhUbWcrkvF9eYX4q0xOIEvQa161NtrNhyPgxzV6sPtvOngPD89G4_Lrp9Mvb-ARYkHpz3Lme7C1XKzsW8Rby-qdd68rNw0n1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+Properties+and+Environmental+Behaviors+of+Dissolved+Organic+Matter+Using+Two-Dimensional+Correlation+Spectroscopic+Analysis&rft.jtitle=Environmental+science+%26+technology&rft.au=Chen%2C+Wei&rft.au=Teng%2C+Chun-Ying&rft.au=Qian%2C+Chen&rft.au=Yu%2C+Han-Qing&rft.date=2019-05-07&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=53&rft.issue=9&rft.spage=4683&rft_id=info:doi/10.1021%2Facs.est.9b01103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon