Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion
•Lake evaporation modeling without wind speed data.•CRLE model implicitly considers the wind effect via vapor transfer coefficient.•Evaporation decreasing was responsible for 4% of recent rapid Nam Co Lake expansion. Previous studies have shown that the majority of the lakes in the Tibetan Plateau (...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 537; pp. 27 - 35 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Lake evaporation modeling without wind speed data.•CRLE model implicitly considers the wind effect via vapor transfer coefficient.•Evaporation decreasing was responsible for 4% of recent rapid Nam Co Lake expansion.
Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979–2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998–2008 at a rate of −12mmyr−1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period. |
---|---|
AbstractList | •Lake evaporation modeling without wind speed data.•CRLE model implicitly considers the wind effect via vapor transfer coefficient.•Evaporation decreasing was responsible for 4% of recent rapid Nam Co Lake expansion.
Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979–2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998–2008 at a rate of −12mmyr−1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period. Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979–2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998–2008 at a rate of −12mmyr−1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period. Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (E L) over the lake surface is the only way water may leave the lake. Therefore, quantifying E L is key for investigating the mechanism of lake expansion in the TP. E L can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979-2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured E L over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating E L well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in E L occurred during 1998-2008 at a rate of -12mmyr-1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period. |
Author | Zhang, Yinsheng Wang, Binbin Niu, Guo-Yue Wu, Yanhong Zhang, Teng Ma, Ning Szilagyi, Jozsef |
Author_xml | – sequence: 1 givenname: Ning surname: Ma fullname: Ma, Ning email: ningma@itpcas.ac.cn organization: Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Jozsef surname: Szilagyi fullname: Szilagyi, Jozsef organization: Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Economics, Budapest, Hungary – sequence: 3 givenname: Guo-Yue surname: Niu fullname: Niu, Guo-Yue organization: Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ, USA – sequence: 4 givenname: Yinsheng surname: Zhang fullname: Zhang, Yinsheng email: yszhang@itpcas.ac.cn organization: Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Teng surname: Zhang fullname: Zhang, Teng organization: Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Binbin surname: Wang fullname: Wang, Binbin organization: Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China – sequence: 7 givenname: Yanhong surname: Wu fullname: Wu, Yanhong organization: Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China |
BookMark | eNqFkUtrWzEQhUVJoE6anxDQspvr6nUfootSTPoA03aRrMVId0zkXku3kmzqf185zqobSwNi4HxHzJwbchViQELuOVtyxrsP2-X2-TimOC1FbZdM1mJvyIIPvW5Ez_orsmBMiIZ3Wr0lNzlvWT1SqgXxDweYY4LiY6AHSB6sn3w50rihP2BHV5Gu4TdSH2h5RvroLRYI9NcEBWFPIYzUl0zr5y-ahA5DoQlmP9LpBOLfGUKu7u_I9QamjHev7y15-vLwuPrWrH9-_b76vG5A6b40VqF2Wg7a2V65wdkW6h3b0QllwUKvFbIWQA4gLUgtlXVKKMZd1zLBR3lL3p995xT_7DEXs_PZ4TRBwLjPRtTRFVet6C5K-cA71om-HS5L-7rsXgulq7Q9S12KOSfcmDn5HaSj4cycAjNb8xqYOQVmmKzFKvfxP8758hJMSeCni_SnM411twePyWTnMTgcfQ2lmDH6Cw7_AFpJtz8 |
CitedBy_id | crossref_primary_10_3390_w10070941 crossref_primary_10_1007_s10661_020_08634_2 crossref_primary_10_3390_rs15143460 crossref_primary_10_1016_j_jhydrol_2022_128643 crossref_primary_10_1016_j_jhydrol_2022_129058 crossref_primary_10_18307_2019_0504 crossref_primary_10_1016_j_agrformet_2021_108566 crossref_primary_10_1016_j_agrformet_2020_107996 crossref_primary_10_5194_hess_23_4969_2019 crossref_primary_10_1175_JHM_D_19_0135_1 crossref_primary_10_1016_j_scitotenv_2019_134367 crossref_primary_10_1126_sciadv_aay8558 crossref_primary_10_1002_hyp_15196 crossref_primary_10_1007_s00343_022_2138_6 crossref_primary_10_2166_wcc_2021_285 crossref_primary_10_1016_j_catena_2022_106686 crossref_primary_10_1029_2019JD030763 crossref_primary_10_1002_joc_6320 crossref_primary_10_1007_s12583_022_1761_7 crossref_primary_10_1016_j_quaint_2017_08_005 crossref_primary_10_1109_TGRS_2023_3317319 crossref_primary_10_1016_j_jglr_2018_12_005 crossref_primary_10_3390_w9120971 crossref_primary_10_1016_j_quaint_2019_03_031 crossref_primary_10_1016_j_gene_2024_148160 crossref_primary_10_3390_rs15163982 crossref_primary_10_5194_hess_22_351_2018 crossref_primary_10_1016_j_jhydrol_2018_03_059 crossref_primary_10_1038_s41598_018_31440_3 crossref_primary_10_3390_w13101412 crossref_primary_10_1007_s10498_020_09374_y crossref_primary_10_3390_rs8100854 crossref_primary_10_1016_j_ejrh_2023_101511 crossref_primary_10_1007_s12403_022_00490_4 crossref_primary_10_2151_jmsj_2016_023 crossref_primary_10_3390_rs15133361 crossref_primary_10_1016_j_jhydrol_2020_124668 crossref_primary_10_3390_w11071383 crossref_primary_10_1029_2022WR032650 crossref_primary_10_1029_2022JD037095 crossref_primary_10_3390_rs13101984 crossref_primary_10_5194_bg_17_1261_2020 crossref_primary_10_1016_j_ejrh_2024_101905 crossref_primary_10_1029_2022WR034030 crossref_primary_10_1016_j_jhydrol_2019_03_066 crossref_primary_10_1016_j_scitotenv_2021_145463 crossref_primary_10_1016_j_scitotenv_2021_147488 crossref_primary_10_1080_10106049_2021_2009043 crossref_primary_10_26599_JGSE_2017_9280021 crossref_primary_10_1002_2017JD027965 crossref_primary_10_1016_j_ecoleng_2018_12_031 crossref_primary_10_1016_j_jhydrol_2022_128316 crossref_primary_10_3390_w10091258 crossref_primary_10_1016_j_jhydrol_2022_129019 crossref_primary_10_1007_s12517_022_10263_7 crossref_primary_10_1029_2018GC007439 crossref_primary_10_3389_fenvs_2023_1130443 crossref_primary_10_1016_j_rse_2018_12_037 crossref_primary_10_1007_s00704_018_2539_9 crossref_primary_10_1016_j_earscirev_2018_06_012 crossref_primary_10_1088_1748_9326_acbfd1 crossref_primary_10_3390_w8110527 crossref_primary_10_1080_07055900_2018_1474085 crossref_primary_10_1016_j_earscirev_2020_103269 crossref_primary_10_3389_feart_2020_582060 crossref_primary_10_3390_w12051339 crossref_primary_10_3390_rs12121926 crossref_primary_10_1007_s11356_021_12771_7 crossref_primary_10_18307_2023_0324 crossref_primary_10_1016_j_jenvman_2023_119887 crossref_primary_10_1016_j_jhydrol_2019_124052 crossref_primary_10_1016_j_ejrh_2022_101265 crossref_primary_10_1016_j_jhydrol_2018_02_065 crossref_primary_10_1029_2018JD029850 crossref_primary_10_3390_rs14122886 crossref_primary_10_3390_rs15061503 crossref_primary_10_5194_hess_25_3163_2021 crossref_primary_10_5194_hess_24_5973_2020 crossref_primary_10_1016_j_gloplacha_2023_104113 crossref_primary_10_1029_2019JD031264 crossref_primary_10_1016_j_jhydrol_2024_132529 crossref_primary_10_1029_2019GL085032 crossref_primary_10_1029_2022JD036759 crossref_primary_10_1016_j_ejrh_2025_102323 crossref_primary_10_1007_s11430_016_0023_6 crossref_primary_10_1016_j_rse_2019_03_015 crossref_primary_10_2166_nh_2021_086 crossref_primary_10_3390_rs13010056 crossref_primary_10_1002_hyp_13830 crossref_primary_10_1029_2017WR022261 crossref_primary_10_1016_j_ejrh_2021_100816 crossref_primary_10_1002_2016JD026109 crossref_primary_10_1016_j_rse_2020_112199 crossref_primary_10_1029_2021JG006441 crossref_primary_10_2478_avutgs_2018_0008 crossref_primary_10_5194_hess_28_163_2024 crossref_primary_10_1016_j_atmosres_2018_10_006 crossref_primary_10_1029_2020WR028737 crossref_primary_10_3390_agriculture15050544 crossref_primary_10_4081_jlimnol_2022_2077 crossref_primary_10_1016_j_scitotenv_2019_07_205 crossref_primary_10_1007_s11442_019_1995_x crossref_primary_10_1016_j_jhydrol_2016_11_024 crossref_primary_10_3390_ijerph18052682 crossref_primary_10_1088_2515_7620_ac9351 crossref_primary_10_1002_jqs_3517 |
Cites_doi | 10.1002/2015JG003006 10.1007/s11442-008-0177-3 10.1002/2014WR015846 10.1007/BF00863783 10.1016/j.jhydrol.2011.05.018 10.1016/j.jhydrol.2005.07.003 10.1007/s11434-014-0258-x 10.1093/nsr/nwu045 10.1029/WR002i002p00223 10.1016/j.jhydrol.2013.03.030 10.1007/s00704-013-0987-9 10.1029/94WR02537 10.1175/1520-0450(1986)025<0371:PEOLE>2.0.CO;2 10.1002/2015WR017693 10.1029/2009JD012839 10.1029/2006GL028708 10.1007/s12665-011-0933-z 10.1002/2014WR015493 10.1029/2006GL027114 10.1016/j.gloplacha.2013.12.001 10.1007/s11430-010-4052-6 10.1002/hyp.10356 10.1007/s11269-015-1025-8 10.1007/s00704-013-0953-6 10.3178/hrl.3.1 10.1002/2014JD021615 10.1029/2011JD015921 10.1016/j.jhydrol.2007.03.018 10.1029/2005WR004541 10.3189/2012JoG11J025 10.1029/2009JD011753 10.1016/0022-1694(83)90177-4 10.1016/j.jhydrol.2007.09.049 10.1007/s10584-014-1175-3 10.1175/JAMC-D-11-0123.1 10.1016/j.rse.2011.03.005 10.1002/2015JD023863 10.1016/j.jag.2011.10.001 10.1016/j.agrformet.2013.07.001 10.18307/20010305 10.1029/WR018i003p00630 10.1111/j.1749-8198.2008.00213.x 10.1016/j.atmosres.2014.11.019 10.1002/hyp.9487 10.1002/grl.50462 10.1175/JHM-D-13-093.1 10.1016/j.gloplacha.2015.05.013 10.1016/j.jhydrol.2013.01.003 10.1007/s11434-010-3289-y 10.1007/s11442-013-1003-0 10.1098/rspa.1948.0037 10.1016/S0022-1694(01)00341-9 10.1029/2006JF000631 10.1007/s11434-014-0128-6 10.1038/nclimate1580 10.1002/2013WR014724 10.1007/s11434-011-4849-5 10.5194/hess-17-1331-2013 10.1007/s11434-010-0015-8 10.1016/j.jglr.2013.03.009 10.13031/2013.36722 10.1029/2002JD003296 10.1088/1748-9326/10/3/034013 10.1007/s10201-009-0266-8 10.1016/0022-1694(83)90178-6 10.1007/s11430-014-4828-1 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2016.03.030 |
DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 35 |
ExternalDocumentID | 10_1016_j_jhydrol_2016_03_030 S0022169416301354 |
GeographicLocations | China, People's Rep., Xizang, Tibetan Plateau China |
GeographicLocations_xml | – name: China, People's Rep., Xizang, Tibetan Plateau – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD EFKBS FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-a497t-b4e9c9389cb74c8cb5a5a5d5dc24baba794e05aa38a3ba3934bc42401c65021d3 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 02:01:12 EDT 2025 Mon Jul 21 11:05:35 EDT 2025 Fri Jul 11 01:45:01 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 03:07:34 EDT 2025 Fri Feb 23 02:26:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nam Co Lake Lake expansion Tibetan Plateau Lake evaporation CRLE model Wind speed |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a497t-b4e9c9389cb74c8cb5a5a5d5dc24baba794e05aa38a3ba3934bc42401c65021d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1787979249 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000414526 proquest_miscellaneous_1816062758 proquest_miscellaneous_1787979249 crossref_primary_10_1016_j_jhydrol_2016_03_030 crossref_citationtrail_10_1016_j_jhydrol_2016_03_030 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2016_03_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 2016-06-00 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Yao, Xie, Wang, Yang (b0380) 2015; 131 Szilagyi (b0230) 2007; 34 Rosenberry, Winter, Buso, Likens (b0205) 2007; 340 Wang, Zhu, Daut, Ju, Lin, Wang, Zhen (b0275) 2009; 10 Wu, Duan, Liu, Mao, Ren, Bao, He, Liu, Hu (b0285) 2015; 2 Xie, Zhu, Yuan (b0305) 2015; 29 Li, Li, Pu (b0105) 2001; 13 Lei, Yao, Bird, Yang, Zhai, Sheng (b0095) 2013; 483 Rotstayn, Roderick, Farquhar (b0210) 2006; 33 Szilagyi (b0240) 2015; 51 Zhang, Yao, Xie, Qin, Ye, Dai, Guo (b0370) 2014; 119 Hargreaves (b0055) 1975; 18 Verburg, Antenucci (b0260) 2010; 115 Vallet-Coulomba, Legessea, Gassea, Travic, Chernet (b0255) 2001; 245 Lei, Yao, Yi, Wang, Sheng, Li, Joswiak (b0100) 2012; 58 Ma, Yi, Wu (b0145) 2012; 34 Cheng, Wu (b0035) 2007; 112 Ma, Zhang, Xu, Szilagyi (b0135) 2015; 120 Zhang, Ren, Yin, Lin, Zheng (b0385) 2009; 114 Yang, Wu, Qin, Lin, Tang, Chen (b0320) 2014; 112 Yao, Thompson, Yang, Yu, Gao, Guo, Yang, Duan, Zhao, Xu, Pu, Lu, Xiang, Kattel, Joswiak (b0325) 2012; 2 Zhang, Wu, Lei, Li, Liu, Chen, Wang (b0360) 2013; 39 Biermann, Babel, Ma, Chen, Thiem, Ma, Foken (b0010) 2014; 116 Gerken, Biermann, Babel, Herzog, Ma, Foken, Graf (b0050) 2014; 117 Xu, Yu, Liu, Haginoya, Ishigooka, Kuwagata, Hara, Yasunari (b0315) 2009; 3 McMahon, Peel, Lowe, Srikanthan, McVicar (b0160) 2013; 17 Xiong, Liao, Xu (b0310) 2012; 51 Song, Huang, Richards, Ke, Phan (b0225) 2014; 50 Chen, Yang, He, Qin, Shi, Du, He (b0030) 2011; 116 Kohler, M., Nordenson, T., Fox, W., 1955. Evaporation from Pans and Lakes: US Weather Bureau Research Paper 38. US Weather Bureau, Washington, DC. Morton (b0170) 1983; 66 Kropáček, Braun, Kang, Feng, Ye, Hochschild (b0080) 2012; 17 Bouchet (b0015) 1963; 62 Szilagyi, Szollosi-Nagy (b0245) 2010 Roderick, Hobbins, Farquhar (b0200) 2009; 3 Majidi, Alizadeh, Farid, Vazifedoust (b0150) 2015; 29 Neuwirth (b0185) 1973 Zhang, Wu, Zhu, Wang, Li, Chen (b0350) 2011; 405 Zhang, Liu, Tang, Yang (b0390) 2007; 112 Zhang, Yao, Ma (b0345) 2011; 3 Brutsaert (b0020) 1982 Lapworth (b0085) 1965; 19 Lim, Roderick, Hobbins, Wong, Farquhar (b0115) 2013; 182–183 Wu, Zhu (b0295) 2008; 18 Zhu, Xie, Wu (b0405) 2010; 55 Liu, Feng, Sun, Wang, Xu (b0125) 2015; 58 Andersen, Jobson (b0005) 1982; 18 Sadek, Shahin, Stigter (b0215) 1997; 56 Shao, Zhu, Meng, Zheng (b0220) 2007; 26 Yin, Wu, Zhao, Zheng, Pan (b0335) 2013; 23 Ma, Zhang, Szilagyi, Guo, Zhai, Gao (b0130) 2015; 51 Ma, Yang, Duan, Jiang, Wang, Feng, Li, Kong, Xue, Wu, Li (b0140) 2011; 54 Makkink (b0155) 1957; 11 Penman (b0190) 1948; 193 Kahler, Brutsaert (b0070) 2006; 42 Meng, Shi, Wang, Liu (b0165) 2011; 57 Lei, Yang, Wang, Sheng, Bird, Zhang, Tian (b0090) 2014; 125 Zhang, Yao, Xie, Zhang, Zhu (b0375) 2014; 59 Yu, Liu, Xu, Wang (b0340) 2011; 64 Winter, Rosenberry, Sturrock (b0280) 1995; 31 He, Yang (b0060) 2011 Turc (b0250) 1961; 12 Wang, Ma, Chen, Ma, Su, Menenti (b0270) 2015; 120 Xie, Zhu (b0300) 2013; 27 Zhang, Yao, Xie, Kang, Lei (b0365) 2013; 40 Wan, Xiao, Feng, Li, Ma, Duan, Zhao (b0265) 2014; 59 Huntington (b0065) 2006; 319 Morton (b0180) 1986; 25 Yin, Wu, Dai (b0330) 2010; 55 Szilagyi (b0235) 2008; 348 Gao, Li, Ruby Leung, Chen, Xu (b0045) 2015; 10 Zhang, Xie, Kang, Yi, Ackley (b0355) 2011; 115 Zhou, Kang, Chen, Joswiak (b0400) 2013; 491 Ek, Mitchell, Lin, Rogers, Grunmann, Koren, Gayno, Tarpley (b0040) 2003; 108 Morton (b0175) 1983; 66 Chen, Kang, Zhang, You (b0025) 2009; 27 Riley (b0195) 1966; 2 Zhou, Wang, Zhang, Guo, Li, Liu (b0395) 2015; 51 Wu, Zheng, Zhang, Chen, Lei (b0290) 2014; 15 Li, Lyu, Ao, Wen, Zhao, Wang (b0110) 2015; 155 Lin, Shen, Zhang, Li (b0120) 2012; 28 Zhang (10.1016/j.jhydrol.2016.03.030_b0385) 2009; 114 Cheng (10.1016/j.jhydrol.2016.03.030_b0035) 2007; 112 Lei (10.1016/j.jhydrol.2016.03.030_b0100) 2012; 58 Li (10.1016/j.jhydrol.2016.03.030_b0105) 2001; 13 Li (10.1016/j.jhydrol.2016.03.030_b0110) 2015; 155 Wang (10.1016/j.jhydrol.2016.03.030_b0270) 2015; 120 Roderick (10.1016/j.jhydrol.2016.03.030_b0200) 2009; 3 Zhang (10.1016/j.jhydrol.2016.03.030_b0370) 2014; 119 Hargreaves (10.1016/j.jhydrol.2016.03.030_b0055) 1975; 18 Neuwirth (10.1016/j.jhydrol.2016.03.030_b0185) 1973 Morton (10.1016/j.jhydrol.2016.03.030_b0175) 1983; 66 Zhou (10.1016/j.jhydrol.2016.03.030_b0400) 2013; 491 Vallet-Coulomba (10.1016/j.jhydrol.2016.03.030_b0255) 2001; 245 He (10.1016/j.jhydrol.2016.03.030_b0060) 2011 Wu (10.1016/j.jhydrol.2016.03.030_b0290) 2014; 15 Zhang (10.1016/j.jhydrol.2016.03.030_b0365) 2013; 40 Biermann (10.1016/j.jhydrol.2016.03.030_b0010) 2014; 116 Verburg (10.1016/j.jhydrol.2016.03.030_b0260) 2010; 115 Kropáček (10.1016/j.jhydrol.2016.03.030_b0080) 2012; 17 Szilagyi (10.1016/j.jhydrol.2016.03.030_b0240) 2015; 51 Ma (10.1016/j.jhydrol.2016.03.030_b0140) 2011; 54 Majidi (10.1016/j.jhydrol.2016.03.030_b0150) 2015; 29 Yin (10.1016/j.jhydrol.2016.03.030_b0335) 2013; 23 Xie (10.1016/j.jhydrol.2016.03.030_b0305) 2015; 29 Ma (10.1016/j.jhydrol.2016.03.030_b0145) 2012; 34 Sadek (10.1016/j.jhydrol.2016.03.030_b0215) 1997; 56 Makkink (10.1016/j.jhydrol.2016.03.030_b0155) 1957; 11 Zhang (10.1016/j.jhydrol.2016.03.030_b0345) 2011; 3 Lei (10.1016/j.jhydrol.2016.03.030_b0090) 2014; 125 Chen (10.1016/j.jhydrol.2016.03.030_b0030) 2011; 116 Riley (10.1016/j.jhydrol.2016.03.030_b0195) 1966; 2 Xiong (10.1016/j.jhydrol.2016.03.030_b0310) 2012; 51 Zhang (10.1016/j.jhydrol.2016.03.030_b0355) 2011; 115 McMahon (10.1016/j.jhydrol.2016.03.030_b0160) 2013; 17 Lim (10.1016/j.jhydrol.2016.03.030_b0115) 2013; 182–183 Lapworth (10.1016/j.jhydrol.2016.03.030_b0085) 1965; 19 Zhang (10.1016/j.jhydrol.2016.03.030_b0390) 2007; 112 Shao (10.1016/j.jhydrol.2016.03.030_b0220) 2007; 26 Morton (10.1016/j.jhydrol.2016.03.030_b0170) 1983; 66 Wang (10.1016/j.jhydrol.2016.03.030_b0275) 2009; 10 Winter (10.1016/j.jhydrol.2016.03.030_b0280) 1995; 31 Wu (10.1016/j.jhydrol.2016.03.030_b0285) 2015; 2 Zhang (10.1016/j.jhydrol.2016.03.030_b0375) 2014; 59 Brutsaert (10.1016/j.jhydrol.2016.03.030_b0020) 1982 Huntington (10.1016/j.jhydrol.2016.03.030_b0065) 2006; 319 Lei (10.1016/j.jhydrol.2016.03.030_b0095) 2013; 483 Lin (10.1016/j.jhydrol.2016.03.030_b0120) 2012; 28 Morton (10.1016/j.jhydrol.2016.03.030_b0180) 1986; 25 Turc (10.1016/j.jhydrol.2016.03.030_b0250) 1961; 12 Ma (10.1016/j.jhydrol.2016.03.030_b0130) 2015; 51 Andersen (10.1016/j.jhydrol.2016.03.030_b0005) 1982; 18 Kahler (10.1016/j.jhydrol.2016.03.030_b0070) 2006; 42 Yao (10.1016/j.jhydrol.2016.03.030_b0325) 2012; 2 Szilagyi (10.1016/j.jhydrol.2016.03.030_b0230) 2007; 34 Bouchet (10.1016/j.jhydrol.2016.03.030_b0015) 1963; 62 Ma (10.1016/j.jhydrol.2016.03.030_b0135) 2015; 120 Rotstayn (10.1016/j.jhydrol.2016.03.030_b0210) 2006; 33 Gao (10.1016/j.jhydrol.2016.03.030_b0045) 2015; 10 Wan (10.1016/j.jhydrol.2016.03.030_b0265) 2014; 59 Zhou (10.1016/j.jhydrol.2016.03.030_b0395) 2015; 51 Ek (10.1016/j.jhydrol.2016.03.030_b0040) 2003; 108 Chen (10.1016/j.jhydrol.2016.03.030_b0025) 2009; 27 Yin (10.1016/j.jhydrol.2016.03.030_b0330) 2010; 55 Song (10.1016/j.jhydrol.2016.03.030_b0225) 2014; 50 Rosenberry (10.1016/j.jhydrol.2016.03.030_b0205) 2007; 340 Gerken (10.1016/j.jhydrol.2016.03.030_b0050) 2014; 117 10.1016/j.jhydrol.2016.03.030_b0075 Meng (10.1016/j.jhydrol.2016.03.030_b0165) 2011; 57 Yang (10.1016/j.jhydrol.2016.03.030_b0320) 2014; 112 Yu (10.1016/j.jhydrol.2016.03.030_b0340) 2011; 64 Zhang (10.1016/j.jhydrol.2016.03.030_b0360) 2013; 39 Szilagyi (10.1016/j.jhydrol.2016.03.030_b0235) 2008; 348 Zhang (10.1016/j.jhydrol.2016.03.030_b0350) 2011; 405 Zhang (10.1016/j.jhydrol.2016.03.030_b0380) 2015; 131 Zhu (10.1016/j.jhydrol.2016.03.030_b0405) 2010; 55 Wu (10.1016/j.jhydrol.2016.03.030_b0295) 2008; 18 Xu (10.1016/j.jhydrol.2016.03.030_b0315) 2009; 3 Szilagyi (10.1016/j.jhydrol.2016.03.030_b0245) 2010 Xie (10.1016/j.jhydrol.2016.03.030_b0300) 2013; 27 Penman (10.1016/j.jhydrol.2016.03.030_b0190) 1948; 193 Liu (10.1016/j.jhydrol.2016.03.030_b0125) 2015; 58 |
References_xml | – volume: 119 start-page: 8552 year: 2014 end-page: 8567 ident: b0370 article-title: Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data publication-title: J. Geophys. Res. Atmos. – volume: 26 start-page: 1633 year: 2007 end-page: 1645 ident: b0220 article-title: Characteristics of the change of major lakes on the Qinghai-Tibet Plateau in the last 25 years publication-title: Geol. Bull. China – volume: 117 start-page: 149 year: 2014 end-page: 167 ident: b0050 article-title: A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau publication-title: Theor. Appl. Climatol. – volume: 245 start-page: 1 year: 2001 end-page: 18 ident: b0255 article-title: Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia) publication-title: J. Hydrol. – volume: 18 start-page: 630 year: 1982 end-page: 636 ident: b0005 article-title: Comparison of techniques for estimating annual lake evaporation using climatological data publication-title: Water Resour. Res. – reference: Kohler, M., Nordenson, T., Fox, W., 1955. Evaporation from Pans and Lakes: US Weather Bureau Research Paper 38. US Weather Bureau, Washington, DC. – volume: 18 start-page: 177 year: 2008 end-page: 189 ident: b0295 article-title: The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000 publication-title: J. Geogr. Sci. – volume: 51 start-page: 8060 year: 2015 end-page: 8086 ident: b0395 article-title: Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling publication-title: Water Resour. Res. – volume: 51 start-page: 1265 year: 2012 end-page: 1275 ident: b0310 article-title: Reconstruction of a daily large-pan evaporation dataset over China publication-title: J. Appl. Meteorol. Climatol. – volume: 120 start-page: 1638 year: 2015 end-page: 1657 ident: b0135 article-title: Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: comparisons and implications publication-title: J. Geophys. Res. Biogeosci. – year: 1973 ident: b0185 article-title: Experiences with evaporation pans at a shallow steppe-lake in Austria publication-title: Proceedings of the International Symposium on the Hydrology of Lakes, Helsinki, 23–27 July 1973 – volume: 491 start-page: 89 year: 2013 end-page: 99 ident: b0400 article-title: Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau publication-title: J. Hydrol. – volume: 39 start-page: 224 year: 2013 end-page: 233 ident: b0360 article-title: Monitoring changes of snow cover, lake and vegetation phenology in Nam Co Lake Basin (Tibetan Plateau) using remote sensing (2000–2009) publication-title: J. Great Lakes Res. – volume: 3 start-page: 746 year: 2009 end-page: 760 ident: b0200 article-title: Pan evaporation trends and the terrestrial water balance. I. Principles and observations publication-title: Geogr. Compass – volume: 131 start-page: 148 year: 2015 end-page: 157 ident: b0380 article-title: An inventory of glacial lakes in the Third Pole region and their changes in response to global warming publication-title: Glob. Planet. Change – volume: 54 start-page: 283 year: 2011 end-page: 289 ident: b0140 article-title: China’s lakes at present: number, area and spatial distribution publication-title: Sci. China Earth Sci. – volume: 55 start-page: 1294 year: 2010 end-page: 1303 ident: b0405 article-title: Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau publication-title: Chin. Sci. Bull. – volume: 59 start-page: 1021 year: 2014 end-page: 1035 ident: b0265 article-title: Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data publication-title: Chin. Sci. Bull. – volume: 17 start-page: 3 year: 2012 end-page: 11 ident: b0080 article-title: Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 40 start-page: 2125 year: 2013 end-page: 2130 ident: b0365 article-title: Increased mass over the Tibetan Plateau: from lakes or glaciers? publication-title: Geophys. Res. Lett. – volume: 340 start-page: 149 year: 2007 end-page: 166 ident: b0205 article-title: Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA publication-title: J. Hydrol. – volume: 57 start-page: 525 year: 2011 end-page: 534 ident: b0165 article-title: High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000–2010 publication-title: Chin. Sci. Bull. – volume: 348 start-page: 564 year: 2008 end-page: 565 ident: b0235 article-title: Comment on “Comparison of 15 evaporation models applied to a small mountain lake in the northeastern USA” by D.O. Rosenberry, T.C. Winter, D.C. Buso, and G.E. Likens [J. Hydrol. 340(3–4) (2007) 149–166] publication-title: J. Hydrol. – volume: 28 start-page: 231 year: 2012 end-page: 237 ident: b0120 article-title: Correlation degree analysis of meteorological elements and dynamic remote sensing of alpine lakes in Naqu region of Tibet in the past 35 publication-title: J. Ecol. Rural Environ. – year: 2010 ident: b0245 article-title: Recursive Streamflow Forecasting: A State-Space Approach – volume: 112 start-page: 79 year: 2014 end-page: 91 ident: b0320 article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review publication-title: Glob. Planet. Change – start-page: 299 year: 1982 ident: b0020 article-title: Evaporation into the Atmosphere: Theory, History and Applications – volume: 27 start-page: 641 year: 2009 end-page: 647 ident: b0025 article-title: Glaciers and lake change in response to climate change in the Nam Co basin publication-title: Tibet. J. Mount. Sci. – volume: 58 start-page: 177 year: 2012 end-page: 184 ident: b0100 article-title: Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau publication-title: J. Glaciol. – volume: 51 start-page: 9367 year: 2015 end-page: 9377 ident: b0240 article-title: Complementary-relationship-based 30-year normals (1981–2010) of monthly latent heat fluxes across the contiguous United States publication-title: Water Resour. Res. – volume: 115 year: 2010 ident: b0260 article-title: Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika publication-title: J. Geophys. Res. – volume: 116 start-page: 301 year: 2014 end-page: 316 ident: b0010 article-title: Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau publication-title: Theor. Appl. Climatol. – volume: 193 start-page: 120 year: 1948 end-page: 145 ident: b0190 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proc. R. Soc. Lond. Ser. A – volume: 66 start-page: 77 year: 1983 end-page: 100 ident: b0175 article-title: Operational estimates of lake evaporation publication-title: J. Hydrol. – volume: 125 start-page: 281 year: 2014 end-page: 290 ident: b0090 article-title: Response of inland lake dynamics over the Tibetan Plateau to climate change publication-title: Climate Change – volume: 319 start-page: 83 year: 2006 end-page: 95 ident: b0065 article-title: Evidence for intensification of the global water cycle: review and synthesis publication-title: J. Hydrol. – volume: 13 start-page: 227 year: 2001 end-page: 232 ident: b0105 article-title: Estimates of plateau lake evaporation: a case study of Zige Tang Co publication-title: J. Lake Sci. – volume: 11 start-page: 277 year: 1957 end-page: 288 ident: b0155 article-title: Testing the Penman formula by means of lysimeters publication-title: J. Inst. Water Eng. – volume: 23 start-page: 195 year: 2013 end-page: 207 ident: b0335 article-title: Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau publication-title: J. Geogr. Sci. – volume: 34 start-page: 81 year: 2012 end-page: 88 ident: b0145 article-title: Lake surface expansion of Nam Co during 1970–2009: evidence of satellite remote sensing and cause analysis publication-title: J. Glaciol. Geocryol. – volume: 62 start-page: 134 year: 1963 end-page: 142 ident: b0015 article-title: Evapotranspiration réelle et potentielle, signification climatique publication-title: Int. Assoc. Sci. Hydrol. Publ. – volume: 3 start-page: 1 year: 2009 end-page: 5 ident: b0315 article-title: The implication of heat and water balance changes in a lake basin on the Tibetan Plateau publication-title: Hydrol. Res. Lett. – volume: 12 start-page: 13 year: 1961 end-page: 49 ident: b0250 article-title: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date publication-title: Ann Agron. – volume: 120 start-page: 12327 year: 2015 end-page: 12344 ident: b0270 article-title: Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau publication-title: J. Geophys. Res. Atmos. – volume: 29 start-page: 2164 year: 2015 end-page: 2177 ident: b0305 article-title: Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012) publication-title: Hydrol. Process. – volume: 59 start-page: 3010 year: 2014 end-page: 3021 ident: b0375 article-title: Lakes’ state and abundance across the Tibetan Plateau publication-title: Chin. Sci. Bull. – volume: 55 start-page: 3329 year: 2010 end-page: 3337 ident: b0330 article-title: Determining factors in potential evapotranspiration changes over China in the period 1971–2008 publication-title: Chin. Sci. Bull. – volume: 3 start-page: 463 year: 2011 end-page: 467 ident: b0345 article-title: Climatic changes have led to significant expansion of endorheic lakes in Xizang (Tibet) since 1995 publication-title: Sci. Cold Arid Reg. – volume: 10 start-page: 034013 year: 2015 ident: b0045 article-title: Aridity changes in the Tibetan Plateau in a warming climate publication-title: Environ. Res. Lett. – volume: 31 start-page: 983 year: 1995 end-page: 993 ident: b0280 article-title: Evaluation of 11 equations for determining evaporation for a Small Lake in the North Central United States publication-title: Water Resour. Res. – volume: 2 start-page: 100 year: 2015 end-page: 116 ident: b0285 article-title: Tibetan Plateau climate dynamics: recent research progress and outlook publication-title: Nat. Sci. Rev. – volume: 2 start-page: 223 year: 1966 end-page: 226 ident: b0195 article-title: The heat balance of class A evaporation pan publication-title: Water Resour. Res. – volume: 10 start-page: 149 year: 2009 end-page: 158 ident: b0275 article-title: Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China publication-title: Limnol. – volume: 58 start-page: 317 year: 2015 end-page: 328 ident: b0125 article-title: Eddy covariance measurements of water vapor and CO publication-title: Sci. China Earth Sci. – volume: 155 start-page: 13 year: 2015 end-page: 25 ident: b0110 article-title: Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau publication-title: Atmos. Res. – volume: 56 start-page: 57 year: 1997 end-page: 66 ident: b0215 article-title: Evaporation from the reservoir of the High Aswan Dam, Egypt: a new comparison of relevant methods with limited data publication-title: Theor. Appl. Climatol. – volume: 33 year: 2006 ident: b0210 article-title: A simple pan-evaporation model for analysis of climate simulations: evaluation over Australia publication-title: Geophys. Res. Lett. – volume: 114 year: 2009 ident: b0385 article-title: Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004 publication-title: J. Geophys. Res. – volume: 17 start-page: 1331 year: 2013 end-page: 1363 ident: b0160 article-title: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis publication-title: Hydrol. Earth Syst. Sci. – volume: 19 start-page: 163 year: 1965 end-page: 181 ident: b0085 article-title: Evaporation from a reservoir near London publication-title: J. Inst. Water Environ. Manage. – volume: 42 start-page: W05413 year: 2006 ident: b0070 article-title: Complementary relationship between daily evaporation in the environment and pan evaporation publication-title: Water Resour. Res. – volume: 112 year: 2007 ident: b0035 article-title: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau publication-title: J. Geophys. Res. – volume: 51 start-page: 1069 year: 2015 end-page: 1083 ident: b0130 article-title: Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau publication-title: Water Resour. Res. – volume: 34 year: 2007 ident: b0230 article-title: On the inherent asymmetric nature of the complementary relationship of evaporation publication-title: Geophys. Res. Lett. – volume: 15 start-page: 1312 year: 2014 end-page: 1322 ident: b0290 article-title: Long-term changes of lake level and water budget in the Nam Co lake basin, central Tibetan Plateau publication-title: J. Hydrometeorol. – volume: 18 start-page: 980 year: 1975 end-page: 984 ident: b0055 article-title: Moisture availability and crop production publication-title: Trans. ASAE – volume: 182–183 start-page: 314 year: 2013 end-page: 331 ident: b0115 article-title: The energy balance of a US Class A evaporation pan publication-title: Agric. Forest Meteorol. – volume: 25 start-page: 371 year: 1986 end-page: 387 ident: b0180 article-title: Practical estimates of lake evaporation publication-title: J. Clim. Appl. Meteorol. – volume: 116 year: 2011 ident: b0030 article-title: Improving land surface temperature modeling for dry land of China publication-title: J. Geophys. Res. Atmos. – volume: 29 start-page: 3711 year: 2015 end-page: 3733 ident: b0150 article-title: Estimating evaporation from lakes and reservoirs under limited data condition in a semi-arid region publication-title: Water Resour. Manage. – volume: 2 start-page: 663 year: 2012 end-page: 667 ident: b0325 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nat. Clim. Change – volume: 27 start-page: 3685 year: 2013 end-page: 3693 ident: b0300 article-title: Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009) publication-title: Hydrol. Process. – year: 2011 ident: b0060 article-title: China Meteorological Forcing Dataset – volume: 405 start-page: 161 year: 2011 end-page: 170 ident: b0350 article-title: Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau publication-title: J. Hydrol. – volume: 108 year: 2003 ident: b0040 article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model publication-title: J. Geophys. Res. – volume: 483 start-page: 61 year: 2013 end-page: 67 ident: b0095 article-title: Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution publication-title: J. Hydrol. – volume: 115 start-page: 1733 year: 2011 end-page: 1742 ident: b0355 article-title: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009) publication-title: Remote Sens. Environ. – volume: 66 start-page: 1 year: 1983 end-page: 76 ident: b0170 article-title: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology publication-title: J. Hydrol. – volume: 112 year: 2007 ident: b0390 article-title: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau publication-title: J. Geophys. Res. – volume: 50 start-page: 3170 year: 2014 end-page: 3186 ident: b0225 article-title: Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? publication-title: Water Resour. Res. – volume: 64 start-page: 1169 year: 2011 end-page: 1176 ident: b0340 article-title: Evaporation and energy balance estimates over a large inland lake in the Tibet-Himalaya publication-title: Environ. Earth Sci. – volume: 120 start-page: 1638 issue: 8 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0135 article-title: Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: comparisons and implications publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2015JG003006 – volume: 3 start-page: 463 issue: 6 year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0345 article-title: Climatic changes have led to significant expansion of endorheic lakes in Xizang (Tibet) since 1995 publication-title: Sci. Cold Arid Reg. – volume: 18 start-page: 177 issue: 2 year: 2008 ident: 10.1016/j.jhydrol.2016.03.030_b0295 article-title: The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000 publication-title: J. Geogr. Sci. doi: 10.1007/s11442-008-0177-3 – volume: 28 start-page: 231 year: 2012 ident: 10.1016/j.jhydrol.2016.03.030_b0120 article-title: Correlation degree analysis of meteorological elements and dynamic remote sensing of alpine lakes in Naqu region of Tibet in the past 35years publication-title: J. Ecol. Rural Environ. – volume: 51 start-page: 8060 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0395 article-title: Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling publication-title: Water Resour. Res. doi: 10.1002/2014WR015846 – volume: 56 start-page: 57 issue: 1 year: 1997 ident: 10.1016/j.jhydrol.2016.03.030_b0215 article-title: Evaporation from the reservoir of the High Aswan Dam, Egypt: a new comparison of relevant methods with limited data publication-title: Theor. Appl. Climatol. doi: 10.1007/BF00863783 – volume: 405 start-page: 161 issue: 1–2 year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0350 article-title: Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.05.018 – volume: 319 start-page: 83 issue: 1–4 year: 2006 ident: 10.1016/j.jhydrol.2016.03.030_b0065 article-title: Evidence for intensification of the global water cycle: review and synthesis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.07.003 – volume: 59 start-page: 3010 issue: 24 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0375 article-title: Lakes’ state and abundance across the Tibetan Plateau publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-014-0258-x – volume: 2 start-page: 100 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0285 article-title: Tibetan Plateau climate dynamics: recent research progress and outlook publication-title: Nat. Sci. Rev. doi: 10.1093/nsr/nwu045 – volume: 2 start-page: 223 issue: 2 year: 1966 ident: 10.1016/j.jhydrol.2016.03.030_b0195 article-title: The heat balance of class A evaporation pan publication-title: Water Resour. Res. doi: 10.1029/WR002i002p00223 – volume: 491 start-page: 89 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0400 article-title: Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.03.030 – volume: 117 start-page: 149 issue: 1–2 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0050 article-title: A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-0987-9 – volume: 31 start-page: 983 issue: 4 year: 1995 ident: 10.1016/j.jhydrol.2016.03.030_b0280 article-title: Evaluation of 11 equations for determining evaporation for a Small Lake in the North Central United States publication-title: Water Resour. Res. doi: 10.1029/94WR02537 – start-page: 299 year: 1982 ident: 10.1016/j.jhydrol.2016.03.030_b0020 – volume: 25 start-page: 371 issue: 3 year: 1986 ident: 10.1016/j.jhydrol.2016.03.030_b0180 article-title: Practical estimates of lake evaporation publication-title: J. Clim. Appl. Meteorol. doi: 10.1175/1520-0450(1986)025<0371:PEOLE>2.0.CO;2 – volume: 51 start-page: 9367 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0240 article-title: Complementary-relationship-based 30-year normals (1981–2010) of monthly latent heat fluxes across the contiguous United States publication-title: Water Resour. Res. doi: 10.1002/2015WR017693 – volume: 115 issue: D11 year: 2010 ident: 10.1016/j.jhydrol.2016.03.030_b0260 article-title: Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika publication-title: J. Geophys. Res. doi: 10.1029/2009JD012839 – volume: 34 issue: 2 year: 2007 ident: 10.1016/j.jhydrol.2016.03.030_b0230 article-title: On the inherent asymmetric nature of the complementary relationship of evaporation publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL028708 – volume: 64 start-page: 1169 issue: 4 year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0340 article-title: Evaporation and energy balance estimates over a large inland lake in the Tibet-Himalaya publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-0933-z – volume: 51 start-page: 1069 issue: 2 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0130 article-title: Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau publication-title: Water Resour. Res. doi: 10.1002/2014WR015493 – volume: 33 issue: 17 year: 2006 ident: 10.1016/j.jhydrol.2016.03.030_b0210 article-title: A simple pan-evaporation model for analysis of climate simulations: evaluation over Australia publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL027114 – volume: 112 start-page: 79 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0320 article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2013.12.001 – year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0060 – volume: 54 start-page: 283 issue: 2 year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0140 article-title: China’s lakes at present: number, area and spatial distribution publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-010-4052-6 – volume: 29 start-page: 2164 issue: 9 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0305 article-title: Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012) publication-title: Hydrol. Process. doi: 10.1002/hyp.10356 – volume: 29 start-page: 3711 issue: 10 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0150 article-title: Estimating evaporation from lakes and reservoirs under limited data condition in a semi-arid region publication-title: Water Resour. Manage. doi: 10.1007/s11269-015-1025-8 – volume: 116 start-page: 301 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0010 article-title: Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-0953-6 – volume: 3 start-page: 1 year: 2009 ident: 10.1016/j.jhydrol.2016.03.030_b0315 article-title: The implication of heat and water balance changes in a lake basin on the Tibetan Plateau publication-title: Hydrol. Res. Lett. doi: 10.3178/hrl.3.1 – volume: 119 start-page: 8552 issue: 14 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0370 article-title: Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014JD021615 – volume: 116 issue: D20 year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0030 article-title: Improving land surface temperature modeling for dry land of China publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2011JD015921 – volume: 340 start-page: 149 issue: 3–4 year: 2007 ident: 10.1016/j.jhydrol.2016.03.030_b0205 article-title: Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.03.018 – volume: 42 start-page: W05413 year: 2006 ident: 10.1016/j.jhydrol.2016.03.030_b0070 article-title: Complementary relationship between daily evaporation in the environment and pan evaporation publication-title: Water Resour. Res. doi: 10.1029/2005WR004541 – volume: 58 start-page: 177 issue: 207 year: 2012 ident: 10.1016/j.jhydrol.2016.03.030_b0100 article-title: Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau publication-title: J. Glaciol. doi: 10.3189/2012JoG11J025 – volume: 114 issue: D15 year: 2009 ident: 10.1016/j.jhydrol.2016.03.030_b0385 article-title: Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004 publication-title: J. Geophys. Res. doi: 10.1029/2009JD011753 – volume: 34 start-page: 81 year: 2012 ident: 10.1016/j.jhydrol.2016.03.030_b0145 article-title: Lake surface expansion of Nam Co during 1970–2009: evidence of satellite remote sensing and cause analysis publication-title: J. Glaciol. Geocryol. – ident: 10.1016/j.jhydrol.2016.03.030_b0075 – volume: 66 start-page: 1 issue: 1–4 year: 1983 ident: 10.1016/j.jhydrol.2016.03.030_b0170 article-title: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology publication-title: J. Hydrol. doi: 10.1016/0022-1694(83)90177-4 – volume: 348 start-page: 564 issue: 3–4 year: 2008 ident: 10.1016/j.jhydrol.2016.03.030_b0235 article-title: Comment on “Comparison of 15 evaporation models applied to a small mountain lake in the northeastern USA” by D.O. Rosenberry, T.C. Winter, D.C. Buso, and G.E. Likens [J. Hydrol. 340(3–4) (2007) 149–166] publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.09.049 – volume: 125 start-page: 281 issue: 2 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0090 article-title: Response of inland lake dynamics over the Tibetan Plateau to climate change publication-title: Climate Change doi: 10.1007/s10584-014-1175-3 – volume: 26 start-page: 1633 year: 2007 ident: 10.1016/j.jhydrol.2016.03.030_b0220 article-title: Characteristics of the change of major lakes on the Qinghai-Tibet Plateau in the last 25 years publication-title: Geol. Bull. China – volume: 51 start-page: 1265 issue: 7 year: 2012 ident: 10.1016/j.jhydrol.2016.03.030_b0310 article-title: Reconstruction of a daily large-pan evaporation dataset over China publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-11-0123.1 – volume: 115 start-page: 1733 issue: 7 year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0355 article-title: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.03.005 – volume: 120 start-page: 12327 issue: 24 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0270 article-title: Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023863 – volume: 62 start-page: 134 year: 1963 ident: 10.1016/j.jhydrol.2016.03.030_b0015 article-title: Evapotranspiration réelle et potentielle, signification climatique publication-title: Int. Assoc. Sci. Hydrol. Publ. – volume: 17 start-page: 3 year: 2012 ident: 10.1016/j.jhydrol.2016.03.030_b0080 article-title: Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2011.10.001 – volume: 27 start-page: 641 year: 2009 ident: 10.1016/j.jhydrol.2016.03.030_b0025 article-title: Glaciers and lake change in response to climate change in the Nam Co basin publication-title: Tibet. J. Mount. Sci. – volume: 182–183 start-page: 314 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0115 article-title: The energy balance of a US Class A evaporation pan publication-title: Agric. Forest Meteorol. doi: 10.1016/j.agrformet.2013.07.001 – volume: 13 start-page: 227 year: 2001 ident: 10.1016/j.jhydrol.2016.03.030_b0105 article-title: Estimates of plateau lake evaporation: a case study of Zige Tang Co publication-title: J. Lake Sci. doi: 10.18307/20010305 – volume: 18 start-page: 630 issue: 3 year: 1982 ident: 10.1016/j.jhydrol.2016.03.030_b0005 article-title: Comparison of techniques for estimating annual lake evaporation using climatological data publication-title: Water Resour. Res. doi: 10.1029/WR018i003p00630 – volume: 3 start-page: 746 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2016.03.030_b0200 article-title: Pan evaporation trends and the terrestrial water balance. I. Principles and observations publication-title: Geogr. Compass doi: 10.1111/j.1749-8198.2008.00213.x – volume: 155 start-page: 13 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0110 article-title: Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.11.019 – volume: 27 start-page: 3685 issue: 25 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0300 article-title: Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009) publication-title: Hydrol. Process. doi: 10.1002/hyp.9487 – volume: 40 start-page: 2125 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0365 article-title: Increased mass over the Tibetan Plateau: from lakes or glaciers? publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50462 – volume: 15 start-page: 1312 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0290 article-title: Long-term changes of lake level and water budget in the Nam Co lake basin, central Tibetan Plateau publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-13-093.1 – volume: 131 start-page: 148 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0380 article-title: An inventory of glacial lakes in the Third Pole region and their changes in response to global warming publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2015.05.013 – volume: 483 start-page: 61 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0095 article-title: Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.01.003 – volume: 55 start-page: 3329 issue: 29 year: 2010 ident: 10.1016/j.jhydrol.2016.03.030_b0330 article-title: Determining factors in potential evapotranspiration changes over China in the period 1971–2008 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-010-3289-y – volume: 12 start-page: 13 year: 1961 ident: 10.1016/j.jhydrol.2016.03.030_b0250 article-title: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date publication-title: Ann Agron. – volume: 23 start-page: 195 issue: 2 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0335 article-title: Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau publication-title: J. Geogr. Sci. doi: 10.1007/s11442-013-1003-0 – year: 1973 ident: 10.1016/j.jhydrol.2016.03.030_b0185 article-title: Experiences with evaporation pans at a shallow steppe-lake in Austria – volume: 193 start-page: 120 year: 1948 ident: 10.1016/j.jhydrol.2016.03.030_b0190 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.1948.0037 – volume: 245 start-page: 1 issue: 1–4 year: 2001 ident: 10.1016/j.jhydrol.2016.03.030_b0255 article-title: Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia) publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00341-9 – volume: 112 issue: D12110 year: 2007 ident: 10.1016/j.jhydrol.2016.03.030_b0390 article-title: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau publication-title: J. Geophys. Res. – volume: 112 issue: F2 year: 2007 ident: 10.1016/j.jhydrol.2016.03.030_b0035 article-title: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau publication-title: J. Geophys. Res. doi: 10.1029/2006JF000631 – volume: 59 start-page: 1021 issue: 10 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0265 article-title: Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-014-0128-6 – year: 2010 ident: 10.1016/j.jhydrol.2016.03.030_b0245 – volume: 2 start-page: 663 year: 2012 ident: 10.1016/j.jhydrol.2016.03.030_b0325 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nat. Clim. Change doi: 10.1038/nclimate1580 – volume: 50 start-page: 3170 year: 2014 ident: 10.1016/j.jhydrol.2016.03.030_b0225 article-title: Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? publication-title: Water Resour. Res. doi: 10.1002/2013WR014724 – volume: 57 start-page: 525 issue: 5 year: 2011 ident: 10.1016/j.jhydrol.2016.03.030_b0165 article-title: High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000–2010 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-011-4849-5 – volume: 17 start-page: 1331 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0160 article-title: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-1331-2013 – volume: 55 start-page: 1294 issue: 13 year: 2010 ident: 10.1016/j.jhydrol.2016.03.030_b0405 article-title: Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-010-0015-8 – volume: 39 start-page: 224 year: 2013 ident: 10.1016/j.jhydrol.2016.03.030_b0360 article-title: Monitoring changes of snow cover, lake and vegetation phenology in Nam Co Lake Basin (Tibetan Plateau) using remote sensing (2000–2009) publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2013.03.009 – volume: 18 start-page: 980 year: 1975 ident: 10.1016/j.jhydrol.2016.03.030_b0055 article-title: Moisture availability and crop production publication-title: Trans. ASAE doi: 10.13031/2013.36722 – volume: 108 issue: D22 year: 2003 ident: 10.1016/j.jhydrol.2016.03.030_b0040 article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model publication-title: J. Geophys. Res. doi: 10.1029/2002JD003296 – volume: 10 start-page: 034013 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0045 article-title: Aridity changes in the Tibetan Plateau in a warming climate publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/3/034013 – volume: 19 start-page: 163 year: 1965 ident: 10.1016/j.jhydrol.2016.03.030_b0085 article-title: Evaporation from a reservoir near London publication-title: J. Inst. Water Environ. Manage. – volume: 10 start-page: 149 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2016.03.030_b0275 article-title: Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China publication-title: Limnol. doi: 10.1007/s10201-009-0266-8 – volume: 66 start-page: 77 year: 1983 ident: 10.1016/j.jhydrol.2016.03.030_b0175 article-title: Operational estimates of lake evaporation publication-title: J. Hydrol. doi: 10.1016/0022-1694(83)90178-6 – volume: 58 start-page: 317 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2016.03.030_b0125 article-title: Eddy covariance measurements of water vapor and CO2 fluxes above the Erhai Lake publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-014-4828-1 – volume: 11 start-page: 277 year: 1957 ident: 10.1016/j.jhydrol.2016.03.030_b0155 article-title: Testing the Penman formula by means of lysimeters publication-title: J. Inst. Water Eng. |
SSID | ssj0000334 |
Score | 2.5100162 |
Snippet | •Lake evaporation modeling without wind speed data.•CRLE model implicitly considers the wind effect via vapor transfer coefficient.•Evaporation decreasing was... Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 27 |
SubjectTerms | China Computer simulation CRLE model eddy covariance Evaporation Evaporation rate Freshwater Ground-based observation humidity Hydrology Lake evaporation Lake expansion Lakes Landscapes Marine meteorological data Nam Co Lake temperature Tibetan Plateau uncertainty vapors Wind speed |
Title | Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion |
URI | https://dx.doi.org/10.1016/j.jhydrol.2016.03.030 https://www.proquest.com/docview/1787979249 https://www.proquest.com/docview/1816062758 https://www.proquest.com/docview/2000414526 |
Volume | 537 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbSX0idNmwYVevWuZY291jEsDZs-lh4SyE2MZIV4u7GXZLd0L_3tmbHlhJa2gWIfbDMyYjSa-STNQ4j3kGOWV84nWBifgEl1gqqkJ8355kr0vtvQ_zIvZqfw8Sw_2xHTIRaG3Sqj7u91eqet45dx5OZ4Vdcc45tliuMwCxJSnXNOUIAJS_no552bR6o1DBnDmfouime8GC0uttVVyycQquhynbIz9J_t02-aujM_R0_E44gb5WHftadiJzTPxMNYwvxi-1zUhIlXcTzld1oB9wm4t7I9l3O8lNNWfsZvQdaNJMwnT2oXCBfKr0sCm7iR2FSyXl9L9jZkGmIKmSNJP68rueSG4QcpDt5beyFOjz6cTGdJrKOQIJjJOnEQjDeETLybgC-9y5GuKq98Bg4d0pQMaY6oS9QOtdHgPJClV57gW6Yq_VLsNm0TXglpstyBx4IISghZ6oj5itdk5-CM8WFPwMA962OSca51sbSDN9nCRqZbZrpNNd3pnhjdNlv1WTbua1AOQ2N_ERdLluC-pu-GobQ0lfh8BJvQbq6tIuVlJrwg_QdNqYous3P5dxqOfgLFtdtf_38334hH_NZ7pe2L3fXVJrwl_LN2B52AH4gHh8efZvMbFGsFxw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlUC6IpyhQMBIcsxvHTjY-9IAK1ZZuVxy2Um9m7LhqliVZdXeBvfSn-MHOJA4VCKiEVCWHKBlb1sxkHvY8GHutUkjSwroIMu0ipWMZgcjxSVK9uRycazb0j8bZ8Fh9OElPNtiPLheGwiqD7G9leiOtw5t-wGZ_XpaU45skgvIwM2RSmaoQWXno19_Qb1vsHrxDIr9Jkv33k71hFFoLRKD0YBlZ5bXTqKydHSiXO5sCXkVauERZsIBc6uMUQOYgLUgtlXUKlZ9waNEkopA47y12W6G4oLYJvYuruJJYStWVKKflXaUN9ae96dm6OK_pyENkTXFVir7-s0L8TTU0-m7_HrsbDFX-tsXFfbbhqwdsK_RMP1s_ZCUa4fPAQPwrutxtxe81r0_5GL7wvZqP4LPnZcXRyOST0no0RPnHGVq3sOJQFbxcLjiFNxIMUgH1H8fJy4LPaKD_jpKKNvMeseMbwe5jtlnVlX_CuE5SqxxkCJArn8QWqS3ICTxVVmvnt5nqsGdcqGpOzTVmpgtfm5qAdENIN7HEO95mvZ_D5m1Zj-sG5B1pzC_8aVD1XDf0VUdKg_8uHchA5evVwgiUlnpAHvA_YHKRNaWk87_DULqVEtQs_un_L_Ml2xpOjkZmdDA-fMbu0Jc2JO4521yer_wOGl9L-6Jhds4-3fTfdQl4FUIl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaporation+variability+of+Nam+Co+Lake+in+the+Tibetan+Plateau+and+its+role+in+recent+rapid+lake+expansion&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ma%2C+Ning&rft.au=Szilagyi%2C+Jozsef&rft.au=Niu%2C+Guo-Yue&rft.au=Zhang%2C+Yinsheng&rft.date=2016-06-01&rft.issn=0022-1694&rft.volume=537&rft.spage=27&rft.epage=35&rft_id=info:doi/10.1016%2Fj.jhydrol.2016.03.030&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |