Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy

The electronic properties of graphene nanoribbons grown on metal substrates are significantly masked by the ones of the supporting metal surface. Here, we introduce a novel approach to access the frontier states of armchair graphene nanoribbons (AGNRs). The in situ intercalation of Si at the AGNR/Au...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 17; no. 4; pp. 2197 - 2203
Main Authors Deniz, Okan, Sánchez-Sánchez, Carlos, Dumslaff, Tim, Feng, Xinliang, Narita, Akimitsu, Müllen, Klaus, Kharche, Neerav, Meunier, Vincent, Fasel, Roman, Ruffieux, Pascal
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electronic properties of graphene nanoribbons grown on metal substrates are significantly masked by the ones of the supporting metal surface. Here, we introduce a novel approach to access the frontier states of armchair graphene nanoribbons (AGNRs). The in situ intercalation of Si at the AGNR/Au(111) interface through surface alloying suppresses the strong contribution of the Au(111) surface state and allows for an unambiguous determination of the frontier electronic states of both wide and narrow band gap AGNRs. First-principles calculations provide insight into substrate induced screening effects, which result in a width-dependent band gap reduction for substrate-supported AGNRs. The strategy reported here provides a unique opportunity to elucidate the electronic properties of various kinds of graphene nanomaterials supported on metal substrates.
AbstractList The electronic properties of graphene nanoribbons grown on metal substrates are significantly masked by the ones of the supporting metal surface. Here, we introduce a novel approach to access the frontier states of armchair graphene nanoribbons (AGNRs). The in situ intercalation of Si at the AGNR/Au(111) interface through surface alloying suppresses the strong contribution of the Au(111) surface state and allows for an unambiguous determination of the frontier electronic states of both wide and narrow band gap AGNRs. First-principles calculations provide insight into substrate induced screening effects, which result in a width-dependent band gap reduction for substrate-supported AGNRs. The strategy reported here provides a unique opportunity to elucidate the electronic properties of various kinds of graphene nanomaterials supported on metal substrates.
Author Kharche, Neerav
Feng, Xinliang
Fasel, Roman
Deniz, Okan
Narita, Akimitsu
Ruffieux, Pascal
Sánchez-Sánchez, Carlos
Dumslaff, Tim
Meunier, Vincent
Müllen, Klaus
AuthorAffiliation Max Planck Institute for Polymer Research
Technische Universität Dresden
Applied Physics, and Astronomy, Rensselaer Polytechnic Institute
University of Bern
Empa, Swiss Federal Laboratories for Materials Science and Technology
Chair of Molecular Functional Materials, Department of Chemistry and Food Chemistry
Department of Chemistry and Biochemistry
Department of Physics
AuthorAffiliation_xml – name: Chair of Molecular Functional Materials, Department of Chemistry and Food Chemistry
– name: Empa, Swiss Federal Laboratories for Materials Science and Technology
– name: Max Planck Institute for Polymer Research
– name: Technische Universität Dresden
– name: Department of Physics
– name: University of Bern
– name: Applied Physics, and Astronomy, Rensselaer Polytechnic Institute
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Okan
  orcidid: 0000-0001-8634-8849
  surname: Deniz
  fullname: Deniz, Okan
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology
– sequence: 2
  givenname: Carlos
  orcidid: 0000-0001-8644-3766
  surname: Sánchez-Sánchez
  fullname: Sánchez-Sánchez, Carlos
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology
– sequence: 3
  givenname: Tim
  surname: Dumslaff
  fullname: Dumslaff, Tim
  organization: Max Planck Institute for Polymer Research
– sequence: 4
  givenname: Xinliang
  surname: Feng
  fullname: Feng, Xinliang
  organization: Technische Universität Dresden
– sequence: 5
  givenname: Akimitsu
  orcidid: 0000-0002-3625-522X
  surname: Narita
  fullname: Narita, Akimitsu
  organization: Max Planck Institute for Polymer Research
– sequence: 6
  givenname: Klaus
  orcidid: 0000-0001-6630-8786
  surname: Müllen
  fullname: Müllen, Klaus
  organization: Max Planck Institute for Polymer Research
– sequence: 7
  givenname: Neerav
  surname: Kharche
  fullname: Kharche, Neerav
  organization: Applied Physics, and Astronomy, Rensselaer Polytechnic Institute
– sequence: 8
  givenname: Vincent
  surname: Meunier
  fullname: Meunier, Vincent
  organization: Applied Physics, and Astronomy, Rensselaer Polytechnic Institute
– sequence: 9
  givenname: Roman
  surname: Fasel
  fullname: Fasel, Roman
  organization: University of Bern
– sequence: 10
  givenname: Pascal
  orcidid: 0000-0001-5729-5354
  surname: Ruffieux
  fullname: Ruffieux, Pascal
  email: pascal.ruffieux@empa.ch
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28301723$$D View this record in MEDLINE/PubMed
BookMark eNp9kFtPwjAUxxuDkYt-A2P66AvYdivdHglBJCGaCD4vXXcmI6OdbWdC_PKWizz6dJqc_-X010cdbTQgdE_JiBJGn6RyIy21qcH70TgnsWDiCvUoj8hwnKasc3kncRf1ndsSQtKIkxvUZUlEqGBRD_28wzfIutKf2G8Az2pQ3hpdKbzytlW-tYBNiVdVXSmj8UJ7sErW0kOBJ3anNrKyeG5lswEN-DXcY6s8N9rhfI9XSmp9iF63WsOxZNUcC5wyzf4WXZeydnB3ngP08TxbT1-Gy7f5YjpZDmWcCj-UXOWCUclLBhxiBnHCYkhSMo6oKqK0VEKGtRCccyIYpEWRqDGhZUEoT2kZDdDjKbex5qsF57Nd5RTUtdRgWpfRRCQJDciiII1PUhVudBbKrLHVTtp9Rkl2wJ4F7Nkf9uyMPdgezg1tvoPiYvrjHATkJDjYt6a1Onz4_8xf_aqWOQ
CitedBy_id crossref_primary_10_1021_acs_jpclett_7b02767
crossref_primary_10_1021_acs_jpclett_8b00796
crossref_primary_10_1021_jacs_7b05055
crossref_primary_10_1021_acsomega_8b00014
crossref_primary_10_1021_acs_nanolett_7b04240
crossref_primary_10_1039_D2CP00038E
crossref_primary_10_1016_j_ccr_2021_214335
crossref_primary_10_1038_s43246_020_0039_9
crossref_primary_10_1021_jacs_2c12292
crossref_primary_10_1021_acsnano_7b07077
crossref_primary_10_1021_acsnano_8b04125
crossref_primary_10_1021_acsnano_8b04489
crossref_primary_10_1002_smll_201804526
crossref_primary_10_1126_science_abg4509
crossref_primary_10_1103_RevModPhys_94_045008
crossref_primary_10_1002_smll_202202301
crossref_primary_10_1039_C8TA04618B
crossref_primary_10_1080_23746149_2019_1651672
crossref_primary_10_1021_acs_chemrev_8b00601
crossref_primary_10_1002_adma_201905957
crossref_primary_10_1016_j_carbon_2018_02_058
crossref_primary_10_1039_D0CP05764A
crossref_primary_10_1002_anie_202008925
crossref_primary_10_1021_acs_jpclett_0c01398
crossref_primary_10_1021_acs_jpcc_0c01272
crossref_primary_10_1016_j_chemphys_2021_111116
crossref_primary_10_1063_5_0172432
crossref_primary_10_1021_acsami_8b11017
crossref_primary_10_1021_acs_nanolett_3c01931
crossref_primary_10_1088_2053_1583_aabb70
crossref_primary_10_1126_science_abb8880
crossref_primary_10_1021_acsnano_8b02770
crossref_primary_10_1002_ange_202109808
crossref_primary_10_1021_acsnano_2c04563
crossref_primary_10_1039_D3CP02266H
crossref_primary_10_1103_PhysRevApplied_16_024030
crossref_primary_10_1021_acs_jpcc_3c08182
crossref_primary_10_1002_adma_202001893
crossref_primary_10_1002_anie_202010833
crossref_primary_10_1021_acs_jpcc_0c07369
crossref_primary_10_1039_D2RA01008A
crossref_primary_10_1103_PhysRevMaterials_2_014006
crossref_primary_10_1016_j_physe_2020_114438
crossref_primary_10_1039_D1DT00058F
crossref_primary_10_1021_acsnano_0c08148
crossref_primary_10_1007_s12274_017_1940_5
crossref_primary_10_1039_C7NR06027K
crossref_primary_10_1246_bcsj_20190368
crossref_primary_10_1002_anie_202401027
crossref_primary_10_1021_acsnano_3c06128
crossref_primary_10_1038_s41467_023_36613_x
crossref_primary_10_1039_D0CS01541E
crossref_primary_10_1021_acsnano_2c09748
crossref_primary_10_1002_anie_202109808
crossref_primary_10_1002_cnma_201900706
crossref_primary_10_1039_D1NH00486G
crossref_primary_10_1021_jacs_7b11886
crossref_primary_10_1038_s41586_018_0375_9
crossref_primary_10_1016_j_surfrep_2019_05_001
crossref_primary_10_1039_C8NR05950K
crossref_primary_10_1002_ange_202401027
crossref_primary_10_1021_acs_jpcc_0c00883
crossref_primary_10_1039_D1RA05902E
crossref_primary_10_1002_adpr_202100342
crossref_primary_10_1021_acs_jpcc_0c06188
crossref_primary_10_1021_acsnano_7b06765
crossref_primary_10_1039_C9CP02239B
crossref_primary_10_1016_j_progsurf_2021_100637
crossref_primary_10_1039_C7CC08353J
crossref_primary_10_1063_5_0153599
crossref_primary_10_1007_s43630_022_00235_x
crossref_primary_10_1021_acsnano_4c00484
crossref_primary_10_1002_ange_202008925
crossref_primary_10_1002_asia_202001008
crossref_primary_10_1021_acsnano_0c00604
crossref_primary_10_1021_acs_nanolett_7b02938
crossref_primary_10_1021_jacs_8b12239
crossref_primary_10_1007_s12274_023_5605_2
crossref_primary_10_1021_acs_chemmater_1c04215
crossref_primary_10_1002_ange_202010833
crossref_primary_10_1038_s42005_020_00425_y
crossref_primary_10_1002_cphc_201900633
crossref_primary_10_1088_1361_648X_aced30
crossref_primary_10_1063_5_0039777
Cites_doi 10.1103/PhysRevB.86.195404
10.1103/PhysRevB.59.1758
10.1021/acs.jpclett.6b00422
10.1038/srep00983
10.1063/1.322827
10.1103/PhysRevB.85.165449
10.1063/1.3687190
10.1038/nnano.2014.184
10.1021/nl301614j
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.50.17953
10.1021/nn401948e
10.1021/acs.nanolett.5b01723
10.1126/science.1220527
10.1007/s12274-012-0209-2
10.1021/jacs.5b03017
10.1007/BF02884878
10.1021/jp202787h
10.1103/PhysRevLett.99.216802
10.1021/nl0617033
10.1063/1.329408
10.1038/nnano.2014.307
10.1038/nature17151
10.1126/science.1102896
10.1103/PhysRevB.85.045418
10.1021/acsnano.6b06405
10.1063/1.3687688
10.1038/ncomms10235
10.1021/jacs.6b02151
10.1021/nn3021376
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.99.186801
10.1038/ncomms10177
10.1103/PhysRevLett.97.216405
10.1063/1.4855116
10.1126/science.1218461
10.1038/nature09211
10.1103/PhysRevB.91.045429
10.1103/PhysRevB.73.045112
10.1021/nl900531n
10.1021/acsnano.6b05269
10.1021/jacs.5b02523
10.1038/nmat2082
10.1021/ja511995r
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.6b04727
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 2203
ExternalDocumentID 10_1021_acs_nanolett_6b04727
28301723
d262408605
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ABFRP
ID FETCH-LOGICAL-a497t-a5cb721a5f2e5e42e4824e890631cd39fc7a21a77555072e9dd8c601fd01591f3
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Fri Jun 28 04:50:46 EDT 2024
Fri Aug 23 02:07:12 EDT 2024
Sat Sep 28 08:48:02 EDT 2024
Thu Aug 27 13:42:22 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords surface alloying
scanning tunneling spectroscopy
screening
intercalation
Graphene nanoribbon
density functional theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a497t-a5cb721a5f2e5e42e4824e890631cd39fc7a21a77555072e9dd8c601fd01591f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8644-3766
0000-0001-8634-8849
0000-0001-5729-5354
0000-0001-6630-8786
0000-0002-3625-522X
OpenAccessLink https://www.dora.lib4ri.ch/empa/islandora/object/empa%3A13977/datastream/PDF2/Deniz-2017-Revealing_the_electronic_structure_of-%28accepted_version%29.pdf
PMID 28301723
PQID 1878819923
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1878819923
crossref_primary_10_1021_acs_nanolett_6b04727
pubmed_primary_28301723
acs_journals_10_1021_acs_nanolett_6b04727
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-04-12
PublicationDateYYYYMMDD 2017-04-12
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1103/PhysRevB.86.195404
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.59.1758
– ident: ref25/cit25
  doi: 10.1021/acs.jpclett.6b00422
– ident: ref16/cit16
  doi: 10.1038/srep00983
– ident: ref26/cit26
  doi: 10.1063/1.322827
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.85.165449
– ident: ref33/cit33
  doi: 10.1063/1.3687190
– ident: ref17/cit17
  doi: 10.1038/nnano.2014.184
– ident: ref32/cit32
  doi: 10.1021/nl301614j
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.54.11169
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.50.17953
– ident: ref15/cit15
  doi: 10.1021/nn401948e
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.5b01723
– ident: ref5/cit5
  doi: 10.1126/science.1220527
– ident: ref8/cit8
  doi: 10.1007/s12274-012-0209-2
– ident: ref19/cit19
  doi: 10.1021/jacs.5b03017
– ident: ref28/cit28
  doi: 10.1007/BF02884878
– ident: ref44/cit44
  doi: 10.1021/jp202787h
– ident: ref2/cit2
  doi: 10.1103/PhysRevLett.99.216802
– ident: ref6/cit6
  doi: 10.1021/nl0617033
– ident: ref27/cit27
  doi: 10.1063/1.329408
– ident: ref18/cit18
  doi: 10.1038/nnano.2014.307
– ident: ref20/cit20
  doi: 10.1038/nature17151
– ident: ref1/cit1
  doi: 10.1126/science.1102896
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.85.045418
– ident: ref14/cit14
  doi: 10.1021/acsnano.6b06405
– ident: ref34/cit34
  doi: 10.1063/1.3687688
– ident: ref10/cit10
  doi: 10.1038/ncomms10235
– ident: ref11/cit11
  doi: 10.1021/jacs.6b02151
– ident: ref29/cit29
  doi: 10.1021/nn3021376
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.99.186801
– ident: ref12/cit12
  doi: 10.1038/ncomms10177
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.97.216405
– ident: ref24/cit24
  doi: 10.1063/1.4855116
– ident: ref4/cit4
  doi: 10.1126/science.1218461
– ident: ref9/cit9
  doi: 10.1038/nature09211
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.91.045429
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.73.045112
– ident: ref7/cit7
  doi: 10.1021/nl900531n
– ident: ref21/cit21
  doi: 10.1021/acsnano.6b05269
– ident: ref23/cit23
  doi: 10.1021/jacs.5b02523
– ident: ref3/cit3
  doi: 10.1038/nmat2082
– ident: ref13/cit13
  doi: 10.1021/ja511995r
SSID ssj0009350
Score 2.5671835
Snippet The electronic properties of graphene nanoribbons grown on metal substrates are significantly masked by the ones of the supporting metal surface. Here, we...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2197
Title Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy
URI http://dx.doi.org/10.1021/acs.nanolett.6b04727
https://www.ncbi.nlm.nih.gov/pubmed/28301723
https://search.proquest.com/docview/1878819923
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXODAvpRNRuLCIUVxnCY-oqql4gASaaXeIq-iApKqC1Lh5xk7DWVRBdyiJLJjz4znTTx-g9C5DiloQsw88MbGo1QHXiw08RQH0xNKG8ZdtsVtvd2lN72wNw8Uv-_gE_-Sy1Et41kOwxjX6sKyG0bLaIXYJEILhRrJnGQ3cBVZwYghJGIxLY_KLWjFOiQ5-uqQFqBM521aG-iuPLNTJJk81iZjUZOvPykc_ziQTbQ-A574qtCULbSks2209omOcAe93esXwI1wjQEW4uZHhRycOJbZyVDj3OCk_wTqk2H3MxFEDGhVQbvP8oH3h_jaMmDDAoph3c6HfSFArbGY4kQW1ZFwZ2JTa-xVMnAd2IMx013UbTU7jbY3K87gccqiscdDKSB65KEhOtSUaBoTqmMGkMeXKmBGRhweR1FoGdOIZkrFEqI_owCAMN8Ee6iS5Zk-QFiRWDICUIUDGgIdYUYR7UdGAHQyRvpVdAFzl86Ma5S6fXPip_ZmOaHpbEKryCulmQ4Kvo5f3j8rRZ6CYdndEp7pfAK9xJZpnwEArqL9Qhc-WrSsaYD8gsN_fNkRWiUWEjieyGNUAcHpEwA0Y3HqtPgdpxP0cw
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9RAFH9BOKgHRUFdER0TLxy6pNMp7RwJARdFDnYx3Jr5jBu1JfthAvzz_mZ2u6gJIdyaafPm6715v9eZ-T2iDy4X0IRSJvDGPhHCZUmpHU-sgulp67xU8bTF6d7gTHw6z89XKO_uwqARE0iaxE38G3aBdDeUNapp0Ztpf08HksPiAa3lBULygIgOqhuu3SwmZoUtIzKSpehuzN0iJfglM_nXL90CNqPTOXpK35bNjWdNfvRnU903V_8xOd67P-v0ZAFD2f5cb57Rimue0-O_yAk36Pqr-w0UiWcGkMgOl_lyWBU5Z2djx1rPqtFPKFPD4q9FTDiwq4XcX-a7Go3Zx8CHjeWUYRVvxyOtoeRMX7LKzHMlseEsHLQJT9VFrCBck7ncpLOjw-HBIFmkakiUkMU0UbnRiCVV7rnLneBOlFy4UgIApcZm0ptC4XVR5IE_jTtpbWkQC3oLOCJTn72g1aZt3CtilpdGcgAXBWwEjZHecpcWXgNIeW_SHu1g7OqFqU3quIvO0zoUdgNaLwa0R0k3qfXFnL3jju_fdzNfw8zC3olqXDtDLWXg3ZeAwz16OVeJpcTAoQYcmL2-R8ve0cPB8MtJfXJ8-nmLHvEAFiKD5BtaxSS6bUCdqX4bFfsPN9r83g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJwgPIqWygYiQuHLIrjNPERlS4toAqRVqq4RH6qq5ZktY9Kbf88n73ZpSBVFdwiJxo_ZsbzOba_IXrrcgFLKGWCaOwTIVyWlNrxxCq4nrbOSxVPWxxs7x2Jz8f58bVUX2jEBJImcRM_ePXI-o5hIH0fyhvVtOjRtL-tA9FhcYfW8pDDO6Cineo3324Wk7PCn7E6kqVY3Jq7QUqITWbyZ2y6AXDGwDN4SD-WTY7nTU77s6num8u_2Bz_q0_r9KCDo-zD3H4e0YprHtP9aySFT-jquzsHmsQzA1hku8u8OayK3LOzsWOtZ9XwDEbVsPiLEYoHhrWQ-9OcqOGYfQq82JhWGWbzdjzUGsbO9AWrzDxnEjuchQM34akaxQrCdZmLp3Q02D3c2Uu6lA2JErKYJio3GmtKlXvucie4EyUXrpQAQqmxmfSmUHhdFHngUeNOWlsarAm9BSyRqc-e0WrTNu45MctLIzkAjAJGguVIb7lLC68BqLw3aY_eYezqzuUmddxN52kdChcDWncD2qNkodh6NGfxuOX7Nwvt13C3sIeiGtfOUEsZ-PclYHGPNuZmsZQYuNSAB7PNf2jZa7r77eOg_rp_8OUF3eMBM0QiyZe0Ch26LSCeqX4VbfsXMwz_WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Electronic+Structure+of+Silicon+Intercalated+Armchair+Graphene+Nanoribbons+by+Scanning+Tunneling+Spectroscopy&rft.jtitle=Nano+letters&rft.au=Deniz%2C+Okan&rft.au=S%C3%A1nchez-S%C3%A1nchez%2C+Carlos&rft.au=Dumslaff%2C+Tim&rft.au=Feng%2C+Xinliang&rft.date=2017-04-12&rft.eissn=1530-6992&rft.volume=17&rft.issue=4&rft.spage=2197&rft.epage=2203&rft_id=info:doi/10.1021%2Facs.nanolett.6b04727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon