Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening

Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieve...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 53; no. 10; pp. 5797 - 5804
Main Authors Wang, Li, Lin, Shihong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs.
AbstractList Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs.
Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca over Na . Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca over Na were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca removal rate and between selectivity and the degree of Ca removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs.
Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca²⁺ over Na⁺. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca²⁺ over Na⁺ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca²⁺ removal rate and between selectivity and the degree of Ca²⁺ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs.
Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs.Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs.
Author Lin, Shihong
Wang, Li
AuthorAffiliation Department of Civil and Environmental Engineering
Vanderbilt University
Department of Chemical and Biomolecular Engineering
AuthorAffiliation_xml – name: Department of Civil and Environmental Engineering
– name: Department of Chemical and Biomolecular Engineering
– name: Vanderbilt University
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-5542-6696
  surname: Wang
  fullname: Wang, Li
  organization: Department of Civil and Environmental Engineering
– sequence: 2
  givenname: Shihong
  orcidid: 0000-0001-9832-9127
  surname: Lin
  fullname: Lin, Shihong
  email: shihong.lin@vanderbilt.edu
  organization: Vanderbilt University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31013430$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1r3DAQxUVISTbbnnsrgl4CxZuRZFnSsWz6EUgoJC0tvRjZHicKtrSRvIH2r682u80h0JLTHOb3HjPvHZF9HzwS8prBggFnJ7ZNC0zTwjQAlZR7ZMYkh0JqyfbJDICJwojqxyE5SukWALgAfUAOBcubUsCM_LzA9sZ6l0YaenqFA7aTu0d6Fjy9xDHc24E6Ty9wbKL1SJd2ZVv3gJyiC979tlMetA-RfrcTRnoV-gm989cvyYveDglf7eacfPv44evyc3H-5dPZ8v15YUujpkL1RkmNsuFSgKkk11YII5XqGq2bTnay0lKgQmWhlIp3yijeN6xiugQDKObkeOu7iuFundOoR5daHIZ8b1inmnPFNAhdmmegTBiuy4zPydsn6G1YR58fyZRgRovKbKg3O2rdjNjVq-hGG3_VfwPOwMkWaGNIKWL_iDCoNxXWucJ6Y7-rMCvkE0XO-yHkKVo3_Ef3bqvbLB5v_Rf9B9NgrWM
CitedBy_id crossref_primary_10_1016_j_watres_2024_121413
crossref_primary_10_1016_j_desal_2023_117010
crossref_primary_10_1021_acs_langmuir_0c00982
crossref_primary_10_1021_acsami_1c09996
crossref_primary_10_3390_membranes11070494
crossref_primary_10_1016_j_desal_2022_116043
crossref_primary_10_1016_j_cej_2021_128920
crossref_primary_10_1007_s12274_022_4118_8
crossref_primary_10_1016_j_seppur_2020_116600
crossref_primary_10_1016_j_scitotenv_2022_153051
crossref_primary_10_1016_j_memsci_2024_122650
crossref_primary_10_1016_j_cej_2024_153699
crossref_primary_10_1016_j_chemosphere_2023_140601
crossref_primary_10_1002_chem_201905606
crossref_primary_10_1016_j_desal_2021_115340
crossref_primary_10_1016_j_chemosphere_2021_130133
crossref_primary_10_1016_j_desal_2024_117923
crossref_primary_10_1021_acsestengg_0c00094
crossref_primary_10_1021_acsestwater_2c00487
crossref_primary_10_1016_j_desal_2021_115343
crossref_primary_10_1016_j_desal_2024_117884
crossref_primary_10_1016_j_resconrec_2020_105273
crossref_primary_10_1016_j_desal_2024_118455
crossref_primary_10_1039_D1EW00005E
crossref_primary_10_1039_D0DT00162G
crossref_primary_10_1016_j_desal_2024_118112
crossref_primary_10_1016_j_seppur_2020_117240
crossref_primary_10_1016_j_desal_2022_116295
crossref_primary_10_1016_j_resconrec_2024_107867
crossref_primary_10_1016_j_desal_2020_114390
crossref_primary_10_1016_j_memsci_2022_120974
crossref_primary_10_1007_s13233_020_8157_2
crossref_primary_10_1021_acsestwater_1c00393
crossref_primary_10_1039_C9EW00797K
crossref_primary_10_1021_acs_est_0c01836
crossref_primary_10_1021_acs_est_4c02681
crossref_primary_10_1021_acs_est_9b04788
crossref_primary_10_1016_j_desal_2020_114383
crossref_primary_10_1016_j_seppur_2020_117929
crossref_primary_10_1016_j_chemosphere_2021_130001
crossref_primary_10_1007_s11783_020_1269_2
crossref_primary_10_1149_2162_8777_adb330
crossref_primary_10_1016_j_desal_2024_117377
crossref_primary_10_2166_wrd_2021_067
crossref_primary_10_1016_j_seppur_2020_116660
crossref_primary_10_1016_j_jwpe_2023_104379
crossref_primary_10_1039_D0EE03145C
crossref_primary_10_1016_j_jece_2024_114259
crossref_primary_10_1021_acs_iecr_3c02238
crossref_primary_10_1021_acsestwater_4c00840
crossref_primary_10_1039_D3EW00769C
crossref_primary_10_1016_j_desal_2024_117789
crossref_primary_10_1016_j_desal_2024_117703
crossref_primary_10_1016_j_pmatsci_2022_100958
crossref_primary_10_1016_j_desal_2023_117146
crossref_primary_10_1016_j_jece_2021_106876
crossref_primary_10_1016_j_desal_2024_117787
crossref_primary_10_1016_j_jhazmat_2022_128591
crossref_primary_10_1016_j_chemosphere_2021_130857
crossref_primary_10_1021_acsami_0c11233
crossref_primary_10_1016_j_ccr_2024_216001
crossref_primary_10_3934_agrfood_2021049
crossref_primary_10_1039_D0ME00090F
crossref_primary_10_1016_j_jcis_2021_12_181
crossref_primary_10_1016_j_seppur_2021_119828
crossref_primary_10_1002_batt_202400506
crossref_primary_10_1016_j_jhazmat_2023_131263
crossref_primary_10_1016_j_resconrec_2021_106012
crossref_primary_10_1016_j_watres_2023_120273
crossref_primary_10_1016_j_desal_2020_114842
crossref_primary_10_3390_membranes11040231
crossref_primary_10_1016_j_seppur_2021_119870
crossref_primary_10_1016_j_desal_2024_118140
crossref_primary_10_1016_j_cej_2020_128329
crossref_primary_10_1016_j_desal_2021_115391
crossref_primary_10_1016_j_seppur_2021_119753
crossref_primary_10_1021_acsestengg_3c00574
crossref_primary_10_1016_j_watres_2022_118688
crossref_primary_10_1016_j_jcis_2021_12_156
crossref_primary_10_1039_C9EW00467J
crossref_primary_10_1021_acssuschemeng_9b03888
crossref_primary_10_1021_acsami_0c05664
crossref_primary_10_1016_j_seppur_2024_126604
crossref_primary_10_1016_j_desal_2024_117341
crossref_primary_10_3389_fchem_2020_00415
crossref_primary_10_1016_j_desal_2024_118392
crossref_primary_10_1016_j_seppur_2021_119640
crossref_primary_10_1039_C9EW00835G
crossref_primary_10_1021_acsestwater_0c00123
crossref_primary_10_1016_j_watres_2020_116653
crossref_primary_10_1016_j_memsci_2023_122185
crossref_primary_10_1016_j_watres_2021_117522
crossref_primary_10_1016_j_desal_2023_116865
crossref_primary_10_1016_j_desal_2023_117278
crossref_primary_10_1016_j_desal_2024_117850
crossref_primary_10_1016_j_desal_2020_114346
crossref_primary_10_4491_eer_2020_650
crossref_primary_10_1016_j_scitotenv_2021_150166
crossref_primary_10_1016_j_watres_2024_121871
crossref_primary_10_1021_acs_energyfuels_2c04000
crossref_primary_10_1016_j_cherd_2024_04_028
crossref_primary_10_20964_2020_08_98
crossref_primary_10_1021_acs_est_3c03477
crossref_primary_10_1016_j_cej_2023_143825
crossref_primary_10_1016_j_jiec_2023_06_025
crossref_primary_10_1002_smtd_202200508
crossref_primary_10_1021_acssuschemeng_2c05960
crossref_primary_10_1016_j_memsci_2022_120645
crossref_primary_10_1016_j_seppur_2020_118009
crossref_primary_10_1016_j_electacta_2024_144875
crossref_primary_10_1021_acs_est_0c06552
crossref_primary_10_1016_j_seppur_2024_131215
crossref_primary_10_1039_D4EW00413B
crossref_primary_10_1016_j_cej_2022_136811
crossref_primary_10_1016_j_desal_2023_116652
crossref_primary_10_1016_j_seppur_2024_131295
crossref_primary_10_1016_j_desal_2023_116899
crossref_primary_10_1038_s41545_021_00109_2
crossref_primary_10_1021_acs_est_1c01483
crossref_primary_10_1016_j_jclepro_2024_141700
crossref_primary_10_1016_j_jece_2025_116245
crossref_primary_10_1016_j_coche_2025_101103
crossref_primary_10_1080_1536383X_2024_2447341
crossref_primary_10_1021_acs_estlett_2c00551
crossref_primary_10_2139_ssrn_4162528
crossref_primary_10_1016_j_fuel_2023_129574
crossref_primary_10_1016_j_ces_2023_119312
crossref_primary_10_1039_C9EW00981G
crossref_primary_10_3390_pr10061075
crossref_primary_10_1016_j_cej_2024_153468
crossref_primary_10_1021_acs_est_0c06549
crossref_primary_10_1021_acs_iecr_0c01498
crossref_primary_10_1016_j_seppur_2023_124577
crossref_primary_10_1016_j_chemosphere_2022_136024
crossref_primary_10_1016_j_desal_2023_116646
crossref_primary_10_1016_j_desal_2020_114764
Cites_doi 10.1016/j.watres.2008.01.011
10.1016/j.watres.2009.10.020
10.1016/j.desal.2016.03.019
10.5004/dwt.2017.20211
10.1016/j.memsci.2012.11.064
10.1016/S0376-7388(01)00491-4
10.1016/j.jcis.2011.04.049
10.1016/j.pmatsci.2013.03.005
10.1039/c3ee24443a
10.1039/c4ta00377b
10.1016/j.memsci.2018.03.051
10.1016/j.desal.2018.04.002
10.1016/j.desal.2012.05.021
10.1201/b15579
10.1021/acs.est.8b02807
10.1016/j.watres.2017.11.027
10.1016/j.desal.2010.04.069
10.1016/j.jcis.2012.06.022
10.1016/j.desal.2012.12.028
10.1021/acs.est.7b06064
10.3390/w10010054
10.1016/j.desal.2016.09.016
10.1016/j.desal.2010.12.025
10.1002/j.1551-8833.2002.tb09439.x
10.1016/j.seppur.2013.05.052
10.1016/j.watres.2017.12.015
10.1039/C5EE00519A
10.1016/j.watres.2018.06.034
10.14478/ace.2015.1127
10.1016/j.watres.2015.10.006
10.1021/ed082p257
10.1021/acs.est.8b01868
10.2175/106143014X14031280667778
10.1021/jp010529y
10.1039/c4ta01783h
10.1016/S0269-7491(02)00308-1
10.1016/j.watres.2018.07.049
10.1021/jp809644s
10.1016/j.desal.2013.12.022
ContentType Journal Article
Copyright Copyright American Chemical Society May 21, 2019
Copyright_xml – notice: Copyright American Chemical Society May 21, 2019
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.9b00655
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 5804
ExternalDocumentID 31013430
10_1021_acs_est_9b00655
b300910275
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a497t-7f9758e5b253096528a339577db88bd5d56853e7e7a04572d7972fb16184090e3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 03:53:04 EDT 2025
Thu Jul 10 18:33:29 EDT 2025
Sun Jun 29 15:59:15 EDT 2025
Mon Apr 07 02:14:18 EDT 2025
Tue Jul 01 02:58:03 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a497t-7f9758e5b253096528a339577db88bd5d56853e7e7a04572d7972fb16184090e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9832-9127
0000-0002-5542-6696
PMID 31013430
PQID 2231983690
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_2271803849
proquest_miscellaneous_2213928480
proquest_journals_2231983690
pubmed_primary_31013430
crossref_primary_10_1021_acs_est_9b00655
crossref_citationtrail_10_1021_acs_est_9b00655
acs_journals_10_1021_acs_est_9b00655
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-21
PublicationDateYYYYMMDD 2019-05-21
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref36/cit36
ref3/cit3
Wachinski A. M. (ref6/cit6) 2004
ref27/cit27
Pizzi N. G. (ref7/cit7) 2010
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
Spellman F. R. (ref4/cit4) 2013
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
Strathmann H. (ref31/cit31) 2004
ref15/cit15
ref42/cit42
ref41/cit41
Singh R. (ref12/cit12) 2015
ref22/cit22
ref13/cit13
ref33/cit33
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
References_xml – ident: ref34/cit34
  doi: 10.1016/j.watres.2008.01.011
– ident: ref15/cit15
  doi: 10.1016/j.watres.2009.10.020
– ident: ref16/cit16
  doi: 10.1016/j.desal.2016.03.019
– ident: ref33/cit33
  doi: 10.5004/dwt.2017.20211
– ident: ref41/cit41
  doi: 10.1016/j.memsci.2012.11.064
– ident: ref25/cit25
  doi: 10.1016/S0376-7388(01)00491-4
– ident: ref21/cit21
  doi: 10.1016/j.jcis.2011.04.049
– ident: ref18/cit18
  doi: 10.1016/j.pmatsci.2013.03.005
– ident: ref29/cit29
  doi: 10.1039/c3ee24443a
– ident: ref28/cit28
  doi: 10.1039/c4ta00377b
– volume-title: Ion exchange treatment for drinking water
  year: 2004
  ident: ref6/cit6
– ident: ref23/cit23
  doi: 10.1016/j.memsci.2018.03.051
– ident: ref13/cit13
  doi: 10.1016/j.desal.2018.04.002
– ident: ref17/cit17
  doi: 10.1016/j.desal.2012.05.021
– volume-title: Handbook of water and wastewater treatment plant operations
  year: 2013
  ident: ref4/cit4
  doi: 10.1201/b15579
– ident: ref26/cit26
  doi: 10.1021/acs.est.8b02807
– ident: ref38/cit38
  doi: 10.1016/j.watres.2017.11.027
– ident: ref11/cit11
  doi: 10.1016/j.desal.2010.04.069
– ident: ref22/cit22
  doi: 10.1016/j.jcis.2012.06.022
– ident: ref10/cit10
  doi: 10.1016/j.desal.2012.12.028
– ident: ref39/cit39
  doi: 10.1021/acs.est.7b06064
– ident: ref1/cit1
  doi: 10.3390/w10010054
– volume-title: Membrane technology and engineering for water purification: application, systems design and operation
  year: 2015
  ident: ref12/cit12
– ident: ref36/cit36
  doi: 10.1016/j.desal.2016.09.016
– ident: ref3/cit3
  doi: 10.1016/j.desal.2010.12.025
– ident: ref5/cit5
  doi: 10.1002/j.1551-8833.2002.tb09439.x
– ident: ref8/cit8
  doi: 10.1016/j.seppur.2013.05.052
– ident: ref37/cit37
  doi: 10.1016/j.watres.2017.12.015
– ident: ref19/cit19
  doi: 10.1039/C5EE00519A
– ident: ref43/cit43
  doi: 10.1016/j.watres.2018.06.034
– ident: ref32/cit32
  doi: 10.14478/ace.2015.1127
– ident: ref42/cit42
  doi: 10.1016/j.watres.2015.10.006
– ident: ref2/cit2
  doi: 10.1021/ed082p257
– ident: ref40/cit40
  doi: 10.1021/acs.est.8b01868
– ident: ref9/cit9
  doi: 10.2175/106143014X14031280667778
– ident: ref24/cit24
  doi: 10.1021/jp010529y
– ident: ref27/cit27
  doi: 10.1039/c4ta01783h
– volume-title: Ion-Exchange Membrane Separation Processes
  year: 2004
  ident: ref31/cit31
– ident: ref14/cit14
  doi: 10.1016/S0269-7491(02)00308-1
– volume-title: Water treatment: Principles and practices of water supply operations series
  year: 2010
  ident: ref7/cit7
– ident: ref30/cit30
  doi: 10.1016/j.watres.2018.07.049
– ident: ref20/cit20
  doi: 10.1021/jp809644s
– ident: ref35/cit35
  doi: 10.1016/j.desal.2013.12.022
SSID ssj0002308
Score 2.614078
Snippet Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5797
SubjectTerms Calcium
Calcium ions
Cations
Composition
Correlation analysis
Deionization
Divalent cations
Electrodes
Feed composition
Fluxes
hardness
Hydraulic retention time
Ion exchange
ion-exchange membranes
Membranes
New technology
Organic chemistry
Retention time
Selectivity
Sodium
Water softening
Water treatment
Title Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening
URI http://dx.doi.org/10.1021/acs.est.9b00655
https://www.ncbi.nlm.nih.gov/pubmed/31013430
https://www.proquest.com/docview/2231983690
https://www.proquest.com/docview/2213928480
https://www.proquest.com/docview/2271803849
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQSqGw0CIj9cAlYR3Hr2O1tCpIy4GlYsUlspOJVJVNULN76a9nJslmodUWrokdWZN5fLZnvmHs2IEudRAyMlZDlAapoyDKPHJF4QWU2jugQuHpF31-kX6eq_mGLPr2DX4iPvi8idFBxkTep5V6yB4l2hraZ51MZoPTRSRt180KnNTzgcXnzgcoDOXN32FoC7ZsY8zZ0y47q2mpCSm15CpeLUOc39wlbvz38vfYbo80-UmnGs_YA6j22ZM_-Af32cHppswNh_Z23jxnP6ZAFcGXzYLXJZ-1vXLQLfJPdcW_wqJG9eSXFZ_CAjfbFfAJhty8zULiH4FOeLviTo6ImH9HNHvNZ-jugc5gXrCLs9Nvk_Oo78IQ-dSZZWRKh3sKUCFRkqhiEuslXe6ZIlgbClUojSEfDBiP8NAkhXEmKQMR8ePecQzygO1UdQWvGC9Kl3qQQpWIwrz2gdqDBmp3XChf5GHEjlFcWW9FTdZekCcio4cow6yX4YjF63-X5T2TOTXU-Ll9wvthwq-OxGP70MO1MmzWgRBKOCu1G4_Yu-E12iFdrqCU6xWNQSyNsd7eOwaRwFja1I3Yy07RhvUgzBYylePX_yeDN-wxQjdHeQyJOGQ7y-sVHCE8Woa3rWH8BkhcCg0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeeBRathQwUpG4ZNnEiR0fOFTbVru02wPbihWXYMcTqYJNULMrVH4Nf4V_xjibZHloEZdKXB3bcvyY-cae-QZgT6HIhPG5J2OBXmi48IyfpZ6yVvuYCa3QBQqPTsXgPHwziSZr8K2JhaFBlNRTWT3iL9kF_FeujORk13H4iahxozzGqy9kpJWvhwe0oi-C4OjwrD_w6jwCng6VnHkyU4SKMTJBxB3ZSRBr7p6npDVxbGxkI0FKCyVKTQBHBlYqGWTGUcmT9dNDTv3egJsEfQJn3u33x62sJwAfNzkSFBeTljzojwE77ZeWv2q_FZC2Um1Hd-F7OymVR8vH7nxmuunX3_gi_-dZuwd3alzN9hcH4T6sYb4JGz-xLW7C1uEyqI-q1lKtfADvR-jiny_KKSsyNq4yA5ESYMMiZ29xWtBhZBc5G-HUkGZH1ieAkVY-V-wA3X32IpSVEf5n7wi7X7IxKTd0N04P4fxa_noL1vMix0fAbKZCjdyPMsKcWmjjkqEal9zZRtqmpgN7tDxJLTPKpHIHCPzEFdKaJfWadaDbbJkkrXnbXfqQT6sbvGwbfF5QlqyuutvsweU4CDD6KuZC9TrwvP1MUsc9JdEsF3NXhywHQjbxX-sQ7unxOFQd2F7s73Y8ZFT4POS9nX-bg2dwa3A2OklOhqfHj-E2gVblPDgCfxfWZ5dzfELAcGaeVmeTwYfr3tY_AMeFaGs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VIiE4FCgUUgosUpG4OMRee-09cKiSRg0lFSJURFyM1zuWKohd1YkQfZ6-Cu_FjGO7_CiISyWu693Ven9mvtmd-QZgV6PKlHGlE0YKHd9I5Rg3Sx1tbeJiphKNHCg8PlIHx_7raTBdg4smFoYGUVJPZfWIz6f61GY1w4D7kstJVnaZx08FjSvlIX77SoZa-Wo0oFV97nnD_ff9A6fOJeAkvg7nTphpQsYYGC-QTHjiRYnkJ6rQmigyNrCBIsWFIYYJgZzQs6EOvcwwnTxZQD2U1O81uM6PhGzi7fUnrbwnEB81eRK0VNOWQOiPAbMGTMtfNeAKWFupt-Ft-N5OTOXV8rm7mJtuev4bZ-T_PnN3YKPG12JveSDuwhrmm3DrJ9bFTdjavwzuo6q1dCvvwccxchz0STkTRSYmVYYgUgZiVOTiHc4KOpTiJBdjnBnS8Cj6BDTSyvdKDJDvtZchrYLsAPGBMPyZmJCSQ755ug_HV_LXW7CeFzk-BGEz7Sco3SAj7JmoxHBSVMNJnm2Q2NR0YJeWJ65lRxlXbgGeG3MhrVlcr1kHus22idOav53TiHxZ3eBF2-B0SV2yuupOsw8vx0HA0dWRVLrXgWftZ5I-_KREs1wsuA5ZEIRwor_WIfzTk5GvO_Bgucfb8ZBx4Upf9rb_bQ6ewo23g2H8ZnR0-AhuEnbV7MjhuTuwPj9b4GPCh3PzpDqeAj5d9a7-AcX0au4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Selective+Ion+Removal+in+Membrane+Capacitive+Deionization+for+Water+Softening&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Li&rft.au=Lin%2C+Shihong&rft.date=2019-05-21&rft.issn=1520-5851&rft.volume=53&rft.issue=10+p.5797-5804&rft.spage=5797&rft.epage=5804&rft_id=info:doi/10.1021%2Facs.est.9b00655&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon