Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening
Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieve...
Saved in:
Published in | Environmental science & technology Vol. 53; no. 10; pp. 5797 - 5804 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs. |
---|---|
AbstractList | Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs. Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca over Na . Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca over Na were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca removal rate and between selectivity and the degree of Ca removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs. Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca²⁺ over Na⁺. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca²⁺ over Na⁺ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca²⁺ removal rate and between selectivity and the degree of Ca²⁺ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs. Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs.Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored electrodes for selective ion removal, the selective removal of divalent cations (i.e., hardness) over monovalent cations can simply be achieved using membrane CDI (MCDI) equipped with ion exchange membranes (IEMs). In this study, we use both experimental and modeling approaches to systematically investigate the selective removal of Ca2+ over Na+. Specifically, the impacts of current density, hydraulic retention time, and feed composition on the selectivity of Ca2+ over Na+ were investigated. The results from our study suggest a universal correlation between the ratio of molar fluxes and the ratio of spacer channel ion concentrations, regardless of operating conditions and feed composition. Our analysis also reveals inherent and universal trade-off relationships between selectivity and the Ca2+ removal rate and between selectivity and the degree of Ca2+ removal. This fundamental understanding of the mechanism of selective ion removal in MCDI can also be applied to flow-electrode CDI processes that employ IEMs. |
Author | Lin, Shihong Wang, Li |
AuthorAffiliation | Department of Civil and Environmental Engineering Vanderbilt University Department of Chemical and Biomolecular Engineering |
AuthorAffiliation_xml | – name: Department of Civil and Environmental Engineering – name: Department of Chemical and Biomolecular Engineering – name: Vanderbilt University |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-5542-6696 surname: Wang fullname: Wang, Li organization: Department of Civil and Environmental Engineering – sequence: 2 givenname: Shihong orcidid: 0000-0001-9832-9127 surname: Lin fullname: Lin, Shihong email: shihong.lin@vanderbilt.edu organization: Vanderbilt University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31013430$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1r3DAQxUVISTbbnnsrgl4CxZuRZFnSsWz6EUgoJC0tvRjZHicKtrSRvIH2r682u80h0JLTHOb3HjPvHZF9HzwS8prBggFnJ7ZNC0zTwjQAlZR7ZMYkh0JqyfbJDICJwojqxyE5SukWALgAfUAOBcubUsCM_LzA9sZ6l0YaenqFA7aTu0d6Fjy9xDHc24E6Ty9wbKL1SJd2ZVv3gJyiC979tlMetA-RfrcTRnoV-gm989cvyYveDglf7eacfPv44evyc3H-5dPZ8v15YUujpkL1RkmNsuFSgKkk11YII5XqGq2bTnay0lKgQmWhlIp3yijeN6xiugQDKObkeOu7iuFundOoR5daHIZ8b1inmnPFNAhdmmegTBiuy4zPydsn6G1YR58fyZRgRovKbKg3O2rdjNjVq-hGG3_VfwPOwMkWaGNIKWL_iDCoNxXWucJ6Y7-rMCvkE0XO-yHkKVo3_Ef3bqvbLB5v_Rf9B9NgrWM |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_121413 crossref_primary_10_1016_j_desal_2023_117010 crossref_primary_10_1021_acs_langmuir_0c00982 crossref_primary_10_1021_acsami_1c09996 crossref_primary_10_3390_membranes11070494 crossref_primary_10_1016_j_desal_2022_116043 crossref_primary_10_1016_j_cej_2021_128920 crossref_primary_10_1007_s12274_022_4118_8 crossref_primary_10_1016_j_seppur_2020_116600 crossref_primary_10_1016_j_scitotenv_2022_153051 crossref_primary_10_1016_j_memsci_2024_122650 crossref_primary_10_1016_j_cej_2024_153699 crossref_primary_10_1016_j_chemosphere_2023_140601 crossref_primary_10_1002_chem_201905606 crossref_primary_10_1016_j_desal_2021_115340 crossref_primary_10_1016_j_chemosphere_2021_130133 crossref_primary_10_1016_j_desal_2024_117923 crossref_primary_10_1021_acsestengg_0c00094 crossref_primary_10_1021_acsestwater_2c00487 crossref_primary_10_1016_j_desal_2021_115343 crossref_primary_10_1016_j_desal_2024_117884 crossref_primary_10_1016_j_resconrec_2020_105273 crossref_primary_10_1016_j_desal_2024_118455 crossref_primary_10_1039_D1EW00005E crossref_primary_10_1039_D0DT00162G crossref_primary_10_1016_j_desal_2024_118112 crossref_primary_10_1016_j_seppur_2020_117240 crossref_primary_10_1016_j_desal_2022_116295 crossref_primary_10_1016_j_resconrec_2024_107867 crossref_primary_10_1016_j_desal_2020_114390 crossref_primary_10_1016_j_memsci_2022_120974 crossref_primary_10_1007_s13233_020_8157_2 crossref_primary_10_1021_acsestwater_1c00393 crossref_primary_10_1039_C9EW00797K crossref_primary_10_1021_acs_est_0c01836 crossref_primary_10_1021_acs_est_4c02681 crossref_primary_10_1021_acs_est_9b04788 crossref_primary_10_1016_j_desal_2020_114383 crossref_primary_10_1016_j_seppur_2020_117929 crossref_primary_10_1016_j_chemosphere_2021_130001 crossref_primary_10_1007_s11783_020_1269_2 crossref_primary_10_1149_2162_8777_adb330 crossref_primary_10_1016_j_desal_2024_117377 crossref_primary_10_2166_wrd_2021_067 crossref_primary_10_1016_j_seppur_2020_116660 crossref_primary_10_1016_j_jwpe_2023_104379 crossref_primary_10_1039_D0EE03145C crossref_primary_10_1016_j_jece_2024_114259 crossref_primary_10_1021_acs_iecr_3c02238 crossref_primary_10_1021_acsestwater_4c00840 crossref_primary_10_1039_D3EW00769C crossref_primary_10_1016_j_desal_2024_117789 crossref_primary_10_1016_j_desal_2024_117703 crossref_primary_10_1016_j_pmatsci_2022_100958 crossref_primary_10_1016_j_desal_2023_117146 crossref_primary_10_1016_j_jece_2021_106876 crossref_primary_10_1016_j_desal_2024_117787 crossref_primary_10_1016_j_jhazmat_2022_128591 crossref_primary_10_1016_j_chemosphere_2021_130857 crossref_primary_10_1021_acsami_0c11233 crossref_primary_10_1016_j_ccr_2024_216001 crossref_primary_10_3934_agrfood_2021049 crossref_primary_10_1039_D0ME00090F crossref_primary_10_1016_j_jcis_2021_12_181 crossref_primary_10_1016_j_seppur_2021_119828 crossref_primary_10_1002_batt_202400506 crossref_primary_10_1016_j_jhazmat_2023_131263 crossref_primary_10_1016_j_resconrec_2021_106012 crossref_primary_10_1016_j_watres_2023_120273 crossref_primary_10_1016_j_desal_2020_114842 crossref_primary_10_3390_membranes11040231 crossref_primary_10_1016_j_seppur_2021_119870 crossref_primary_10_1016_j_desal_2024_118140 crossref_primary_10_1016_j_cej_2020_128329 crossref_primary_10_1016_j_desal_2021_115391 crossref_primary_10_1016_j_seppur_2021_119753 crossref_primary_10_1021_acsestengg_3c00574 crossref_primary_10_1016_j_watres_2022_118688 crossref_primary_10_1016_j_jcis_2021_12_156 crossref_primary_10_1039_C9EW00467J crossref_primary_10_1021_acssuschemeng_9b03888 crossref_primary_10_1021_acsami_0c05664 crossref_primary_10_1016_j_seppur_2024_126604 crossref_primary_10_1016_j_desal_2024_117341 crossref_primary_10_3389_fchem_2020_00415 crossref_primary_10_1016_j_desal_2024_118392 crossref_primary_10_1016_j_seppur_2021_119640 crossref_primary_10_1039_C9EW00835G crossref_primary_10_1021_acsestwater_0c00123 crossref_primary_10_1016_j_watres_2020_116653 crossref_primary_10_1016_j_memsci_2023_122185 crossref_primary_10_1016_j_watres_2021_117522 crossref_primary_10_1016_j_desal_2023_116865 crossref_primary_10_1016_j_desal_2023_117278 crossref_primary_10_1016_j_desal_2024_117850 crossref_primary_10_1016_j_desal_2020_114346 crossref_primary_10_4491_eer_2020_650 crossref_primary_10_1016_j_scitotenv_2021_150166 crossref_primary_10_1016_j_watres_2024_121871 crossref_primary_10_1021_acs_energyfuels_2c04000 crossref_primary_10_1016_j_cherd_2024_04_028 crossref_primary_10_20964_2020_08_98 crossref_primary_10_1021_acs_est_3c03477 crossref_primary_10_1016_j_cej_2023_143825 crossref_primary_10_1016_j_jiec_2023_06_025 crossref_primary_10_1002_smtd_202200508 crossref_primary_10_1021_acssuschemeng_2c05960 crossref_primary_10_1016_j_memsci_2022_120645 crossref_primary_10_1016_j_seppur_2020_118009 crossref_primary_10_1016_j_electacta_2024_144875 crossref_primary_10_1021_acs_est_0c06552 crossref_primary_10_1016_j_seppur_2024_131215 crossref_primary_10_1039_D4EW00413B crossref_primary_10_1016_j_cej_2022_136811 crossref_primary_10_1016_j_desal_2023_116652 crossref_primary_10_1016_j_seppur_2024_131295 crossref_primary_10_1016_j_desal_2023_116899 crossref_primary_10_1038_s41545_021_00109_2 crossref_primary_10_1021_acs_est_1c01483 crossref_primary_10_1016_j_jclepro_2024_141700 crossref_primary_10_1016_j_jece_2025_116245 crossref_primary_10_1016_j_coche_2025_101103 crossref_primary_10_1080_1536383X_2024_2447341 crossref_primary_10_1021_acs_estlett_2c00551 crossref_primary_10_2139_ssrn_4162528 crossref_primary_10_1016_j_fuel_2023_129574 crossref_primary_10_1016_j_ces_2023_119312 crossref_primary_10_1039_C9EW00981G crossref_primary_10_3390_pr10061075 crossref_primary_10_1016_j_cej_2024_153468 crossref_primary_10_1021_acs_est_0c06549 crossref_primary_10_1021_acs_iecr_0c01498 crossref_primary_10_1016_j_seppur_2023_124577 crossref_primary_10_1016_j_chemosphere_2022_136024 crossref_primary_10_1016_j_desal_2023_116646 crossref_primary_10_1016_j_desal_2020_114764 |
Cites_doi | 10.1016/j.watres.2008.01.011 10.1016/j.watres.2009.10.020 10.1016/j.desal.2016.03.019 10.5004/dwt.2017.20211 10.1016/j.memsci.2012.11.064 10.1016/S0376-7388(01)00491-4 10.1016/j.jcis.2011.04.049 10.1016/j.pmatsci.2013.03.005 10.1039/c3ee24443a 10.1039/c4ta00377b 10.1016/j.memsci.2018.03.051 10.1016/j.desal.2018.04.002 10.1016/j.desal.2012.05.021 10.1201/b15579 10.1021/acs.est.8b02807 10.1016/j.watres.2017.11.027 10.1016/j.desal.2010.04.069 10.1016/j.jcis.2012.06.022 10.1016/j.desal.2012.12.028 10.1021/acs.est.7b06064 10.3390/w10010054 10.1016/j.desal.2016.09.016 10.1016/j.desal.2010.12.025 10.1002/j.1551-8833.2002.tb09439.x 10.1016/j.seppur.2013.05.052 10.1016/j.watres.2017.12.015 10.1039/C5EE00519A 10.1016/j.watres.2018.06.034 10.14478/ace.2015.1127 10.1016/j.watres.2015.10.006 10.1021/ed082p257 10.1021/acs.est.8b01868 10.2175/106143014X14031280667778 10.1021/jp010529y 10.1039/c4ta01783h 10.1016/S0269-7491(02)00308-1 10.1016/j.watres.2018.07.049 10.1021/jp809644s 10.1016/j.desal.2013.12.022 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society May 21, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society May 21, 2019 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.9b00655 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 5804 |
ExternalDocumentID | 31013430 10_1021_acs_est_9b00655 b300910275 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a497t-7f9758e5b253096528a339577db88bd5d56853e7e7a04572d7972fb16184090e3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 03:53:04 EDT 2025 Thu Jul 10 18:33:29 EDT 2025 Sun Jun 29 15:59:15 EDT 2025 Mon Apr 07 02:14:18 EDT 2025 Tue Jul 01 02:58:03 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a497t-7f9758e5b253096528a339577db88bd5d56853e7e7a04572d7972fb16184090e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9832-9127 0000-0002-5542-6696 |
PMID | 31013430 |
PQID | 2231983690 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2271803849 proquest_miscellaneous_2213928480 proquest_journals_2231983690 pubmed_primary_31013430 crossref_primary_10_1021_acs_est_9b00655 crossref_citationtrail_10_1021_acs_est_9b00655 acs_journals_10_1021_acs_est_9b00655 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-21 |
PublicationDateYYYYMMDD | 2019-05-21 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref36/cit36 ref3/cit3 Wachinski A. M. (ref6/cit6) 2004 ref27/cit27 Pizzi N. G. (ref7/cit7) 2010 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 Spellman F. R. (ref4/cit4) 2013 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 Strathmann H. (ref31/cit31) 2004 ref15/cit15 ref42/cit42 ref41/cit41 Singh R. (ref12/cit12) 2015 ref22/cit22 ref13/cit13 ref33/cit33 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 |
References_xml | – ident: ref34/cit34 doi: 10.1016/j.watres.2008.01.011 – ident: ref15/cit15 doi: 10.1016/j.watres.2009.10.020 – ident: ref16/cit16 doi: 10.1016/j.desal.2016.03.019 – ident: ref33/cit33 doi: 10.5004/dwt.2017.20211 – ident: ref41/cit41 doi: 10.1016/j.memsci.2012.11.064 – ident: ref25/cit25 doi: 10.1016/S0376-7388(01)00491-4 – ident: ref21/cit21 doi: 10.1016/j.jcis.2011.04.049 – ident: ref18/cit18 doi: 10.1016/j.pmatsci.2013.03.005 – ident: ref29/cit29 doi: 10.1039/c3ee24443a – ident: ref28/cit28 doi: 10.1039/c4ta00377b – volume-title: Ion exchange treatment for drinking water year: 2004 ident: ref6/cit6 – ident: ref23/cit23 doi: 10.1016/j.memsci.2018.03.051 – ident: ref13/cit13 doi: 10.1016/j.desal.2018.04.002 – ident: ref17/cit17 doi: 10.1016/j.desal.2012.05.021 – volume-title: Handbook of water and wastewater treatment plant operations year: 2013 ident: ref4/cit4 doi: 10.1201/b15579 – ident: ref26/cit26 doi: 10.1021/acs.est.8b02807 – ident: ref38/cit38 doi: 10.1016/j.watres.2017.11.027 – ident: ref11/cit11 doi: 10.1016/j.desal.2010.04.069 – ident: ref22/cit22 doi: 10.1016/j.jcis.2012.06.022 – ident: ref10/cit10 doi: 10.1016/j.desal.2012.12.028 – ident: ref39/cit39 doi: 10.1021/acs.est.7b06064 – ident: ref1/cit1 doi: 10.3390/w10010054 – volume-title: Membrane technology and engineering for water purification: application, systems design and operation year: 2015 ident: ref12/cit12 – ident: ref36/cit36 doi: 10.1016/j.desal.2016.09.016 – ident: ref3/cit3 doi: 10.1016/j.desal.2010.12.025 – ident: ref5/cit5 doi: 10.1002/j.1551-8833.2002.tb09439.x – ident: ref8/cit8 doi: 10.1016/j.seppur.2013.05.052 – ident: ref37/cit37 doi: 10.1016/j.watres.2017.12.015 – ident: ref19/cit19 doi: 10.1039/C5EE00519A – ident: ref43/cit43 doi: 10.1016/j.watres.2018.06.034 – ident: ref32/cit32 doi: 10.14478/ace.2015.1127 – ident: ref42/cit42 doi: 10.1016/j.watres.2015.10.006 – ident: ref2/cit2 doi: 10.1021/ed082p257 – ident: ref40/cit40 doi: 10.1021/acs.est.8b01868 – ident: ref9/cit9 doi: 10.2175/106143014X14031280667778 – ident: ref24/cit24 doi: 10.1021/jp010529y – ident: ref27/cit27 doi: 10.1039/c4ta01783h – volume-title: Ion-Exchange Membrane Separation Processes year: 2004 ident: ref31/cit31 – ident: ref14/cit14 doi: 10.1016/S0269-7491(02)00308-1 – volume-title: Water treatment: Principles and practices of water supply operations series year: 2010 ident: ref7/cit7 – ident: ref30/cit30 doi: 10.1016/j.watres.2018.07.049 – ident: ref20/cit20 doi: 10.1021/jp809644s – ident: ref35/cit35 doi: 10.1016/j.desal.2013.12.022 |
SSID | ssj0002308 |
Score | 2.614078 |
Snippet | Capacitive deionization (CDI) is an emerging technology capable of selective removal of ions from water. While many studies have reported chemically tailored... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5797 |
SubjectTerms | Calcium Calcium ions Cations Composition Correlation analysis Deionization Divalent cations Electrodes Feed composition Fluxes hardness Hydraulic retention time Ion exchange ion-exchange membranes Membranes New technology Organic chemistry Retention time Selectivity Sodium Water softening Water treatment |
Title | Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening |
URI | http://dx.doi.org/10.1021/acs.est.9b00655 https://www.ncbi.nlm.nih.gov/pubmed/31013430 https://www.proquest.com/docview/2231983690 https://www.proquest.com/docview/2213928480 https://www.proquest.com/docview/2271803849 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQSqGw0CIj9cAlYR3Hr2O1tCpIy4GlYsUlspOJVJVNULN76a9nJslmodUWrokdWZN5fLZnvmHs2IEudRAyMlZDlAapoyDKPHJF4QWU2jugQuHpF31-kX6eq_mGLPr2DX4iPvi8idFBxkTep5V6yB4l2hraZ51MZoPTRSRt180KnNTzgcXnzgcoDOXN32FoC7ZsY8zZ0y47q2mpCSm15CpeLUOc39wlbvz38vfYbo80-UmnGs_YA6j22ZM_-Af32cHppswNh_Z23jxnP6ZAFcGXzYLXJZ-1vXLQLfJPdcW_wqJG9eSXFZ_CAjfbFfAJhty8zULiH4FOeLviTo6ImH9HNHvNZ-jugc5gXrCLs9Nvk_Oo78IQ-dSZZWRKh3sKUCFRkqhiEuslXe6ZIlgbClUojSEfDBiP8NAkhXEmKQMR8ePecQzygO1UdQWvGC9Kl3qQQpWIwrz2gdqDBmp3XChf5GHEjlFcWW9FTdZekCcio4cow6yX4YjF63-X5T2TOTXU-Ll9wvthwq-OxGP70MO1MmzWgRBKOCu1G4_Yu-E12iFdrqCU6xWNQSyNsd7eOwaRwFja1I3Yy07RhvUgzBYylePX_yeDN-wxQjdHeQyJOGQ7y-sVHCE8Woa3rWH8BkhcCg0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeeBRathQwUpG4ZNnEiR0fOFTbVru02wPbihWXYMcTqYJNULMrVH4Nf4V_xjibZHloEZdKXB3bcvyY-cae-QZgT6HIhPG5J2OBXmi48IyfpZ6yVvuYCa3QBQqPTsXgPHwziSZr8K2JhaFBlNRTWT3iL9kF_FeujORk13H4iahxozzGqy9kpJWvhwe0oi-C4OjwrD_w6jwCng6VnHkyU4SKMTJBxB3ZSRBr7p6npDVxbGxkI0FKCyVKTQBHBlYqGWTGUcmT9dNDTv3egJsEfQJn3u33x62sJwAfNzkSFBeTljzojwE77ZeWv2q_FZC2Um1Hd-F7OymVR8vH7nxmuunX3_gi_-dZuwd3alzN9hcH4T6sYb4JGz-xLW7C1uEyqI-q1lKtfADvR-jiny_KKSsyNq4yA5ESYMMiZ29xWtBhZBc5G-HUkGZH1ieAkVY-V-wA3X32IpSVEf5n7wi7X7IxKTd0N04P4fxa_noL1vMix0fAbKZCjdyPMsKcWmjjkqEal9zZRtqmpgN7tDxJLTPKpHIHCPzEFdKaJfWadaDbbJkkrXnbXfqQT6sbvGwbfF5QlqyuutvsweU4CDD6KuZC9TrwvP1MUsc9JdEsF3NXhywHQjbxX-sQ7unxOFQd2F7s73Y8ZFT4POS9nX-bg2dwa3A2OklOhqfHj-E2gVblPDgCfxfWZ5dzfELAcGaeVmeTwYfr3tY_AMeFaGs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VIiE4FCgUUgosUpG4OMRee-09cKiSRg0lFSJURFyM1zuWKohd1YkQfZ6-Cu_FjGO7_CiISyWu693Ven9mvtmd-QZgV6PKlHGlE0YKHd9I5Rg3Sx1tbeJiphKNHCg8PlIHx_7raTBdg4smFoYGUVJPZfWIz6f61GY1w4D7kstJVnaZx08FjSvlIX77SoZa-Wo0oFV97nnD_ff9A6fOJeAkvg7nTphpQsYYGC-QTHjiRYnkJ6rQmigyNrCBIsWFIYYJgZzQs6EOvcwwnTxZQD2U1O81uM6PhGzi7fUnrbwnEB81eRK0VNOWQOiPAbMGTMtfNeAKWFupt-Ft-N5OTOXV8rm7mJtuev4bZ-T_PnN3YKPG12JveSDuwhrmm3DrJ9bFTdjavwzuo6q1dCvvwccxchz0STkTRSYmVYYgUgZiVOTiHc4KOpTiJBdjnBnS8Cj6BDTSyvdKDJDvtZchrYLsAPGBMPyZmJCSQ755ug_HV_LXW7CeFzk-BGEz7Sco3SAj7JmoxHBSVMNJnm2Q2NR0YJeWJ65lRxlXbgGeG3MhrVlcr1kHus22idOav53TiHxZ3eBF2-B0SV2yuupOsw8vx0HA0dWRVLrXgWftZ5I-_KREs1wsuA5ZEIRwor_WIfzTk5GvO_Bgucfb8ZBx4Upf9rb_bQ6ewo23g2H8ZnR0-AhuEnbV7MjhuTuwPj9b4GPCh3PzpDqeAj5d9a7-AcX0au4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Selective+Ion+Removal+in+Membrane+Capacitive+Deionization+for+Water+Softening&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Li&rft.au=Lin%2C+Shihong&rft.date=2019-05-21&rft.issn=1520-5851&rft.volume=53&rft.issue=10+p.5797-5804&rft.spage=5797&rft.epage=5804&rft_id=info:doi/10.1021%2Facs.est.9b00655&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |