Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation

Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, s...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 53; no. 14; pp. 8177 - 8186
Main Authors Zhu, Kecheng, Jia, Hanzhong, Zhao, Song, Xia, Tianjiao, Guo, Xuetao, Wang, Tiecheng, Zhu, Lingyan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.07.2019
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/acs.est.9b01474

Cover

Loading…
Abstract Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044–2.0049 and 2.0043–2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2 •– and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
AbstractList Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044–2.0049 and 2.0043–2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•– and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O /H O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044–2.0049 and 2.0043–2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O₂/H₂O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O₂•– and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•- and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•- and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
Author Xia, Tianjiao
Zhao, Song
Zhu, Kecheng
Wang, Tiecheng
Jia, Hanzhong
Zhu, Lingyan
Guo, Xuetao
AuthorAffiliation Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering
AuthorAffiliation_xml – name: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
– name: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering
Author_xml – sequence: 1
  givenname: Kecheng
  surname: Zhu
  fullname: Zhu, Kecheng
  organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
– sequence: 2
  givenname: Hanzhong
  orcidid: 0000-0002-9838-2881
  surname: Jia
  fullname: Jia, Hanzhong
  email: jiahz@nwafu.edu.cn
  organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
– sequence: 3
  givenname: Song
  surname: Zhao
  fullname: Zhao, Song
  organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
– sequence: 4
  givenname: Tianjiao
  orcidid: 0000-0001-8104-6964
  surname: Xia
  fullname: Xia, Tianjiao
  organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
– sequence: 5
  givenname: Xuetao
  surname: Guo
  fullname: Guo, Xuetao
  organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
– sequence: 6
  givenname: Tiecheng
  orcidid: 0000-0003-1085-9946
  surname: Wang
  fullname: Wang, Tiecheng
  organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment
– sequence: 7
  givenname: Lingyan
  orcidid: 0000-0001-9318-7940
  surname: Zhu
  fullname: Zhu, Lingyan
  email: zhuly@nankai.edu.cn
  organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31246433$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1LHDEUxYMoulqf-1YCfSnIrLn5ms1jEVeFFUVa6JMhO5NpIzPJNskU_O_NfuiDIPQphPzOzT3nHKN9H7xF6DOQKRAK56ZJU5vyVC0J8JrvoQkISioxE7CPJoQAqxSTv47QcUpPhBDKyOwQHTGgXHLGJuhxHuJgsgsehw5f-n8uBj9Yn03fP-N7G5NLuVzxPFqLH0zrGtMnXPBb18Sw6k3Krkl49K2NeOF-_8n4JsbCbYZ-Qgdd4e3p7jxBP-eXPy6uq8Xd1c3F90VluKpzJQhZckEBlKklSAWzpuOGLY1pQbFaWmiEUCC4Adp1khKoi0NSbEjVMjljJ-jbdu4qhr9jSUQPLjW27423YUyaipozKJr_QKkgJZt6g359hz6FMfpipFBScSCSskJ92VHjcrCtXkU3mPisX0MugNgCJbCUou104_ImnhyN6zUQvS5TlzL1-pNdmUV3_k73OvpjxdlWsX542_Uj-gVjd69o
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_177427
crossref_primary_10_1021_acs_est_3c01310
crossref_primary_10_1016_j_watres_2021_116980
crossref_primary_10_1016_j_jhazmat_2025_137891
crossref_primary_10_1016_j_emcon_2024_100380
crossref_primary_10_1007_s11356_021_13292_z
crossref_primary_10_1016_j_jhazmat_2023_131674
crossref_primary_10_1016_j_jhazmat_2023_132887
crossref_primary_10_1016_j_watres_2025_123394
crossref_primary_10_1002_ldr_5231
crossref_primary_10_1016_j_chemosphere_2021_132815
crossref_primary_10_1007_s11356_024_35802_5
crossref_primary_10_1039_D4EM00208C
crossref_primary_10_1016_j_envint_2022_107158
crossref_primary_10_1016_j_scitotenv_2020_142427
crossref_primary_10_1016_j_scitotenv_2023_165399
crossref_primary_10_1016_j_watres_2020_116456
crossref_primary_10_1021_acs_est_9b03453
crossref_primary_10_1016_j_envres_2024_120140
crossref_primary_10_3390_environments11080165
crossref_primary_10_1016_j_scitotenv_2024_173163
crossref_primary_10_1016_j_jhazmat_2024_136184
crossref_primary_10_1016_j_scitotenv_2023_168539
crossref_primary_10_1016_j_watres_2020_116360
crossref_primary_10_3390_su17010149
crossref_primary_10_1016_j_jes_2023_06_030
crossref_primary_10_1016_j_chemosphere_2023_139922
crossref_primary_10_1016_j_chemosphere_2023_137744
crossref_primary_10_1016_j_envpol_2023_123219
crossref_primary_10_1021_acs_estlett_1c00766
crossref_primary_10_1039_D0EN00518E
crossref_primary_10_23939_chcht17_03_503
crossref_primary_10_1016_j_scitotenv_2023_167684
crossref_primary_10_1016_j_cej_2025_160882
crossref_primary_10_1007_s10311_023_01593_3
crossref_primary_10_1021_acs_estlett_4c00333
crossref_primary_10_1016_j_eti_2023_103429
crossref_primary_10_3390_microplastics2030023
crossref_primary_10_1016_j_ecoenv_2024_115979
crossref_primary_10_1007_s11270_020_04886_3
crossref_primary_10_1016_j_watres_2022_118294
crossref_primary_10_1016_j_cej_2025_159783
crossref_primary_10_1016_j_jhazmat_2023_132990
crossref_primary_10_1016_j_scitotenv_2021_147493
crossref_primary_10_1016_j_cej_2021_129813
crossref_primary_10_1016_j_watres_2024_122823
crossref_primary_10_1016_j_jenvman_2023_119377
crossref_primary_10_1016_j_fuel_2024_132698
crossref_primary_10_1016_j_polymer_2023_126447
crossref_primary_10_1016_j_scitotenv_2021_148345
crossref_primary_10_1016_j_scitotenv_2024_177467
crossref_primary_10_1016_j_watres_2024_121856
crossref_primary_10_1021_acs_est_2c08571
crossref_primary_10_1016_j_scitotenv_2021_150538
crossref_primary_10_1021_acs_est_1c05812
crossref_primary_10_1016_j_envpol_2021_117006
crossref_primary_10_1016_j_seppur_2022_122769
crossref_primary_10_1021_envhealth_4c00209
crossref_primary_10_1016_j_envpol_2020_116278
crossref_primary_10_1002_slct_201903528
crossref_primary_10_1016_j_envres_2024_118268
crossref_primary_10_1016_j_jhazmat_2023_131401
crossref_primary_10_1016_j_watres_2020_115564
crossref_primary_10_1016_j_scitotenv_2023_166048
crossref_primary_10_3390_ijerph20031745
crossref_primary_10_1021_acs_est_2c08567
crossref_primary_10_1016_j_scitotenv_2023_166040
crossref_primary_10_3390_su16073077
crossref_primary_10_1016_j_jhazmat_2025_137995
crossref_primary_10_1016_j_scitotenv_2024_176350
crossref_primary_10_1021_acs_est_4c08865
crossref_primary_10_1016_j_scitotenv_2020_144835
crossref_primary_10_1021_acs_est_2c08672
crossref_primary_10_1016_j_jhazmat_2022_130483
crossref_primary_10_1016_j_trac_2024_118003
crossref_primary_10_1021_acs_est_1c04509
crossref_primary_10_1016_j_cej_2023_148158
crossref_primary_10_1016_j_scitotenv_2023_165291
crossref_primary_10_1007_s11270_021_05081_8
crossref_primary_10_1016_j_watres_2024_121628
crossref_primary_10_1021_acs_est_4c03199
crossref_primary_10_1039_D0EM00009D
crossref_primary_10_1016_j_scitotenv_2022_157498
crossref_primary_10_1007_s10653_025_02430_y
crossref_primary_10_1021_acs_est_3c01463
crossref_primary_10_1038_s41598_024_78480_6
crossref_primary_10_1021_acs_estlett_2c00689
crossref_primary_10_1016_j_watres_2024_122064
crossref_primary_10_1016_j_jhazmat_2019_121165
crossref_primary_10_1080_10643389_2024_2303294
crossref_primary_10_1021_acs_est_2c04453
crossref_primary_10_1016_j_cej_2023_145653
crossref_primary_10_1016_j_scitotenv_2022_155108
crossref_primary_10_1016_j_ecoenv_2023_115259
crossref_primary_10_1080_00102202_2024_2401070
crossref_primary_10_1021_acs_est_4c03414
crossref_primary_10_3390_toxics12110796
crossref_primary_10_1021_acs_est_4c05504
crossref_primary_10_2478_pjct_2020_0020
crossref_primary_10_1016_j_watres_2023_119628
crossref_primary_10_1142_S1793984424400038
crossref_primary_10_1016_j_cej_2022_134827
crossref_primary_10_1016_j_jes_2020_03_057
crossref_primary_10_1002_aic_18020
crossref_primary_10_1021_acs_est_2c07824
crossref_primary_10_1016_j_envint_2022_107668
crossref_primary_10_1016_j_jhazmat_2020_123944
crossref_primary_10_1039_D3EN00044C
crossref_primary_10_1016_j_envint_2022_107663
crossref_primary_10_1016_j_pedsph_2024_06_005
crossref_primary_10_1016_j_jhazmat_2024_135250
crossref_primary_10_1007_s11270_025_07751_3
crossref_primary_10_1016_j_envres_2020_109893
crossref_primary_10_1016_j_envpol_2022_119847
crossref_primary_10_1039_D2EN00240J
crossref_primary_10_3390_toxics12100726
crossref_primary_10_1016_j_envpol_2022_120707
crossref_primary_10_1016_j_seppur_2023_124245
crossref_primary_10_1002_anie_202413343
crossref_primary_10_1016_j_watres_2024_123048
crossref_primary_10_1016_j_jhazmat_2024_136331
crossref_primary_10_1016_j_jhazmat_2024_134395
crossref_primary_10_2139_ssrn_4068340
crossref_primary_10_1016_j_jece_2024_115217
crossref_primary_10_1016_j_cej_2024_152451
crossref_primary_10_1021_acs_est_4c01130
crossref_primary_10_1016_j_jhazmat_2022_130310
crossref_primary_10_1016_j_cej_2025_161467
crossref_primary_10_1016_j_hazadv_2025_100640
crossref_primary_10_1016_j_jhazmat_2021_127095
crossref_primary_10_1016_j_chemosphere_2023_141060
crossref_primary_10_1021_acs_est_1c05650
crossref_primary_10_1016_j_trac_2023_117293
crossref_primary_10_1016_j_envint_2022_107128
crossref_primary_10_3390_ijerph20176667
crossref_primary_10_1016_j_jclepro_2024_142783
crossref_primary_10_1016_j_scitotenv_2022_154180
crossref_primary_10_1007_s44169_022_00013_x
crossref_primary_10_3390_ijms25105060
crossref_primary_10_1016_j_scitotenv_2023_164035
crossref_primary_10_1016_j_scitotenv_2023_167666
crossref_primary_10_1016_j_chemosphere_2019_125193
crossref_primary_10_1002_smsc_202300096
crossref_primary_10_1016_j_jhazmat_2022_129784
crossref_primary_10_3390_toxics10070341
crossref_primary_10_1021_acs_est_2c05346
crossref_primary_10_1016_j_scitotenv_2024_174249
crossref_primary_10_2139_ssrn_4192380
crossref_primary_10_1016_j_hazadv_2023_100343
crossref_primary_10_1021_acs_est_4c12077
crossref_primary_10_1016_j_cej_2023_144401
crossref_primary_10_1016_j_watres_2023_119786
crossref_primary_10_1016_j_cej_2023_145854
crossref_primary_10_1016_j_scitotenv_2022_155024
crossref_primary_10_1016_j_pce_2025_103866
crossref_primary_10_1016_j_chemosphere_2024_142560
crossref_primary_10_3390_w15223890
crossref_primary_10_1016_j_eehl_2025_100138
crossref_primary_10_1007_s12649_022_01870_2
crossref_primary_10_1016_j_envres_2024_120064
crossref_primary_10_1016_j_jhazmat_2024_135308
crossref_primary_10_1016_j_envpol_2021_118169
crossref_primary_10_1016_j_marpolbul_2024_116736
crossref_primary_10_1021_acsestwater_3c00549
crossref_primary_10_1021_acssuschemeng_2c04755
crossref_primary_10_1016_j_envpol_2024_124479
crossref_primary_10_3390_w14213515
crossref_primary_10_1016_j_jhazmat_2024_134249
crossref_primary_10_1016_j_watres_2020_115876
crossref_primary_10_1002_adsu_202100027
crossref_primary_10_1016_j_cej_2021_133026
crossref_primary_10_1021_acs_est_3c06864
crossref_primary_10_1016_j_chemosphere_2022_134118
crossref_primary_10_3390_su151712698
crossref_primary_10_2139_ssrn_4161692
crossref_primary_10_2139_ssrn_4161691
crossref_primary_10_1016_j_scitotenv_2024_173133
crossref_primary_10_1016_j_watres_2023_120871
crossref_primary_10_1016_j_jhazmat_2024_134593
crossref_primary_10_1016_j_jhazmat_2024_136651
crossref_primary_10_1016_j_envint_2023_107875
crossref_primary_10_1016_j_jhazmat_2024_135329
crossref_primary_10_1016_j_jhazmat_2024_136418
crossref_primary_10_1016_j_marpolbul_2023_115331
crossref_primary_10_1016_j_scitotenv_2021_150603
crossref_primary_10_1016_j_trac_2023_117025
crossref_primary_10_1021_acsami_4c04416
crossref_primary_10_1016_j_scitotenv_2022_153457
crossref_primary_10_1016_j_cej_2021_130205
crossref_primary_10_1016_j_jclepro_2021_129805
crossref_primary_10_1021_acs_est_9b06395
crossref_primary_10_1016_j_chemosphere_2021_133239
crossref_primary_10_1016_j_jhazmat_2024_135870
crossref_primary_10_1016_j_jhazmat_2024_135991
crossref_primary_10_1007_s11783_023_1743_8
crossref_primary_10_3390_su12030878
crossref_primary_10_1016_j_jwpe_2021_102128
crossref_primary_10_1016_j_envres_2022_112899
crossref_primary_10_1016_j_scitotenv_2023_164513
crossref_primary_10_1016_j_marpolbul_2024_116474
crossref_primary_10_1007_s11356_024_34120_0
crossref_primary_10_1021_acs_est_1c07129
crossref_primary_10_1016_j_cej_2021_131666
crossref_primary_10_1016_j_jclepro_2024_141889
crossref_primary_10_1016_j_jenvman_2024_122697
crossref_primary_10_1016_j_energy_2023_128914
crossref_primary_10_1016_j_scitotenv_2023_165714
crossref_primary_10_1016_j_scitotenv_2021_148707
crossref_primary_10_1016_j_envpol_2022_120456
crossref_primary_10_1016_j_chemosphere_2023_138485
crossref_primary_10_1016_j_chemosphere_2021_133352
crossref_primary_10_1021_acs_est_9b07016
crossref_primary_10_1016_j_chemosphere_2022_133737
crossref_primary_10_1016_j_jhazmat_2020_124756
crossref_primary_10_1021_acs_est_3c07878
crossref_primary_10_1016_j_scitotenv_2021_148725
crossref_primary_10_1016_j_ecoenv_2023_114906
crossref_primary_10_1016_j_jhazmat_2024_135778
crossref_primary_10_1007_s10661_023_12219_0
crossref_primary_10_1016_j_envpol_2022_120544
crossref_primary_10_1016_j_envpol_2022_120307
crossref_primary_10_1021_acs_est_3c03278
crossref_primary_10_1016_j_clce_2025_100162
crossref_primary_10_1016_j_envpol_2020_115686
crossref_primary_10_1007_s11356_022_22897_x
crossref_primary_10_1016_j_chemosphere_2021_133463
crossref_primary_10_1016_j_jhazmat_2022_128405
crossref_primary_10_1016_j_jhazmat_2022_128522
crossref_primary_10_1016_j_watres_2022_118731
crossref_primary_10_1016_j_envres_2024_118524
crossref_primary_10_1016_j_jclepro_2024_142834
crossref_primary_10_1016_j_jhazmat_2022_128523
crossref_primary_10_1016_j_envres_2023_116281
crossref_primary_10_4236_gep_2023_111016
crossref_primary_10_1016_j_jhazmat_2023_133282
crossref_primary_10_1002_jctb_7819
crossref_primary_10_1021_acs_est_4c11206
crossref_primary_10_1021_acs_est_4c14716
crossref_primary_10_1016_j_trac_2024_117648
crossref_primary_10_1016_j_hazadv_2024_100460
crossref_primary_10_1016_j_watres_2022_118979
crossref_primary_10_1007_s11947_025_03757_1
crossref_primary_10_1016_j_scitotenv_2024_172455
crossref_primary_10_1016_j_watres_2022_118320
crossref_primary_10_1016_j_envpol_2025_125700
crossref_primary_10_1016_j_scitotenv_2021_152049
crossref_primary_10_1016_j_jhazmat_2022_128611
crossref_primary_10_1016_j_jhazmat_2020_123325
crossref_primary_10_1016_j_chemosphere_2023_140256
crossref_primary_10_1016_j_fmre_2022_08_009
crossref_primary_10_3390_jox12010001
crossref_primary_10_1016_j_watres_2024_121295
crossref_primary_10_1016_j_watres_2024_121173
crossref_primary_10_1016_j_watres_2022_118209
crossref_primary_10_1016_j_scitotenv_2024_170043
crossref_primary_10_1021_acsnano_2c05803
crossref_primary_10_1016_j_apsoil_2022_104486
crossref_primary_10_1021_acsestengg_1c00323
crossref_primary_10_1016_j_jhazmat_2023_132295
crossref_primary_10_1016_j_chemosphere_2022_134421
crossref_primary_10_1016_j_jhazmat_2024_134854
crossref_primary_10_1021_acs_estlett_2c00816
crossref_primary_10_1016_j_scitotenv_2022_161290
crossref_primary_10_1039_D3NJ03950A
crossref_primary_10_1016_j_jhazmat_2021_126143
crossref_primary_10_1016_j_envpol_2022_119159
crossref_primary_10_1016_j_jhazmat_2022_128955
crossref_primary_10_1016_j_jhazmat_2021_126377
crossref_primary_10_1016_j_scitotenv_2022_153235
crossref_primary_10_1021_acs_est_2c03309
crossref_primary_10_3390_ijms242417219
crossref_primary_10_2139_ssrn_3993168
crossref_primary_10_1016_j_atmosenv_2020_117809
crossref_primary_10_1039_D1CC04028F
crossref_primary_10_5194_acp_24_8737_2024
crossref_primary_10_1016_j_jclepro_2025_145113
crossref_primary_10_1016_j_jhazmat_2024_134884
crossref_primary_10_1016_j_envint_2024_109042
crossref_primary_10_1007_s11356_023_28899_7
crossref_primary_10_1016_j_scitotenv_2024_175939
crossref_primary_10_3390_soilsystems7010019
crossref_primary_10_1039_D4EN00500G
crossref_primary_10_1016_j_jafr_2024_101124
crossref_primary_10_1021_acs_est_4c04608
crossref_primary_10_1016_j_chemosphere_2020_126679
crossref_primary_10_1016_j_jenvman_2024_123125
crossref_primary_10_1016_j_watres_2021_117144
crossref_primary_10_1016_j_cej_2022_138163
crossref_primary_10_1016_j_scitotenv_2023_165607
crossref_primary_10_1016_j_scitotenv_2023_164758
crossref_primary_10_1088_2053_1591_aba1b5
crossref_primary_10_1016_j_jhazmat_2023_131185
crossref_primary_10_3390_pr13030843
crossref_primary_10_1016_j_envpol_2024_124097
crossref_primary_10_1016_j_jhazmat_2022_128813
crossref_primary_10_3390_cells13211788
crossref_primary_10_1080_05704928_2024_2311130
crossref_primary_10_1016_j_jhazmat_2023_131151
crossref_primary_10_1016_j_jwpe_2025_107302
crossref_primary_10_1007_s10311_024_01701_x
crossref_primary_10_1016_j_jhazmat_2023_131031
crossref_primary_10_1007_s44246_023_00050_8
crossref_primary_10_1016_j_jhazmat_2023_131277
crossref_primary_10_1007_s10924_023_03102_7
crossref_primary_10_1007_s10311_020_00991_1
crossref_primary_10_1177_00368504231173835
crossref_primary_10_1016_j_jhazmat_2024_133615
crossref_primary_10_1016_j_envpol_2020_114299
crossref_primary_10_1016_j_marpolbul_2021_112561
crossref_primary_10_1016_j_scitotenv_2023_161747
crossref_primary_10_1016_j_jhazmat_2023_133102
crossref_primary_10_1016_j_jece_2024_112958
crossref_primary_10_1016_j_carbon_2021_06_070
crossref_primary_10_1016_j_jclepro_2023_139678
crossref_primary_10_1016_j_scitotenv_2023_168260
crossref_primary_10_1016_j_chemosphere_2023_140839
crossref_primary_10_3390_agronomy15030602
crossref_primary_10_1016_j_envres_2022_114532
crossref_primary_10_1039_D3EN00642E
crossref_primary_10_1016_j_envint_2020_106137
crossref_primary_10_1021_acs_langmuir_1c03491
crossref_primary_10_1016_j_seppur_2024_131137
crossref_primary_10_1002_smll_202005834
crossref_primary_10_1007_s10895_025_04152_x
crossref_primary_10_1021_acs_est_4c11955
crossref_primary_10_1007_s11356_023_31000_x
crossref_primary_10_1007_s11783_020_1252_y
crossref_primary_10_1016_j_jwpe_2025_107556
crossref_primary_10_1016_j_scitotenv_2024_170500
crossref_primary_10_1007_s10653_024_01932_5
crossref_primary_10_1007_s11356_021_17688_9
crossref_primary_10_1016_j_envpol_2022_119173
crossref_primary_10_1016_j_jece_2023_111598
crossref_primary_10_1016_j_watres_2021_117580
crossref_primary_10_1016_j_cej_2023_141838
crossref_primary_10_1016_j_cej_2025_160935
crossref_primary_10_1016_j_jenvman_2022_115997
crossref_primary_10_1016_j_scitotenv_2024_170616
crossref_primary_10_1016_j_chemosphere_2023_138544
crossref_primary_10_1016_j_cej_2021_128432
crossref_primary_10_1016_j_eehl_2024_08_004
crossref_primary_10_1007_s11783_020_1285_2
crossref_primary_10_1016_j_ecoenv_2024_116036
crossref_primary_10_1016_j_seppur_2022_121036
crossref_primary_10_2139_ssrn_4017466
crossref_primary_10_1016_j_rsma_2022_102647
crossref_primary_10_53623_tasp_v4i1_446
crossref_primary_10_1007_s11356_023_28736_x
crossref_primary_10_1016_j_envpol_2023_122435
crossref_primary_10_1021_acs_est_1c05092
crossref_primary_10_1016_j_catena_2024_107972
crossref_primary_10_1016_j_watres_2021_117879
crossref_primary_10_1016_j_apcatb_2024_123793
crossref_primary_10_1021_acs_est_1c01974
crossref_primary_10_1007_s11783_024_1809_2
crossref_primary_10_1007_s11270_024_07650_z
crossref_primary_10_1021_acs_est_4c06191
crossref_primary_10_2139_ssrn_3997712
crossref_primary_10_1016_j_cej_2024_151910
crossref_primary_10_1016_j_jhazmat_2025_137586
crossref_primary_10_1016_j_marpolbul_2023_114709
crossref_primary_10_1039_D4EN00801D
crossref_primary_10_1016_j_cej_2025_160907
crossref_primary_10_1016_j_jhazmat_2021_126429
crossref_primary_10_1021_acs_est_4c09107
crossref_primary_10_1039_D1EA00075F
crossref_primary_10_1016_j_fuel_2023_128861
crossref_primary_10_1016_j_jhazmat_2025_137109
crossref_primary_10_1016_j_scitotenv_2022_160488
crossref_primary_10_3390_atmos15111380
crossref_primary_10_1016_j_jhazmat_2024_133805
crossref_primary_10_1016_j_watres_2023_121064
crossref_primary_10_1002_ange_202413343
crossref_primary_10_1016_j_scitotenv_2021_150168
crossref_primary_10_1016_j_jhazmat_2025_137478
crossref_primary_10_1016_j_scitotenv_2024_177167
crossref_primary_10_1021_acs_est_3c07035
crossref_primary_10_1080_10643389_2023_2224182
crossref_primary_10_1016_j_jclepro_2022_132912
crossref_primary_10_1021_acs_est_9b07905
crossref_primary_10_1016_j_watres_2022_118701
crossref_primary_10_1016_j_biortech_2024_131167
crossref_primary_10_1016_j_scitotenv_2021_149173
crossref_primary_10_1007_s10311_021_01193_z
crossref_primary_10_1016_j_envpol_2023_121590
crossref_primary_10_1016_j_cej_2023_145157
crossref_primary_10_1016_j_watres_2021_117782
crossref_primary_10_1016_j_watres_2021_117420
crossref_primary_10_3390_toxics11030242
crossref_primary_10_3390_ijms25115740
crossref_primary_10_1016_j_scitotenv_2021_144969
crossref_primary_10_1016_j_jhazmat_2023_131466
crossref_primary_10_1021_acs_est_3c08019
crossref_primary_10_1016_j_jhazmat_2024_133949
crossref_primary_10_1016_j_chemosphere_2021_131353
crossref_primary_10_1021_acs_est_3c07161
Cites_doi 10.1016/j.envpol.2014.02.012
10.1016/j.jhazmat.2007.12.019
10.1016/j.scitotenv.2017.11.103
10.1016/j.scitotenv.2018.02.079
10.1346/CCMN.1984.0320411
10.1021/acs.est.8b01487
10.1021/es8022978
10.1016/j.marpolbul.2015.08.041
10.1098/rstb.2008.0205
10.1002/pola.1992.080301302
10.1016/0025-326X(91)90444-W
10.1016/j.envpol.2017.07.103
10.1016/j.envpol.2013.02.031
10.1016/S0025-326X(87)80019-X
10.1021/bk-1983-0229
10.1002/cssc.201400079
10.1016/j.marpolbul.2016.04.048
10.1016/S0014-3057(99)00175-5
10.1016/j.marpolbul.2016.05.036
10.1016/0891-5849(89)90095-6
10.1021/acs.est.6b00527
10.1021/acs.est.8b00425
10.1021/acs.est.7b03583
10.1016/j.marenvres.2016.07.004
10.1021/tx010050x
10.1021/acs.est.6b00183
10.1021/acs.est.7b05453
10.1021/acs.est.5b02661
10.1016/j.marpolbul.2009.12.026
10.1021/acs.est.7b00599
10.1039/C5EM00188A
10.1016/j.marpolbul.2011.05.030
10.1016/j.tca.2008.04.013
10.1590/S0103-50532008000300007
10.1016/j.marpolbul.2017.01.082
10.1021/ma00117a038
10.1021/acs.est.7b01521
10.1002/app.36307
10.1016/j.ecss.2015.12.003
10.1021/es401767m
10.1016/0014-3057(95)00095-X
10.1186/2193-1801-2-398
10.1080/08958370701665517
10.1021/acs.est.7b01929
10.1021/es071737s
10.1021/acs.est.5b04314
10.1002/anie.198204011
10.1021/es401770y
10.1016/j.marpolbul.2017.12.059
10.1002/pola.10645
10.1021/es504525u
10.1021/es401932b
10.1039/C5EM00207A
10.1016/S0014-3057(97)00169-9
10.1016/j.jhazmat.2018.09.019
10.1016/j.marpolbul.2016.01.006
10.1016/j.envpol.2018.01.022
10.1126/science.6301009
10.1021/es302011r
10.1021/es4048126
10.1021/acs.est.7b00828
10.1021/es302332w
10.1016/j.marpolbul.2009.04.025
10.1021/es201309c
10.1016/j.cub.2013.10.012
10.1021/es071708h
10.1016/j.proci.2006.07.172
10.1016/j.marpolbul.2010.09.026
10.1021/acsmacrolett.7b00447
10.1016/j.envres.2008.07.025
10.1016/j.envpol.2014.12.021
10.1023/B:HIEC.0000041340.45217.bd
10.1016/j.eurpolymj.2017.02.010
ContentType Journal Article
Copyright Copyright American Chemical Society Jul 16, 2019
Copyright_xml – notice: Copyright American Chemical Society Jul 16, 2019
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.9b01474
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 8186
ExternalDocumentID 31246433
10_1021_acs_est_9b01474
d77143022
Genre Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a497t-500b452119a7616918cf4a3baad19376e1c559154a12ff62017851031269d3683
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 13:08:34 EDT 2025
Fri Jul 11 07:11:59 EDT 2025
Mon Jun 30 03:45:00 EDT 2025
Wed Feb 19 02:33:44 EST 2025
Tue Jul 01 02:58:04 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Thu Aug 27 13:43:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a497t-500b452119a7616918cf4a3baad19376e1c559154a12ff62017851031269d3683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9838-2881
0000-0001-9318-7940
0000-0003-1085-9946
0000-0001-8104-6964
PMID 31246433
PQID 2269410623
PQPubID 45412
PageCount 10
ParticipantIDs proquest_miscellaneous_2574318518
proquest_miscellaneous_2250643718
proquest_journals_2269410623
pubmed_primary_31246433
crossref_citationtrail_10_1021_acs_est_9b01474
crossref_primary_10_1021_acs_est_9b01474
acs_journals_10_1021_acs_est_9b01474
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-16
PublicationDateYYYYMMDD 2019-07-16
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
Han L. (ref43/cit43) 2017; 29
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
Garner D. P. (ref48/cit48) 1983
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
Bouchentouf S. (ref7/cit7) 2013; 1
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref68/cit68
Cole M. (ref13/cit13) 2014
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
References_xml – ident: ref30/cit30
  doi: 10.1016/j.envpol.2014.02.012
– ident: ref50/cit50
  doi: 10.1016/j.jhazmat.2007.12.019
– ident: ref78/cit78
  doi: 10.1016/j.scitotenv.2017.11.103
– ident: ref49/cit49
  doi: 10.1016/j.scitotenv.2018.02.079
– ident: ref58/cit58
  doi: 10.1346/CCMN.1984.0320411
– ident: ref77/cit77
– ident: ref64/cit64
  doi: 10.1021/acs.est.8b01487
– volume: 29
  start-page: 1008
  issue: 9
  year: 2017
  ident: ref43/cit43
  publication-title: Prog. Chem.
– ident: ref31/cit31
  doi: 10.1021/es8022978
– ident: ref12/cit12
  doi: 10.1016/j.marpolbul.2015.08.041
– ident: ref9/cit9
  doi: 10.1098/rstb.2008.0205
– ident: ref68/cit68
  doi: 10.1002/pola.1992.080301302
– ident: ref5/cit5
  doi: 10.1016/0025-326X(91)90444-W
– ident: ref14/cit14
  doi: 10.1016/j.envpol.2017.07.103
– ident: ref3/cit3
  doi: 10.1016/j.envpol.2013.02.031
– ident: ref6/cit6
  doi: 10.1016/S0025-326X(87)80019-X
– volume-title: The Effects of Hostile Environments on Coatings and Plastics
  year: 1983
  ident: ref48/cit48
  doi: 10.1021/bk-1983-0229
– ident: ref37/cit37
  doi: 10.1002/cssc.201400079
– ident: ref27/cit27
  doi: 10.1016/j.marpolbul.2016.04.048
– ident: ref73/cit73
  doi: 10.1016/S0014-3057(99)00175-5
– ident: ref23/cit23
  doi: 10.1016/j.marpolbul.2016.05.036
– ident: ref51/cit51
  doi: 10.1016/0891-5849(89)90095-6
– ident: ref35/cit35
  doi: 10.1021/acs.est.6b00527
– ident: ref45/cit45
  doi: 10.1021/acs.est.8b00425
– ident: ref52/cit52
  doi: 10.1021/acs.est.7b03583
– ident: ref1/cit1
  doi: 10.1016/j.marenvres.2016.07.004
– ident: ref34/cit34
  doi: 10.1021/tx010050x
– ident: ref21/cit21
  doi: 10.1021/acs.est.6b00183
– ident: ref36/cit36
  doi: 10.1021/acs.est.7b05453
– ident: ref72/cit72
  doi: 10.1021/acs.est.5b02661
– ident: ref63/cit63
  doi: 10.1016/j.marpolbul.2009.12.026
– ident: ref54/cit54
  doi: 10.1021/acs.est.7b00599
– ident: ref8/cit8
  doi: 10.1039/C5EM00188A
– ident: ref26/cit26
  doi: 10.1016/j.marpolbul.2011.05.030
– ident: ref65/cit65
  doi: 10.1016/j.tca.2008.04.013
– ident: ref57/cit57
  doi: 10.1590/S0103-50532008000300007
– ident: ref46/cit46
  doi: 10.1016/j.marpolbul.2017.01.082
– ident: ref69/cit69
  doi: 10.1021/ma00117a038
– ident: ref40/cit40
  doi: 10.1021/acs.est.7b01521
– ident: ref67/cit67
  doi: 10.1002/app.36307
– ident: ref24/cit24
  doi: 10.1016/j.ecss.2015.12.003
– ident: ref62/cit62
  doi: 10.1021/es401767m
– volume-title: The Impacts of Microplastics on Zooplankton
  year: 2014
  ident: ref13/cit13
– ident: ref74/cit74
  doi: 10.1016/0014-3057(95)00095-X
– ident: ref66/cit66
  doi: 10.1186/2193-1801-2-398
– ident: ref41/cit41
  doi: 10.1080/08958370701665517
– ident: ref55/cit55
  doi: 10.1021/acs.est.7b01929
– ident: ref25/cit25
  doi: 10.1021/es071737s
– ident: ref39/cit39
  doi: 10.1021/acs.est.5b04314
– ident: ref59/cit59
  doi: 10.1002/anie.198204011
– ident: ref44/cit44
  doi: 10.1021/es401770y
– ident: ref28/cit28
  doi: 10.1016/j.marpolbul.2017.12.059
– ident: ref76/cit76
  doi: 10.1002/pola.10645
– ident: ref15/cit15
  doi: 10.1021/es504525u
– ident: ref19/cit19
  doi: 10.1021/es401932b
– ident: ref47/cit47
  doi: 10.1039/C5EM00207A
– ident: ref75/cit75
  doi: 10.1016/S0014-3057(97)00169-9
– ident: ref56/cit56
  doi: 10.1016/j.jhazmat.2018.09.019
– ident: ref10/cit10
  doi: 10.1016/j.marpolbul.2016.01.006
– ident: ref29/cit29
  doi: 10.1016/j.envpol.2018.01.022
– ident: ref32/cit32
  doi: 10.1126/science.6301009
– ident: ref11/cit11
  doi: 10.1021/es302011r
– ident: ref38/cit38
  doi: 10.1021/es4048126
– ident: ref16/cit16
  doi: 10.1016/j.envpol.2013.02.031
– ident: ref61/cit61
  doi: 10.1021/acs.est.7b00828
– ident: ref17/cit17
  doi: 10.1021/es302332w
– ident: ref4/cit4
  doi: 10.1016/j.marpolbul.2009.04.025
– ident: ref42/cit42
  doi: 10.1021/es201309c
– volume: 1
  start-page: 28
  issue: 1
  year: 2013
  ident: ref7/cit7
  publication-title: Am. Biol. Teach.
– ident: ref22/cit22
  doi: 10.1016/j.cub.2013.10.012
– ident: ref33/cit33
  doi: 10.1021/es071708h
– ident: ref60/cit60
  doi: 10.1016/j.proci.2006.07.172
– ident: ref18/cit18
  doi: 10.1016/j.marpolbul.2010.09.026
– ident: ref71/cit71
  doi: 10.1021/acsmacrolett.7b00447
– ident: ref2/cit2
  doi: 10.1016/j.envres.2008.07.025
– ident: ref20/cit20
  doi: 10.1016/j.envpol.2014.12.021
– ident: ref53/cit53
  doi: 10.1023/B:HIEC.0000041340.45217.bd
– ident: ref70/cit70
  doi: 10.1016/j.eurpolymj.2017.02.010
SSID ssj0002308
Score 2.695632
Snippet Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS),...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8177
SubjectTerms Aging
Chain scission
cleavage (chemistry)
Contaminants
Decay rate
Ecosystems
Electron paramagnetic resonance
electron paramagnetic resonance spectroscopy
environmental science
Fourier transforms
Free radicals
gel chromatography
Hazards
Infrared analysis
Infrared spectroscopy
Irradiation
Light irradiation
lighting
Liquid chromatography
Microplastics
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Organic chemistry
Phenol formaldehyde resins
Phenols
photoaging
Photoelectron spectroscopy
Photoelectrons
Plastic pollution
poly(vinyl chloride)
Polyethylene
Polyethylenes
Polystyrene
Polystyrene resins
polystyrenes
Polyvinyl chloride
Reactive oxygen species
Reflectance
Resonance
Spectroscopy
Spectrum analysis
X ray photoelectron spectroscopy
Title Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation
URI http://dx.doi.org/10.1021/acs.est.9b01474
https://www.ncbi.nlm.nih.gov/pubmed/31246433
https://www.proquest.com/docview/2269410623
https://www.proquest.com/docview/2250643718
https://www.proquest.com/docview/2574318518
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwKK9CQUZiYEloEj-SsaqoCgIGHlInIsdxFlCKknSAX89dmqaUqsCanC3rcuf7nLv7TMg55wbilAZHUozBASUOLKV5bEntmkT42sQGM7p392LwzG6GfDgji_6ZwXedS6VzGzZIO4gAzUu2StZc4Uukye_2HutNF5C0P72sIPDEsGbxWZgAw5DO58PQEmxZxpj-1qQ6Ky-pCbG05NUeF5GtPxeJG_9e_jbZrJAm7U5MY4esmLRJNr7xDzbJ_tWszQ1EKz_Pd8lLf9rTSEcJnZN6-6BYNY_WkRa0nxlDH1SZ7MkpiN9hgd87QHKkf6bYoZbRW_wBQK-zDHkQcNI98ty_euoNrOomBkuxQBYW73QixpEMTkmB9Dq-TpjyIqViAIBSGEfDyQTQmHLcJBEAKqSPVH2OK4LYE763TxrpKDWHhAKATCTXCiyYARgSkTHK014inYi7TPIWOQeVhZUn5WGZJHedEB-CHsNKjy1iT79fqCs2c7xU4235gIt6wPuEyGO5aHtqELN1uGXLbwfQYouc1a_BFzHBolIzGqMMLxOhjv-LDEfMBtoBmYOJsdXrAX0xGO8d_U8Hx2QdNI09aJYj2qRRZGNzAhCpiE5L5_gCp9ILeg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPQAHWmiBBdoaiUMvWTaJH8kRIVZLu4vES9pTI8dxLqAsSrIH-PXMZJNsAS2i12RsTcYz9ueM5zPAkRAW1ymDgaQ5xw1KEjraiMRRxrOpDIxNLGV0RxdycMt_j8V4CXpNLQwqUWBPRZXEn7MLuMf0DOfJbhgjqFd8GT4hFPGILf_k9LqdexFQB82dBaEvxy2Zz5sOaDUyxcvVaAHErJaa_me4bJWsTpjcdadl3DVPr_gb_-crvsBGjTvZycxRNmHJZluw_g8b4RZsn82L3lC0jvriK_ztNxWObJKyF1L3j4zO0JOvZCXr59ayK12lfgqG4iM67veAAJ3IoBnVq-VsSL8D2HmeEysCdfoNbvtnN6cDp76XwdE8VKUjer2YC6KG00oS2U5gUq79WOsE4aCS1jW4T0Fspl0vTSVCDBUQcZ_ryTDxZeBvw0o2yewuMBzDVAmj0Z85QiMZW6t946fKjXFwlejAEZosquOqiKqUuedG9BDtGNV27EC3GcbI1NzmdMXG_eIGv9oGDzNaj8WiB41fzPXwqgLgHmLHDhy2rzEyKd2iMzuZkoyo0qJu8I6MIASH1kGZnZnPtfqgvTi29_c-ZoOfsDq4GQ2j4fnFn31YQ6tTdZrjygNYKfOp_Y7gqYx_VPHyDPLOE9s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFA5lDddHsVIHHrJdpP4kRwREEF5CEFX2hOR4ziXouwqyR7aX89MNhteWgTXZGxNxjP254znM8ChEBbXKYOBpDnHDUoaOtqI1FHGs5kMjE0tZXSvruVZn_8eiEFTFEa1MKhEiT2VdRKfonqUZg3DgPuLnuNc2Q0TBPaKf4EFStoRY_7R8V07_yKoDqb3FoS-HLSEPm86oBXJlC9XpBkws15uomXot4rWp0z-dsdV0jX_X3E4fvZLVuBbgz_Z0cRhVmHO5muw9IyVcA02T5-K31C0if5yHe6jaaUjG2bshdTDP0Zn6cln8opFhbXsVtcpoJKh-BUd-xshUCdSaEZ1awW7pN8C7LwoiB2BOt2AfnT65_jMae5ncDQPVeWIXi_hgijitJJEuhOYjGs_0TpFWKikdQ3uVxCjadfLMolQQwVE4Od6Mkx9GfibMJ8Pc_sdGI5jpoTR6NccIZJMrNW-8TPlJsLjSnTgEE0WN_FVxnXq3HNjeoh2jBs7dqA7HcrYNBzndNXGw-wGP9sGowm9x2zR3alvPOnh1YXAPcSQHThoX2OEUtpF53Y4JhlRp0fd4B0ZQUgOrYMyWxO_a_VBe3Fs729_zAb7sHhzEsWX59cXO_AVjU5Fao4rd2G-KsZ2DzFUlfyoQ-YR3T4WXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Environmentally+Persistent+Free+Radicals+on+Microplastics+under+Light+Irradiation&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhu%2C+Kecheng&rft.au=Jia%2C+Hanzhong&rft.au=Zhao%2C+Song&rft.au=Xia%2C+Tianjiao&rft.date=2019-07-16&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=53&rft.issue=14&rft.spage=8177&rft.epage=8186&rft_id=info:doi/10.1021%2Facs.est.9b01474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_9b01474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon