Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation
Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, s...
Saved in:
Published in | Environmental science & technology Vol. 53; no. 14; pp. 8177 - 8186 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/acs.est.9b01474 |
Cover
Loading…
Abstract | Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044–2.0049 and 2.0043–2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2 •– and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems. |
---|---|
AbstractList | Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044–2.0049 and 2.0043–2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•– and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems. Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O /H O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems. Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044–2.0049 and 2.0043–2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O₂/H₂O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O₂•– and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems. Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•- and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•- and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems. |
Author | Xia, Tianjiao Zhao, Song Zhu, Kecheng Wang, Tiecheng Jia, Hanzhong Zhu, Lingyan Guo, Xuetao |
AuthorAffiliation | Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering |
AuthorAffiliation_xml | – name: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment – name: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering |
Author_xml | – sequence: 1 givenname: Kecheng surname: Zhu fullname: Zhu, Kecheng organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment – sequence: 2 givenname: Hanzhong orcidid: 0000-0002-9838-2881 surname: Jia fullname: Jia, Hanzhong email: jiahz@nwafu.edu.cn organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment – sequence: 3 givenname: Song surname: Zhao fullname: Zhao, Song organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment – sequence: 4 givenname: Tianjiao orcidid: 0000-0001-8104-6964 surname: Xia fullname: Xia, Tianjiao organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment – sequence: 5 givenname: Xuetao surname: Guo fullname: Guo, Xuetao organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment – sequence: 6 givenname: Tiecheng orcidid: 0000-0003-1085-9946 surname: Wang fullname: Wang, Tiecheng organization: Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment – sequence: 7 givenname: Lingyan orcidid: 0000-0001-9318-7940 surname: Zhu fullname: Zhu, Lingyan email: zhuly@nankai.edu.cn organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31246433$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1LHDEUxYMoulqf-1YCfSnIrLn5ms1jEVeFFUVa6JMhO5NpIzPJNskU_O_NfuiDIPQphPzOzT3nHKN9H7xF6DOQKRAK56ZJU5vyVC0J8JrvoQkISioxE7CPJoQAqxSTv47QcUpPhBDKyOwQHTGgXHLGJuhxHuJgsgsehw5f-n8uBj9Yn03fP-N7G5NLuVzxPFqLH0zrGtMnXPBb18Sw6k3Krkl49K2NeOF-_8n4JsbCbYZ-Qgdd4e3p7jxBP-eXPy6uq8Xd1c3F90VluKpzJQhZckEBlKklSAWzpuOGLY1pQbFaWmiEUCC4Adp1khKoi0NSbEjVMjljJ-jbdu4qhr9jSUQPLjW27423YUyaipozKJr_QKkgJZt6g359hz6FMfpipFBScSCSskJ92VHjcrCtXkU3mPisX0MugNgCJbCUou104_ImnhyN6zUQvS5TlzL1-pNdmUV3_k73OvpjxdlWsX542_Uj-gVjd69o |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_177427 crossref_primary_10_1021_acs_est_3c01310 crossref_primary_10_1016_j_watres_2021_116980 crossref_primary_10_1016_j_jhazmat_2025_137891 crossref_primary_10_1016_j_emcon_2024_100380 crossref_primary_10_1007_s11356_021_13292_z crossref_primary_10_1016_j_jhazmat_2023_131674 crossref_primary_10_1016_j_jhazmat_2023_132887 crossref_primary_10_1016_j_watres_2025_123394 crossref_primary_10_1002_ldr_5231 crossref_primary_10_1016_j_chemosphere_2021_132815 crossref_primary_10_1007_s11356_024_35802_5 crossref_primary_10_1039_D4EM00208C crossref_primary_10_1016_j_envint_2022_107158 crossref_primary_10_1016_j_scitotenv_2020_142427 crossref_primary_10_1016_j_scitotenv_2023_165399 crossref_primary_10_1016_j_watres_2020_116456 crossref_primary_10_1021_acs_est_9b03453 crossref_primary_10_1016_j_envres_2024_120140 crossref_primary_10_3390_environments11080165 crossref_primary_10_1016_j_scitotenv_2024_173163 crossref_primary_10_1016_j_jhazmat_2024_136184 crossref_primary_10_1016_j_scitotenv_2023_168539 crossref_primary_10_1016_j_watres_2020_116360 crossref_primary_10_3390_su17010149 crossref_primary_10_1016_j_jes_2023_06_030 crossref_primary_10_1016_j_chemosphere_2023_139922 crossref_primary_10_1016_j_chemosphere_2023_137744 crossref_primary_10_1016_j_envpol_2023_123219 crossref_primary_10_1021_acs_estlett_1c00766 crossref_primary_10_1039_D0EN00518E crossref_primary_10_23939_chcht17_03_503 crossref_primary_10_1016_j_scitotenv_2023_167684 crossref_primary_10_1016_j_cej_2025_160882 crossref_primary_10_1007_s10311_023_01593_3 crossref_primary_10_1021_acs_estlett_4c00333 crossref_primary_10_1016_j_eti_2023_103429 crossref_primary_10_3390_microplastics2030023 crossref_primary_10_1016_j_ecoenv_2024_115979 crossref_primary_10_1007_s11270_020_04886_3 crossref_primary_10_1016_j_watres_2022_118294 crossref_primary_10_1016_j_cej_2025_159783 crossref_primary_10_1016_j_jhazmat_2023_132990 crossref_primary_10_1016_j_scitotenv_2021_147493 crossref_primary_10_1016_j_cej_2021_129813 crossref_primary_10_1016_j_watres_2024_122823 crossref_primary_10_1016_j_jenvman_2023_119377 crossref_primary_10_1016_j_fuel_2024_132698 crossref_primary_10_1016_j_polymer_2023_126447 crossref_primary_10_1016_j_scitotenv_2021_148345 crossref_primary_10_1016_j_scitotenv_2024_177467 crossref_primary_10_1016_j_watres_2024_121856 crossref_primary_10_1021_acs_est_2c08571 crossref_primary_10_1016_j_scitotenv_2021_150538 crossref_primary_10_1021_acs_est_1c05812 crossref_primary_10_1016_j_envpol_2021_117006 crossref_primary_10_1016_j_seppur_2022_122769 crossref_primary_10_1021_envhealth_4c00209 crossref_primary_10_1016_j_envpol_2020_116278 crossref_primary_10_1002_slct_201903528 crossref_primary_10_1016_j_envres_2024_118268 crossref_primary_10_1016_j_jhazmat_2023_131401 crossref_primary_10_1016_j_watres_2020_115564 crossref_primary_10_1016_j_scitotenv_2023_166048 crossref_primary_10_3390_ijerph20031745 crossref_primary_10_1021_acs_est_2c08567 crossref_primary_10_1016_j_scitotenv_2023_166040 crossref_primary_10_3390_su16073077 crossref_primary_10_1016_j_jhazmat_2025_137995 crossref_primary_10_1016_j_scitotenv_2024_176350 crossref_primary_10_1021_acs_est_4c08865 crossref_primary_10_1016_j_scitotenv_2020_144835 crossref_primary_10_1021_acs_est_2c08672 crossref_primary_10_1016_j_jhazmat_2022_130483 crossref_primary_10_1016_j_trac_2024_118003 crossref_primary_10_1021_acs_est_1c04509 crossref_primary_10_1016_j_cej_2023_148158 crossref_primary_10_1016_j_scitotenv_2023_165291 crossref_primary_10_1007_s11270_021_05081_8 crossref_primary_10_1016_j_watres_2024_121628 crossref_primary_10_1021_acs_est_4c03199 crossref_primary_10_1039_D0EM00009D crossref_primary_10_1016_j_scitotenv_2022_157498 crossref_primary_10_1007_s10653_025_02430_y crossref_primary_10_1021_acs_est_3c01463 crossref_primary_10_1038_s41598_024_78480_6 crossref_primary_10_1021_acs_estlett_2c00689 crossref_primary_10_1016_j_watres_2024_122064 crossref_primary_10_1016_j_jhazmat_2019_121165 crossref_primary_10_1080_10643389_2024_2303294 crossref_primary_10_1021_acs_est_2c04453 crossref_primary_10_1016_j_cej_2023_145653 crossref_primary_10_1016_j_scitotenv_2022_155108 crossref_primary_10_1016_j_ecoenv_2023_115259 crossref_primary_10_1080_00102202_2024_2401070 crossref_primary_10_1021_acs_est_4c03414 crossref_primary_10_3390_toxics12110796 crossref_primary_10_1021_acs_est_4c05504 crossref_primary_10_2478_pjct_2020_0020 crossref_primary_10_1016_j_watres_2023_119628 crossref_primary_10_1142_S1793984424400038 crossref_primary_10_1016_j_cej_2022_134827 crossref_primary_10_1016_j_jes_2020_03_057 crossref_primary_10_1002_aic_18020 crossref_primary_10_1021_acs_est_2c07824 crossref_primary_10_1016_j_envint_2022_107668 crossref_primary_10_1016_j_jhazmat_2020_123944 crossref_primary_10_1039_D3EN00044C crossref_primary_10_1016_j_envint_2022_107663 crossref_primary_10_1016_j_pedsph_2024_06_005 crossref_primary_10_1016_j_jhazmat_2024_135250 crossref_primary_10_1007_s11270_025_07751_3 crossref_primary_10_1016_j_envres_2020_109893 crossref_primary_10_1016_j_envpol_2022_119847 crossref_primary_10_1039_D2EN00240J crossref_primary_10_3390_toxics12100726 crossref_primary_10_1016_j_envpol_2022_120707 crossref_primary_10_1016_j_seppur_2023_124245 crossref_primary_10_1002_anie_202413343 crossref_primary_10_1016_j_watres_2024_123048 crossref_primary_10_1016_j_jhazmat_2024_136331 crossref_primary_10_1016_j_jhazmat_2024_134395 crossref_primary_10_2139_ssrn_4068340 crossref_primary_10_1016_j_jece_2024_115217 crossref_primary_10_1016_j_cej_2024_152451 crossref_primary_10_1021_acs_est_4c01130 crossref_primary_10_1016_j_jhazmat_2022_130310 crossref_primary_10_1016_j_cej_2025_161467 crossref_primary_10_1016_j_hazadv_2025_100640 crossref_primary_10_1016_j_jhazmat_2021_127095 crossref_primary_10_1016_j_chemosphere_2023_141060 crossref_primary_10_1021_acs_est_1c05650 crossref_primary_10_1016_j_trac_2023_117293 crossref_primary_10_1016_j_envint_2022_107128 crossref_primary_10_3390_ijerph20176667 crossref_primary_10_1016_j_jclepro_2024_142783 crossref_primary_10_1016_j_scitotenv_2022_154180 crossref_primary_10_1007_s44169_022_00013_x crossref_primary_10_3390_ijms25105060 crossref_primary_10_1016_j_scitotenv_2023_164035 crossref_primary_10_1016_j_scitotenv_2023_167666 crossref_primary_10_1016_j_chemosphere_2019_125193 crossref_primary_10_1002_smsc_202300096 crossref_primary_10_1016_j_jhazmat_2022_129784 crossref_primary_10_3390_toxics10070341 crossref_primary_10_1021_acs_est_2c05346 crossref_primary_10_1016_j_scitotenv_2024_174249 crossref_primary_10_2139_ssrn_4192380 crossref_primary_10_1016_j_hazadv_2023_100343 crossref_primary_10_1021_acs_est_4c12077 crossref_primary_10_1016_j_cej_2023_144401 crossref_primary_10_1016_j_watres_2023_119786 crossref_primary_10_1016_j_cej_2023_145854 crossref_primary_10_1016_j_scitotenv_2022_155024 crossref_primary_10_1016_j_pce_2025_103866 crossref_primary_10_1016_j_chemosphere_2024_142560 crossref_primary_10_3390_w15223890 crossref_primary_10_1016_j_eehl_2025_100138 crossref_primary_10_1007_s12649_022_01870_2 crossref_primary_10_1016_j_envres_2024_120064 crossref_primary_10_1016_j_jhazmat_2024_135308 crossref_primary_10_1016_j_envpol_2021_118169 crossref_primary_10_1016_j_marpolbul_2024_116736 crossref_primary_10_1021_acsestwater_3c00549 crossref_primary_10_1021_acssuschemeng_2c04755 crossref_primary_10_1016_j_envpol_2024_124479 crossref_primary_10_3390_w14213515 crossref_primary_10_1016_j_jhazmat_2024_134249 crossref_primary_10_1016_j_watres_2020_115876 crossref_primary_10_1002_adsu_202100027 crossref_primary_10_1016_j_cej_2021_133026 crossref_primary_10_1021_acs_est_3c06864 crossref_primary_10_1016_j_chemosphere_2022_134118 crossref_primary_10_3390_su151712698 crossref_primary_10_2139_ssrn_4161692 crossref_primary_10_2139_ssrn_4161691 crossref_primary_10_1016_j_scitotenv_2024_173133 crossref_primary_10_1016_j_watres_2023_120871 crossref_primary_10_1016_j_jhazmat_2024_134593 crossref_primary_10_1016_j_jhazmat_2024_136651 crossref_primary_10_1016_j_envint_2023_107875 crossref_primary_10_1016_j_jhazmat_2024_135329 crossref_primary_10_1016_j_jhazmat_2024_136418 crossref_primary_10_1016_j_marpolbul_2023_115331 crossref_primary_10_1016_j_scitotenv_2021_150603 crossref_primary_10_1016_j_trac_2023_117025 crossref_primary_10_1021_acsami_4c04416 crossref_primary_10_1016_j_scitotenv_2022_153457 crossref_primary_10_1016_j_cej_2021_130205 crossref_primary_10_1016_j_jclepro_2021_129805 crossref_primary_10_1021_acs_est_9b06395 crossref_primary_10_1016_j_chemosphere_2021_133239 crossref_primary_10_1016_j_jhazmat_2024_135870 crossref_primary_10_1016_j_jhazmat_2024_135991 crossref_primary_10_1007_s11783_023_1743_8 crossref_primary_10_3390_su12030878 crossref_primary_10_1016_j_jwpe_2021_102128 crossref_primary_10_1016_j_envres_2022_112899 crossref_primary_10_1016_j_scitotenv_2023_164513 crossref_primary_10_1016_j_marpolbul_2024_116474 crossref_primary_10_1007_s11356_024_34120_0 crossref_primary_10_1021_acs_est_1c07129 crossref_primary_10_1016_j_cej_2021_131666 crossref_primary_10_1016_j_jclepro_2024_141889 crossref_primary_10_1016_j_jenvman_2024_122697 crossref_primary_10_1016_j_energy_2023_128914 crossref_primary_10_1016_j_scitotenv_2023_165714 crossref_primary_10_1016_j_scitotenv_2021_148707 crossref_primary_10_1016_j_envpol_2022_120456 crossref_primary_10_1016_j_chemosphere_2023_138485 crossref_primary_10_1016_j_chemosphere_2021_133352 crossref_primary_10_1021_acs_est_9b07016 crossref_primary_10_1016_j_chemosphere_2022_133737 crossref_primary_10_1016_j_jhazmat_2020_124756 crossref_primary_10_1021_acs_est_3c07878 crossref_primary_10_1016_j_scitotenv_2021_148725 crossref_primary_10_1016_j_ecoenv_2023_114906 crossref_primary_10_1016_j_jhazmat_2024_135778 crossref_primary_10_1007_s10661_023_12219_0 crossref_primary_10_1016_j_envpol_2022_120544 crossref_primary_10_1016_j_envpol_2022_120307 crossref_primary_10_1021_acs_est_3c03278 crossref_primary_10_1016_j_clce_2025_100162 crossref_primary_10_1016_j_envpol_2020_115686 crossref_primary_10_1007_s11356_022_22897_x crossref_primary_10_1016_j_chemosphere_2021_133463 crossref_primary_10_1016_j_jhazmat_2022_128405 crossref_primary_10_1016_j_jhazmat_2022_128522 crossref_primary_10_1016_j_watres_2022_118731 crossref_primary_10_1016_j_envres_2024_118524 crossref_primary_10_1016_j_jclepro_2024_142834 crossref_primary_10_1016_j_jhazmat_2022_128523 crossref_primary_10_1016_j_envres_2023_116281 crossref_primary_10_4236_gep_2023_111016 crossref_primary_10_1016_j_jhazmat_2023_133282 crossref_primary_10_1002_jctb_7819 crossref_primary_10_1021_acs_est_4c11206 crossref_primary_10_1021_acs_est_4c14716 crossref_primary_10_1016_j_trac_2024_117648 crossref_primary_10_1016_j_hazadv_2024_100460 crossref_primary_10_1016_j_watres_2022_118979 crossref_primary_10_1007_s11947_025_03757_1 crossref_primary_10_1016_j_scitotenv_2024_172455 crossref_primary_10_1016_j_watres_2022_118320 crossref_primary_10_1016_j_envpol_2025_125700 crossref_primary_10_1016_j_scitotenv_2021_152049 crossref_primary_10_1016_j_jhazmat_2022_128611 crossref_primary_10_1016_j_jhazmat_2020_123325 crossref_primary_10_1016_j_chemosphere_2023_140256 crossref_primary_10_1016_j_fmre_2022_08_009 crossref_primary_10_3390_jox12010001 crossref_primary_10_1016_j_watres_2024_121295 crossref_primary_10_1016_j_watres_2024_121173 crossref_primary_10_1016_j_watres_2022_118209 crossref_primary_10_1016_j_scitotenv_2024_170043 crossref_primary_10_1021_acsnano_2c05803 crossref_primary_10_1016_j_apsoil_2022_104486 crossref_primary_10_1021_acsestengg_1c00323 crossref_primary_10_1016_j_jhazmat_2023_132295 crossref_primary_10_1016_j_chemosphere_2022_134421 crossref_primary_10_1016_j_jhazmat_2024_134854 crossref_primary_10_1021_acs_estlett_2c00816 crossref_primary_10_1016_j_scitotenv_2022_161290 crossref_primary_10_1039_D3NJ03950A crossref_primary_10_1016_j_jhazmat_2021_126143 crossref_primary_10_1016_j_envpol_2022_119159 crossref_primary_10_1016_j_jhazmat_2022_128955 crossref_primary_10_1016_j_jhazmat_2021_126377 crossref_primary_10_1016_j_scitotenv_2022_153235 crossref_primary_10_1021_acs_est_2c03309 crossref_primary_10_3390_ijms242417219 crossref_primary_10_2139_ssrn_3993168 crossref_primary_10_1016_j_atmosenv_2020_117809 crossref_primary_10_1039_D1CC04028F crossref_primary_10_5194_acp_24_8737_2024 crossref_primary_10_1016_j_jclepro_2025_145113 crossref_primary_10_1016_j_jhazmat_2024_134884 crossref_primary_10_1016_j_envint_2024_109042 crossref_primary_10_1007_s11356_023_28899_7 crossref_primary_10_1016_j_scitotenv_2024_175939 crossref_primary_10_3390_soilsystems7010019 crossref_primary_10_1039_D4EN00500G crossref_primary_10_1016_j_jafr_2024_101124 crossref_primary_10_1021_acs_est_4c04608 crossref_primary_10_1016_j_chemosphere_2020_126679 crossref_primary_10_1016_j_jenvman_2024_123125 crossref_primary_10_1016_j_watres_2021_117144 crossref_primary_10_1016_j_cej_2022_138163 crossref_primary_10_1016_j_scitotenv_2023_165607 crossref_primary_10_1016_j_scitotenv_2023_164758 crossref_primary_10_1088_2053_1591_aba1b5 crossref_primary_10_1016_j_jhazmat_2023_131185 crossref_primary_10_3390_pr13030843 crossref_primary_10_1016_j_envpol_2024_124097 crossref_primary_10_1016_j_jhazmat_2022_128813 crossref_primary_10_3390_cells13211788 crossref_primary_10_1080_05704928_2024_2311130 crossref_primary_10_1016_j_jhazmat_2023_131151 crossref_primary_10_1016_j_jwpe_2025_107302 crossref_primary_10_1007_s10311_024_01701_x crossref_primary_10_1016_j_jhazmat_2023_131031 crossref_primary_10_1007_s44246_023_00050_8 crossref_primary_10_1016_j_jhazmat_2023_131277 crossref_primary_10_1007_s10924_023_03102_7 crossref_primary_10_1007_s10311_020_00991_1 crossref_primary_10_1177_00368504231173835 crossref_primary_10_1016_j_jhazmat_2024_133615 crossref_primary_10_1016_j_envpol_2020_114299 crossref_primary_10_1016_j_marpolbul_2021_112561 crossref_primary_10_1016_j_scitotenv_2023_161747 crossref_primary_10_1016_j_jhazmat_2023_133102 crossref_primary_10_1016_j_jece_2024_112958 crossref_primary_10_1016_j_carbon_2021_06_070 crossref_primary_10_1016_j_jclepro_2023_139678 crossref_primary_10_1016_j_scitotenv_2023_168260 crossref_primary_10_1016_j_chemosphere_2023_140839 crossref_primary_10_3390_agronomy15030602 crossref_primary_10_1016_j_envres_2022_114532 crossref_primary_10_1039_D3EN00642E crossref_primary_10_1016_j_envint_2020_106137 crossref_primary_10_1021_acs_langmuir_1c03491 crossref_primary_10_1016_j_seppur_2024_131137 crossref_primary_10_1002_smll_202005834 crossref_primary_10_1007_s10895_025_04152_x crossref_primary_10_1021_acs_est_4c11955 crossref_primary_10_1007_s11356_023_31000_x crossref_primary_10_1007_s11783_020_1252_y crossref_primary_10_1016_j_jwpe_2025_107556 crossref_primary_10_1016_j_scitotenv_2024_170500 crossref_primary_10_1007_s10653_024_01932_5 crossref_primary_10_1007_s11356_021_17688_9 crossref_primary_10_1016_j_envpol_2022_119173 crossref_primary_10_1016_j_jece_2023_111598 crossref_primary_10_1016_j_watres_2021_117580 crossref_primary_10_1016_j_cej_2023_141838 crossref_primary_10_1016_j_cej_2025_160935 crossref_primary_10_1016_j_jenvman_2022_115997 crossref_primary_10_1016_j_scitotenv_2024_170616 crossref_primary_10_1016_j_chemosphere_2023_138544 crossref_primary_10_1016_j_cej_2021_128432 crossref_primary_10_1016_j_eehl_2024_08_004 crossref_primary_10_1007_s11783_020_1285_2 crossref_primary_10_1016_j_ecoenv_2024_116036 crossref_primary_10_1016_j_seppur_2022_121036 crossref_primary_10_2139_ssrn_4017466 crossref_primary_10_1016_j_rsma_2022_102647 crossref_primary_10_53623_tasp_v4i1_446 crossref_primary_10_1007_s11356_023_28736_x crossref_primary_10_1016_j_envpol_2023_122435 crossref_primary_10_1021_acs_est_1c05092 crossref_primary_10_1016_j_catena_2024_107972 crossref_primary_10_1016_j_watres_2021_117879 crossref_primary_10_1016_j_apcatb_2024_123793 crossref_primary_10_1021_acs_est_1c01974 crossref_primary_10_1007_s11783_024_1809_2 crossref_primary_10_1007_s11270_024_07650_z crossref_primary_10_1021_acs_est_4c06191 crossref_primary_10_2139_ssrn_3997712 crossref_primary_10_1016_j_cej_2024_151910 crossref_primary_10_1016_j_jhazmat_2025_137586 crossref_primary_10_1016_j_marpolbul_2023_114709 crossref_primary_10_1039_D4EN00801D crossref_primary_10_1016_j_cej_2025_160907 crossref_primary_10_1016_j_jhazmat_2021_126429 crossref_primary_10_1021_acs_est_4c09107 crossref_primary_10_1039_D1EA00075F crossref_primary_10_1016_j_fuel_2023_128861 crossref_primary_10_1016_j_jhazmat_2025_137109 crossref_primary_10_1016_j_scitotenv_2022_160488 crossref_primary_10_3390_atmos15111380 crossref_primary_10_1016_j_jhazmat_2024_133805 crossref_primary_10_1016_j_watres_2023_121064 crossref_primary_10_1002_ange_202413343 crossref_primary_10_1016_j_scitotenv_2021_150168 crossref_primary_10_1016_j_jhazmat_2025_137478 crossref_primary_10_1016_j_scitotenv_2024_177167 crossref_primary_10_1021_acs_est_3c07035 crossref_primary_10_1080_10643389_2023_2224182 crossref_primary_10_1016_j_jclepro_2022_132912 crossref_primary_10_1021_acs_est_9b07905 crossref_primary_10_1016_j_watres_2022_118701 crossref_primary_10_1016_j_biortech_2024_131167 crossref_primary_10_1016_j_scitotenv_2021_149173 crossref_primary_10_1007_s10311_021_01193_z crossref_primary_10_1016_j_envpol_2023_121590 crossref_primary_10_1016_j_cej_2023_145157 crossref_primary_10_1016_j_watres_2021_117782 crossref_primary_10_1016_j_watres_2021_117420 crossref_primary_10_3390_toxics11030242 crossref_primary_10_3390_ijms25115740 crossref_primary_10_1016_j_scitotenv_2021_144969 crossref_primary_10_1016_j_jhazmat_2023_131466 crossref_primary_10_1021_acs_est_3c08019 crossref_primary_10_1016_j_jhazmat_2024_133949 crossref_primary_10_1016_j_chemosphere_2021_131353 crossref_primary_10_1021_acs_est_3c07161 |
Cites_doi | 10.1016/j.envpol.2014.02.012 10.1016/j.jhazmat.2007.12.019 10.1016/j.scitotenv.2017.11.103 10.1016/j.scitotenv.2018.02.079 10.1346/CCMN.1984.0320411 10.1021/acs.est.8b01487 10.1021/es8022978 10.1016/j.marpolbul.2015.08.041 10.1098/rstb.2008.0205 10.1002/pola.1992.080301302 10.1016/0025-326X(91)90444-W 10.1016/j.envpol.2017.07.103 10.1016/j.envpol.2013.02.031 10.1016/S0025-326X(87)80019-X 10.1021/bk-1983-0229 10.1002/cssc.201400079 10.1016/j.marpolbul.2016.04.048 10.1016/S0014-3057(99)00175-5 10.1016/j.marpolbul.2016.05.036 10.1016/0891-5849(89)90095-6 10.1021/acs.est.6b00527 10.1021/acs.est.8b00425 10.1021/acs.est.7b03583 10.1016/j.marenvres.2016.07.004 10.1021/tx010050x 10.1021/acs.est.6b00183 10.1021/acs.est.7b05453 10.1021/acs.est.5b02661 10.1016/j.marpolbul.2009.12.026 10.1021/acs.est.7b00599 10.1039/C5EM00188A 10.1016/j.marpolbul.2011.05.030 10.1016/j.tca.2008.04.013 10.1590/S0103-50532008000300007 10.1016/j.marpolbul.2017.01.082 10.1021/ma00117a038 10.1021/acs.est.7b01521 10.1002/app.36307 10.1016/j.ecss.2015.12.003 10.1021/es401767m 10.1016/0014-3057(95)00095-X 10.1186/2193-1801-2-398 10.1080/08958370701665517 10.1021/acs.est.7b01929 10.1021/es071737s 10.1021/acs.est.5b04314 10.1002/anie.198204011 10.1021/es401770y 10.1016/j.marpolbul.2017.12.059 10.1002/pola.10645 10.1021/es504525u 10.1021/es401932b 10.1039/C5EM00207A 10.1016/S0014-3057(97)00169-9 10.1016/j.jhazmat.2018.09.019 10.1016/j.marpolbul.2016.01.006 10.1016/j.envpol.2018.01.022 10.1126/science.6301009 10.1021/es302011r 10.1021/es4048126 10.1021/acs.est.7b00828 10.1021/es302332w 10.1016/j.marpolbul.2009.04.025 10.1021/es201309c 10.1016/j.cub.2013.10.012 10.1021/es071708h 10.1016/j.proci.2006.07.172 10.1016/j.marpolbul.2010.09.026 10.1021/acsmacrolett.7b00447 10.1016/j.envres.2008.07.025 10.1016/j.envpol.2014.12.021 10.1023/B:HIEC.0000041340.45217.bd 10.1016/j.eurpolymj.2017.02.010 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Jul 16, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society Jul 16, 2019 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.9b01474 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 8186 |
ExternalDocumentID | 31246433 10_1021_acs_est_9b01474 d77143022 |
Genre | Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a497t-500b452119a7616918cf4a3baad19376e1c559154a12ff62017851031269d3683 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 13:08:34 EDT 2025 Fri Jul 11 07:11:59 EDT 2025 Mon Jun 30 03:45:00 EDT 2025 Wed Feb 19 02:33:44 EST 2025 Tue Jul 01 02:58:04 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Thu Aug 27 13:43:33 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a497t-500b452119a7616918cf4a3baad19376e1c559154a12ff62017851031269d3683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9838-2881 0000-0001-9318-7940 0000-0003-1085-9946 0000-0001-8104-6964 |
PMID | 31246433 |
PQID | 2269410623 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2574318518 proquest_miscellaneous_2250643718 proquest_journals_2269410623 pubmed_primary_31246433 crossref_citationtrail_10_1021_acs_est_9b01474 crossref_primary_10_1021_acs_est_9b01474 acs_journals_10_1021_acs_est_9b01474 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-16 |
PublicationDateYYYYMMDD | 2019-07-16 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 Han L. (ref43/cit43) 2017; 29 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 Garner D. P. (ref48/cit48) 1983 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 Bouchentouf S. (ref7/cit7) 2013; 1 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref28/cit28 ref40/cit40 ref68/cit68 Cole M. (ref13/cit13) 2014 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 |
References_xml | – ident: ref30/cit30 doi: 10.1016/j.envpol.2014.02.012 – ident: ref50/cit50 doi: 10.1016/j.jhazmat.2007.12.019 – ident: ref78/cit78 doi: 10.1016/j.scitotenv.2017.11.103 – ident: ref49/cit49 doi: 10.1016/j.scitotenv.2018.02.079 – ident: ref58/cit58 doi: 10.1346/CCMN.1984.0320411 – ident: ref77/cit77 – ident: ref64/cit64 doi: 10.1021/acs.est.8b01487 – volume: 29 start-page: 1008 issue: 9 year: 2017 ident: ref43/cit43 publication-title: Prog. Chem. – ident: ref31/cit31 doi: 10.1021/es8022978 – ident: ref12/cit12 doi: 10.1016/j.marpolbul.2015.08.041 – ident: ref9/cit9 doi: 10.1098/rstb.2008.0205 – ident: ref68/cit68 doi: 10.1002/pola.1992.080301302 – ident: ref5/cit5 doi: 10.1016/0025-326X(91)90444-W – ident: ref14/cit14 doi: 10.1016/j.envpol.2017.07.103 – ident: ref3/cit3 doi: 10.1016/j.envpol.2013.02.031 – ident: ref6/cit6 doi: 10.1016/S0025-326X(87)80019-X – volume-title: The Effects of Hostile Environments on Coatings and Plastics year: 1983 ident: ref48/cit48 doi: 10.1021/bk-1983-0229 – ident: ref37/cit37 doi: 10.1002/cssc.201400079 – ident: ref27/cit27 doi: 10.1016/j.marpolbul.2016.04.048 – ident: ref73/cit73 doi: 10.1016/S0014-3057(99)00175-5 – ident: ref23/cit23 doi: 10.1016/j.marpolbul.2016.05.036 – ident: ref51/cit51 doi: 10.1016/0891-5849(89)90095-6 – ident: ref35/cit35 doi: 10.1021/acs.est.6b00527 – ident: ref45/cit45 doi: 10.1021/acs.est.8b00425 – ident: ref52/cit52 doi: 10.1021/acs.est.7b03583 – ident: ref1/cit1 doi: 10.1016/j.marenvres.2016.07.004 – ident: ref34/cit34 doi: 10.1021/tx010050x – ident: ref21/cit21 doi: 10.1021/acs.est.6b00183 – ident: ref36/cit36 doi: 10.1021/acs.est.7b05453 – ident: ref72/cit72 doi: 10.1021/acs.est.5b02661 – ident: ref63/cit63 doi: 10.1016/j.marpolbul.2009.12.026 – ident: ref54/cit54 doi: 10.1021/acs.est.7b00599 – ident: ref8/cit8 doi: 10.1039/C5EM00188A – ident: ref26/cit26 doi: 10.1016/j.marpolbul.2011.05.030 – ident: ref65/cit65 doi: 10.1016/j.tca.2008.04.013 – ident: ref57/cit57 doi: 10.1590/S0103-50532008000300007 – ident: ref46/cit46 doi: 10.1016/j.marpolbul.2017.01.082 – ident: ref69/cit69 doi: 10.1021/ma00117a038 – ident: ref40/cit40 doi: 10.1021/acs.est.7b01521 – ident: ref67/cit67 doi: 10.1002/app.36307 – ident: ref24/cit24 doi: 10.1016/j.ecss.2015.12.003 – ident: ref62/cit62 doi: 10.1021/es401767m – volume-title: The Impacts of Microplastics on Zooplankton year: 2014 ident: ref13/cit13 – ident: ref74/cit74 doi: 10.1016/0014-3057(95)00095-X – ident: ref66/cit66 doi: 10.1186/2193-1801-2-398 – ident: ref41/cit41 doi: 10.1080/08958370701665517 – ident: ref55/cit55 doi: 10.1021/acs.est.7b01929 – ident: ref25/cit25 doi: 10.1021/es071737s – ident: ref39/cit39 doi: 10.1021/acs.est.5b04314 – ident: ref59/cit59 doi: 10.1002/anie.198204011 – ident: ref44/cit44 doi: 10.1021/es401770y – ident: ref28/cit28 doi: 10.1016/j.marpolbul.2017.12.059 – ident: ref76/cit76 doi: 10.1002/pola.10645 – ident: ref15/cit15 doi: 10.1021/es504525u – ident: ref19/cit19 doi: 10.1021/es401932b – ident: ref47/cit47 doi: 10.1039/C5EM00207A – ident: ref75/cit75 doi: 10.1016/S0014-3057(97)00169-9 – ident: ref56/cit56 doi: 10.1016/j.jhazmat.2018.09.019 – ident: ref10/cit10 doi: 10.1016/j.marpolbul.2016.01.006 – ident: ref29/cit29 doi: 10.1016/j.envpol.2018.01.022 – ident: ref32/cit32 doi: 10.1126/science.6301009 – ident: ref11/cit11 doi: 10.1021/es302011r – ident: ref38/cit38 doi: 10.1021/es4048126 – ident: ref16/cit16 doi: 10.1016/j.envpol.2013.02.031 – ident: ref61/cit61 doi: 10.1021/acs.est.7b00828 – ident: ref17/cit17 doi: 10.1021/es302332w – ident: ref4/cit4 doi: 10.1016/j.marpolbul.2009.04.025 – ident: ref42/cit42 doi: 10.1021/es201309c – volume: 1 start-page: 28 issue: 1 year: 2013 ident: ref7/cit7 publication-title: Am. Biol. Teach. – ident: ref22/cit22 doi: 10.1016/j.cub.2013.10.012 – ident: ref33/cit33 doi: 10.1021/es071708h – ident: ref60/cit60 doi: 10.1016/j.proci.2006.07.172 – ident: ref18/cit18 doi: 10.1016/j.marpolbul.2010.09.026 – ident: ref71/cit71 doi: 10.1021/acsmacrolett.7b00447 – ident: ref2/cit2 doi: 10.1016/j.envres.2008.07.025 – ident: ref20/cit20 doi: 10.1016/j.envpol.2014.12.021 – ident: ref53/cit53 doi: 10.1023/B:HIEC.0000041340.45217.bd – ident: ref70/cit70 doi: 10.1016/j.eurpolymj.2017.02.010 |
SSID | ssj0002308 |
Score | 2.695632 |
Snippet | Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS),... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8177 |
SubjectTerms | Aging Chain scission cleavage (chemistry) Contaminants Decay rate Ecosystems Electron paramagnetic resonance electron paramagnetic resonance spectroscopy environmental science Fourier transforms Free radicals gel chromatography Hazards Infrared analysis Infrared spectroscopy Irradiation Light irradiation lighting Liquid chromatography Microplastics NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Organic chemistry Phenol formaldehyde resins Phenols photoaging Photoelectron spectroscopy Photoelectrons Plastic pollution poly(vinyl chloride) Polyethylene Polyethylenes Polystyrene Polystyrene resins polystyrenes Polyvinyl chloride Reactive oxygen species Reflectance Resonance Spectroscopy Spectrum analysis X ray photoelectron spectroscopy |
Title | Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation |
URI | http://dx.doi.org/10.1021/acs.est.9b01474 https://www.ncbi.nlm.nih.gov/pubmed/31246433 https://www.proquest.com/docview/2269410623 https://www.proquest.com/docview/2250643718 https://www.proquest.com/docview/2574318518 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwKK9CQUZiYEloEj-SsaqoCgIGHlInIsdxFlCKknSAX89dmqaUqsCanC3rcuf7nLv7TMg55wbilAZHUozBASUOLKV5bEntmkT42sQGM7p392LwzG6GfDgji_6ZwXedS6VzGzZIO4gAzUu2StZc4Uukye_2HutNF5C0P72sIPDEsGbxWZgAw5DO58PQEmxZxpj-1qQ6Ky-pCbG05NUeF5GtPxeJG_9e_jbZrJAm7U5MY4esmLRJNr7xDzbJ_tWszQ1EKz_Pd8lLf9rTSEcJnZN6-6BYNY_WkRa0nxlDH1SZ7MkpiN9hgd87QHKkf6bYoZbRW_wBQK-zDHkQcNI98ty_euoNrOomBkuxQBYW73QixpEMTkmB9Dq-TpjyIqViAIBSGEfDyQTQmHLcJBEAKqSPVH2OK4LYE763TxrpKDWHhAKATCTXCiyYARgSkTHK014inYi7TPIWOQeVhZUn5WGZJHedEB-CHsNKjy1iT79fqCs2c7xU4235gIt6wPuEyGO5aHtqELN1uGXLbwfQYouc1a_BFzHBolIzGqMMLxOhjv-LDEfMBtoBmYOJsdXrAX0xGO8d_U8Hx2QdNI09aJYj2qRRZGNzAhCpiE5L5_gCp9ILeg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPQAHWmiBBdoaiUMvWTaJH8kRIVZLu4vES9pTI8dxLqAsSrIH-PXMZJNsAS2i12RsTcYz9ueM5zPAkRAW1ymDgaQ5xw1KEjraiMRRxrOpDIxNLGV0RxdycMt_j8V4CXpNLQwqUWBPRZXEn7MLuMf0DOfJbhgjqFd8GT4hFPGILf_k9LqdexFQB82dBaEvxy2Zz5sOaDUyxcvVaAHErJaa_me4bJWsTpjcdadl3DVPr_gb_-crvsBGjTvZycxRNmHJZluw_g8b4RZsn82L3lC0jvriK_ztNxWObJKyF1L3j4zO0JOvZCXr59ayK12lfgqG4iM67veAAJ3IoBnVq-VsSL8D2HmeEysCdfoNbvtnN6cDp76XwdE8VKUjer2YC6KG00oS2U5gUq79WOsE4aCS1jW4T0Fspl0vTSVCDBUQcZ_ryTDxZeBvw0o2yewuMBzDVAmj0Z85QiMZW6t946fKjXFwlejAEZosquOqiKqUuedG9BDtGNV27EC3GcbI1NzmdMXG_eIGv9oGDzNaj8WiB41fzPXwqgLgHmLHDhy2rzEyKd2iMzuZkoyo0qJu8I6MIASH1kGZnZnPtfqgvTi29_c-ZoOfsDq4GQ2j4fnFn31YQ6tTdZrjygNYKfOp_Y7gqYx_VPHyDPLOE9s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFA5lDddHsVIHHrJdpP4kRwREEF5CEFX2hOR4ziXouwqyR7aX89MNhteWgTXZGxNxjP254znM8ChEBbXKYOBpDnHDUoaOtqI1FHGs5kMjE0tZXSvruVZn_8eiEFTFEa1MKhEiT2VdRKfonqUZg3DgPuLnuNc2Q0TBPaKf4EFStoRY_7R8V07_yKoDqb3FoS-HLSEPm86oBXJlC9XpBkws15uomXot4rWp0z-dsdV0jX_X3E4fvZLVuBbgz_Z0cRhVmHO5muw9IyVcA02T5-K31C0if5yHe6jaaUjG2bshdTDP0Zn6cln8opFhbXsVtcpoJKh-BUd-xshUCdSaEZ1awW7pN8C7LwoiB2BOt2AfnT65_jMae5ncDQPVeWIXi_hgijitJJEuhOYjGs_0TpFWKikdQ3uVxCjadfLMolQQwVE4Od6Mkx9GfibMJ8Pc_sdGI5jpoTR6NccIZJMrNW-8TPlJsLjSnTgEE0WN_FVxnXq3HNjeoh2jBs7dqA7HcrYNBzndNXGw-wGP9sGowm9x2zR3alvPOnh1YXAPcSQHThoX2OEUtpF53Y4JhlRp0fd4B0ZQUgOrYMyWxO_a_VBe3Fs729_zAb7sHhzEsWX59cXO_AVjU5Fao4rd2G-KsZ2DzFUlfyoQ-YR3T4WXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Environmentally+Persistent+Free+Radicals+on+Microplastics+under+Light+Irradiation&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhu%2C+Kecheng&rft.au=Jia%2C+Hanzhong&rft.au=Zhao%2C+Song&rft.au=Xia%2C+Tianjiao&rft.date=2019-07-16&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=53&rft.issue=14&rft.spage=8177&rft.epage=8186&rft_id=info:doi/10.1021%2Facs.est.9b01474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_9b01474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |