Biofilms in Full-Scale Drinking Water Ozone Contactors Contribute Viable Bacteria to Ozonated Water
Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 ce...
Saved in:
Published in | Environmental science & technology Vol. 52; no. 5; pp. 2618 - 2628 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other (p = 0.017). The biofilms downstream of the dead zone contained a significantly (p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities. |
---|---|
AbstractList | Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other (p = 0.017). The biofilms downstream of the dead zone contained a significantly (p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities. Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other ( p = 0.017). The biofilms downstream of the dead zone contained a significantly ( p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities.Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other ( p = 0.017). The biofilms downstream of the dead zone contained a significantly ( p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities. |
Author | Raskin, Lutgarde Haig, Sarah-Jane Sanford, Larry Kotlarz, Nadine Rockey, Nicole Olson, Terese M LiPuma, John J |
AuthorAffiliation | Department of Civil and Environmental Engineering University of Michigan University of Michigan Medical School Department of Pediatrics and Communicable Diseases |
AuthorAffiliation_xml | – name: Department of Civil and Environmental Engineering – name: University of Michigan – name: Department of Pediatrics and Communicable Diseases – name: University of Michigan Medical School |
Author_xml | – sequence: 1 givenname: Nadine orcidid: 0000-0002-7302-9176 surname: Kotlarz fullname: Kotlarz, Nadine organization: University of Michigan – sequence: 2 givenname: Nicole surname: Rockey fullname: Rockey, Nicole organization: University of Michigan – sequence: 3 givenname: Terese M surname: Olson fullname: Olson, Terese M organization: University of Michigan – sequence: 4 givenname: Sarah-Jane orcidid: 0000-0002-0004-8894 surname: Haig fullname: Haig, Sarah-Jane organization: University of Michigan – sequence: 5 givenname: Larry surname: Sanford fullname: Sanford, Larry – sequence: 6 givenname: John J surname: LiPuma fullname: LiPuma, John J organization: University of Michigan Medical School – sequence: 7 givenname: Lutgarde surname: Raskin fullname: Raskin, Lutgarde email: raskin@umich.edu organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29299927$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhq2KChbKubcqUi9IVZbxOLbjY9kWWgmJQz_gFtmOU5lmY7CdQ_vr62UXDkhtT7Y0zzMev3NI9qYwOUJeU1hSQHqqbVq6lJfSQIMUX5AF5Qg1bzndIwsAymrFxM0BOUzpFgCQQbtPDlChUgrlgtgzHwY_rlPlp-p8Hsf6i9Wjqz5EP_3004_qWmcXq6vf5d1qFaasbQ4xPVyjN3N21XevTTHOSsVFr6scHvDi9Vv7FXk56DG54915RL6df_y6-lRfXl18Xr2_rHWjZK6x5Yq3AwxSM2C9YJL1MBgBKCTnbW8FMqONs-As70UrmHFiQEkl1UpQw47IybbvXQz3c4mlW_tk3TjqyYU5dUhLHgIB2H9RqtpGclASC_r2GXob5jiVj3QI2DSiRUEL9WZHzWbt-u4u-rWOv7rHpAtwugVsDClFNzwhFLrNLruyy27TfrfLYvBnhvVZZ79JXvvxH967rbcpPM36N_oP-dCxdg |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2018_03_388 crossref_primary_10_1016_j_scitotenv_2023_168077 crossref_primary_10_17221_69_2021_CJFS crossref_primary_10_1021_acs_est_8b05907 crossref_primary_10_1016_j_cacint_2021_100070 crossref_primary_10_1128_aem_00609_24 crossref_primary_10_1128_spectrum_02166_24 crossref_primary_10_1016_j_watres_2021_117997 crossref_primary_10_1016_j_jenvman_2022_114853 crossref_primary_10_1021_acs_jpcc_3c05200 crossref_primary_10_1128_mBio_00883_19 crossref_primary_10_1128_mSphere_00160_19 crossref_primary_10_1016_j_apsusc_2019_05_293 crossref_primary_10_1016_j_copbio_2019_03_010 crossref_primary_10_1016_j_jhazmat_2021_125283 crossref_primary_10_1039_D0EW00723D crossref_primary_10_2166_wpt_2019_087 crossref_primary_10_1186_s40168_019_0760_0 crossref_primary_10_1016_j_watres_2023_120358 crossref_primary_10_1021_acs_est_1c06232 crossref_primary_10_1016_j_biortech_2024_130838 crossref_primary_10_1093_pnasnexus_pgac145 crossref_primary_10_1016_j_watres_2024_121702 crossref_primary_10_2965_jwet_23_149 crossref_primary_10_1021_acs_est_9b06603 crossref_primary_10_1016_j_watres_2024_122091 crossref_primary_10_1007_s13665_019_00237_8 crossref_primary_10_1002_smll_201804436 crossref_primary_10_1039_D1RA03680G crossref_primary_10_1021_acs_est_3c10429 |
Cites_doi | 10.1128/AEM.66.4.1702-1705.2000 10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L 10.1002/j.1551-8833.1996.tb06571.x 10.1016/j.watres.2008.07.017 10.1061/(ASCE)EE.1943-7870.0000118 10.1128/AEM.02573-05 10.1021/es302042t 10.1016/j.watres.2013.10.071 10.3390/pathogens4020335 10.1080/00103628909368175 10.1021/es4055725 10.1016/j.scitotenv.2016.03.154 10.1016/j.watres.2011.12.001 10.1080/01919510008547229 10.1021/acs.est.6b00835 10.1093/nar/gkn879 10.1128/AEM.00062-07 10.1111/j.1574-6976.2010.00214.x 10.1016/j.watres.2005.03.020 10.2166/wst.1998.0365 10.1016/j.cemconres.2007.06.009 10.1016/j.watres.2011.11.064 10.1016/j.watres.2010.12.031 10.1016/j.mimet.2013.05.007 10.1021/es8017545 10.1128/AEM.66.1.268-276.2000 10.1080/01919512.2013.796861 10.2175/193864716819706293 10.1016/j.watres.2014.11.016 10.1128/AEM.01719-09 10.1016/S0043-1354(99)00115-3 10.1021/es9014629 10.1128/AEM.00794-10 10.1128/AEM.01043-13 10.1016/j.watres.2013.03.002 10.1128/AEM.72.4.2586-2593.2006 10.1021/es048396s 10.2166/wst.1993.0376 10.1080/19443994.2014.927123 10.1016/S1001-0742(13)60481-7 10.1016/j.watres.2010.11.016 10.1128/mSphereDirect.00073-17 10.1128/am.26.3.391-393.1973 10.1061/(ASCE)HY.1943-7900.0000777 10.1002/1097-0320(20000701)40:3<214::AID-CYTO6>3.0.CO;2-M 10.1016/j.watres.2009.07.004 10.1021/acs.est.6b02640 10.1080/01919519908547242 10.1016/S0043-1354(96)00394-6 10.1016/j.watres.2014.06.025 10.1016/j.watres.2012.08.043 10.1016/j.watres.2012.06.010 10.1016/j.scitotenv.2016.08.054 10.1128/jb.96.6.1915-1919.1968 10.3390/ijms141121965 10.1007/s10973-008-9196-7 10.1016/S0966-842X(00)01913-2 10.1016/j.cemconres.2004.06.015 10.1039/C5EW00186B 10.1080/01919517908550834 10.1080/01919512.2011.578038 10.1016/j.watres.2007.07.009 10.1021/es500907n 10.1016/j.watres.2017.01.065 10.1002/j.1551-8833.2000.tb09073.x 10.1128/aem.47.3.551-559.1984 10.1073/pnas.0908446106 10.1128/AEM.01541-09 10.1073/pnas.1000080107 10.1128/jb.83.4.736-737.1962 10.1038/345063a0 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society Copyright American Chemical Society Mar 6, 2018 |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society – notice: Copyright American Chemical Society Mar 6, 2018 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.7b04212 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2628 |
ExternalDocumentID | 29299927 10_1021_acs_est_7b04212 c71535696 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a497t-285958f0f7a303d6373d0fb60267558dc623babec0ec5d6863be6f27171a961b3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 05:36:53 EDT 2025 Thu Jul 10 23:20:37 EDT 2025 Sun Jun 29 16:11:22 EDT 2025 Mon Jul 21 06:08:07 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 02:57:56 EDT 2025 Thu Aug 27 13:42:08 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a497t-285958f0f7a303d6373d0fb60267558dc623babec0ec5d6863be6f27171a961b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7302-9176 0000-0002-0004-8894 |
PMID | 29299927 |
PQID | 2024468261 |
PQPubID | 45412 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2101362003 proquest_miscellaneous_1984750972 proquest_journals_2024468261 pubmed_primary_29299927 crossref_primary_10_1021_acs_est_7b04212 crossref_citationtrail_10_1021_acs_est_7b04212 acs_journals_10_1021_acs_est_7b04212 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-06 |
PublicationDateYYYYMMDD | 2018-03-06 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 Jekel M. R. (ref6/cit6) 1998; 37 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref59/cit59 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 von Gunten U. (ref72/cit72) 1996; 88 ref42/cit42 ref46/cit46 Rittmann B. (ref56/cit56) 1989 ref49/cit49 ref13/cit13 Nerenberg R. (ref2/cit2) 2000; 92 ref61/cit61 ref75/cit75 Botzenhart K. (ref63/cit63) 1993; 27 ref67/cit67 ref24/cit24 ref50/cit50 Haig S.-J. (ref38/cit38) ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Wayne L. G. (ref64/cit64) 1968; 96 ref76/cit76 ref32/cit32 ref39/cit39 Eagon R. G. (ref54/cit54) 1962; 83 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Broadwater W. T. (ref27/cit27) 1973; 26 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 Van der Kooij D. (ref45/cit45) 1984; 47 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 Langlais B. (ref31/cit31) 1991 |
References_xml | – ident: ref22/cit22 doi: 10.1128/AEM.66.4.1702-1705.2000 – ident: ref14/cit14 – ident: ref58/cit58 doi: 10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L – volume: 88 start-page: 53 issue: 6 year: 1996 ident: ref72/cit72 publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1996.tb06571.x – ident: ref52/cit52 doi: 10.1016/j.watres.2008.07.017 – ident: ref28/cit28 doi: 10.1061/(ASCE)EE.1943-7870.0000118 – ident: ref24/cit24 doi: 10.1128/AEM.02573-05 – ident: ref30/cit30 doi: 10.1021/es302042t – ident: ref76/cit76 doi: 10.1016/j.watres.2013.10.071 – ident: ref37/cit37 doi: 10.3390/pathogens4020335 – ident: ref33/cit33 – ident: ref47/cit47 doi: 10.1080/00103628909368175 – ident: ref62/cit62 doi: 10.1021/es4055725 – ident: ref61/cit61 doi: 10.1016/j.scitotenv.2016.03.154 – ident: ref68/cit68 doi: 10.1016/j.watres.2011.12.001 – ident: ref19/cit19 doi: 10.1080/01919510008547229 – ident: ref74/cit74 doi: 10.1021/acs.est.6b00835 – ident: ref44/cit44 doi: 10.1093/nar/gkn879 – ident: ref43/cit43 doi: 10.1128/AEM.00062-07 – ident: ref71/cit71 doi: 10.1111/j.1574-6976.2010.00214.x – ident: ref3/cit3 doi: 10.1016/j.watres.2005.03.020 – volume: 37 start-page: 1 issue: 10 year: 1998 ident: ref6/cit6 publication-title: Water Sci. Technol. doi: 10.2166/wst.1998.0365 – ident: ref55/cit55 doi: 10.1016/j.cemconres.2007.06.009 – ident: ref11/cit11 doi: 10.1016/j.watres.2011.11.064 – ident: ref8/cit8 doi: 10.1016/j.watres.2010.12.031 – ident: ref35/cit35 doi: 10.1016/j.mimet.2013.05.007 – ident: ref23/cit23 doi: 10.1021/es8017545 – ident: ref50/cit50 doi: 10.1128/AEM.66.1.268-276.2000 – ident: ref4/cit4 doi: 10.1080/01919512.2013.796861 – volume-title: Ozone in Water Treatment: Application and Engineering year: 1991 ident: ref31/cit31 – ident: ref38/cit38 publication-title: mBio – ident: ref15/cit15 doi: 10.2175/193864716819706293 – ident: ref25/cit25 doi: 10.1016/j.watres.2014.11.016 – ident: ref59/cit59 doi: 10.1128/AEM.01719-09 – ident: ref1/cit1 doi: 10.1016/S0043-1354(99)00115-3 – ident: ref9/cit9 doi: 10.1021/es9014629 – ident: ref29/cit29 doi: 10.1128/AEM.00794-10 – ident: ref39/cit39 doi: 10.1128/AEM.01043-13 – ident: ref75/cit75 doi: 10.1016/j.watres.2013.03.002 – ident: ref66/cit66 doi: 10.1128/AEM.72.4.2586-2593.2006 – ident: ref10/cit10 doi: 10.1021/es048396s – volume: 27 start-page: 363 issue: 3 year: 1993 ident: ref63/cit63 publication-title: Water Sci. Technol. doi: 10.2166/wst.1993.0376 – ident: ref5/cit5 doi: 10.1080/19443994.2014.927123 – ident: ref67/cit67 doi: 10.1016/S1001-0742(13)60481-7 – ident: ref17/cit17 doi: 10.1016/j.watres.2010.11.016 – ident: ref42/cit42 doi: 10.1128/mSphereDirect.00073-17 – volume: 26 start-page: 391 issue: 3 year: 1973 ident: ref27/cit27 publication-title: Appl. Microbiol. doi: 10.1128/am.26.3.391-393.1973 – ident: ref36/cit36 doi: 10.1061/(ASCE)HY.1943-7900.0000777 – ident: ref34/cit34 doi: 10.1002/1097-0320(20000701)40:3<214::AID-CYTO6>3.0.CO;2-M – ident: ref12/cit12 doi: 10.1016/j.watres.2009.07.004 – ident: ref21/cit21 doi: 10.1021/acs.est.6b02640 – ident: ref26/cit26 doi: 10.1080/01919519908547242 – ident: ref32/cit32 doi: 10.1016/S0043-1354(96)00394-6 – ident: ref73/cit73 doi: 10.1016/j.watres.2014.06.025 – ident: ref20/cit20 doi: 10.1016/j.watres.2012.08.043 – ident: ref49/cit49 doi: 10.1016/j.watres.2012.06.010 – ident: ref70/cit70 doi: 10.1016/j.scitotenv.2016.08.054 – volume: 96 start-page: 1915 issue: 6 year: 1968 ident: ref64/cit64 publication-title: J. Bacteriol. doi: 10.1128/jb.96.6.1915-1919.1968 – ident: ref57/cit57 doi: 10.3390/ijms141121965 – ident: ref48/cit48 doi: 10.1007/s10973-008-9196-7 – ident: ref65/cit65 doi: 10.1016/S0966-842X(00)01913-2 – ident: ref46/cit46 doi: 10.1016/j.cemconres.2004.06.015 – ident: ref7/cit7 doi: 10.1039/C5EW00186B – ident: ref60/cit60 doi: 10.1080/01919517908550834 – ident: ref16/cit16 doi: 10.1080/01919512.2011.578038 – ident: ref18/cit18 doi: 10.1016/j.watres.2007.07.009 – start-page: 49 volume-title: Structure and Function of Biofilms year: 1989 ident: ref56/cit56 – ident: ref13/cit13 doi: 10.1021/es500907n – ident: ref51/cit51 doi: 10.1016/j.watres.2017.01.065 – volume: 92 start-page: 85 issue: 12 year: 2000 ident: ref2/cit2 publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.2000.tb09073.x – volume: 47 start-page: 551 issue: 3 year: 1984 ident: ref45/cit45 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.47.3.551-559.1984 – ident: ref69/cit69 doi: 10.1073/pnas.0908446106 – ident: ref41/cit41 doi: 10.1128/AEM.01541-09 – ident: ref40/cit40 doi: 10.1073/pnas.1000080107 – volume: 83 start-page: 736 issue: 4 year: 1962 ident: ref54/cit54 publication-title: J. Bacteriol. doi: 10.1128/jb.83.4.736-737.1962 – ident: ref53/cit53 doi: 10.1038/345063a0 |
SSID | ssj0002308 |
Score | 2.41062 |
Snippet | Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2618 |
SubjectTerms | Bacteria biofilm Biofilms Biological activity biomass Cell culture cell viability Chambers community structure Contactors Downstream Drinking water Effluent treatment Effluents filters Fluid filters Legionella Microbial activity microbial communities Microorganisms Mycobacterium ozonation Ozone Relative abundance Sediments Upstream Wastewater treatment Water analysis Water purification Water sampling Water treatment |
Title | Biofilms in Full-Scale Drinking Water Ozone Contactors Contribute Viable Bacteria to Ozonated Water |
URI | http://dx.doi.org/10.1021/acs.est.7b04212 https://www.ncbi.nlm.nih.gov/pubmed/29299927 https://www.proquest.com/docview/2024468261 https://www.proquest.com/docview/1984750972 https://www.proquest.com/docview/2101362003 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4XODA-zFeCtIOXFqatknbI08hJOAwBrtVTZpKE9Chtbvs1-OkXQdME9yqNq4sJ44_K_FngDYi2kiEVFqh8qTlC8osxMlUX6ZKEX9I6lNd7_zwyO-6_n2P9aZk0b9P8F16nsjCxg3SDoSjTy8XYdnl6MIaBV11mk0XkXQ4aVYQebzXsPjM_ECHIVn8DENzsKWJMbfr1e2swlAT6qslb_aoFLYczxI3_q3-BqzVSJNcVEtjExZUvgWr3_gHt2D3ZlrmhkNrPy-2QV72dSvvj4L0c6KzVKuDc6nI9bBqtUBeEaIOydN4kCuiCa6qrj3m0XTQUuSlr4uyyGXFBp2QcmCGo1xaSe9A9_bm-erOqtsxWIkfBaWlqe5YmDlZkGDcS7kXeKmTCdPDirEwlYikRIJrwlGSpTzknlA8czFfpEnEqfB2YSlHtfaBMEQ5URZ4lCbUF2kYMkzklAhS5UslfbcFbbRbXLtTEZuTcpfG-iUaM66N2QJ7MomxrCnNdWeN9_kCZ43AZ8XmMX_o0WRVTPVwEdH4HDMy2oLT5jM6pD5lSXI1GKGuEQZ8plmR5o_BPJsicsAdtQV71Ypr9HERsEaRGxz8zwaHsIIYzpRJOvwIlsrhSB0jTirFifGQLxLHC7E |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0VOAAHlrKV1UgcuKTEWZzkSAuo7EJsvUWx40gVkKImvfD1jJ00ZVEluEWOJ5rYY8-zxvMG4AARbcB9Kgxf2sJwOHUNxMlUXaaKEX8I6lCV73x9wzqPzkXX7dbAHOXCoBIZfinTQfwxuwA9Um24TzY9bqog5hTMIBSxlE0ft--rvRcBtT-qWRDYrFuR-fz6gPJGIvvujSZATO1qzhbhrlJS3zB5aQ5z3hQfP_gb__MXS7BQ4k5yXBjKMtRkWof5L2yEdVg7HSe9Yddy1WcrIFo9Vdj7LSO9lKgzq3GPMyvJyaAovECeEbAOyO1HP5VE0V0VNXz0o66nJclTT6VokVbBDR2RvK-7o1xcSK_C49npQ7tjlMUZjMgJvNxQxHeun5iJF6EXjJnt2bGZcF3RynX9WCCu4hFaiCmFGzOf2VyyxMLTI40CRrm9BtMpqrUBxEXMEySeTWlEHR77Ps4rldyLpSOkcKwGHOC4heXiykIdN7doqBpxMMNyMBvQHM1lKEqCc1Vn43WywGEl8F5we0zuuj0yjrEeFuIbh-H5jDZgv3qNy1PFXKJU9oeoa4Du31UcSZP74KmbIo7A_bUB64XhVfpYCF-DwPI2_zYGezDbebi-Cq_Oby63YA7RnU6gNNk2TOeDodxBBJXzXb1oPgFqLBQS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKlVw6IMCXUpbI3HgkiVOYic58lrRF0WCLXuL4kekFZBFm-yFX8-Mkw2UaqX2Fjl2NLFn7G80nm8AdhHRpirh2ktsqL1IceEhTuZ0mcog_tA84pTv_PNMng6jbyMxapPCKBcGhajwS5UL4pNV35miZRjg-9SOe2U_Vj4FMpfgJQXtSK8Pji66_RdBdTKvW5CGctQR-vz1ATqRdPXnibQAZrrjZvAGhp2g7pbJdX9Wq76-f8bh-L9_8hZet_iTHTQK8w5e2HINVp-wEq7Bxslj8ht2ba2_eg_6cEwFvm8rNi4Z-a7eBa6wZcfTpgADu0LgOmW_7ielZUR71dTycY-urpZlv8eUqsUOG47onNUT1x3HmWb0OgwHJ5dHp15bpMHLozSuPSLAE0nhF3GOp6GRYRwav1CuspUQidGIr1SOmuJbLYxMZKisLAL0InmeSq7CDVguUawPwARin7SIQ85zHimTJALdO6tiYyNtdRT0YBfnLWuNrMpc_DzgGTXiZGbtZPagP1_PTLdE51Rv42bxgL1uwF3D8bG46_ZcQR7lCBDnRBL9NN6Dne41minFXvLSTmYoa4owQBBX0uI-6H1zxBO4z_Zgs1G-Tp4AYWyaBvHWv83BF3h1fjzIfnw9-_4RVhDkuTxKX27Dcj2d2U8IpGr12dnNA1iSFpU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofilms+in+Full-Scale+Drinking+Water+Ozone+Contactors+Contribute+Viable+Bacteria+to+Ozonated+Water&rft.jtitle=Environmental+science+%26+technology&rft.au=Kotlarz%2C+Nadine&rft.au=Rockey%2C+Nicole&rft.au=Olson%2C+Terese+M&rft.au=Haig%2C+Sarah-Jane&rft.date=2018-03-06&rft.issn=1520-5851&rft.volume=52&rft.issue=5+p.2618-2628&rft.spage=2618&rft.epage=2628&rft_id=info:doi/10.1021%2Facs.est.7b04212&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |