Combined Effects of Surface Charge and Pore Size on Co-Enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes
Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charg...
Saved in:
Published in | Environmental science & technology Vol. 52; no. 8; pp. 4827 - 4834 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m–2 h–1 bar–1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m–2 h–1 bar–1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination. |
---|---|
AbstractList | Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m–2 h–1 bar–1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m–2 h–1 bar–1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination. Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m h bar and rejection rate reached 78.1% for Na SO filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m h bar ) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination. Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m-2 h-1 bar-1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m-2 h-1 bar-1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m-2 h-1 bar-1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m-2 h-1 bar-1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination. Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m–² h–¹ bar–¹ and rejection rate reached 78.1% for Na₂SO₄ filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m–² h–¹ bar–¹) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination. |
Author | Chen, Shuo Quan, Xie Fan, Xinfei Wei, Gaoliang Zhang, Haiguang Yu, Hongtao |
AuthorAffiliation | Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology |
AuthorAffiliation_xml | – name: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology |
Author_xml | – sequence: 1 givenname: Haiguang surname: Zhang fullname: Zhang, Haiguang – sequence: 2 givenname: Xie orcidid: 0000-0003-3085-0789 surname: Quan fullname: Quan, Xie email: quanxie@dlut.edu.cn – sequence: 3 givenname: Shuo orcidid: 0000-0002-6796-8476 surname: Chen fullname: Chen, Shuo – sequence: 4 givenname: Xinfei surname: Fan fullname: Fan, Xinfei – sequence: 5 givenname: Gaoliang surname: Wei fullname: Wei, Gaoliang – sequence: 6 givenname: Hongtao surname: Yu fullname: Yu, Hongtao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29617119$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAUhUVJaSZp190VQTeF4Il-Rpa8LGaaBtJM6KTQnZHsq4yCLaWSXUgeoU9dTWbSRSB0JZC-c-7VOUfowAcPCL2nZE4Jo6e6TXNI41wZQgQVr9CMCkYKoQQ9QDNCKC8qXv48REcp3RJCGCfqDTpkVUklpdUM_anDYJyHDi-thXZMOFi8nqLVLeB6o-MNYO07fBUi4LV7ABw8rkOx9Bvt2yy7gjiANq534_0jeZ6BNfTZy_3e3o2bGKabDf5-tipW9eU1vtQ-WNePUY8us99gMFF7SG_Ra6v7BO_25zH68WV5XX8tLlZn5_Xni0IvKjkWTJqFBEIlYZ3VXBlhpDDKLCphCWm1srbiVrGuZKUWLQFVdaC5rYjockQlP0afdr53MfyacnrN4FILfZ-XCFNqGM2xSc7V4v8oYYyySjCe0Y_P0NswRZ8_kinJZCkrtZ39YU9NZoCuuYtu0PG-eSokA2IHtDGkFME2rRsfg8p5ub6hpNkW3-Tim-2QffFZd_pM92T9suJkp9g-_Nv1JfovLby_UA |
CitedBy_id | crossref_primary_10_1021_acs_macromol_4c01565 crossref_primary_10_1016_j_jclepro_2024_142149 crossref_primary_10_1016_j_cej_2020_126426 crossref_primary_10_1016_j_seppur_2021_118300 crossref_primary_10_1016_j_cej_2024_149108 crossref_primary_10_1016_j_memsci_2020_118581 crossref_primary_10_1080_10643389_2022_2113319 crossref_primary_10_1016_j_psep_2021_07_037 crossref_primary_10_1021_acs_iecr_4c03995 crossref_primary_10_1039_D4TA08805K crossref_primary_10_1039_D2EN00545J crossref_primary_10_1016_j_desal_2023_117208 crossref_primary_10_1016_j_jece_2021_105762 crossref_primary_10_1021_acs_est_8b01894 crossref_primary_10_1039_D0CS01599G crossref_primary_10_1016_j_desal_2020_114539 crossref_primary_10_1016_j_memsci_2021_119521 crossref_primary_10_1016_j_desal_2022_115740 crossref_primary_10_1016_j_desal_2022_115741 crossref_primary_10_1021_acsestwater_3c00693 crossref_primary_10_1016_j_memsci_2020_118995 crossref_primary_10_1016_j_cej_2023_144323 crossref_primary_10_1021_acs_energyfuels_3c02323 crossref_primary_10_1021_acsami_9b19255 crossref_primary_10_1039_D1CY01818C crossref_primary_10_1016_j_memsci_2020_118077 crossref_primary_10_1021_acsami_4c16773 crossref_primary_10_1016_j_cej_2020_127903 crossref_primary_10_1021_acsestengg_1c00364 crossref_primary_10_1002_wer_1385 crossref_primary_10_1016_j_cclet_2022_01_034 crossref_primary_10_1016_j_memsci_2022_121197 crossref_primary_10_1016_j_aej_2023_10_038 crossref_primary_10_1016_j_memsci_2023_122020 crossref_primary_10_1021_jacs_1c00575 crossref_primary_10_1016_j_chemosphere_2022_135590 crossref_primary_10_1016_j_seppur_2024_130490 crossref_primary_10_1016_j_apsusc_2020_148284 crossref_primary_10_1016_j_jcis_2021_11_007 crossref_primary_10_1002_smll_202003400 crossref_primary_10_1016_j_cjche_2019_01_001 crossref_primary_10_1039_D0EW01070G crossref_primary_10_1016_j_desal_2025_118567 crossref_primary_10_1021_acs_est_2c07158 crossref_primary_10_1016_j_watres_2023_120862 crossref_primary_10_1016_j_desal_2024_117672 crossref_primary_10_1016_j_chemosphere_2019_01_129 crossref_primary_10_1089_ees_2021_0328 crossref_primary_10_1016_j_cej_2022_136376 crossref_primary_10_1016_j_jtice_2020_05_003 crossref_primary_10_1016_j_memsci_2023_122026 crossref_primary_10_1016_j_memsci_2021_120127 crossref_primary_10_1016_j_cjche_2021_12_009 crossref_primary_10_1002_app_48029 crossref_primary_10_1016_j_memsci_2024_123002 crossref_primary_10_1016_j_seppur_2019_03_041 crossref_primary_10_1016_j_seppur_2020_117839 crossref_primary_10_1021_acsami_9b03761 crossref_primary_10_1021_acs_est_8b04268 crossref_primary_10_1016_j_carbon_2018_12_098 crossref_primary_10_1021_acs_est_8b04102 crossref_primary_10_1021_acs_est_2c06697 crossref_primary_10_1016_j_desal_2024_117667 crossref_primary_10_1016_j_seppur_2023_123431 crossref_primary_10_1016_j_envres_2022_113326 crossref_primary_10_1016_j_memsci_2021_119069 crossref_primary_10_1039_C8RA03156H crossref_primary_10_1016_j_memsci_2019_117547 crossref_primary_10_1016_j_desal_2024_118177 crossref_primary_10_1021_acsami_0c16569 crossref_primary_10_1021_acsami_8b19121 crossref_primary_10_1166_jnn_2021_19467 crossref_primary_10_1016_j_watres_2023_120478 crossref_primary_10_1016_j_cej_2020_127602 crossref_primary_10_1016_j_memsci_2024_122418 crossref_primary_10_1021_acs_est_0c05254 crossref_primary_10_3390_nano10061203 crossref_primary_10_1038_s41598_022_21316_y crossref_primary_10_1016_j_seppur_2024_129124 crossref_primary_10_1016_j_desal_2020_114649 crossref_primary_10_1016_j_envpol_2022_119377 crossref_primary_10_1016_j_memsci_2020_118526 crossref_primary_10_1016_j_memsci_2022_120919 |
Cites_doi | 10.1126/science.1245711 10.1016/j.memsci.2016.01.034 10.1016/j.jhazmat.2015.01.057 10.1016/j.memsci.2012.12.005 10.1016/S0009-2509(01)00413-4 10.1016/j.desal.2011.09.018 10.1016/j.memsci.2007.11.005 10.1016/j.seppur.2012.01.039 10.1039/C4CS00423J 10.1016/j.watres.2011.10.011 10.1039/C5NR08697C 10.1016/j.desal.2014.10.043 10.1016/j.desal.2013.12.026 10.1021/cm100454g 10.1126/science.1128845 10.1021/acs.est.5b02086 10.1016/j.polymer.2012.09.014 10.1021/acs.est.6b02834 10.1016/j.memsci.2016.05.033 10.1021/acsami.5b00986 10.1002/adma.201502595 10.1021/es2002919 10.1126/science.aab0530 10.1016/j.ces.2014.04.007 10.1016/S1383-5866(00)00163-5 10.1016/j.cplett.2013.01.024 10.1016/j.desal.2012.07.038 10.1016/j.biortech.2012.03.029 10.1021/acsnano.7b02999 10.1016/j.desal.2014.10.022 10.1016/j.memsci.2016.08.041 10.1016/j.memsci.2013.07.064 10.1021/acsami.6b05545 10.1126/science.289.5477.284 10.1016/j.memsci.2014.11.019 10.1002/adma.201404054 10.1021/acsnano.6b07001 10.1039/c2ra20340e 10.1016/j.memsci.2016.09.055 10.1002/adfm.201502955 10.1016/j.memsci.2017.10.039 10.1016/j.memsci.2015.03.017 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Apr 17, 2018 |
Copyright_xml | – notice: Copyright American Chemical Society Apr 17, 2018 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.8b00515 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 4834 |
ExternalDocumentID | 29617119 10_1021_acs_est_8b00515 c36949093 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a497t-27b47e01702dfa38b5b75b8b495f00ca8ff93f82d626a5c0e89dea3f905d51563 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 11:02:33 EDT 2025 Thu Jul 10 23:40:21 EDT 2025 Mon Jun 30 17:01:50 EDT 2025 Mon Jul 21 06:02:15 EDT 2025 Tue Jul 01 02:57:58 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Thu Aug 27 13:43:02 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a497t-27b47e01702dfa38b5b75b8b495f00ca8ff93f82d626a5c0e89dea3f905d51563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3085-0789 0000-0002-6796-8476 |
PMID | 29617119 |
PQID | 2072767986 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101373384 proquest_miscellaneous_2022129523 proquest_journals_2072767986 pubmed_primary_29617119 crossref_citationtrail_10_1021_acs_est_8b00515 crossref_primary_10_1021_acs_est_8b00515 acs_journals_10_1021_acs_est_8b00515 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-17 |
PublicationDateYYYYMMDD | 2018-04-17 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1126/science.1245711 – ident: ref16/cit16 doi: 10.1016/j.memsci.2016.01.034 – ident: ref15/cit15 doi: 10.1016/j.jhazmat.2015.01.057 – ident: ref39/cit39 doi: 10.1016/j.memsci.2012.12.005 – ident: ref40/cit40 doi: 10.1016/S0009-2509(01)00413-4 – ident: ref37/cit37 doi: 10.1016/j.desal.2011.09.018 – ident: ref36/cit36 doi: 10.1016/j.memsci.2007.11.005 – ident: ref9/cit9 doi: 10.1016/j.seppur.2012.01.039 – ident: ref24/cit24 doi: 10.1039/C4CS00423J – ident: ref42/cit42 doi: 10.1016/j.watres.2011.10.011 – ident: ref7/cit7 doi: 10.1039/C5NR08697C – ident: ref10/cit10 doi: 10.1016/j.desal.2014.10.043 – ident: ref23/cit23 doi: 10.1016/j.desal.2013.12.026 – ident: ref26/cit26 doi: 10.1021/cm100454g – ident: ref2/cit2 doi: 10.1126/science.1128845 – ident: ref18/cit18 doi: 10.1021/acs.est.5b02086 – ident: ref6/cit6 doi: 10.1016/j.polymer.2012.09.014 – ident: ref30/cit30 doi: 10.1021/acs.est.6b02834 – ident: ref12/cit12 doi: 10.1016/j.memsci.2016.05.033 – ident: ref14/cit14 doi: 10.1021/acsami.5b00986 – ident: ref20/cit20 doi: 10.1002/adma.201502595 – ident: ref34/cit34 doi: 10.1021/es2002919 – ident: ref13/cit13 doi: 10.1126/science.aab0530 – ident: ref8/cit8 doi: 10.1016/j.ces.2014.04.007 – ident: ref41/cit41 doi: 10.1016/S1383-5866(00)00163-5 – ident: ref25/cit25 doi: 10.1016/j.cplett.2013.01.024 – ident: ref4/cit4 doi: 10.1016/j.desal.2012.07.038 – ident: ref35/cit35 doi: 10.1016/j.biortech.2012.03.029 – ident: ref27/cit27 doi: 10.1021/acsnano.7b02999 – ident: ref21/cit21 doi: 10.1016/j.desal.2014.10.022 – ident: ref17/cit17 doi: 10.1016/j.memsci.2016.08.041 – ident: ref32/cit32 doi: 10.1016/j.memsci.2013.07.064 – ident: ref31/cit31 doi: 10.1021/acsami.6b05545 – ident: ref1/cit1 doi: 10.1126/science.289.5477.284 – ident: ref5/cit5 doi: 10.1016/j.memsci.2014.11.019 – ident: ref28/cit28 doi: 10.1002/adma.201404054 – ident: ref33/cit33 doi: 10.1021/acsnano.6b07001 – ident: ref3/cit3 doi: 10.1039/c2ra20340e – ident: ref11/cit11 doi: 10.1016/j.memsci.2016.09.055 – ident: ref22/cit22 doi: 10.1002/adfm.201502955 – ident: ref29/cit29 doi: 10.1016/j.memsci.2017.10.039 – ident: ref19/cit19 doi: 10.1016/j.memsci.2015.03.017 |
SSID | ssj0002308 |
Score | 2.532348 |
Snippet | Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4827 |
SubjectTerms | asymmetric membranes Carbon nanotubes Desalination electrostatic interactions Electrostatic properties Filtration graphene oxide ions Membrane permeability Membrane separation Membranes Nanofiltration Nanotechnology Nanotubes oxidation Permeability Pore size Porosity Rejection rate Selectivity Sodium chloride Sodium sulfate Surface charge Wastewater treatment Water treatment |
Title | Combined Effects of Surface Charge and Pore Size on Co-Enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes |
URI | http://dx.doi.org/10.1021/acs.est.8b00515 https://www.ncbi.nlm.nih.gov/pubmed/29617119 https://www.proquest.com/docview/2072767986 https://www.proquest.com/docview/2022129523 https://www.proquest.com/docview/2101373384 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBAodCyUJCROHBxcOw87GO12lKQ-hDbSnuL_IQKSNBm90B_Qn91x042C1QLXJNxZE1mxt9oxt8g9EYJZwvlSkKtlyQrhSICQgIpvMqoUhl3ebg7fHxSHF1kH2f5bE0W_WcFn6XvlGkTCJCJiAaU30X3WAEuHFDQeDoEXUDSYjWsQPJiNrD43PpAOIZM-_sxtAFbxjPmcLvrzmojNWFoLfmaLBc6MVe3iRv_vf1H6GGPNPFBZxqP0R1X76AHv_AP7qDdyfqaG4j2ft4-QdcQJiBldhZ37MYtbjyeLudeGYdDhf6zw6q2-KyZOzy9vHK4qfG4IZP6S-wowGcQ8F1HAf4zSn4AgWmcuROnVeB-PhD-9P6UnI5PzjGE-TA9vGfxxcfuO-TxEIefoovDyfn4iPRTG4jKZLkgrNRZ6QItD7NecaFzXeZaaMjEPKVGCe8l94JZSKVUbqgT0jrFvaS5BQUVfBdt1U3tniEsKViSpVIBisu8TjXjhusgZSBLsnIEtmbaqve6tooFdZZW4SHovOp1PkLJ6l9Xpmc-DwM4vm1e8HZY8KMj_dgsur8ynvU-GAVUGMpbxQi9Hl6D34ZiDKiuWQYZBqhB5oz_RSYNhJCci2yE9jrDHPbDJGDPNJXP_08HL9B9gHoi1MHSch9tLeZL9xLg1EK_io50A8G4G2c |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwENaUcoAeeBQKgQJihgMXB1nyQzp2MikpNGkh6UxuHj2hA9hMnBzoT-BXs5Idh8eEgau90sjr3dW3s9K3CL2Q3JpM2jwixokoybmMOISEKHMyIVImzKb-7vB4ko0ukjfzdL6DyPouDCyihpnqUMTfsAvEr_wziJN9HuwovYauAxSh3qaPBtMu9gKg5uueBYJl847M548J_G6k6193oy0QM2w1x7fRu26R4YTJp_5qqfr66jf-xv_5ijvoVos78VFjKHfRji330d5PbIT76GC4ufQGoq3X1_fQdwgakEBbgxuu4xpXDk9XCye1xb5e_8FiWRp8Xi0snl5eWVyVeFBFw_JjOF-AzyH824YQ_FuQPAGBaejAE3pX4LZbEH7_-iw6G0xmGIK-7yXecvrisf0CWT1E5fvo4ng4G4yitodDJBORLyOaqyS3nqSHGicZV6nKU8UV5GWOEC25c4I5Tg0kVjLVxHJhrGROkNSAgjJ2gHbLqrQPERYE7MoQIQHTJU7FijLNlJfSkDMZ0QPL03XR-mBdhPI6jQv_EHRetDrvof76lxe65UH37Tg-bx_wshvwtaEA2S56uLahzTooAYzoi11ZDz3vXoMX-9IMqK5aeRkKGEKklP1FJvb0kIzxpIceNPbZrYcKQKJxLB79mw6eoRuj2fi0OD2ZvH2MbgII5L5CFueHaHe5WNknALSW6mnwrR_AdiPI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgexhiMFTYwEg-8uEvsfNiPU2nZgHUVXaW-RXZsAwKSqWkf2J_AX83ZcTM-VASvydlyLnfn3-ns3yH0QnKjM2lyEmkrSJJzSTiEBJJZmURSJsyk7u7w2Tg7mSVv5uk8XApzd2FgEQ3M1PgivvPqS20Dw0B85J5DrOxzb0vpTXTLFe2cXR8Ppl38BVDN130LBMvmHaHPHxO4Halsft2RNsBMv92M7qFZt1B_yuRzf7VU_fLqNw7H__2SHbQd8Cc-bg3mPrphql109ydWwl20N7y-_AaiwfubB-g7BA9IpI3GLedxg2uLp6uFlaXBrm7_wWBZaTypFwZPP10ZXFd4UJNh9dGfM8AT2AZMSwz-zUuegsDUd-LxPSxw6BqE378-J-eD8QWG4O96igduX3xmvkJ2D9H5IZqNhheDExJ6ORCZiHxJaK6S3DiyHqqtZFylKk8VV5Cf2SgqJbdWMMuphgRLpmVkuNBGMiuiVIOCMraHtqq6MvsIiwjsS0dCArZLrIoVZSVTTqqE3EmLHlhg2RTBF5vCl9lpXLiHoPMi6LyH-uvfXpSBD9215fiyecDLbsBlSwWyWfRgbUfX66ARYEVX9Mp66Hn3GrzZlWhAdfXKyVDAEiKl7C8ysaOJZIwnPfSotdFuPVQAIo1j8fjfdPAM3Z68GhXvTsdvn6A7gAW5K5TF-QHaWi5W5hDw1lI99e71AxuZJks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Effects+of+Surface+Charge+and+Pore+Size+on+Co-Enhanced+Permeability+and+Ion+Selectivity+through+RGO-OCNT+Nanofiltration+Membranes&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhang%2C+Haiguang&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Shuo&rft.au=Fan%2C+Xinfei&rft.date=2018-04-17&rft.eissn=1520-5851&rft.volume=52&rft.issue=8&rft.spage=4827&rft_id=info:doi/10.1021%2Facs.est.8b00515&rft_id=info%3Apmid%2F29617119&rft.externalDocID=29617119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |