Combined Effects of Surface Charge and Pore Size on Co-Enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes

Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charg...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 52; no. 8; pp. 4827 - 4834
Main Authors Zhang, Haiguang, Quan, Xie, Chen, Shuo, Fan, Xinfei, Wei, Gaoliang, Yu, Hongtao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m–2 h–1 bar–1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m–2 h–1 bar–1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.
AbstractList Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m–2 h–1 bar–1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m–2 h–1 bar–1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.
Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m h bar and rejection rate reached 78.1% for Na SO filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m h bar ) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.
Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m-2 h-1 bar-1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m-2 h-1 bar-1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m-2 h-1 bar-1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m-2 h-1 bar-1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.
Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the coenhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size were increased. The permeability increased to 10.6 L m–² h–¹ bar–¹ and rejection rate reached 78.1% for Na₂SO₄ filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m–² h–¹ bar–¹) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.
Author Chen, Shuo
Quan, Xie
Fan, Xinfei
Wei, Gaoliang
Zhang, Haiguang
Yu, Hongtao
AuthorAffiliation Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology
AuthorAffiliation_xml – name: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology
Author_xml – sequence: 1
  givenname: Haiguang
  surname: Zhang
  fullname: Zhang, Haiguang
– sequence: 2
  givenname: Xie
  orcidid: 0000-0003-3085-0789
  surname: Quan
  fullname: Quan, Xie
  email: quanxie@dlut.edu.cn
– sequence: 3
  givenname: Shuo
  orcidid: 0000-0002-6796-8476
  surname: Chen
  fullname: Chen, Shuo
– sequence: 4
  givenname: Xinfei
  surname: Fan
  fullname: Fan, Xinfei
– sequence: 5
  givenname: Gaoliang
  surname: Wei
  fullname: Wei, Gaoliang
– sequence: 6
  givenname: Hongtao
  surname: Yu
  fullname: Yu, Hongtao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29617119$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVJaSZp190VQTeF4Il-Rpa8LGaaBtJM6KTQnZHsq4yCLaWSXUgeoU9dTWbSRSB0JZC-c-7VOUfowAcPCL2nZE4Jo6e6TXNI41wZQgQVr9CMCkYKoQQ9QDNCKC8qXv48REcp3RJCGCfqDTpkVUklpdUM_anDYJyHDi-thXZMOFi8nqLVLeB6o-MNYO07fBUi4LV7ABw8rkOx9Bvt2yy7gjiANq534_0jeZ6BNfTZy_3e3o2bGKabDf5-tipW9eU1vtQ-WNePUY8us99gMFF7SG_Ra6v7BO_25zH68WV5XX8tLlZn5_Xni0IvKjkWTJqFBEIlYZ3VXBlhpDDKLCphCWm1srbiVrGuZKUWLQFVdaC5rYjockQlP0afdr53MfyacnrN4FILfZ-XCFNqGM2xSc7V4v8oYYyySjCe0Y_P0NswRZ8_kinJZCkrtZ39YU9NZoCuuYtu0PG-eSokA2IHtDGkFME2rRsfg8p5ub6hpNkW3-Tim-2QffFZd_pM92T9suJkp9g-_Nv1JfovLby_UA
CitedBy_id crossref_primary_10_1021_acs_macromol_4c01565
crossref_primary_10_1016_j_jclepro_2024_142149
crossref_primary_10_1016_j_cej_2020_126426
crossref_primary_10_1016_j_seppur_2021_118300
crossref_primary_10_1016_j_cej_2024_149108
crossref_primary_10_1016_j_memsci_2020_118581
crossref_primary_10_1080_10643389_2022_2113319
crossref_primary_10_1016_j_psep_2021_07_037
crossref_primary_10_1021_acs_iecr_4c03995
crossref_primary_10_1039_D4TA08805K
crossref_primary_10_1039_D2EN00545J
crossref_primary_10_1016_j_desal_2023_117208
crossref_primary_10_1016_j_jece_2021_105762
crossref_primary_10_1021_acs_est_8b01894
crossref_primary_10_1039_D0CS01599G
crossref_primary_10_1016_j_desal_2020_114539
crossref_primary_10_1016_j_memsci_2021_119521
crossref_primary_10_1016_j_desal_2022_115740
crossref_primary_10_1016_j_desal_2022_115741
crossref_primary_10_1021_acsestwater_3c00693
crossref_primary_10_1016_j_memsci_2020_118995
crossref_primary_10_1016_j_cej_2023_144323
crossref_primary_10_1021_acs_energyfuels_3c02323
crossref_primary_10_1021_acsami_9b19255
crossref_primary_10_1039_D1CY01818C
crossref_primary_10_1016_j_memsci_2020_118077
crossref_primary_10_1021_acsami_4c16773
crossref_primary_10_1016_j_cej_2020_127903
crossref_primary_10_1021_acsestengg_1c00364
crossref_primary_10_1002_wer_1385
crossref_primary_10_1016_j_cclet_2022_01_034
crossref_primary_10_1016_j_memsci_2022_121197
crossref_primary_10_1016_j_aej_2023_10_038
crossref_primary_10_1016_j_memsci_2023_122020
crossref_primary_10_1021_jacs_1c00575
crossref_primary_10_1016_j_chemosphere_2022_135590
crossref_primary_10_1016_j_seppur_2024_130490
crossref_primary_10_1016_j_apsusc_2020_148284
crossref_primary_10_1016_j_jcis_2021_11_007
crossref_primary_10_1002_smll_202003400
crossref_primary_10_1016_j_cjche_2019_01_001
crossref_primary_10_1039_D0EW01070G
crossref_primary_10_1016_j_desal_2025_118567
crossref_primary_10_1021_acs_est_2c07158
crossref_primary_10_1016_j_watres_2023_120862
crossref_primary_10_1016_j_desal_2024_117672
crossref_primary_10_1016_j_chemosphere_2019_01_129
crossref_primary_10_1089_ees_2021_0328
crossref_primary_10_1016_j_cej_2022_136376
crossref_primary_10_1016_j_jtice_2020_05_003
crossref_primary_10_1016_j_memsci_2023_122026
crossref_primary_10_1016_j_memsci_2021_120127
crossref_primary_10_1016_j_cjche_2021_12_009
crossref_primary_10_1002_app_48029
crossref_primary_10_1016_j_memsci_2024_123002
crossref_primary_10_1016_j_seppur_2019_03_041
crossref_primary_10_1016_j_seppur_2020_117839
crossref_primary_10_1021_acsami_9b03761
crossref_primary_10_1021_acs_est_8b04268
crossref_primary_10_1016_j_carbon_2018_12_098
crossref_primary_10_1021_acs_est_8b04102
crossref_primary_10_1021_acs_est_2c06697
crossref_primary_10_1016_j_desal_2024_117667
crossref_primary_10_1016_j_seppur_2023_123431
crossref_primary_10_1016_j_envres_2022_113326
crossref_primary_10_1016_j_memsci_2021_119069
crossref_primary_10_1039_C8RA03156H
crossref_primary_10_1016_j_memsci_2019_117547
crossref_primary_10_1016_j_desal_2024_118177
crossref_primary_10_1021_acsami_0c16569
crossref_primary_10_1021_acsami_8b19121
crossref_primary_10_1166_jnn_2021_19467
crossref_primary_10_1016_j_watres_2023_120478
crossref_primary_10_1016_j_cej_2020_127602
crossref_primary_10_1016_j_memsci_2024_122418
crossref_primary_10_1021_acs_est_0c05254
crossref_primary_10_3390_nano10061203
crossref_primary_10_1038_s41598_022_21316_y
crossref_primary_10_1016_j_seppur_2024_129124
crossref_primary_10_1016_j_desal_2020_114649
crossref_primary_10_1016_j_envpol_2022_119377
crossref_primary_10_1016_j_memsci_2020_118526
crossref_primary_10_1016_j_memsci_2022_120919
Cites_doi 10.1126/science.1245711
10.1016/j.memsci.2016.01.034
10.1016/j.jhazmat.2015.01.057
10.1016/j.memsci.2012.12.005
10.1016/S0009-2509(01)00413-4
10.1016/j.desal.2011.09.018
10.1016/j.memsci.2007.11.005
10.1016/j.seppur.2012.01.039
10.1039/C4CS00423J
10.1016/j.watres.2011.10.011
10.1039/C5NR08697C
10.1016/j.desal.2014.10.043
10.1016/j.desal.2013.12.026
10.1021/cm100454g
10.1126/science.1128845
10.1021/acs.est.5b02086
10.1016/j.polymer.2012.09.014
10.1021/acs.est.6b02834
10.1016/j.memsci.2016.05.033
10.1021/acsami.5b00986
10.1002/adma.201502595
10.1021/es2002919
10.1126/science.aab0530
10.1016/j.ces.2014.04.007
10.1016/S1383-5866(00)00163-5
10.1016/j.cplett.2013.01.024
10.1016/j.desal.2012.07.038
10.1016/j.biortech.2012.03.029
10.1021/acsnano.7b02999
10.1016/j.desal.2014.10.022
10.1016/j.memsci.2016.08.041
10.1016/j.memsci.2013.07.064
10.1021/acsami.6b05545
10.1126/science.289.5477.284
10.1016/j.memsci.2014.11.019
10.1002/adma.201404054
10.1021/acsnano.6b07001
10.1039/c2ra20340e
10.1016/j.memsci.2016.09.055
10.1002/adfm.201502955
10.1016/j.memsci.2017.10.039
10.1016/j.memsci.2015.03.017
ContentType Journal Article
Copyright Copyright American Chemical Society Apr 17, 2018
Copyright_xml – notice: Copyright American Chemical Society Apr 17, 2018
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.8b00515
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 4834
ExternalDocumentID 29617119
10_1021_acs_est_8b00515
c36949093
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a497t-27b47e01702dfa38b5b75b8b495f00ca8ff93f82d626a5c0e89dea3f905d51563
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 11:02:33 EDT 2025
Thu Jul 10 23:40:21 EDT 2025
Mon Jun 30 17:01:50 EDT 2025
Mon Jul 21 06:02:15 EDT 2025
Tue Jul 01 02:57:58 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Thu Aug 27 13:43:02 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a497t-27b47e01702dfa38b5b75b8b495f00ca8ff93f82d626a5c0e89dea3f905d51563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3085-0789
0000-0002-6796-8476
PMID 29617119
PQID 2072767986
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_2101373384
proquest_miscellaneous_2022129523
proquest_journals_2072767986
pubmed_primary_29617119
crossref_citationtrail_10_1021_acs_est_8b00515
crossref_primary_10_1021_acs_est_8b00515
acs_journals_10_1021_acs_est_8b00515
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-17
PublicationDateYYYYMMDD 2018-04-17
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1126/science.1245711
– ident: ref16/cit16
  doi: 10.1016/j.memsci.2016.01.034
– ident: ref15/cit15
  doi: 10.1016/j.jhazmat.2015.01.057
– ident: ref39/cit39
  doi: 10.1016/j.memsci.2012.12.005
– ident: ref40/cit40
  doi: 10.1016/S0009-2509(01)00413-4
– ident: ref37/cit37
  doi: 10.1016/j.desal.2011.09.018
– ident: ref36/cit36
  doi: 10.1016/j.memsci.2007.11.005
– ident: ref9/cit9
  doi: 10.1016/j.seppur.2012.01.039
– ident: ref24/cit24
  doi: 10.1039/C4CS00423J
– ident: ref42/cit42
  doi: 10.1016/j.watres.2011.10.011
– ident: ref7/cit7
  doi: 10.1039/C5NR08697C
– ident: ref10/cit10
  doi: 10.1016/j.desal.2014.10.043
– ident: ref23/cit23
  doi: 10.1016/j.desal.2013.12.026
– ident: ref26/cit26
  doi: 10.1021/cm100454g
– ident: ref2/cit2
  doi: 10.1126/science.1128845
– ident: ref18/cit18
  doi: 10.1021/acs.est.5b02086
– ident: ref6/cit6
  doi: 10.1016/j.polymer.2012.09.014
– ident: ref30/cit30
  doi: 10.1021/acs.est.6b02834
– ident: ref12/cit12
  doi: 10.1016/j.memsci.2016.05.033
– ident: ref14/cit14
  doi: 10.1021/acsami.5b00986
– ident: ref20/cit20
  doi: 10.1002/adma.201502595
– ident: ref34/cit34
  doi: 10.1021/es2002919
– ident: ref13/cit13
  doi: 10.1126/science.aab0530
– ident: ref8/cit8
  doi: 10.1016/j.ces.2014.04.007
– ident: ref41/cit41
  doi: 10.1016/S1383-5866(00)00163-5
– ident: ref25/cit25
  doi: 10.1016/j.cplett.2013.01.024
– ident: ref4/cit4
  doi: 10.1016/j.desal.2012.07.038
– ident: ref35/cit35
  doi: 10.1016/j.biortech.2012.03.029
– ident: ref27/cit27
  doi: 10.1021/acsnano.7b02999
– ident: ref21/cit21
  doi: 10.1016/j.desal.2014.10.022
– ident: ref17/cit17
  doi: 10.1016/j.memsci.2016.08.041
– ident: ref32/cit32
  doi: 10.1016/j.memsci.2013.07.064
– ident: ref31/cit31
  doi: 10.1021/acsami.6b05545
– ident: ref1/cit1
  doi: 10.1126/science.289.5477.284
– ident: ref5/cit5
  doi: 10.1016/j.memsci.2014.11.019
– ident: ref28/cit28
  doi: 10.1002/adma.201404054
– ident: ref33/cit33
  doi: 10.1021/acsnano.6b07001
– ident: ref3/cit3
  doi: 10.1039/c2ra20340e
– ident: ref11/cit11
  doi: 10.1016/j.memsci.2016.09.055
– ident: ref22/cit22
  doi: 10.1002/adfm.201502955
– ident: ref29/cit29
  doi: 10.1016/j.memsci.2017.10.039
– ident: ref19/cit19
  doi: 10.1016/j.memsci.2015.03.017
SSID ssj0002308
Score 2.532348
Snippet Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4827
SubjectTerms asymmetric membranes
Carbon nanotubes
Desalination
electrostatic interactions
Electrostatic properties
Filtration
graphene oxide
ions
Membrane permeability
Membrane separation
Membranes
Nanofiltration
Nanotechnology
Nanotubes
oxidation
Permeability
Pore size
Porosity
Rejection rate
Selectivity
Sodium chloride
Sodium sulfate
Surface charge
Wastewater treatment
Water treatment
Title Combined Effects of Surface Charge and Pore Size on Co-Enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes
URI http://dx.doi.org/10.1021/acs.est.8b00515
https://www.ncbi.nlm.nih.gov/pubmed/29617119
https://www.proquest.com/docview/2072767986
https://www.proquest.com/docview/2022129523
https://www.proquest.com/docview/2101373384
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBAodCyUJCROHBxcOw87GO12lKQ-hDbSnuL_IQKSNBm90B_Qn91x042C1QLXJNxZE1mxt9oxt8g9EYJZwvlSkKtlyQrhSICQgIpvMqoUhl3ebg7fHxSHF1kH2f5bE0W_WcFn6XvlGkTCJCJiAaU30X3WAEuHFDQeDoEXUDSYjWsQPJiNrD43PpAOIZM-_sxtAFbxjPmcLvrzmojNWFoLfmaLBc6MVe3iRv_vf1H6GGPNPFBZxqP0R1X76AHv_AP7qDdyfqaG4j2ft4-QdcQJiBldhZ37MYtbjyeLudeGYdDhf6zw6q2-KyZOzy9vHK4qfG4IZP6S-wowGcQ8F1HAf4zSn4AgWmcuROnVeB-PhD-9P6UnI5PzjGE-TA9vGfxxcfuO-TxEIefoovDyfn4iPRTG4jKZLkgrNRZ6QItD7NecaFzXeZaaMjEPKVGCe8l94JZSKVUbqgT0jrFvaS5BQUVfBdt1U3tniEsKViSpVIBisu8TjXjhusgZSBLsnIEtmbaqve6tooFdZZW4SHovOp1PkLJ6l9Xpmc-DwM4vm1e8HZY8KMj_dgsur8ynvU-GAVUGMpbxQi9Hl6D34ZiDKiuWQYZBqhB5oz_RSYNhJCci2yE9jrDHPbDJGDPNJXP_08HL9B9gHoi1MHSch9tLeZL9xLg1EK_io50A8G4G2c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwENaUcoAeeBQKgQJihgMXB1nyQzp2MikpNGkh6UxuHj2hA9hMnBzoT-BXs5Idh8eEgau90sjr3dW3s9K3CL2Q3JpM2jwixokoybmMOISEKHMyIVImzKb-7vB4ko0ukjfzdL6DyPouDCyihpnqUMTfsAvEr_wziJN9HuwovYauAxSh3qaPBtMu9gKg5uueBYJl847M548J_G6k6193oy0QM2w1x7fRu26R4YTJp_5qqfr66jf-xv_5ijvoVos78VFjKHfRji330d5PbIT76GC4ufQGoq3X1_fQdwgakEBbgxuu4xpXDk9XCye1xb5e_8FiWRp8Xi0snl5eWVyVeFBFw_JjOF-AzyH824YQ_FuQPAGBaejAE3pX4LZbEH7_-iw6G0xmGIK-7yXecvrisf0CWT1E5fvo4ng4G4yitodDJBORLyOaqyS3nqSHGicZV6nKU8UV5GWOEC25c4I5Tg0kVjLVxHJhrGROkNSAgjJ2gHbLqrQPERYE7MoQIQHTJU7FijLNlJfSkDMZ0QPL03XR-mBdhPI6jQv_EHRetDrvof76lxe65UH37Tg-bx_wshvwtaEA2S56uLahzTooAYzoi11ZDz3vXoMX-9IMqK5aeRkKGEKklP1FJvb0kIzxpIceNPbZrYcKQKJxLB79mw6eoRuj2fi0OD2ZvH2MbgII5L5CFueHaHe5WNknALSW6mnwrR_AdiPI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgexhiMFTYwEg-8uEvsfNiPU2nZgHUVXaW-RXZsAwKSqWkf2J_AX83ZcTM-VASvydlyLnfn3-ns3yH0QnKjM2lyEmkrSJJzSTiEBJJZmURSJsyk7u7w2Tg7mSVv5uk8XApzd2FgEQ3M1PgivvPqS20Dw0B85J5DrOxzb0vpTXTLFe2cXR8Ppl38BVDN130LBMvmHaHPHxO4Halsft2RNsBMv92M7qFZt1B_yuRzf7VU_fLqNw7H__2SHbQd8Cc-bg3mPrphql109ydWwl20N7y-_AaiwfubB-g7BA9IpI3GLedxg2uLp6uFlaXBrm7_wWBZaTypFwZPP10ZXFd4UJNh9dGfM8AT2AZMSwz-zUuegsDUd-LxPSxw6BqE378-J-eD8QWG4O96igduX3xmvkJ2D9H5IZqNhheDExJ6ORCZiHxJaK6S3DiyHqqtZFylKk8VV5Cf2SgqJbdWMMuphgRLpmVkuNBGMiuiVIOCMraHtqq6MvsIiwjsS0dCArZLrIoVZSVTTqqE3EmLHlhg2RTBF5vCl9lpXLiHoPMi6LyH-uvfXpSBD9215fiyecDLbsBlSwWyWfRgbUfX66ARYEVX9Mp66Hn3GrzZlWhAdfXKyVDAEiKl7C8ysaOJZIwnPfSotdFuPVQAIo1j8fjfdPAM3Z68GhXvTsdvn6A7gAW5K5TF-QHaWi5W5hDw1lI99e71AxuZJks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Effects+of+Surface+Charge+and+Pore+Size+on+Co-Enhanced+Permeability+and+Ion+Selectivity+through+RGO-OCNT+Nanofiltration+Membranes&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhang%2C+Haiguang&rft.au=Quan%2C+Xie&rft.au=Chen%2C+Shuo&rft.au=Fan%2C+Xinfei&rft.date=2018-04-17&rft.eissn=1520-5851&rft.volume=52&rft.issue=8&rft.spage=4827&rft_id=info:doi/10.1021%2Facs.est.8b00515&rft_id=info%3Apmid%2F29617119&rft.externalDocID=29617119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon