An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)
The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R 50, for assessing biochar quality for carbon se...
Saved in:
Published in | Environmental science & technology Vol. 46; no. 3; pp. 1415 - 1421 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
07.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R 50, for assessing biochar quality for carbon sequestration is proposed. The R 50 is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R 50, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R 50 and biochar recalcitrance. As presented here, the R 50 is immediately applicable to pre-land application screening of biochars into Class A (R 50 ≥ 0.70), Class B (0.50 ≤ R 50 < 0.70) or Class C (R 50 < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R 50 , to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars. |
---|---|
AbstractList | The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R 50, for assessing biochar quality for carbon sequestration is proposed. The R 50 is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R 50, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R 50 and biochar recalcitrance. As presented here, the R 50 is immediately applicable to pre-land application screening of biochars into Class A (R 50 ≥ 0.70), Class B (0.50 ≤ R 50 < 0.70) or Class C (R 50 < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R 50 , to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars. The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars. The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) < 0.70) or Class C (R(50) < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) < 0.70) or Class C (R(50) < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars. The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R₅₀, for assessing biochar quality for carbon sequestration is proposed. The R₅₀ is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R₅₀, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R₅₀ and biochar recalcitrance. As presented here, the R₅₀ is immediately applicable to pre-land application screening of biochars into Class A (R₅₀ ≥ 0.70), Class B (0.50 ≤ R₅₀ < 0.70) or Class C (R₅₀ < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R₅₀, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars. The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the ..., for assessing biochar quality for carbon sequestration is proposed. The ... is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of ..., with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R50 and biochar recalcitrance. As presented here, the ... is immediately applicable to pre-land application screening of biochars into Class A (... ≥ 0.70), Class B (0.50 ≤ ... < 0.70) or Class C (... < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the ..., to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Harvey, Omar R Amonette, James E Herbert, Bruce E Kuo, Li-Jung Zimmerman, Andrew R Louchouarn, Patrick |
AuthorAffiliation | Texas A&M University at Galveston University of Florida Texas A&M University System Texas A&M University Pacific Northwest National Laboratory |
AuthorAffiliation_xml | – name: Texas A&M University at Galveston – name: Texas A&M University System – name: Texas A&M University – name: Pacific Northwest National Laboratory – name: University of Florida |
Author_xml | – sequence: 1 givenname: Omar R surname: Harvey fullname: Harvey, Omar R email: Omar.Harvey@pnnl.gov – sequence: 2 givenname: Li-Jung surname: Kuo fullname: Kuo, Li-Jung – sequence: 3 givenname: Andrew R surname: Zimmerman fullname: Zimmerman, Andrew R – sequence: 4 givenname: Patrick surname: Louchouarn fullname: Louchouarn, Patrick – sequence: 5 givenname: James E surname: Amonette fullname: Amonette, James E – sequence: 6 givenname: Bruce E surname: Herbert fullname: Herbert, Bruce E |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25630572$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22242866$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1034967$$D View this record in Osti.gov |
BookMark | eNp90kFv0zAUB3ALDbFucOALIAsJsR3CbMdO7GNbDZg0CcRA4ha9Os-rR2p3cSrBkW-Ou4ZWAsQpsvLzs9_7-4QchRiQkOecveFM8AtMgklWGv2ITLgSrFBa8SMyYYyXhSmrr8fkJKU7xpgomX5CjoUQUuiqmpCf00CvQovfixkkbOl0ve4j2CUdIp2mhCn5cEs_oYXO-qGHYJFCaOlN9B2dQ7-Igd7g_QZT_jn4vPoYBwyDh45GRy_DrQ-Ifa4868B-G7ckejbz0S6hT-dPyWMHXcJn4_eUfHl7-Xn-vrj-8O5qPr0uQJp6KDhYzhhY7YTQZoGm1cqIunbGCbkAI11ZudpqabREjciAO5BCSi1MbR2Up-Tlrm5Mg29S7gbt0sYQ0A4NZ6U0VZ3R6x3KU3hoqln5ZLHrIGDcpMYIVlZ1bVSWZ_-VYjttoSrDDyfv6V3c9CE3m-sJpbhRW_RiRJvFCttm3fsV9D-a31Fl8GoEkHIabpuFTwenqpKpWmR3vnO2jyn16PaEs2b7XJr9c8n24g-bx_IQY07Td__cMd4CbDq08bf7BUKjymU |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_7717_peerj_18748 crossref_primary_10_3390_en10030288 crossref_primary_10_1016_j_catena_2013_06_025 crossref_primary_10_1021_acssuschemeng_7b00542 crossref_primary_10_1371_journal_pone_0265663 crossref_primary_10_1016_j_scitotenv_2016_03_245 crossref_primary_10_3389_fmars_2017_00038 crossref_primary_10_1007_s42773_024_00330_5 crossref_primary_10_3390_su14127266 crossref_primary_10_1007_s11356_024_32243_y crossref_primary_10_1016_j_biortech_2020_123395 crossref_primary_10_1016_j_scitotenv_2018_12_174 crossref_primary_10_1016_j_chemosphere_2015_09_055 crossref_primary_10_1016_j_geoderma_2022_116117 crossref_primary_10_1111_gcbb_12037 crossref_primary_10_1021_acs_est_9b05864 crossref_primary_10_1016_j_jaap_2014_09_010 crossref_primary_10_1007_s13399_023_04877_4 crossref_primary_10_1016_j_scitotenv_2013_03_090 crossref_primary_10_1016_j_renene_2016_03_081 crossref_primary_10_1016_j_biombioe_2018_07_019 crossref_primary_10_1016_j_orggeochem_2014_10_002 crossref_primary_10_1021_acssuschemeng_4c07181 crossref_primary_10_1016_j_scitotenv_2018_01_189 crossref_primary_10_2134_jeq2013_07_0290 crossref_primary_10_1016_j_geoderma_2021_115097 crossref_primary_10_1016_j_jclepro_2020_120162 crossref_primary_10_1016_j_scitotenv_2018_12_399 crossref_primary_10_1016_j_heliyon_2023_e12949 crossref_primary_10_1016_j_jaap_2013_03_014 crossref_primary_10_1016_j_scitotenv_2020_144058 crossref_primary_10_1007_s12649_017_9906_0 crossref_primary_10_1111_gcbb_12028 crossref_primary_10_3390_ijerph20010867 crossref_primary_10_1016_j_biortech_2017_08_025 crossref_primary_10_1007_s10661_025_13674_7 crossref_primary_10_1111_gcbb_12265 crossref_primary_10_1007_s10163_024_02022_5 crossref_primary_10_1071_WF21053 crossref_primary_10_1016_S2095_3119_18_62102_1 crossref_primary_10_3390_en11030496 crossref_primary_10_1016_j_scitotenv_2024_176438 crossref_primary_10_1016_j_soilbio_2014_09_018 crossref_primary_10_1002_ldr_2743 crossref_primary_10_1016_j_chemosphere_2023_140112 crossref_primary_10_1155_2020_9391630 crossref_primary_10_1111_sum_13096 crossref_primary_10_1016_j_jclepro_2021_129820 crossref_primary_10_1002_jeq2_20133 crossref_primary_10_3390_land12081580 crossref_primary_10_1073_pnas_1921544118 crossref_primary_10_1016_j_cej_2013_12_062 crossref_primary_10_1021_acs_est_3c08044 crossref_primary_10_1021_es4012977 crossref_primary_10_1007_s10653_017_9947_0 crossref_primary_10_1016_j_wasman_2022_01_038 crossref_primary_10_1016_j_scitotenv_2017_03_295 crossref_primary_10_1016_j_jhazmat_2013_04_015 crossref_primary_10_3390_en16041819 crossref_primary_10_1016_j_jclepro_2016_11_099 crossref_primary_10_1016_j_jenvman_2023_119586 crossref_primary_10_1016_j_matpr_2018_11_081 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1021_acs_est_6b00685 crossref_primary_10_1021_acs_est_6b06300 crossref_primary_10_1016_j_biombioe_2024_107458 crossref_primary_10_1016_j_earscirev_2022_104215 crossref_primary_10_1039_D4EW00513A crossref_primary_10_1186_s40663_020_00249_w crossref_primary_10_1016_j_scitotenv_2022_156081 crossref_primary_10_1016_j_wasman_2018_06_047 crossref_primary_10_3390_agriculture13051064 crossref_primary_10_1111_gcbb_12005 crossref_primary_10_1016_j_agee_2017_01_006 crossref_primary_10_1016_j_jece_2020_104169 crossref_primary_10_1016_j_colsurfa_2022_130217 crossref_primary_10_1016_j_orggeochem_2013_07_005 crossref_primary_10_1016_j_chemosphere_2020_128767 crossref_primary_10_2112_SI86_033_1 crossref_primary_10_1016_j_biortech_2022_127274 crossref_primary_10_1016_j_cej_2015_01_026 crossref_primary_10_1016_j_cej_2019_06_006 crossref_primary_10_1016_j_rser_2021_111133 crossref_primary_10_4236_as_2017_89064 crossref_primary_10_5194_bg_13_1269_2016 crossref_primary_10_1007_s42773_024_00321_6 crossref_primary_10_1016_j_jes_2023_09_018 crossref_primary_10_51699_ijbea_v3i4_129 crossref_primary_10_1021_acs_est_6b06594 crossref_primary_10_1038_srep22644 crossref_primary_10_1080_00380768_2015_1052985 crossref_primary_10_1016_j_quascirev_2018_08_007 crossref_primary_10_1002_gea_21797 crossref_primary_10_1016_j_chemosphere_2014_06_046 crossref_primary_10_1016_j_chemosphere_2020_126335 crossref_primary_10_1016_j_jenvman_2023_117863 crossref_primary_10_1155_2019_4506314 crossref_primary_10_3390_pr10091756 crossref_primary_10_1016_j_chemosphere_2019_03_085 crossref_primary_10_1016_j_jes_2025_03_002 crossref_primary_10_1016_j_chemosphere_2019_125007 crossref_primary_10_2139_ssrn_4069696 crossref_primary_10_3390_en13082070 crossref_primary_10_1016_j_cej_2022_137298 crossref_primary_10_1016_j_still_2016_07_009 crossref_primary_10_1007_s11440_024_02254_7 crossref_primary_10_1016_j_agee_2016_12_019 crossref_primary_10_1002_jpln_201300590 crossref_primary_10_1007_s42773_019_00031_4 crossref_primary_10_1016_j_jece_2022_107850 crossref_primary_10_1007_s10533_016_0245_1 crossref_primary_10_1016_j_jaap_2025_106961 crossref_primary_10_1016_j_fuel_2024_134087 crossref_primary_10_1016_j_envpol_2019_113015 crossref_primary_10_5802_crchim_333 crossref_primary_10_1016_j_indcrop_2024_118436 crossref_primary_10_1016_j_jaap_2024_106427 crossref_primary_10_1016_j_agee_2015_04_012 crossref_primary_10_1016_j_scitotenv_2021_150789 crossref_primary_10_3390_su13042359 crossref_primary_10_1016_j_wasman_2018_05_048 crossref_primary_10_1021_acs_est_5b02562 crossref_primary_10_1016_j_apenergy_2016_02_084 crossref_primary_10_1016_j_jaap_2017_01_012 crossref_primary_10_1021_acs_est_5b03656 crossref_primary_10_1016_j_jaap_2024_106681 crossref_primary_10_1016_j_fuel_2022_124253 crossref_primary_10_1016_j_geoderma_2019_113882 crossref_primary_10_1016_j_chemosphere_2018_04_057 crossref_primary_10_1021_acssuschemeng_8b01021 crossref_primary_10_1007_s42729_024_02179_w crossref_primary_10_1007_s41742_024_00680_9 crossref_primary_10_1007_s10311_021_01210_1 crossref_primary_10_1039_C5RA07339A crossref_primary_10_1111_gcbb_12213 crossref_primary_10_1029_2020GB006647 crossref_primary_10_3390_en14041092 crossref_primary_10_3390_w17070918 crossref_primary_10_1016_j_scp_2023_101130 crossref_primary_10_1016_j_geoderma_2023_116761 crossref_primary_10_1016_j_biombioe_2015_11_010 crossref_primary_10_1021_acs_est_6b01578 crossref_primary_10_1016_j_catena_2012_11_001 crossref_primary_10_1016_j_jenvman_2014_08_003 crossref_primary_10_1016_j_scitotenv_2020_144711 crossref_primary_10_1007_s11368_016_1584_1 crossref_primary_10_1016_j_biortech_2020_124411 crossref_primary_10_1016_j_orggeochem_2013_06_009 crossref_primary_10_1021_acs_iecr_4c00082 crossref_primary_10_1021_acs_iecr_8b04094 crossref_primary_10_3390_agronomy12020476 crossref_primary_10_5194_soil_8_451_2022 crossref_primary_10_1007_s12649_017_9928_7 crossref_primary_10_1016_j_jenvman_2024_121196 crossref_primary_10_1021_acs_est_5b03087 crossref_primary_10_1016_j_chemosphere_2018_05_044 crossref_primary_10_1016_j_cej_2024_150978 crossref_primary_10_1007_s12517_019_4735_z crossref_primary_10_1007_s44246_022_00006_4 crossref_primary_10_1016_j_catena_2015_04_016 crossref_primary_10_1021_acs_est_7b04983 crossref_primary_10_1111_nyas_14560 crossref_primary_10_1021_acs_est_7b06487 crossref_primary_10_1080_17583004_2023_2244456 crossref_primary_10_3389_feart_2018_00052 crossref_primary_10_1016_j_jaap_2018_11_007 crossref_primary_10_1021_acssuschemeng_8b05364 crossref_primary_10_1007_s44246_022_00017_1 crossref_primary_10_1039_C4EM00396A crossref_primary_10_1080_17597269_2021_1948758 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1111_gcbb_12795 crossref_primary_10_1016_j_biortech_2016_02_066 crossref_primary_10_3390_su14073829 crossref_primary_10_1007_s11356_019_06267_8 crossref_primary_10_1007_s13399_024_05774_0 crossref_primary_10_1016_j_marchem_2013_02_006 crossref_primary_10_1016_j_chemosphere_2013_06_004 crossref_primary_10_1080_10643389_2016_1212368 crossref_primary_10_1016_j_jenvman_2015_12_009 crossref_primary_10_1007_s10021_018_0248_y crossref_primary_10_1016_j_geoderma_2012_10_002 crossref_primary_10_1016_j_biombioe_2016_10_011 crossref_primary_10_1016_j_scitotenv_2019_134773 crossref_primary_10_3390_agronomy12071525 crossref_primary_10_1016_j_jenvman_2022_115541 crossref_primary_10_1016_j_biortech_2021_126316 crossref_primary_10_1016_j_jclepro_2024_142695 crossref_primary_10_1016_j_fuel_2023_128306 crossref_primary_10_1016_j_scitotenv_2018_07_402 crossref_primary_10_1016_j_scitotenv_2025_178650 crossref_primary_10_3390_ijerph19042140 crossref_primary_10_1016_j_orggeochem_2012_12_008 crossref_primary_10_1016_j_jenvman_2025_124422 crossref_primary_10_3389_feart_2018_00061 crossref_primary_10_1016_j_scitotenv_2018_04_215 crossref_primary_10_1016_j_scitotenv_2023_165793 crossref_primary_10_1680_jgrim_22_00023 crossref_primary_10_1021_acs_energyfuels_5b00512 crossref_primary_10_1071_SR13177 crossref_primary_10_1007_s42773_020_00053_3 crossref_primary_10_1007_s13399_020_01000_9 crossref_primary_10_2139_ssrn_3985462 crossref_primary_10_1111_ejss_13396 crossref_primary_10_1007_s00374_013_0822_6 crossref_primary_10_1038_s41598_024_51786_1 crossref_primary_10_1007_s11356_018_3798_9 crossref_primary_10_1016_j_scitotenv_2021_145611 crossref_primary_10_1021_es302971d crossref_primary_10_3390_c9030067 crossref_primary_10_1016_j_biortech_2021_125555 crossref_primary_10_1016_j_jaap_2021_105070 crossref_primary_10_1016_j_geoderma_2021_115043 crossref_primary_10_1016_j_jenvman_2018_12_055 crossref_primary_10_2134_jeq2014_03_0132 crossref_primary_10_1016_j_renene_2020_03_181 crossref_primary_10_1016_j_envpol_2023_122887 crossref_primary_10_1016_j_envres_2025_121023 crossref_primary_10_1016_j_envpol_2021_118592 crossref_primary_10_2208_jscejj_24_27007 crossref_primary_10_1007_s42773_019_00026_1 crossref_primary_10_1007_s44246_024_00186_1 crossref_primary_10_1016_j_biortech_2018_09_030 crossref_primary_10_1038_s41598_021_82129_z crossref_primary_10_1021_acs_est_6b01010 crossref_primary_10_3390_su13031330 crossref_primary_10_1016_j_jenvman_2016_07_040 crossref_primary_10_1007_s13399_020_00923_7 crossref_primary_10_1016_j_biortech_2022_127245 crossref_primary_10_1371_journal_pone_0083462 crossref_primary_10_1038_s41598_017_10455_2 crossref_primary_10_1016_j_biombioe_2021_106304 crossref_primary_10_1021_sc500432d crossref_primary_10_1007_s42773_024_00356_9 crossref_primary_10_3389_feart_2018_00169 crossref_primary_10_3390_fire6080304 crossref_primary_10_1016_j_ecoenv_2021_113054 crossref_primary_10_1007_s42773_021_00114_1 crossref_primary_10_2134_jeq2015_07_0397 crossref_primary_10_1016_j_jclepro_2022_135398 crossref_primary_10_1021_es405676h crossref_primary_10_1038_srep25127 crossref_primary_10_1016_j_jclepro_2017_11_224 crossref_primary_10_1007_s42773_022_00159_w crossref_primary_10_1016_j_scitotenv_2023_169607 crossref_primary_10_1007_s10343_023_00851_2 crossref_primary_10_1016_j_geoderma_2015_09_021 crossref_primary_10_1016_j_chemosphere_2022_137646 crossref_primary_10_1126_science_1237688 crossref_primary_10_1016_j_scitotenv_2018_11_316 crossref_primary_10_1016_j_chemosphere_2019_04_031 crossref_primary_10_1016_j_jaap_2016_12_009 crossref_primary_10_1016_j_wasman_2023_05_038 crossref_primary_10_1016_S1002_0160_21_60073_5 crossref_primary_10_1021_acssuschemeng_5b00153 crossref_primary_10_1021_acs_est_4c09102 crossref_primary_10_1016_j_soilbio_2016_10_016 crossref_primary_10_1515_pac_2021_0106 crossref_primary_10_1039_D1EM00247C crossref_primary_10_1016_j_jaap_2020_104926 crossref_primary_10_1021_es401756h crossref_primary_10_1016_j_biombioe_2017_01_021 crossref_primary_10_1016_j_scitotenv_2019_133800 crossref_primary_10_1021_acs_est_8b01481 crossref_primary_10_2134_jeq2016_04_0156 crossref_primary_10_1016_j_jenvman_2016_02_049 crossref_primary_10_1016_j_agee_2016_10_027 crossref_primary_10_3389_feart_2018_00143 crossref_primary_10_1016_j_fuproc_2022_107435 crossref_primary_10_1016_j_scitotenv_2022_153996 crossref_primary_10_1071_SR13195 crossref_primary_10_2458_azu_rc_57_17964 crossref_primary_10_1016_j_energy_2020_118225 crossref_primary_10_1002_clen_201700346 crossref_primary_10_1016_j_scitotenv_2019_01_298 crossref_primary_10_1021_acs_energyfuels_6b01579 crossref_primary_10_1021_acssuschemeng_1c07694 crossref_primary_10_1371_journal_pone_0115373 crossref_primary_10_1021_acs_est_3c04208 crossref_primary_10_1016_j_ecoleng_2013_02_011 crossref_primary_10_1007_s41810_021_00100_x crossref_primary_10_1061__ASCE_HZ_2153_5515_0000293 crossref_primary_10_1016_j_jenvman_2016_06_063 crossref_primary_10_1007_s42729_021_00558_1 crossref_primary_10_2134_jeq2014_06_0279 crossref_primary_10_3390_soilsystems2030048 crossref_primary_10_1021_acsami_7b00619 crossref_primary_10_1016_j_ecoleng_2015_01_011 crossref_primary_10_1016_j_scitotenv_2021_152478 crossref_primary_10_1016_j_jclepro_2018_10_055 crossref_primary_10_1016_j_jclepro_2024_144373 crossref_primary_10_4491_eer_2023_105 crossref_primary_10_1016_j_chemosphere_2016_10_083 crossref_primary_10_13080_z_a_2019_106_013 crossref_primary_10_1016_j_jece_2022_108403 crossref_primary_10_1016_j_jclepro_2014_12_050 crossref_primary_10_1016_j_scitotenv_2020_138672 crossref_primary_10_1016_j_aoas_2019_12_006 crossref_primary_10_1007_s11368_016_1373_x crossref_primary_10_1016_j_scitotenv_2019_04_133 crossref_primary_10_1007_s40003_019_00425_7 crossref_primary_10_1016_j_chemosphere_2021_132443 crossref_primary_10_1016_j_envpol_2019_113436 |
Cites_doi | 10.1016/j.marchem.2004.06.043 10.1016/S0014-3057(00)00211-1 10.1023/A:1010157115211 10.1016/j.apgeochem.2008.04.023 10.1021/es903140c 10.1016/j.geoderma.2004.12.043 10.1016/j.soilbio.2007.07.021 10.1016/j.fuel.2006.12.013 10.1029/2006GB002798 10.1029/2006GB002914 10.1016/j.soilbio.2011.02.005 10.1016/j.chemosphere.2008.01.016 10.1016/j.geoderma.2009.08.016 10.1016/j.orggeochem.2008.04.020 10.1021/es104401h 10.1016/j.orggeochem.2006.06.022 10.1007/s10533-008-9220-9 10.1016/S0146-6380(02)00062-1 10.1021/es9031419 10.1016/j.orggeochem.2006.08.004 10.1016/j.orggeochem.2008.12.004 10.1016/j.orggeochem.2009.05.004 10.1029/95GB02742 10.1038/ngeo358 10.1126/science.280.5371.1911 10.1016/j.orggeochem.2006.07.003 10.1071/SR10009 10.1016/j.chemosphere.2011.06.074 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.1016/j.soilbio.2011.01.024 10.1016/j.tca.2010.04.007 10.1021/ac034415p 10.2136/sssaj2007.0031 10.1021/es103752u 10.1016/j.orggeochem.2008.04.026 10.1007/s11027-005-9006-5 10.1038/ncomms1053 10.2136/sssaj2005.0136a 10.1002/jpln.200700280 10.1021/es050191b 10.1016/S0065-2113(10)05002-9 10.1021/es903016y 10.1016/j.gca.2008.09.028 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2014 INIST-CNRS Copyright American Chemical Society Feb 7, 2012 |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Feb 7, 2012 |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 7X8 OTOTI |
DOI | 10.1021/es2040398 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Economics |
EISSN | 1520-5851 |
EndPage | 1421 |
ExternalDocumentID | 1034967 2591913641 22242866 25630572 10_1021_es2040398 a025650250 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a497t-1ac100ac8f2289be9d859277f9f24ba94f36f7c84984e8ee0a1fa42448297cfa3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu May 18 18:35:06 EDT 2023 Thu Jul 10 18:08:05 EDT 2025 Fri Jul 11 09:11:25 EDT 2025 Mon Jun 30 05:59:38 EDT 2025 Mon Jul 21 06:03:28 EDT 2025 Mon Jul 21 09:16:51 EDT 2025 Tue Jul 01 02:10:41 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Dec 18 21:25:36 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Combustion residue Carbonaceous materials heat treatment Biochar Carbon sequestration Thermal stability greenhouse gas sustainable development Mitigation mineralization Economic model charcoal climate change Thermal degradation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a497t-1ac100ac8f2289be9d859277f9f24ba94f36f7c84984e8ee0a1fa42448297cfa3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 USDOE AC05-76RL01830 PNNL-SA-85480 |
PMID | 22242866 |
PQID | 922551951 |
PQPubID | 45412 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1034967 proquest_miscellaneous_920367795 proquest_miscellaneous_2000225691 proquest_journals_922551951 pubmed_primary_22242866 pascalfrancis_primary_25630572 crossref_primary_10_1021_es2040398 crossref_citationtrail_10_1021_es2040398 acs_journals_10_1021_es2040398 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-07 |
PublicationDateYYYYMMDD | 2012-02-07 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Cao X. (ref2/cit2) 2011; 45 ref6/cit6 Siewert C. (ref21/cit21) 2001 ref25/cit25 Zimmerman A. R. (ref35/cit35) 2011; 43 Bruun S. (ref37/cit37) 2008; 39 Yang H. (ref27/cit27) 2007; 86 Masiello C. A. (ref32/cit32) 2004; 92 Plante A. F. (ref30/cit30) 2005; 129 Joseph S. D. (ref43/cit43) 2010; 48 Nguyen B. T. (ref45/cit45) 2009; 40 Sohi S. P. (ref5/cit5) 2010; 105 Cheng C. H. (ref10/cit10) 2006; 37 Zimmerman A. R. (ref11/cit11) 2010; 44 Dell’Abate M. T. (ref16/cit16) 2000; 61 Lehmann J. (ref4/cit4) 2006; 11 Plante A. F. (ref20/cit20) 2009; 153 Kim S. (ref34/cit34) 2003; 75 Cornelissen G. (ref1/cit1) 2005; 39 Scheirs J. (ref28/cit28) 2001; 37 Masiello C. A. (ref8/cit8) 1998; 280 Kuo L.-J. (ref23/cit23) 2008; 39 Nguyen B. T. (ref12/cit12) 2008; 89 Harvey O. R. (ref26/cit26) 2010; 505 Hilscher A. (ref38/cit38) 2009; 40 Harvey O. R. (ref3/cit3) 2011; 45 Leifeld J. (ref18/cit18) 2007; 38 Sun H. W. (ref33/cit33) 2008; 71 Hammes K. (ref39/cit39) 2008; 23 ref15/cit15 Keiluweit M. (ref29/cit29) 2010; 44 Rovira P. (ref31/cit31) 2008; 40 Lopez-Capel E. (ref17/cit17) 2005; 69 Helfrich M. (ref40/cit40) 2010; 173 Baldock J. A. (ref36/cit36) 2002; 33 Lehmann J. (ref9/cit9) 2008; 1 ref13/cit13 Lehmann J. (ref42/cit42) 2007; 5 Nguyen B. T. (ref46/cit46) 2010; 44 De la Rosa J. M. (ref19/cit19) 2008; 72 Kuhlbusch T. A. J. (ref7/cit7) 1995; 9 Hammes K. (ref24/cit24) 2006; 37 Kuo L.-J. (ref41/cit41) 2011; 85 Cheng C.-H. (ref44/cit44) 2008 Liang B. (ref14/cit14) 2008; 72 Plante A. F. (ref22/cit22) 2011; 43 |
References_xml | – volume: 92 start-page: 201 year: 2004 ident: ref32/cit32 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2004.06.043 – volume: 37 start-page: 933 year: 2001 ident: ref28/cit28 publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(00)00211-1 – volume: 61 start-page: 389 year: 2000 ident: ref16/cit16 publication-title: J. Therm. Anal. Calorim. doi: 10.1023/A:1010157115211 – volume: 23 start-page: 2113 year: 2008 ident: ref39/cit39 publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.04.023 – volume: 44 start-page: 1295 year: 2010 ident: ref11/cit11 publication-title: Environ. Sci. Technol. doi: 10.1021/es903140c – volume: 129 start-page: 186 year: 2005 ident: ref30/cit30 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.043 – volume: 40 start-page: 172 year: 2008 ident: ref31/cit31 publication-title: Soil Bio. Biochem. doi: 10.1016/j.soilbio.2007.07.021 – volume: 86 start-page: 1781 year: 2007 ident: ref27/cit27 publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – ident: ref13/cit13 doi: 10.1029/2006GB002798 – volume-title: Investigation of the Thermal and Biological Stability of Soil Organic Matter year: 2001 ident: ref21/cit21 – ident: ref25/cit25 doi: 10.1029/2006GB002914 – volume: 43 start-page: 1169 year: 2011 ident: ref35/cit35 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 71 start-page: 2113 year: 2008 ident: ref33/cit33 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.01.016 – volume: 153 start-page: 1 year: 2009 ident: ref20/cit20 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.08.016 – volume: 39 start-page: 839 year: 2008 ident: ref37/cit37 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2008.04.020 – start-page: 113 year: 2008 ident: ref44/cit44 publication-title: J. Geophys. Res., [Biogeosci.] – volume: 45 start-page: 5550 year: 2011 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es104401h – volume: 37 start-page: 1477 year: 2006 ident: ref10/cit10 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2006.06.022 – volume: 89 start-page: 295 year: 2008 ident: ref12/cit12 publication-title: Biogeochemistry doi: 10.1007/s10533-008-9220-9 – volume: 33 start-page: 1093 year: 2002 ident: ref36/cit36 publication-title: Org. Geochem. doi: 10.1016/S0146-6380(02)00062-1 – volume: 44 start-page: 1247 year: 2010 ident: ref29/cit29 publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 38 start-page: 112 year: 2007 ident: ref18/cit18 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2006.08.004 – volume: 40 start-page: 332 year: 2009 ident: ref38/cit38 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2008.12.004 – volume: 40 start-page: 846 year: 2009 ident: ref45/cit45 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.05.004 – volume: 9 start-page: 491 year: 1995 ident: ref7/cit7 publication-title: Global Biogeochem. Cycles doi: 10.1029/95GB02742 – volume: 1 start-page: 832 year: 2008 ident: ref9/cit9 publication-title: Nat. Geosci. doi: 10.1038/ngeo358 – volume: 280 start-page: 1911 year: 1998 ident: ref8/cit8 publication-title: Science doi: 10.1126/science.280.5371.1911 – volume: 37 start-page: 1629 year: 2006 ident: ref24/cit24 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2006.07.003 – volume: 48 start-page: 501 year: 2010 ident: ref43/cit43 publication-title: Aust. J. Soil Res. doi: 10.1071/SR10009 – volume: 85 start-page: 797 year: 2011 ident: ref41/cit41 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.06.074 – volume: 5 start-page: 381 year: 2007 ident: ref42/cit42 publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 43 start-page: 1051 year: 2011 ident: ref22/cit22 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.01.024 – volume: 505 start-page: 106 year: 2010 ident: ref26/cit26 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2010.04.007 – volume: 75 start-page: 5336 year: 2003 ident: ref34/cit34 publication-title: Anal. Chem. doi: 10.1021/ac034415p – volume: 72 start-page: 258 year: 2008 ident: ref19/cit19 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0031 – volume: 45 start-page: 4884 year: 2011 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es103752u – volume: 39 start-page: 1466 year: 2008 ident: ref23/cit23 publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2008.04.026 – volume: 11 start-page: 403 year: 2006 ident: ref4/cit4 publication-title: Mitigation Adapt. Strategy Global Change doi: 10.1007/s11027-005-9006-5 – ident: ref6/cit6 doi: 10.1038/ncomms1053 – ident: ref15/cit15 – volume: 69 start-page: 136 year: 2005 ident: ref17/cit17 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0136a – volume: 173 start-page: 61 year: 2010 ident: ref40/cit40 publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200700280 – volume: 39 start-page: 6881 year: 2005 ident: ref1/cit1 publication-title: Environ. Sci. Technol. doi: 10.1021/es050191b – volume: 105 start-page: 47 year: 2010 ident: ref5/cit5 publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)05002-9 – volume: 44 start-page: 3324 year: 2010 ident: ref46/cit46 publication-title: Environ. Sci. Technol. doi: 10.1021/es903016y – volume: 72 start-page: 6069 year: 2008 ident: ref14/cit14 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.09.028 |
SSID | ssj0002308 |
Score | 2.531634 |
Snippet | The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their... |
SourceID | osti proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1415 |
SubjectTerms | 09 BIOMASS FUELS biochar Biodegradation BIOMASS Carbon - chemistry CARBON SEQUESTRATION Charcoal - chemistry Charcoal - classification Chemical compounds Climatology. Bioclimatology. Climate change Earth, ocean, space econometric models ECONOMICS Environmental Restoration and Remediation - methods Exact sciences and technology External geophysics graphene GRAPHITE Meteorology MINERALIZATION Models, Chemical Models, Economic Physical properties physicochemical properties phytomass screening Soil - chemistry SOILS soot STABILITY Temperature Thermogravimetry |
Title | An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars) |
URI | http://dx.doi.org/10.1021/es2040398 https://www.ncbi.nlm.nih.gov/pubmed/22242866 https://www.proquest.com/docview/922551951 https://www.proquest.com/docview/2000225691 https://www.proquest.com/docview/920367795 https://www.osti.gov/biblio/1034967 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V5QIHHoXCUqjM41AOKYnjxPZxu7QqSCCkpdLeIsexpRWrBDXZCzf-OTN5bSu6cIwyTvyYiT9nZr4BeCcUN1zaHJGbloEouA-0zxO8DHPLneTeU-7wl6_pxaX4vEyWe_B2hwefRx9czVHRYq3uwF2eKkknrNl8MX5uEUOroUyBjtPlQB90vSltPba-sfVMKjQhioQ0NU6G76pY7IaZ7XZz_hA-Dkk7XZTJj5NNk5_YX39zOP5rJI_gQQ832azTj8ew58p9uH-NhHAfDs62uW4o2ht7_QR-z0r2icgUg1Pc6go26-nHWVOxzleM7RniTrO2q4aG5pgpC7aoVms2N1d5VbKFa4fZqRn7VjUUnIRvqTwbOoFPbv8i9k1qdny6qigZrH7_FC7Pz77PL4K-YkNghJZNEBkbhaGxynM8yOVOFyrRXEqvPRe50cLHqZdWCa2EU86FJvKGUu0owdd6Ex_ApKxK9xyY5Kk3xsahEAmCRqNdgTqFaDV2qbOqmMIRLmnWW1ydtc50HmXjJE_heFjtzPZ851R2Y32b6JtR9GdH8nGb0CGpTIbIhOh1LcUh2QaFiHJfYnduaNL4HE4EbInk2HxQrW2nNX5Nid4nmsLr8S7aNzltTOmqTU1lQhFmJalGGbZDRpM3GY0tmcKzTmm3r0eIxlWavvjfdB3CPcSCvA1Ily9h0lxt3CvEW01-1NrbH1hlIqk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5QAceBQKS6EYBFI5pGych-0Dh-3Sapc-hLSttLfgOLa0YpWgOisEN_4Gf4U_xzivbVErTpU4Rhk71njG_hzPfAPwOuRUUqZSRG6CeWFGjSdMGuHjIFVUM2qMyx0-Oo7Hp-HHWTRbg19tLgwOwmJPtrrEX7EL-O-0pWhvgeBNAOWB_v4Nj2f2_eQDzuUbSvf3TkZjr6kg4MlQsNLzpfIHA6m4oXiwSLXIeCQoY0YYGqZShCaIDVM8FDzUXOuB9I10qV8u4VQZGWC_N-Amgh7qDnbD0bRb5RG687Y6ggjiWctadH6obsdT9sKO1yvQc10AprQ4B6YunnE1uq12uf178LvTTxXc8mVnWaY76sdf1JH_pwLvw90GXJNh7Q0PYE3n63DnHOXiOmzsrTL7ULRZ2uxD-DnMycRRR3q7uLFnZNiQrZOyIPXNOLYniLLlQs1Lp1FNZJ6RaTFfkJE8S4ucTHWl3dqpyKeidKFY-JXCkHYQ2HP1z7RpYsn27rxwqW_27SM4vRblbEAvL3L9BAijsZFSBYMwjBAiS6Ez9CDE5oGOteJZH7ZwTpNmfbFJFTpA_aSb1D5st0aWqIbd3RUZWVwm-qoT_VpTmlwmtOksNUEc5siElYu6UiUKuQIDDIdzwYC7fqijm4sYxeatRa8GLXDvcGRGfh9edm9xNXNXVDLXxdK6oqgIKqNYoAy5Qka4u3NcWqI-PK59ZfV5BKSUx_HTf6nrBdwanxwdJoeT44NNuI0omFah-OwZ9MqzpX6OSLNMtyqXJ_D5ul3kD-mHhVo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELbKIiE48CgUlkIxCKRySNk4D9sHDtttV10KVaWl0t6C49jSilVS1VkhuPFH-Cv8NWby2ha14lSJY5SxY4099ufMzDeEvA4FU4zrFJCb5F6YMetJm0bwOEg1M5xZi7nDn47ig5PwwyyarZFfbS4MDMJBT65y4qNVn2a2YRjw3xnHYM0FUjRBlIfm-ze4orn3kz2YzzeMjfc_jw68poqAp0LJS89X2h8MlBaWweUiNTITkWScW2lZmCoZ2iC2XItQitAIYwbKtwrTvzDpVFsVQL83yE10D-Llbjiadjs9wHfRVkiQQTxrmYvODxVPPe0unHq9AqwXgzCVg3mwdQGNqxFuddKN75HfnY6qAJevO8sy3dE__qKP_H-VeJ_cbUA2HdZW8YCsmXyd3DlHvbhONvZXGX4g2mxx7iH5OczpBCkkvV044DM6bEjXaVnQ2kMO7SmgbbXQ8xK1aqjKMzot5gs6UmdpkdOpqTRcGxc9LkoMyYKvFJa2g4Ceq3-nTRNHt3fnBabAubePyMm1KGeD9PIiN08I5Sy2SulgEIYRQGUlTQaWBBg9MLHRIuuTLZjXpNlnXFKFEDA_6Sa1T7bbhZbohuUdi40sLhN91Yme1tQmlwlt4mpNAI8hqbDG6CtdghAWGuAwnAuLuOuHIe1cxBk0b1f1atASzhAkNfL75GX3FnY1dFWp3BRLh8VRAVxGsQQZeoWMRB86bDFRnzyu7WX1eQCmTMTx03-p6wW5dbw3Tj5Ojg43yW0Aw6yKyOfPSK88W5rnADjLdKuyekq-XLeF_AGxk4fd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Index-Based+Approach+to+Assessing+Recalcitrance+and+Soil+Carbon+Sequestration+Potential+of+Engineered+Black+Carbons+%28Biochars%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Harvey%2C+Omar+R.&rft.au=Kuo%2C+Li-Jung&rft.au=Zimmerman%2C+Andrew+R.&rft.au=Louchouarn%2C+Patrick&rft.date=2012-02-07&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=46&rft.issue=3&rft_id=info:doi/10.1021%2Fes2040398&rft.externalDocID=1034967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |