An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R 50, for assessing biochar quality for carbon se...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 46; no. 3; pp. 1415 - 1421
Main Authors Harvey, Omar R, Kuo, Li-Jung, Zimmerman, Andrew R, Louchouarn, Patrick, Amonette, James E, Herbert, Bruce E
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 07.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R 50, for assessing biochar quality for carbon sequestration is proposed. The R 50 is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R 50, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R 50 and biochar recalcitrance. As presented here, the R 50 is immediately applicable to pre-land application screening of biochars into Class A (R 50 ≥ 0.70), Class B (0.50 ≤ R 50 < 0.70) or Class C (R 50 < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R 50 , to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.
AbstractList The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R 50, for assessing biochar quality for carbon sequestration is proposed. The R 50 is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R 50, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R 50 and biochar recalcitrance. As presented here, the R 50 is immediately applicable to pre-land application screening of biochars into Class A (R 50 ≥ 0.70), Class B (0.50 ≤ R 50 < 0.70) or Class C (R 50 < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R 50 , to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.
The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.
The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) < 0.70) or Class C (R(50) < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) < 0.70) or Class C (R(50) < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.
The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R₅₀, for assessing biochar quality for carbon sequestration is proposed. The R₅₀ is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R₅₀, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R₅₀ and biochar recalcitrance. As presented here, the R₅₀ is immediately applicable to pre-land application screening of biochars into Class A (R₅₀ ≥ 0.70), Class B (0.50 ≤ R₅₀ < 0.70) or Class C (R₅₀ < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R₅₀, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.
The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the ..., for assessing biochar quality for carbon sequestration is proposed. The ... is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of ..., with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R50 and biochar recalcitrance. As presented here, the ... is immediately applicable to pre-land application screening of biochars into Class A (... ≥ 0.70), Class B (0.50 ≤ ... < 0.70) or Class C (... < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the ..., to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars. (ProQuest: ... denotes formulae/symbols omitted.)
Author Harvey, Omar R
Amonette, James E
Herbert, Bruce E
Kuo, Li-Jung
Zimmerman, Andrew R
Louchouarn, Patrick
AuthorAffiliation Texas A&M University at Galveston
University of Florida
Texas A&M University System
Texas A&M University
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: Texas A&M University at Galveston
– name: Texas A&M University System
– name: Texas A&M University
– name: Pacific Northwest National Laboratory
– name: University of Florida
Author_xml – sequence: 1
  givenname: Omar R
  surname: Harvey
  fullname: Harvey, Omar R
  email: Omar.Harvey@pnnl.gov
– sequence: 2
  givenname: Li-Jung
  surname: Kuo
  fullname: Kuo, Li-Jung
– sequence: 3
  givenname: Andrew R
  surname: Zimmerman
  fullname: Zimmerman, Andrew R
– sequence: 4
  givenname: Patrick
  surname: Louchouarn
  fullname: Louchouarn, Patrick
– sequence: 5
  givenname: James E
  surname: Amonette
  fullname: Amonette, James E
– sequence: 6
  givenname: Bruce E
  surname: Herbert
  fullname: Herbert, Bruce E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25630572$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22242866$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1034967$$D View this record in Osti.gov
BookMark eNp90kFv0zAUB3ALDbFucOALIAsJsR3CbMdO7GNbDZg0CcRA4ha9Os-rR2p3cSrBkW-Ou4ZWAsQpsvLzs9_7-4QchRiQkOecveFM8AtMgklWGv2ITLgSrFBa8SMyYYyXhSmrr8fkJKU7xpgomX5CjoUQUuiqmpCf00CvQovfixkkbOl0ve4j2CUdIp2mhCn5cEs_oYXO-qGHYJFCaOlN9B2dQ7-Igd7g_QZT_jn4vPoYBwyDh45GRy_DrQ-Ifa4868B-G7ckejbz0S6hT-dPyWMHXcJn4_eUfHl7-Xn-vrj-8O5qPr0uQJp6KDhYzhhY7YTQZoGm1cqIunbGCbkAI11ZudpqabREjciAO5BCSi1MbR2Up-Tlrm5Mg29S7gbt0sYQ0A4NZ6U0VZ3R6x3KU3hoqln5ZLHrIGDcpMYIVlZ1bVSWZ_-VYjttoSrDDyfv6V3c9CE3m-sJpbhRW_RiRJvFCttm3fsV9D-a31Fl8GoEkHIabpuFTwenqpKpWmR3vnO2jyn16PaEs2b7XJr9c8n24g-bx_IQY07Td__cMd4CbDq08bf7BUKjymU
CODEN ESTHAG
CitedBy_id crossref_primary_10_7717_peerj_18748
crossref_primary_10_3390_en10030288
crossref_primary_10_1016_j_catena_2013_06_025
crossref_primary_10_1021_acssuschemeng_7b00542
crossref_primary_10_1371_journal_pone_0265663
crossref_primary_10_1016_j_scitotenv_2016_03_245
crossref_primary_10_3389_fmars_2017_00038
crossref_primary_10_1007_s42773_024_00330_5
crossref_primary_10_3390_su14127266
crossref_primary_10_1007_s11356_024_32243_y
crossref_primary_10_1016_j_biortech_2020_123395
crossref_primary_10_1016_j_scitotenv_2018_12_174
crossref_primary_10_1016_j_chemosphere_2015_09_055
crossref_primary_10_1016_j_geoderma_2022_116117
crossref_primary_10_1111_gcbb_12037
crossref_primary_10_1021_acs_est_9b05864
crossref_primary_10_1016_j_jaap_2014_09_010
crossref_primary_10_1007_s13399_023_04877_4
crossref_primary_10_1016_j_scitotenv_2013_03_090
crossref_primary_10_1016_j_renene_2016_03_081
crossref_primary_10_1016_j_biombioe_2018_07_019
crossref_primary_10_1016_j_orggeochem_2014_10_002
crossref_primary_10_1021_acssuschemeng_4c07181
crossref_primary_10_1016_j_scitotenv_2018_01_189
crossref_primary_10_2134_jeq2013_07_0290
crossref_primary_10_1016_j_geoderma_2021_115097
crossref_primary_10_1016_j_jclepro_2020_120162
crossref_primary_10_1016_j_scitotenv_2018_12_399
crossref_primary_10_1016_j_heliyon_2023_e12949
crossref_primary_10_1016_j_jaap_2013_03_014
crossref_primary_10_1016_j_scitotenv_2020_144058
crossref_primary_10_1007_s12649_017_9906_0
crossref_primary_10_1111_gcbb_12028
crossref_primary_10_3390_ijerph20010867
crossref_primary_10_1016_j_biortech_2017_08_025
crossref_primary_10_1007_s10661_025_13674_7
crossref_primary_10_1111_gcbb_12265
crossref_primary_10_1007_s10163_024_02022_5
crossref_primary_10_1071_WF21053
crossref_primary_10_1016_S2095_3119_18_62102_1
crossref_primary_10_3390_en11030496
crossref_primary_10_1016_j_scitotenv_2024_176438
crossref_primary_10_1016_j_soilbio_2014_09_018
crossref_primary_10_1002_ldr_2743
crossref_primary_10_1016_j_chemosphere_2023_140112
crossref_primary_10_1155_2020_9391630
crossref_primary_10_1111_sum_13096
crossref_primary_10_1016_j_jclepro_2021_129820
crossref_primary_10_1002_jeq2_20133
crossref_primary_10_3390_land12081580
crossref_primary_10_1073_pnas_1921544118
crossref_primary_10_1016_j_cej_2013_12_062
crossref_primary_10_1021_acs_est_3c08044
crossref_primary_10_1021_es4012977
crossref_primary_10_1007_s10653_017_9947_0
crossref_primary_10_1016_j_wasman_2022_01_038
crossref_primary_10_1016_j_scitotenv_2017_03_295
crossref_primary_10_1016_j_jhazmat_2013_04_015
crossref_primary_10_3390_en16041819
crossref_primary_10_1016_j_jclepro_2016_11_099
crossref_primary_10_1016_j_jenvman_2023_119586
crossref_primary_10_1016_j_matpr_2018_11_081
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_1021_acs_est_6b00685
crossref_primary_10_1021_acs_est_6b06300
crossref_primary_10_1016_j_biombioe_2024_107458
crossref_primary_10_1016_j_earscirev_2022_104215
crossref_primary_10_1039_D4EW00513A
crossref_primary_10_1186_s40663_020_00249_w
crossref_primary_10_1016_j_scitotenv_2022_156081
crossref_primary_10_1016_j_wasman_2018_06_047
crossref_primary_10_3390_agriculture13051064
crossref_primary_10_1111_gcbb_12005
crossref_primary_10_1016_j_agee_2017_01_006
crossref_primary_10_1016_j_jece_2020_104169
crossref_primary_10_1016_j_colsurfa_2022_130217
crossref_primary_10_1016_j_orggeochem_2013_07_005
crossref_primary_10_1016_j_chemosphere_2020_128767
crossref_primary_10_2112_SI86_033_1
crossref_primary_10_1016_j_biortech_2022_127274
crossref_primary_10_1016_j_cej_2015_01_026
crossref_primary_10_1016_j_cej_2019_06_006
crossref_primary_10_1016_j_rser_2021_111133
crossref_primary_10_4236_as_2017_89064
crossref_primary_10_5194_bg_13_1269_2016
crossref_primary_10_1007_s42773_024_00321_6
crossref_primary_10_1016_j_jes_2023_09_018
crossref_primary_10_51699_ijbea_v3i4_129
crossref_primary_10_1021_acs_est_6b06594
crossref_primary_10_1038_srep22644
crossref_primary_10_1080_00380768_2015_1052985
crossref_primary_10_1016_j_quascirev_2018_08_007
crossref_primary_10_1002_gea_21797
crossref_primary_10_1016_j_chemosphere_2014_06_046
crossref_primary_10_1016_j_chemosphere_2020_126335
crossref_primary_10_1016_j_jenvman_2023_117863
crossref_primary_10_1155_2019_4506314
crossref_primary_10_3390_pr10091756
crossref_primary_10_1016_j_chemosphere_2019_03_085
crossref_primary_10_1016_j_jes_2025_03_002
crossref_primary_10_1016_j_chemosphere_2019_125007
crossref_primary_10_2139_ssrn_4069696
crossref_primary_10_3390_en13082070
crossref_primary_10_1016_j_cej_2022_137298
crossref_primary_10_1016_j_still_2016_07_009
crossref_primary_10_1007_s11440_024_02254_7
crossref_primary_10_1016_j_agee_2016_12_019
crossref_primary_10_1002_jpln_201300590
crossref_primary_10_1007_s42773_019_00031_4
crossref_primary_10_1016_j_jece_2022_107850
crossref_primary_10_1007_s10533_016_0245_1
crossref_primary_10_1016_j_jaap_2025_106961
crossref_primary_10_1016_j_fuel_2024_134087
crossref_primary_10_1016_j_envpol_2019_113015
crossref_primary_10_5802_crchim_333
crossref_primary_10_1016_j_indcrop_2024_118436
crossref_primary_10_1016_j_jaap_2024_106427
crossref_primary_10_1016_j_agee_2015_04_012
crossref_primary_10_1016_j_scitotenv_2021_150789
crossref_primary_10_3390_su13042359
crossref_primary_10_1016_j_wasman_2018_05_048
crossref_primary_10_1021_acs_est_5b02562
crossref_primary_10_1016_j_apenergy_2016_02_084
crossref_primary_10_1016_j_jaap_2017_01_012
crossref_primary_10_1021_acs_est_5b03656
crossref_primary_10_1016_j_jaap_2024_106681
crossref_primary_10_1016_j_fuel_2022_124253
crossref_primary_10_1016_j_geoderma_2019_113882
crossref_primary_10_1016_j_chemosphere_2018_04_057
crossref_primary_10_1021_acssuschemeng_8b01021
crossref_primary_10_1007_s42729_024_02179_w
crossref_primary_10_1007_s41742_024_00680_9
crossref_primary_10_1007_s10311_021_01210_1
crossref_primary_10_1039_C5RA07339A
crossref_primary_10_1111_gcbb_12213
crossref_primary_10_1029_2020GB006647
crossref_primary_10_3390_en14041092
crossref_primary_10_3390_w17070918
crossref_primary_10_1016_j_scp_2023_101130
crossref_primary_10_1016_j_geoderma_2023_116761
crossref_primary_10_1016_j_biombioe_2015_11_010
crossref_primary_10_1021_acs_est_6b01578
crossref_primary_10_1016_j_catena_2012_11_001
crossref_primary_10_1016_j_jenvman_2014_08_003
crossref_primary_10_1016_j_scitotenv_2020_144711
crossref_primary_10_1007_s11368_016_1584_1
crossref_primary_10_1016_j_biortech_2020_124411
crossref_primary_10_1016_j_orggeochem_2013_06_009
crossref_primary_10_1021_acs_iecr_4c00082
crossref_primary_10_1021_acs_iecr_8b04094
crossref_primary_10_3390_agronomy12020476
crossref_primary_10_5194_soil_8_451_2022
crossref_primary_10_1007_s12649_017_9928_7
crossref_primary_10_1016_j_jenvman_2024_121196
crossref_primary_10_1021_acs_est_5b03087
crossref_primary_10_1016_j_chemosphere_2018_05_044
crossref_primary_10_1016_j_cej_2024_150978
crossref_primary_10_1007_s12517_019_4735_z
crossref_primary_10_1007_s44246_022_00006_4
crossref_primary_10_1016_j_catena_2015_04_016
crossref_primary_10_1021_acs_est_7b04983
crossref_primary_10_1111_nyas_14560
crossref_primary_10_1021_acs_est_7b06487
crossref_primary_10_1080_17583004_2023_2244456
crossref_primary_10_3389_feart_2018_00052
crossref_primary_10_1016_j_jaap_2018_11_007
crossref_primary_10_1021_acssuschemeng_8b05364
crossref_primary_10_1007_s44246_022_00017_1
crossref_primary_10_1039_C4EM00396A
crossref_primary_10_1080_17597269_2021_1948758
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1111_gcbb_12795
crossref_primary_10_1016_j_biortech_2016_02_066
crossref_primary_10_3390_su14073829
crossref_primary_10_1007_s11356_019_06267_8
crossref_primary_10_1007_s13399_024_05774_0
crossref_primary_10_1016_j_marchem_2013_02_006
crossref_primary_10_1016_j_chemosphere_2013_06_004
crossref_primary_10_1080_10643389_2016_1212368
crossref_primary_10_1016_j_jenvman_2015_12_009
crossref_primary_10_1007_s10021_018_0248_y
crossref_primary_10_1016_j_geoderma_2012_10_002
crossref_primary_10_1016_j_biombioe_2016_10_011
crossref_primary_10_1016_j_scitotenv_2019_134773
crossref_primary_10_3390_agronomy12071525
crossref_primary_10_1016_j_jenvman_2022_115541
crossref_primary_10_1016_j_biortech_2021_126316
crossref_primary_10_1016_j_jclepro_2024_142695
crossref_primary_10_1016_j_fuel_2023_128306
crossref_primary_10_1016_j_scitotenv_2018_07_402
crossref_primary_10_1016_j_scitotenv_2025_178650
crossref_primary_10_3390_ijerph19042140
crossref_primary_10_1016_j_orggeochem_2012_12_008
crossref_primary_10_1016_j_jenvman_2025_124422
crossref_primary_10_3389_feart_2018_00061
crossref_primary_10_1016_j_scitotenv_2018_04_215
crossref_primary_10_1016_j_scitotenv_2023_165793
crossref_primary_10_1680_jgrim_22_00023
crossref_primary_10_1021_acs_energyfuels_5b00512
crossref_primary_10_1071_SR13177
crossref_primary_10_1007_s42773_020_00053_3
crossref_primary_10_1007_s13399_020_01000_9
crossref_primary_10_2139_ssrn_3985462
crossref_primary_10_1111_ejss_13396
crossref_primary_10_1007_s00374_013_0822_6
crossref_primary_10_1038_s41598_024_51786_1
crossref_primary_10_1007_s11356_018_3798_9
crossref_primary_10_1016_j_scitotenv_2021_145611
crossref_primary_10_1021_es302971d
crossref_primary_10_3390_c9030067
crossref_primary_10_1016_j_biortech_2021_125555
crossref_primary_10_1016_j_jaap_2021_105070
crossref_primary_10_1016_j_geoderma_2021_115043
crossref_primary_10_1016_j_jenvman_2018_12_055
crossref_primary_10_2134_jeq2014_03_0132
crossref_primary_10_1016_j_renene_2020_03_181
crossref_primary_10_1016_j_envpol_2023_122887
crossref_primary_10_1016_j_envres_2025_121023
crossref_primary_10_1016_j_envpol_2021_118592
crossref_primary_10_2208_jscejj_24_27007
crossref_primary_10_1007_s42773_019_00026_1
crossref_primary_10_1007_s44246_024_00186_1
crossref_primary_10_1016_j_biortech_2018_09_030
crossref_primary_10_1038_s41598_021_82129_z
crossref_primary_10_1021_acs_est_6b01010
crossref_primary_10_3390_su13031330
crossref_primary_10_1016_j_jenvman_2016_07_040
crossref_primary_10_1007_s13399_020_00923_7
crossref_primary_10_1016_j_biortech_2022_127245
crossref_primary_10_1371_journal_pone_0083462
crossref_primary_10_1038_s41598_017_10455_2
crossref_primary_10_1016_j_biombioe_2021_106304
crossref_primary_10_1021_sc500432d
crossref_primary_10_1007_s42773_024_00356_9
crossref_primary_10_3389_feart_2018_00169
crossref_primary_10_3390_fire6080304
crossref_primary_10_1016_j_ecoenv_2021_113054
crossref_primary_10_1007_s42773_021_00114_1
crossref_primary_10_2134_jeq2015_07_0397
crossref_primary_10_1016_j_jclepro_2022_135398
crossref_primary_10_1021_es405676h
crossref_primary_10_1038_srep25127
crossref_primary_10_1016_j_jclepro_2017_11_224
crossref_primary_10_1007_s42773_022_00159_w
crossref_primary_10_1016_j_scitotenv_2023_169607
crossref_primary_10_1007_s10343_023_00851_2
crossref_primary_10_1016_j_geoderma_2015_09_021
crossref_primary_10_1016_j_chemosphere_2022_137646
crossref_primary_10_1126_science_1237688
crossref_primary_10_1016_j_scitotenv_2018_11_316
crossref_primary_10_1016_j_chemosphere_2019_04_031
crossref_primary_10_1016_j_jaap_2016_12_009
crossref_primary_10_1016_j_wasman_2023_05_038
crossref_primary_10_1016_S1002_0160_21_60073_5
crossref_primary_10_1021_acssuschemeng_5b00153
crossref_primary_10_1021_acs_est_4c09102
crossref_primary_10_1016_j_soilbio_2016_10_016
crossref_primary_10_1515_pac_2021_0106
crossref_primary_10_1039_D1EM00247C
crossref_primary_10_1016_j_jaap_2020_104926
crossref_primary_10_1021_es401756h
crossref_primary_10_1016_j_biombioe_2017_01_021
crossref_primary_10_1016_j_scitotenv_2019_133800
crossref_primary_10_1021_acs_est_8b01481
crossref_primary_10_2134_jeq2016_04_0156
crossref_primary_10_1016_j_jenvman_2016_02_049
crossref_primary_10_1016_j_agee_2016_10_027
crossref_primary_10_3389_feart_2018_00143
crossref_primary_10_1016_j_fuproc_2022_107435
crossref_primary_10_1016_j_scitotenv_2022_153996
crossref_primary_10_1071_SR13195
crossref_primary_10_2458_azu_rc_57_17964
crossref_primary_10_1016_j_energy_2020_118225
crossref_primary_10_1002_clen_201700346
crossref_primary_10_1016_j_scitotenv_2019_01_298
crossref_primary_10_1021_acs_energyfuels_6b01579
crossref_primary_10_1021_acssuschemeng_1c07694
crossref_primary_10_1371_journal_pone_0115373
crossref_primary_10_1021_acs_est_3c04208
crossref_primary_10_1016_j_ecoleng_2013_02_011
crossref_primary_10_1007_s41810_021_00100_x
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000293
crossref_primary_10_1016_j_jenvman_2016_06_063
crossref_primary_10_1007_s42729_021_00558_1
crossref_primary_10_2134_jeq2014_06_0279
crossref_primary_10_3390_soilsystems2030048
crossref_primary_10_1021_acsami_7b00619
crossref_primary_10_1016_j_ecoleng_2015_01_011
crossref_primary_10_1016_j_scitotenv_2021_152478
crossref_primary_10_1016_j_jclepro_2018_10_055
crossref_primary_10_1016_j_jclepro_2024_144373
crossref_primary_10_4491_eer_2023_105
crossref_primary_10_1016_j_chemosphere_2016_10_083
crossref_primary_10_13080_z_a_2019_106_013
crossref_primary_10_1016_j_jece_2022_108403
crossref_primary_10_1016_j_jclepro_2014_12_050
crossref_primary_10_1016_j_scitotenv_2020_138672
crossref_primary_10_1016_j_aoas_2019_12_006
crossref_primary_10_1007_s11368_016_1373_x
crossref_primary_10_1016_j_scitotenv_2019_04_133
crossref_primary_10_1007_s40003_019_00425_7
crossref_primary_10_1016_j_chemosphere_2021_132443
crossref_primary_10_1016_j_envpol_2019_113436
Cites_doi 10.1016/j.marchem.2004.06.043
10.1016/S0014-3057(00)00211-1
10.1023/A:1010157115211
10.1016/j.apgeochem.2008.04.023
10.1021/es903140c
10.1016/j.geoderma.2004.12.043
10.1016/j.soilbio.2007.07.021
10.1016/j.fuel.2006.12.013
10.1029/2006GB002798
10.1029/2006GB002914
10.1016/j.soilbio.2011.02.005
10.1016/j.chemosphere.2008.01.016
10.1016/j.geoderma.2009.08.016
10.1016/j.orggeochem.2008.04.020
10.1021/es104401h
10.1016/j.orggeochem.2006.06.022
10.1007/s10533-008-9220-9
10.1016/S0146-6380(02)00062-1
10.1021/es9031419
10.1016/j.orggeochem.2006.08.004
10.1016/j.orggeochem.2008.12.004
10.1016/j.orggeochem.2009.05.004
10.1029/95GB02742
10.1038/ngeo358
10.1126/science.280.5371.1911
10.1016/j.orggeochem.2006.07.003
10.1071/SR10009
10.1016/j.chemosphere.2011.06.074
10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
10.1016/j.soilbio.2011.01.024
10.1016/j.tca.2010.04.007
10.1021/ac034415p
10.2136/sssaj2007.0031
10.1021/es103752u
10.1016/j.orggeochem.2008.04.026
10.1007/s11027-005-9006-5
10.1038/ncomms1053
10.2136/sssaj2005.0136a
10.1002/jpln.200700280
10.1021/es050191b
10.1016/S0065-2113(10)05002-9
10.1021/es903016y
10.1016/j.gca.2008.09.028
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2014 INIST-CNRS
Copyright American Chemical Society Feb 7, 2012
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2014 INIST-CNRS
– notice: Copyright American Chemical Society Feb 7, 2012
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
7X8
OTOTI
DOI 10.1021/es2040398
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
AGRICOLA
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Economics
EISSN 1520-5851
EndPage 1421
ExternalDocumentID 1034967
2591913641
22242866
25630572
10_1021_es2040398
a025650250
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a497t-1ac100ac8f2289be9d859277f9f24ba94f36f7c84984e8ee0a1fa42448297cfa3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu May 18 18:35:06 EDT 2023
Thu Jul 10 18:08:05 EDT 2025
Fri Jul 11 09:11:25 EDT 2025
Mon Jun 30 05:59:38 EDT 2025
Mon Jul 21 06:03:28 EDT 2025
Mon Jul 21 09:16:51 EDT 2025
Tue Jul 01 02:10:41 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Fri Dec 18 21:25:36 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Combustion residue
Carbonaceous materials
heat treatment
Biochar
Carbon sequestration
Thermal stability
greenhouse gas
sustainable development
Mitigation
mineralization
Economic model
charcoal
climate change
Thermal degradation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a497t-1ac100ac8f2289be9d859277f9f24ba94f36f7c84984e8ee0a1fa42448297cfa3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
USDOE
AC05-76RL01830
PNNL-SA-85480
PMID 22242866
PQID 922551951
PQPubID 45412
PageCount 7
ParticipantIDs osti_scitechconnect_1034967
proquest_miscellaneous_920367795
proquest_miscellaneous_2000225691
proquest_journals_922551951
pubmed_primary_22242866
pascalfrancis_primary_25630572
crossref_primary_10_1021_es2040398
crossref_citationtrail_10_1021_es2040398
acs_journals_10_1021_es2040398
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-07
PublicationDateYYYYMMDD 2012-02-07
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-07
  day: 07
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Cao X. (ref2/cit2) 2011; 45
ref6/cit6
Siewert C. (ref21/cit21) 2001
ref25/cit25
Zimmerman A. R. (ref35/cit35) 2011; 43
Bruun S. (ref37/cit37) 2008; 39
Yang H. (ref27/cit27) 2007; 86
Masiello C. A. (ref32/cit32) 2004; 92
Plante A. F. (ref30/cit30) 2005; 129
Joseph S. D. (ref43/cit43) 2010; 48
Nguyen B. T. (ref45/cit45) 2009; 40
Sohi S. P. (ref5/cit5) 2010; 105
Cheng C. H. (ref10/cit10) 2006; 37
Zimmerman A. R. (ref11/cit11) 2010; 44
Dell’Abate M. T. (ref16/cit16) 2000; 61
Lehmann J. (ref4/cit4) 2006; 11
Plante A. F. (ref20/cit20) 2009; 153
Kim S. (ref34/cit34) 2003; 75
Cornelissen G. (ref1/cit1) 2005; 39
Scheirs J. (ref28/cit28) 2001; 37
Masiello C. A. (ref8/cit8) 1998; 280
Kuo L.-J. (ref23/cit23) 2008; 39
Nguyen B. T. (ref12/cit12) 2008; 89
Harvey O. R. (ref26/cit26) 2010; 505
Hilscher A. (ref38/cit38) 2009; 40
Harvey O. R. (ref3/cit3) 2011; 45
Leifeld J. (ref18/cit18) 2007; 38
Sun H. W. (ref33/cit33) 2008; 71
Hammes K. (ref39/cit39) 2008; 23
ref15/cit15
Keiluweit M. (ref29/cit29) 2010; 44
Rovira P. (ref31/cit31) 2008; 40
Lopez-Capel E. (ref17/cit17) 2005; 69
Helfrich M. (ref40/cit40) 2010; 173
Baldock J. A. (ref36/cit36) 2002; 33
Lehmann J. (ref9/cit9) 2008; 1
ref13/cit13
Lehmann J. (ref42/cit42) 2007; 5
Nguyen B. T. (ref46/cit46) 2010; 44
De la Rosa J. M. (ref19/cit19) 2008; 72
Kuhlbusch T. A. J. (ref7/cit7) 1995; 9
Hammes K. (ref24/cit24) 2006; 37
Kuo L.-J. (ref41/cit41) 2011; 85
Cheng C.-H. (ref44/cit44) 2008
Liang B. (ref14/cit14) 2008; 72
Plante A. F. (ref22/cit22) 2011; 43
References_xml – volume: 92
  start-page: 201
  year: 2004
  ident: ref32/cit32
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2004.06.043
– volume: 37
  start-page: 933
  year: 2001
  ident: ref28/cit28
  publication-title: Eur. Polym. J.
  doi: 10.1016/S0014-3057(00)00211-1
– volume: 61
  start-page: 389
  year: 2000
  ident: ref16/cit16
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1023/A:1010157115211
– volume: 23
  start-page: 2113
  year: 2008
  ident: ref39/cit39
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.04.023
– volume: 44
  start-page: 1295
  year: 2010
  ident: ref11/cit11
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903140c
– volume: 129
  start-page: 186
  year: 2005
  ident: ref30/cit30
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.043
– volume: 40
  start-page: 172
  year: 2008
  ident: ref31/cit31
  publication-title: Soil Bio. Biochem.
  doi: 10.1016/j.soilbio.2007.07.021
– volume: 86
  start-page: 1781
  year: 2007
  ident: ref27/cit27
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– ident: ref13/cit13
  doi: 10.1029/2006GB002798
– volume-title: Investigation of the Thermal and Biological Stability of Soil Organic Matter
  year: 2001
  ident: ref21/cit21
– ident: ref25/cit25
  doi: 10.1029/2006GB002914
– volume: 43
  start-page: 1169
  year: 2011
  ident: ref35/cit35
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 71
  start-page: 2113
  year: 2008
  ident: ref33/cit33
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.01.016
– volume: 153
  start-page: 1
  year: 2009
  ident: ref20/cit20
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.08.016
– volume: 39
  start-page: 839
  year: 2008
  ident: ref37/cit37
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2008.04.020
– start-page: 113
  year: 2008
  ident: ref44/cit44
  publication-title: J. Geophys. Res., [Biogeosci.]
– volume: 45
  start-page: 5550
  year: 2011
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104401h
– volume: 37
  start-page: 1477
  year: 2006
  ident: ref10/cit10
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2006.06.022
– volume: 89
  start-page: 295
  year: 2008
  ident: ref12/cit12
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-008-9220-9
– volume: 33
  start-page: 1093
  year: 2002
  ident: ref36/cit36
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(02)00062-1
– volume: 44
  start-page: 1247
  year: 2010
  ident: ref29/cit29
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 38
  start-page: 112
  year: 2007
  ident: ref18/cit18
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2006.08.004
– volume: 40
  start-page: 332
  year: 2009
  ident: ref38/cit38
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2008.12.004
– volume: 40
  start-page: 846
  year: 2009
  ident: ref45/cit45
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.05.004
– volume: 9
  start-page: 491
  year: 1995
  ident: ref7/cit7
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/95GB02742
– volume: 1
  start-page: 832
  year: 2008
  ident: ref9/cit9
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo358
– volume: 280
  start-page: 1911
  year: 1998
  ident: ref8/cit8
  publication-title: Science
  doi: 10.1126/science.280.5371.1911
– volume: 37
  start-page: 1629
  year: 2006
  ident: ref24/cit24
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2006.07.003
– volume: 48
  start-page: 501
  year: 2010
  ident: ref43/cit43
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10009
– volume: 85
  start-page: 797
  year: 2011
  ident: ref41/cit41
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.06.074
– volume: 5
  start-page: 381
  year: 2007
  ident: ref42/cit42
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– volume: 43
  start-page: 1051
  year: 2011
  ident: ref22/cit22
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.01.024
– volume: 505
  start-page: 106
  year: 2010
  ident: ref26/cit26
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2010.04.007
– volume: 75
  start-page: 5336
  year: 2003
  ident: ref34/cit34
  publication-title: Anal. Chem.
  doi: 10.1021/ac034415p
– volume: 72
  start-page: 258
  year: 2008
  ident: ref19/cit19
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0031
– volume: 45
  start-page: 4884
  year: 2011
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103752u
– volume: 39
  start-page: 1466
  year: 2008
  ident: ref23/cit23
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2008.04.026
– volume: 11
  start-page: 403
  year: 2006
  ident: ref4/cit4
  publication-title: Mitigation Adapt. Strategy Global Change
  doi: 10.1007/s11027-005-9006-5
– ident: ref6/cit6
  doi: 10.1038/ncomms1053
– ident: ref15/cit15
– volume: 69
  start-page: 136
  year: 2005
  ident: ref17/cit17
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0136a
– volume: 173
  start-page: 61
  year: 2010
  ident: ref40/cit40
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200700280
– volume: 39
  start-page: 6881
  year: 2005
  ident: ref1/cit1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050191b
– volume: 105
  start-page: 47
  year: 2010
  ident: ref5/cit5
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)05002-9
– volume: 44
  start-page: 3324
  year: 2010
  ident: ref46/cit46
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903016y
– volume: 72
  start-page: 6069
  year: 2008
  ident: ref14/cit14
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.09.028
SSID ssj0002308
Score 2.531634
Snippet The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1415
SubjectTerms 09 BIOMASS FUELS
biochar
Biodegradation
BIOMASS
Carbon - chemistry
CARBON SEQUESTRATION
Charcoal - chemistry
Charcoal - classification
Chemical compounds
Climatology. Bioclimatology. Climate change
Earth, ocean, space
econometric models
ECONOMICS
Environmental Restoration and Remediation - methods
Exact sciences and technology
External geophysics
graphene
GRAPHITE
Meteorology
MINERALIZATION
Models, Chemical
Models, Economic
Physical properties
physicochemical properties
phytomass
screening
Soil - chemistry
SOILS
soot
STABILITY
Temperature
Thermogravimetry
Title An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)
URI http://dx.doi.org/10.1021/es2040398
https://www.ncbi.nlm.nih.gov/pubmed/22242866
https://www.proquest.com/docview/922551951
https://www.proquest.com/docview/2000225691
https://www.proquest.com/docview/920367795
https://www.osti.gov/biblio/1034967
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V5QIHHoXCUqjM41AOKYnjxPZxu7QqSCCkpdLeIsexpRWrBDXZCzf-OTN5bSu6cIwyTvyYiT9nZr4BeCcUN1zaHJGbloEouA-0zxO8DHPLneTeU-7wl6_pxaX4vEyWe_B2hwefRx9czVHRYq3uwF2eKkknrNl8MX5uEUOroUyBjtPlQB90vSltPba-sfVMKjQhioQ0NU6G76pY7IaZ7XZz_hA-Dkk7XZTJj5NNk5_YX39zOP5rJI_gQQ832azTj8ew58p9uH-NhHAfDs62uW4o2ht7_QR-z0r2icgUg1Pc6go26-nHWVOxzleM7RniTrO2q4aG5pgpC7aoVms2N1d5VbKFa4fZqRn7VjUUnIRvqTwbOoFPbv8i9k1qdny6qigZrH7_FC7Pz77PL4K-YkNghJZNEBkbhaGxynM8yOVOFyrRXEqvPRe50cLHqZdWCa2EU86FJvKGUu0owdd6Ex_ApKxK9xyY5Kk3xsahEAmCRqNdgTqFaDV2qbOqmMIRLmnWW1ydtc50HmXjJE_heFjtzPZ851R2Y32b6JtR9GdH8nGb0CGpTIbIhOh1LcUh2QaFiHJfYnduaNL4HE4EbInk2HxQrW2nNX5Nid4nmsLr8S7aNzltTOmqTU1lQhFmJalGGbZDRpM3GY0tmcKzTmm3r0eIxlWavvjfdB3CPcSCvA1Ily9h0lxt3CvEW01-1NrbH1hlIqk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5QAceBQKS6EYBFI5pGych-0Dh-3Sapc-hLSttLfgOLa0YpWgOisEN_4Gf4U_xzivbVErTpU4Rhk71njG_hzPfAPwOuRUUqZSRG6CeWFGjSdMGuHjIFVUM2qMyx0-Oo7Hp-HHWTRbg19tLgwOwmJPtrrEX7EL-O-0pWhvgeBNAOWB_v4Nj2f2_eQDzuUbSvf3TkZjr6kg4MlQsNLzpfIHA6m4oXiwSLXIeCQoY0YYGqZShCaIDVM8FDzUXOuB9I10qV8u4VQZGWC_N-Amgh7qDnbD0bRb5RG687Y6ggjiWctadH6obsdT9sKO1yvQc10AprQ4B6YunnE1uq12uf178LvTTxXc8mVnWaY76sdf1JH_pwLvw90GXJNh7Q0PYE3n63DnHOXiOmzsrTL7ULRZ2uxD-DnMycRRR3q7uLFnZNiQrZOyIPXNOLYniLLlQs1Lp1FNZJ6RaTFfkJE8S4ucTHWl3dqpyKeidKFY-JXCkHYQ2HP1z7RpYsn27rxwqW_27SM4vRblbEAvL3L9BAijsZFSBYMwjBAiS6Ez9CDE5oGOteJZH7ZwTpNmfbFJFTpA_aSb1D5st0aWqIbd3RUZWVwm-qoT_VpTmlwmtOksNUEc5siElYu6UiUKuQIDDIdzwYC7fqijm4sYxeatRa8GLXDvcGRGfh9edm9xNXNXVDLXxdK6oqgIKqNYoAy5Qka4u3NcWqI-PK59ZfV5BKSUx_HTf6nrBdwanxwdJoeT44NNuI0omFah-OwZ9MqzpX6OSLNMtyqXJ_D5ul3kD-mHhVo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELbKIiE48CgUlkIxCKRySNk4D9sHDtttV10KVaWl0t6C49jSilVS1VkhuPFH-Cv8NWby2ha14lSJY5SxY4099ufMzDeEvA4FU4zrFJCb5F6YMetJm0bwOEg1M5xZi7nDn47ig5PwwyyarZFfbS4MDMJBT65y4qNVn2a2YRjw3xnHYM0FUjRBlIfm-ze4orn3kz2YzzeMjfc_jw68poqAp0LJS89X2h8MlBaWweUiNTITkWScW2lZmCoZ2iC2XItQitAIYwbKtwrTvzDpVFsVQL83yE10D-Llbjiadjs9wHfRVkiQQTxrmYvODxVPPe0unHq9AqwXgzCVg3mwdQGNqxFuddKN75HfnY6qAJevO8sy3dE__qKP_H-VeJ_cbUA2HdZW8YCsmXyd3DlHvbhONvZXGX4g2mxx7iH5OczpBCkkvV044DM6bEjXaVnQ2kMO7SmgbbXQ8xK1aqjKMzot5gs6UmdpkdOpqTRcGxc9LkoMyYKvFJa2g4Ceq3-nTRNHt3fnBabAubePyMm1KGeD9PIiN08I5Sy2SulgEIYRQGUlTQaWBBg9MLHRIuuTLZjXpNlnXFKFEDA_6Sa1T7bbhZbohuUdi40sLhN91Yme1tQmlwlt4mpNAI8hqbDG6CtdghAWGuAwnAuLuOuHIe1cxBk0b1f1atASzhAkNfL75GX3FnY1dFWp3BRLh8VRAVxGsQQZeoWMRB86bDFRnzyu7WX1eQCmTMTx03-p6wW5dbw3Tj5Ojg43yW0Aw6yKyOfPSK88W5rnADjLdKuyekq-XLeF_AGxk4fd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Index-Based+Approach+to+Assessing+Recalcitrance+and+Soil+Carbon+Sequestration+Potential+of+Engineered+Black+Carbons+%28Biochars%29&rft.jtitle=Environmental+science+%26+technology&rft.au=Harvey%2C+Omar+R.&rft.au=Kuo%2C+Li-Jung&rft.au=Zimmerman%2C+Andrew+R.&rft.au=Louchouarn%2C+Patrick&rft.date=2012-02-07&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=46&rft.issue=3&rft_id=info:doi/10.1021%2Fes2040398&rft.externalDocID=1034967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon