Plastid phylogenomic analysis of green plants A billion years of evolutionary history

Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylo...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of botany Vol. 105; no. 3; pp. 291 - 301
Main Authors Gitzendanner, Matthew A., Soltis, Pamela S., Wong, Gane K.-S., Ruhfel, Brad R., Soltis, Douglas E.
Format Journal Article
LanguageEnglish
Published United States John Wiley and Sons, Inc 01.03.2018
Botanical Society of America, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. Methods We analyzed amino acid sequences from protein‐coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. Key Results Our results largely agree with previous plastid‐based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non‐Pinaceae (Gne‐Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. Conclusions This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.
AbstractList Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. Methods We analyzed amino acid sequences from protein‐coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. Key Results Our results largely agree with previous plastid‐based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non‐Pinaceae (Gne‐Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. Conclusions This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.
For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.
PREMISE OF THE STUDY: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. METHODS: We analyzed amino acid sequences from protein‐coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. KEY RESULTS: Our results largely agree with previous plastid‐based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non‐Pinaceae (Gne‐Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. CONCLUSIONS: This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.
For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes.PREMISE OF THE STUDYFor the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes.We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank.METHODSWe analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank.Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered.KEY RESULTSOur results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered.This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.CONCLUSIONSThis plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.
Author Ruhfel, Brad R.
Soltis, Pamela S.
Wong, Gane K.-S.
Soltis, Douglas E.
Gitzendanner, Matthew A.
Author_xml – sequence: 1
  givenname: Matthew A.
  surname: Gitzendanner
  fullname: Gitzendanner, Matthew A.
– sequence: 2
  givenname: Pamela S.
  surname: Soltis
  fullname: Soltis, Pamela S.
– sequence: 3
  givenname: Gane K.-S.
  surname: Wong
  fullname: Wong, Gane K.-S.
– sequence: 4
  givenname: Brad R.
  surname: Ruhfel
  fullname: Ruhfel, Brad R.
– sequence: 5
  givenname: Douglas E.
  surname: Soltis
  fullname: Soltis, Douglas E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29603143$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOwzAQRS0Eog9Y8AGgSGxgEWp7Ej-WpeKpSrCAteUkbnGVxsVOhfr3JGoqpArEajzyudfjuQN0WLnKIHRG8A3BmI70IqPNKREHqE9S4DElkh-iPm4uY0ko7aFBCIumlYmkx6hHJcNAEuij-LXUobZFtPrYlG5uKre0eaQrXW6CDZGbRXNvTBWtSl3V4QQdzXQZzGlXh-j9_u5t8hhPXx6eJuNprBPJRcwFE4mRQIAmmCS5KXIGxYyzlDAC0kBGwaQmozlNC4AEONdEpFRrwSVgAUN0tfVdefe5NqFWSxtyUzZDGLcOinIiIMUS5P8ops1iJGMtermHLtzaN19tKZ4yxhlt377oqHW2NIVaebvUfqN2O2uA0RbIvQvBm5nKba1r66raa1sqglWbimpTUW0qjeJ6T7Ez_Y3t3L9saTZ_g2r8fEs7xflWsQi18z_zMkaYkBK-AUjroEo
CitedBy_id crossref_primary_10_1093_botlinnean_boaa077
crossref_primary_10_1186_s12862_019_1479_z
crossref_primary_10_1186_s12870_024_05905_9
crossref_primary_10_3390_ijms242115634
crossref_primary_10_2174_1381612828666220406125132
crossref_primary_10_1016_j_ympev_2019_02_024
crossref_primary_10_1002_ajb2_1479
crossref_primary_10_1186_s12864_018_4633_x
crossref_primary_10_1016_j_biotechadv_2020_107671
crossref_primary_10_1007_s00606_020_01690_8
crossref_primary_10_1186_s12870_022_03946_6
crossref_primary_10_1016_j_ympev_2023_107826
crossref_primary_10_3389_fpls_2024_1500607
crossref_primary_10_1093_aob_mcab021
crossref_primary_10_3390_d17020136
crossref_primary_10_1016_j_ympev_2022_107544
crossref_primary_10_1080_07352689_2019_1650517
crossref_primary_10_1111_tpj_16097
crossref_primary_10_1371_journal_pone_0302365
crossref_primary_10_1111_pbi_13556
crossref_primary_10_1016_j_ympev_2019_02_018
crossref_primary_10_1186_s12859_021_04309_y
crossref_primary_10_1016_j_pld_2020_09_005
crossref_primary_10_1186_s12862_019_1361_z
crossref_primary_10_1111_nph_16486
crossref_primary_10_1080_23802359_2024_2350619
crossref_primary_10_1002_ajb2_1469
crossref_primary_10_1007_s10265_022_01417_5
crossref_primary_10_1002_ajb2_1468
crossref_primary_10_1038_s41576_023_00620_x
crossref_primary_10_7717_peerj_6563
crossref_primary_10_1615_InterJAlgae_v26_i3_30
crossref_primary_10_3389_fpls_2022_967456
crossref_primary_10_1016_j_ympev_2020_106903
crossref_primary_10_1016_j_phytochem_2019_03_023
crossref_primary_10_1038_s41477_018_0344_1
crossref_primary_10_1016_j_ympev_2022_107432
crossref_primary_10_1002_ece3_10868
crossref_primary_10_1111_cla_12396
crossref_primary_10_1134_S1062360419060080
crossref_primary_10_1098_rspb_2018_1012
crossref_primary_10_3390_ijms24032566
crossref_primary_10_1007_s44281_023_00026_z
crossref_primary_10_1371_journal_pone_0286144
crossref_primary_10_1186_s12864_023_09607_8
crossref_primary_10_1093_jxb_erad044
crossref_primary_10_1371_journal_pone_0279849
crossref_primary_10_1098_rspb_2019_0099
crossref_primary_10_3389_fevo_2022_1082639
crossref_primary_10_1016_j_ympev_2024_108093
crossref_primary_10_5586_asbp_8937
crossref_primary_10_1093_plphys_kiac390
crossref_primary_10_1016_j_ympev_2025_108325
crossref_primary_10_1155_2019_7417239
crossref_primary_10_1093_sysbio_syad029
crossref_primary_10_1093_plphys_kiac153
crossref_primary_10_1080_23802359_2024_2383680
crossref_primary_10_1038_s41467_022_28449_8
crossref_primary_10_1155_2020_1732586
crossref_primary_10_3390_ijms241914735
crossref_primary_10_1186_s12870_020_02518_w
crossref_primary_10_1186_s12870_019_1896_6
crossref_primary_10_1111_pre_12576
crossref_primary_10_1186_s12915_021_01166_2
crossref_primary_10_1186_s12859_020_3475_0
crossref_primary_10_3389_fpls_2020_00376
crossref_primary_10_1093_icb_icac150
crossref_primary_10_1111_jse_12727
crossref_primary_10_2174_1389202924666221201140603
crossref_primary_10_3390_agronomy13061454
crossref_primary_10_1016_j_ympev_2021_107232
crossref_primary_10_3390_plants10020283
crossref_primary_10_3390_genes14091743
crossref_primary_10_1016_j_ympev_2021_107341
crossref_primary_10_3389_fpls_2019_01035
crossref_primary_10_3390_plants9030358
crossref_primary_10_4236_cmb_2022_121004
crossref_primary_10_1111_jse_12537
crossref_primary_10_7717_peerj_8392
crossref_primary_10_3390_horticulturae10010007
crossref_primary_10_1080_23802359_2023_2252944
crossref_primary_10_1111_jse_12533
crossref_primary_10_3390_ijms19123780
crossref_primary_10_3389_fpls_2022_1047592
crossref_primary_10_3389_fpls_2021_781793
crossref_primary_10_7717_peerj_7747
crossref_primary_10_3389_fpls_2022_808156
crossref_primary_10_1111_jipb_13609
crossref_primary_10_1111_nph_17135
crossref_primary_10_1002_ece3_70838
crossref_primary_10_3389_fpls_2024_1328080
crossref_primary_10_1093_gbe_evz004
crossref_primary_10_1007_s11295_022_01541_2
crossref_primary_10_1186_s12870_023_04663_4
crossref_primary_10_1002_aps3_1038
crossref_primary_10_1038_s41396_018_0303_x
crossref_primary_10_1111_tpj_16142
crossref_primary_10_1111_jse_13164
crossref_primary_10_1111_njb_02072
crossref_primary_10_1371_journal_pone_0301346
crossref_primary_10_1080_23802359_2024_2389918
crossref_primary_10_1016_j_revpalbo_2025_105314
crossref_primary_10_1093_aob_mcad137
crossref_primary_10_3390_genes14101894
crossref_primary_10_3390_sym14071288
crossref_primary_10_1016_j_ympev_2023_107808
crossref_primary_10_3390_molecules23061276
crossref_primary_10_3389_fpls_2021_662715
crossref_primary_10_1016_j_tplants_2019_07_011
crossref_primary_10_1080_23802359_2024_2392759
crossref_primary_10_1016_j_aquabot_2022_103530
crossref_primary_10_3390_genes13040570
crossref_primary_10_1080_23802359_2021_2002211
crossref_primary_10_1038_s41477_019_0421_0
crossref_primary_10_1111_nph_16261
crossref_primary_10_1016_j_ympev_2019_05_022
crossref_primary_10_1017_S0960258522000046
crossref_primary_10_1007_s10265_023_01514_z
crossref_primary_10_3390_d14100782
crossref_primary_10_1111_tpj_15157
crossref_primary_10_1016_j_ympev_2018_06_043
crossref_primary_10_1186_s12870_022_03991_1
crossref_primary_10_1093_sysbio_syy086
crossref_primary_10_1111_cla_12419
crossref_primary_10_1111_jse_12579
crossref_primary_10_3389_fpls_2022_768810
crossref_primary_10_1093_hr_uhae330
crossref_primary_10_1016_j_pld_2023_02_004
crossref_primary_10_1038_s41598_021_91071_z
crossref_primary_10_1016_j_pld_2018_06_005
crossref_primary_10_1111_nph_19595
crossref_primary_10_1002_ajb2_1623
crossref_primary_10_1177_00368504241272741
crossref_primary_10_2478_dim_2019_0002
crossref_primary_10_7717_peerj_8225
crossref_primary_10_7717_peerj_9315
crossref_primary_10_1002_ajb2_16175
crossref_primary_10_1002_ajb2_1071
crossref_primary_10_1002_ajb2_1070
crossref_primary_10_1093_aob_mcae003
crossref_primary_10_1016_j_japb_2023_03_002
crossref_primary_10_1111_1755_0998_13104
crossref_primary_10_1093_gbe_evy189
crossref_primary_10_1186_s12870_022_03750_2
crossref_primary_10_1007_s11295_022_01556_9
crossref_primary_10_1016_j_ympev_2024_108255
crossref_primary_10_1038_s41559_020_1221_7
crossref_primary_10_3390_md18040228
crossref_primary_10_1111_nph_18006
crossref_primary_10_1186_s12870_024_05669_2
crossref_primary_10_1007_s00239_020_09987_5
crossref_primary_10_1177_11769343231210756
crossref_primary_10_3389_fpls_2020_01062
crossref_primary_10_1007_s12229_023_09287_9
crossref_primary_10_1038_s42003_021_01933_5
crossref_primary_10_1002_tax_13167
crossref_primary_10_1016_j_protis_2024_126073
crossref_primary_10_1002_aps3_1216
crossref_primary_10_3389_fpls_2023_1144406
crossref_primary_10_3389_fpls_2022_909768
crossref_primary_10_1016_j_xplc_2020_100027
crossref_primary_10_1093_molbev_msaa160
crossref_primary_10_1016_j_ympev_2019_106601
crossref_primary_10_1016_j_ympev_2022_107581
crossref_primary_10_3389_fpls_2023_1125107
crossref_primary_10_3389_fpls_2022_1100302
crossref_primary_10_3390_horticulturae9070796
crossref_primary_10_3389_fgene_2022_867736
crossref_primary_10_1186_s12870_022_03492_1
crossref_primary_10_1038_s41598_023_46017_y
crossref_primary_10_1093_sysbio_syab035
crossref_primary_10_1038_s41438_021_00471_9
crossref_primary_10_1002_ajb2_1041
crossref_primary_10_1186_s12915_024_01878_1
crossref_primary_10_1016_j_pld_2018_07_002
crossref_primary_10_3390_plants9040432
crossref_primary_10_5114_bta_2021_108723
crossref_primary_10_1186_s12915_023_01544_y
crossref_primary_10_1042_BCJ20190365
crossref_primary_10_1016_j_ympev_2021_107171
crossref_primary_10_1002_ajb2_1703
crossref_primary_10_7717_peerj_10774
crossref_primary_10_3389_fgene_2020_00802
crossref_primary_10_1002_ajb2_1397
crossref_primary_10_3389_fpls_2018_01447
crossref_primary_10_3390_plants12122237
crossref_primary_10_1002_ajb2_1152
crossref_primary_10_1080_23802359_2019_1617047
crossref_primary_10_1111_jse_12708
crossref_primary_10_1111_jse_12706
crossref_primary_10_1002_ppp3_10159
crossref_primary_10_1016_j_hpj_2022_06_005
crossref_primary_10_1007_s12038_021_00166_2
crossref_primary_10_1016_j_aquabot_2019_05_001
crossref_primary_10_1016_j_tplants_2022_09_009
crossref_primary_10_1002_cyto_a_24295
crossref_primary_10_1080_09670262_2021_1898677
crossref_primary_10_1111_nph_17763
crossref_primary_10_3389_fcell_2022_868352
crossref_primary_10_3390_ijms20122886
crossref_primary_10_1093_jxb_erad241
crossref_primary_10_1016_j_pld_2024_07_007
crossref_primary_10_1016_j_gene_2020_144355
crossref_primary_10_1093_botlinnean_boz020
crossref_primary_10_1186_s12862_019_1384_5
crossref_primary_10_3390_d16070426
crossref_primary_10_3390_biology12081043
crossref_primary_10_1186_s12915_025_02135_9
crossref_primary_10_1038_s41586_019_1693_2
crossref_primary_10_1111_jse_12920
crossref_primary_10_1002_tax_13122
crossref_primary_10_1016_j_cell_2019_10_019
crossref_primary_10_1371_journal_pone_0231020
crossref_primary_10_1093_aob_mcad098
crossref_primary_10_1111_jipb_13224
crossref_primary_10_11110_kjpt_2023_53_3_230
Cites_doi 10.1111/jse.12219
10.1186/s12862-014-0211-2
10.1186/1741-7007-5-2
10.1086/513470
10.1002/tax.563001
10.1093/aob/mcs017
10.3732/ajb.1000404
10.1038/nature12872
10.1016/S0022-2836(05)80360-2
10.1073/pnas.0603335103
10.1126/science.1163197
10.3417/2010023
10.1186/1741-7007-12-11
10.1093/oxfordjournals.molbev.a026290
10.1038/29286
10.1016/S0168-9525(00)02024-2
10.1093/molbev/msk018
10.3732/ajb.91.10.1557
10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2
10.1105/tpc.13.3.645
10.1111/boj.12385
10.1080/10635150050207456
10.1093/bioinformatics/btp348
10.1093/gbe/evr105
10.1111/jse.12229
10.1093/oxfordjournals.molbev.a025702
10.3732/ajb.89.12.1991
10.5642/aliso.20062201.06
10.1093/molbev/mst010
10.1098/rstb.2000.0615
10.3732/ajb.0900384
10.1016/j.cub.2012.07.021
10.1007/s11103-011-9762-4
10.1016/S1360-1385(98)01361-2
10.3732/ajb.0800207
10.1007/BF00985205
10.1073/pnas.97.8.4086
10.2216/i0031-8884-43-1-105.1
10.1093/bioinformatics/btv184
10.1371/journal.pone.0029696
10.1038/46528
10.1073/pnas.092136399
10.3732/ajb.0800178
10.2307/2656759
10.1073/pnas.0907801107
10.1371/journal.pgen.1002411
10.1073/pnas.97.8.4092
10.1073/pnas.032087199
10.1093/molbev/msh203
10.1186/1471-2148-14-23
10.1007/978-3-319-32669-6_41-1
10.1093/oxfordjournals.molbev.a026089
10.2307/3647457
10.1126/science.1065156
10.1111/j.1529-8817.2012.01222.x
10.1007/s11103-009-9545-3
10.5642/aliso.20062201.02
10.1186/1471-2148-9-37
10.1111/boj.12260
10.1111/nph.14772
10.1038/46536
10.1016/j.ympev.2014.11.003
10.1016/j.ympev.2015.12.006
10.1073/pnas.1323926111
10.1093/sysbio/sys001
10.1086/513474
10.1093/molbev/msq170
10.1016/j.plaphy.2010.04.009
ContentType Journal Article
Copyright 2018 Botanical Society of America
2018 Botanical Society of America.
Copyright Botanical Society of America, Inc. Mar 2018
Copyright_xml – notice: 2018 Botanical Society of America
– notice: 2018 Botanical Society of America.
– notice: Copyright Botanical Society of America, Inc. Mar 2018
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7SS
7ST
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1002/ajb2.1048
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Entomology Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Biology
EISSN 1537-2197
EndPage 301
ExternalDocumentID 29603143
10_1002_ajb2_1048
AJB21048
26616899
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
1OC
23M
2AX
2FS
2KS
2WC
33P
4.4
53G
5GY
5VS
6J9
85S
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCUV
ABJNI
ABLJU
ABPLY
ABPPZ
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFO
ACGFS
ACGOD
ACKOT
ACNCT
ACPOU
ACPRK
ACSTJ
ACXBN
ACXQS
ADBBV
ADHUB
ADKYN
ADNWM
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFFNX
AFFPM
AFRAH
AFWVQ
AGFXO
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
BKOMP
CBGCD
CS3
CUYZI
D0L
DCZOG
DEVKO
DRFUL
DRSTM
E.L
E3Z
EBS
ECGQY
EJD
F5P
HGLYW
H~9
IPSME
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
KQ8
L7B
LATKE
LEEKS
LU7
LUTES
LYRES
MEWTI
MV1
N9A
NHB
O9-
OK1
OMK
P2P
P2W
PQQKQ
RHI
ROL
RXW
SA0
SJN
SUPJJ
TAE
TBT
TN5
TR2
UHB
UKR
UPT
USG
W8F
WH7
WIN
WOHZO
WOQ
WXSBR
X6Y
XSW
XZL
YZZ
ZCA
ZUP
ZVN
ZZTAW
~02
~KM
1OB
24P
42X
6TJ
79B
AAHHS
AAYOK
ABCQX
ABDPE
ABEFU
ABTAH
ACCFJ
ACHIC
ADULT
ADZOD
AEEZP
AEQDE
AFQQW
AGNAY
AHXOZ
AI.
AIDAL
AILXY
AIWBW
AJBDE
AQVQM
AS~
BIYOS
C1A
DOOOF
GTFYD
H13
HGD
HQ2
HTVGU
JSODD
K-O
MVM
NEJ
OHT
QZG
RHF
RJQFR
SAMSI
SKT
UQL
VH1
VQA
WHG
WYJ
XOL
YSQ
YV5
YXE
YYP
ZCG
ZY4
AAYXX
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7SS
7ST
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a4978-78684e931324014cedc63df76516139e3b23e5eb2c25d334377a1852aa8793083
IEDL.DBID 24P
ISSN 0002-9122
1537-2197
IngestDate Fri Jul 11 18:26:07 EDT 2025
Fri Jul 11 16:48:13 EDT 2025
Wed Aug 13 09:09:17 EDT 2025
Mon Jul 21 06:01:02 EDT 2025
Tue Jul 01 02:49:32 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 22 16:31:47 EST 2025
Thu Jul 03 21:56:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords morphological innovations
green plants
plastid phylogenomics
transcriptomes
chloroplast phylogeny
Viridiplantae
plant evolution
Language English
License 2018 Botanical Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4978-78684e931324014cedc63df76516139e3b23e5eb2c25d334377a1852aa8793083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7078-4336
0000-0001-6108-5560
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajb2.1048
PMID 29603143
PQID 2075667628
PQPubID 30240
PageCount 11
ParticipantIDs proquest_miscellaneous_2718350939
proquest_miscellaneous_2020489669
proquest_journals_2075667628
pubmed_primary_29603143
crossref_citationtrail_10_1002_ajb2_1048
crossref_primary_10_1002_ajb2_1048
wiley_primary_10_1002_ajb2_1048_AJB21048
jstor_primary_26616899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180301
March 2018
2018-03-00
2018-Mar
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180301
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Columbus
PublicationTitle American journal of botany
PublicationTitleAlternate Am J Bot
PublicationYear 2018
Publisher John Wiley and Sons, Inc
Botanical Society of America, Inc
Publisher_xml – name: John Wiley and Sons, Inc
– name: Botanical Society of America, Inc
References 2004; 21
2012; 61
2010; 97
2000; 49
1999b; 16
2010; 107
2015; 31
2002; 99
2011; 98
1999; 86
2016; 181
2003; 52
1999; 402
1998; 394
1990; 215
2001; 294
2009; 96
2010; 27
2000; 16
2000; 17
2006; 23
2006; 22
2018; 217
2015; 83
2002; 89
1997; 14
2015; 178
2000; 97
2014; 14
2007; 5
2001; 13
2012; 22
2014; 12
2004; 43
2009; 25
2007; 168
2000; 355
2016; 54
2016; 96
2011; 76
1999; 4
1998; 213
2008; 322
2004; 91
2014; 111
2011; 3
2007; 56
2011; 7
2012; 109
1999a; 402
2010; 48
2014; 506
2009; 71
2007; 110
2013; 30
2009; 9
2008; 46
2017
2016
2015
2012; 48
2012; 7
2006; 103
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Qiu Y.‐L. (e_1_2_7_41_1) 2008; 46
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
Podani J. (e_1_2_7_39_1) 2015
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Soltis D. (e_1_2_7_57_1) 2017
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Judd W. S. (e_1_2_7_22_1) 2016
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 56
  start-page: 1E
  year: 2007
  end-page: 44E
  article-title: Towards a phylogenetic nomenclature of Tracheophyta
  publication-title: Taxon
– volume: 355
  start-page: 769
  year: 2000
  end-page: 793
  article-title: Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny
  publication-title: Philosophical Transactions of the Royal Society, B, Biological Sciences
– volume: 96
  start-page: 228
  year: 2009
  end-page: 236
  article-title: Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data
  publication-title: American Journal of Botany
– volume: 98
  start-page: 839
  year: 2011
  end-page: 849
  article-title: Inferring the higher‐order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set
  publication-title: American Journal of Botany
– volume: 43
  start-page: 105
  year: 2004
  end-page: 113
  article-title: Unusual position of the genus Spirotaenia (Zygnematophyceae) among streptophytes revealed by SSU rDNA and sequence comparisons
  publication-title: Phycologia
– volume: 48
  start-page: 636
  year: 2010
  end-page: 645
  article-title: Plastid genes in plant evolution
  publication-title: Plant Physiology and Biochemistry
– volume: 99
  start-page: 4430
  year: 2002
  end-page: 4435
  article-title: Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils
  publication-title: Proceedings of the National Acadamy of Sciences, USA
– volume: 46
  start-page: 287
  year: 2008
  end-page: 306
  article-title: Phylogeny and evolution of charophytic algae and land plants
  publication-title: Journal of Systematics and Evolution
– volume: 96
  start-page: 1551
  year: 2009
  end-page: 1570
  article-title: Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life
  publication-title: American Journal of Botany
– volume: 76
  start-page: 273
  year: 2011
  end-page: 297
  article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function
  publication-title: Plant Molecular Biology
– volume: 3
  start-page: 1340
  year: 2011
  end-page: 1348
  article-title: Systematic error in seed plant phylogenomics
  publication-title: Genome Biology and Evolution
– volume: 294
  start-page: 2351
  year: 2001
  end-page: 2353
  article-title: The closest living relatives of land plants
  publication-title: Science
– volume: 103
  start-page: 15511
  year: 2006
  end-page: 15516
  article-title: The deepest divergences in land plants inferred from phylogenomic evidence
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: e1002411
  year: 2011
  article-title: A functional phylogenomic view of the seed plants
  publication-title: PLOS Genetics
– volume: 86
  start-page: 372
  year: 1999
  end-page: 386
  article-title: Phylogenetic relationships of land plants using mitochondrial small‐subunit rDNA sequences
  publication-title: American Journal of Botany
– volume: 4
  start-page: 26
  year: 1999
  end-page: 30
  article-title: Phylogeny of early land plants: insights from genes and genomes
  publication-title: Trends in Plant Science
– volume: 506
  start-page: 89
  year: 2014
  end-page: 92
  article-title: Three keys to the radiation of angiosperms into freezing environments
  publication-title: Nature
– volume: 16
  start-page: 1774
  year: 1999b
  end-page: 1784
  article-title: The phylogeny of land plants inferredfrom 18S rDNA sequences: pushing the limits of rDNA signal?
  publication-title: Molecular Biology and Evolution
– volume: 99
  start-page: 6848
  year: 2002
  end-page: 6853
  article-title: The root of the angiosperms revisited
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 322
  start-page: 86
  year: 2008
  end-page: 89
  article-title: Rates of molecular evolution are linked to life history in flowering plants
  publication-title: Science
– volume: 31
  start-page: 2577
  year: 2015
  end-page: 2579
  article-title: ExaML version 3: a tool for phylogenomic analyses on supercomputers
  publication-title: Bioinformatics
– volume: 83
  start-page: 156
  year: 2015
  end-page: 166
  article-title: Deep phylogenetic incongruence in the angiosperm clade Rosidae
  publication-title: Molecular Phylogenetics and Evolution
– volume: 213
  start-page: 259
  year: 1998
  end-page: 287
  article-title: Simultaneous parsimony jackknife analysis of 2538 DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants
  publication-title: Plant Systematics and Evolution
– volume: 14
  start-page: 211
  year: 2014
  article-title: Chloroplast phylogenomic analysis resolves deep‐level relationships within the green algal class Trebouxiophyceae
  publication-title: BMC evolutionary biology
– volume: 52
  start-page: 583
  year: 2003
  end-page: 584
  article-title: How many species of seed plants are there? a response
  publication-title: Taxon
– volume: 168
  start-page: 679
  year: 2007
  end-page: 689
  article-title: The green algal ancestry of land plants as revealed by the chloroplast genome
  publication-title: International Journal of Plant Sciences, USA
– volume: 109
  start-page: 851
  year: 2012
  end-page: 871
  article-title: Major transitions in the evolution of early land plants: a bryological perspective
  publication-title: Annals of Botany
– volume: 49
  start-page: 102
  year: 2000
  end-page: 113
  article-title: A comparison of bootstrap, fast bootstrap, and jackknife values in three empirical data sets
  publication-title: Systematic Biology
– volume: 9
  start-page: 37
  year: 2009
  article-title: Mega‐phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches
  publication-title: BMC Evolutionary Biology
– volume: 107
  start-page: 4623
  year: 2010
  end-page: 4628
  article-title: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 111
  start-page: E4859
  year: 2014
  end-page: E4868
  article-title: Phylotranscriptomic analysis of the origin and early diversification of land plants
  publication-title: Proceedings of the National Academy of Sciences
– volume: 110
  start-page: 179
  year: 2007
  end-page: 213
  article-title: Bryophyte phylogeny: advancing the molecular and morphological frontiers
  publication-title: Bryologist
– volume: 91
  start-page: 1557
  year: 2004
  end-page: 1581
  article-title: Phylogeny and diversification of bryophytes
  publication-title: American Journal of Botany
– volume: 217
  start-page: 836
  year: 2018
  end-page: 854
  article-title: Disparity, diversity, and duplications in the Caryophyllales
  publication-title: New Phytologist
– year: 2015
– volume: 13
  start-page: 645
  year: 2001
  end-page: 658
  article-title: Many parallel losses of from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus
  publication-title: Plant Cell Online
– volume: 22
  start-page: 63
  year: 2006
  end-page: 75
  article-title: Multigene analyses of monocot relationships
  publication-title: Aliso
– volume: 97
  start-page: 4086
  year: 2000
  end-page: 4091
  article-title: Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 178
  start-page: 375
  year: 2015
  end-page: 393
  article-title: Phylogenetics, divergence times and diversification from three genomic partitions in monocots
  publication-title: Botanical Journal of the Linnean Society
– volume: 97
  start-page: 584
  year: 2010
  end-page: 616
  article-title: Assembling the tree of the Monocotyledons: plastome sequence phylogeny and evolution of Poales
  publication-title: Annals of the Missouri Botanical Garden
– volume: 23
  start-page: 1324
  year: 2006
  end-page: 1338
  article-title: The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants
  publication-title: Molecular Biology and Evolution
– volume: 61
  start-page: 490
  year: 2012
  end-page: 509
  article-title: Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns
  publication-title: Systematic Biology
– volume: 71
  start-page: 627
  year: 2009
  article-title: Unparalleled GC content in the plastid DNA of
  publication-title: Plant Molecular Biology
– volume: 22
  start-page: 3
  year: 2006
  end-page: 21
  article-title: Robust inference of monocot deep phylogeny using an expanded multigene plastid data set
  publication-title: Aliso
– volume: 17
  start-page: 1885
  year: 2000
  end-page: 1895
  article-title: Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants
  publication-title: Molecular Biology and Evolution
– volume: 48
  start-page: 1057
  year: 2012
  end-page: 1063
  article-title: How many species of algae are there?
  publication-title: Journal of Phycology
– volume: 22
  start-page: 1456
  year: 2012
  end-page: 1457
  article-title: Multigene phylogeny of the green lineage reveals the origin and diversification of land plants
  publication-title: Current Biology
– start-page: 1
  year: 2016
  end-page: 30
– volume: 168
  start-page: 691
  year: 2007
  end-page: 708
  article-title: A nonflowering land plant phylogeny inferred from nucleotide dequences of deven chloroplast, mitochondrial, and nuclear genes
  publication-title: International Journal of Plant Sciences, USA
– volume: 89
  start-page: 1991
  year: 2002
  end-page: 2006
  article-title: Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages
  publication-title: American Journal of Botany
– volume: 402
  start-page: 404
  year: 1999
  end-page: 407
  article-title: The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes
  publication-title: Nature
– volume: 181
  start-page: 1
  year: 2016
  end-page: 20
  article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV
  publication-title: Botanical Journal of the Linnean Society
– volume: 54
  start-page: 563
  year: 2016
  end-page: 603
  article-title: A community‐derived classification for extant lycophytes and ferns
  publication-title: Journal of Systematics and Evolution
– year: 2016
– volume: 27
  start-page: 2855
  year: 2010
  end-page: 2863
  article-title: The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics
  publication-title: Molecular Biology and Evolution
– volume: 5
  start-page: 2
  year: 2007
  article-title: A clade uniting the green algae and represents the deepest branch of the Streptophyta in chloroplast genome‐based phylogenies
  publication-title: BMC Biology
– volume: 54
  start-page: 277
  year: 2016
  end-page: 306
  article-title: Tree of life for the genera of Chinese vascular plants
  publication-title: Journal of Systematics and Evolution
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Molecular Biology and Evolution
– volume: 98
  start-page: 704
  year: 2011
  end-page: 730
  article-title: Angiosperm phylogeny: 17 genes, 640 taxa
  publication-title: American Journal of Botany
– volume: 7
  start-page: e29696
  year: 2012
  article-title: Broad phylogenomic sampling and the sister lineage of land plants
  publication-title: PLOS ONE
– volume: 14
  start-page: 56
  year: 1997
  end-page: 58
  article-title: Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences
  publication-title: Molecular Biology and Evolution
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  article-title: Basic local alignment search tool
  publication-title: Journal of Molecular Biology
– volume: 25
  start-page: 1972
  year: 2009
  end-page: 1973
  article-title: trimAl: a tool for automated alignment trimming in large‐scale phylogenetic analyses
  publication-title: Bioinformatics
– volume: 97
  start-page: 4092
  year: 2000
  end-page: 4097
  article-title: Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers
  publication-title: Proceedings of the National Academy of Sciences
– volume: 96
  start-page: 93
  year: 2016
  end-page: 101
  article-title: Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early‐diverging eudicots, including an angiosperm‐wide analysis of IR gene content evolution
  publication-title: Molecular Phylogenetics and Evolution
– volume: 12
  start-page: 11
  year: 2014
  article-title: Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there
  publication-title: BMC Biology
– volume: 21
  start-page: 1813
  year: 2004
  end-page: 1819
  article-title: Chloroplast phylogeny indicates that bryophytes are monophyletic
  publication-title: Molecular Biology and Evolution
– volume: 14
  start-page: 23
  year: 2014
  article-title: From algae to angiosperms—inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes
  publication-title: BMC Evolutionary Biology
– year: 2017
– volume: 16
  start-page: 276
  year: 2000
  end-page: 277
  article-title: EMBOSS: the European molecular biology open software suite
  publication-title: Trends in Genetics
– volume: 394
  start-page: 671
  year: 1998
  end-page: 674
  article-title: The gain of three mitochondrial introns identifies liverworts as the earliest land plants
  publication-title: Nature
– volume: 402
  start-page: 402
  year: 1999a
  end-page: 404
  article-title: Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology
  publication-title: Nature
– ident: e_1_2_7_11_1
  doi: 10.1111/jse.12219
– ident: e_1_2_7_29_1
  doi: 10.1186/s12862-014-0211-2
– ident: e_1_2_7_28_1
  doi: 10.1186/1741-7007-5-2
– ident: e_1_2_7_66_1
  doi: 10.1086/513470
– ident: e_1_2_7_5_1
  doi: 10.1002/tax.563001
– ident: e_1_2_7_30_1
  doi: 10.1093/aob/mcs017
– ident: e_1_2_7_58_1
  doi: 10.3732/ajb.1000404
– ident: e_1_2_7_71_1
  doi: 10.1038/nature12872
– volume-title: A növények evolúciója és osztályozása
  year: 2015
  ident: e_1_2_7_39_1
– ident: e_1_2_7_2_1
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.0603335103
– ident: e_1_2_7_56_1
  doi: 10.1126/science.1163197
– ident: e_1_2_7_15_1
  doi: 10.3417/2010023
– ident: e_1_2_7_12_1
  doi: 10.1186/1741-7007-12-11
– ident: e_1_2_7_37_1
  doi: 10.1093/oxfordjournals.molbev.a026290
– ident: e_1_2_7_42_1
  doi: 10.1038/29286
– ident: e_1_2_7_49_1
  doi: 10.1016/S0168-9525(00)02024-2
– ident: e_1_2_7_65_1
  doi: 10.1093/molbev/msk018
– ident: e_1_2_7_52_1
  doi: 10.3732/ajb.91.10.1557
– volume-title: Plant systematics: a phylogenetic approach
  year: 2016
  ident: e_1_2_7_22_1
– ident: e_1_2_7_48_1
  doi: 10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2
– ident: e_1_2_7_34_1
  doi: 10.1105/tpc.13.3.645
– volume: 46
  start-page: 287
  year: 2008
  ident: e_1_2_7_41_1
  article-title: Phylogeny and evolution of charophytic algae and land plants
  publication-title: Journal of Systematics and Evolution
– ident: e_1_2_7_3_1
  doi: 10.1111/boj.12385
– ident: e_1_2_7_35_1
  doi: 10.1080/10635150050207456
– ident: e_1_2_7_6_1
  doi: 10.1093/bioinformatics/btp348
– ident: e_1_2_7_72_1
  doi: 10.1093/gbe/evr105
– ident: e_1_2_7_40_1
  doi: 10.1111/jse.12229
– ident: e_1_2_7_10_1
  doi: 10.1093/oxfordjournals.molbev.a025702
– ident: e_1_2_7_31_1
  doi: 10.3732/ajb.89.12.1991
– ident: e_1_2_7_8_1
  doi: 10.5642/aliso.20062201.06
– ident: e_1_2_7_25_1
  doi: 10.1093/molbev/mst010
– ident: e_1_2_7_47_1
  doi: 10.1098/rstb.2000.0615
– ident: e_1_2_7_7_1
  doi: 10.3732/ajb.0900384
– ident: e_1_2_7_14_1
  doi: 10.1016/j.cub.2012.07.021
– ident: e_1_2_7_67_1
  doi: 10.1007/s11103-011-9762-4
– ident: e_1_2_7_46_1
  doi: 10.1016/S1360-1385(98)01361-2
– ident: e_1_2_7_69_1
  doi: 10.3732/ajb.0800207
– ident: e_1_2_7_23_1
  doi: 10.1007/BF00985205
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.97.8.4086
– ident: e_1_2_7_16_1
  doi: 10.2216/i0031-8884-43-1-105.1
– ident: e_1_2_7_26_1
  doi: 10.1093/bioinformatics/btv184
– ident: e_1_2_7_64_1
  doi: 10.1371/journal.pone.0029696
– ident: e_1_2_7_59_1
  doi: 10.1038/46528
– ident: e_1_2_7_70_1
  doi: 10.1073/pnas.092136399
– ident: e_1_2_7_33_1
  doi: 10.3732/ajb.0800178
– volume-title: Phylogeny and evolution of the Angiosperms: revised and updated edition
  year: 2017
  ident: e_1_2_7_57_1
– ident: e_1_2_7_13_1
  doi: 10.2307/2656759
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.0907801107
– ident: e_1_2_7_27_1
  doi: 10.1371/journal.pgen.1002411
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.97.8.4092
– ident: e_1_2_7_60_1
  doi: 10.1073/pnas.032087199
– ident: e_1_2_7_38_1
  doi: 10.1093/molbev/msh203
– ident: e_1_2_7_51_1
  doi: 10.1186/1471-2148-14-23
– ident: e_1_2_7_20_1
  doi: 10.1007/978-3-319-32669-6_41-1
– ident: e_1_2_7_61_1
  doi: 10.1093/oxfordjournals.molbev.a026089
– ident: e_1_2_7_17_1
  doi: 10.2307/3647457
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1065156
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1529-8817.2012.01222.x
– ident: e_1_2_7_53_1
  doi: 10.1007/s11103-009-9545-3
– ident: e_1_2_7_18_1
  doi: 10.5642/aliso.20062201.02
– ident: e_1_2_7_54_1
  doi: 10.1186/1471-2148-9-37
– ident: e_1_2_7_21_1
  doi: 10.1111/boj.12260
– ident: e_1_2_7_55_1
  doi: 10.1111/nph.14772
– ident: e_1_2_7_43_1
  doi: 10.1038/46536
– ident: e_1_2_7_62_1
  doi: 10.1016/j.ympev.2014.11.003
– ident: e_1_2_7_63_1
  doi: 10.1016/j.ympev.2015.12.006
– ident: e_1_2_7_68_1
  doi: 10.1073/pnas.1323926111
– ident: e_1_2_7_50_1
  doi: 10.1093/sysbio/sys001
– ident: e_1_2_7_44_1
  doi: 10.1086/513474
– ident: e_1_2_7_73_1
  doi: 10.1093/molbev/msq170
– ident: e_1_2_7_32_1
  doi: 10.1016/j.plaphy.2010.04.009
SSID ssj0009492
Score 2.6212606
Snippet Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary...
For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain...
Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary...
PREMISE OF THE STUDY: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 291
SubjectTerms Amborella
Amino Acid Sequence
Amino Acids
Angiosperms
Aquatic plants
Biological Evolution
Biology
Biometrics
Bryophyta
Bryophyta - genetics
Ceratophyllum
Chloranthales
chloroplast phylogeny
Classification
Conifers
Conjugatophyceae
Cycadopsida - genetics
data collection
Datasets as Topic
Dating techniques
Dilleniaceae
Divergence
DNA, Plant - analysis
Equisetum
Evolution
Evolution, Molecular
Evolutionary genetics
Ferns
Ferns - genetics
Floating plants
Flowers & plants
Gene sequencing
Genes, Plant
Genome, Plant
Genome, Plastid
Genomes
Genomics - methods
Ginkgo
Ginkgo biloba - genetics
Gnetophyta - genetics
green plants
Gymnosperms
INVITED SPECIAL ARTICLE: For the Special Issue: Using and Navigating the Plant Tree of Life
Liliopsida
Macroevolution
Magnoliopsida - genetics
Marattiales
Molecular chains
morphological innovations
Nymphaeales
Phylogenetics
Phylogeny
plant evolution
Plant Proteins - genetics
plastid genome
plastid phylogenomics
Plastids - genetics
Plastomes
Proteins
Psilotaceae
transcriptome
transcriptomes
Viridiplantae
Viridiplantae - genetics
Subtitle A billion years of evolutionary history
Title Plastid phylogenomic analysis of green plants
URI https://www.jstor.org/stable/26616899
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajb2.1048
https://www.ncbi.nlm.nih.gov/pubmed/29603143
https://www.proquest.com/docview/2075667628
https://www.proquest.com/docview/2020489669
https://www.proquest.com/docview/2718350939
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9z-uCL-O10ShQffCmrSdom-jRFGRNlghPfStJmokgrOoX9996lH2MwxZdS6AXau1zyu_Tud4Qchyk2b2DKY0nkewLgm2eSU-4xPRKJDQMjHU_37V3YG4r-U_DUIOdVLUzBD1EfuKFnuPUaHVybz86UNFS_QkwIwYRcIItYWov5fEwMpoy7QrEK-6pTxipaIZ916qEzm1GRjzgPac4CV7fzXK-SlRIy0m5h4zXSsNk6WbrIAdZNNsjjAPDv-CWloC9Yx6wrM6a65Bqh-Yg-Y2oNfX_DjJcz2qUGj1jyjE5gkjsB-13OP1AGLQiIJ5tkeH31cNnzymYJnsYmcV4kQymsQiZGCJlAz2kS8nQUhQFgOq4sN4zbAOLohAUp54JHkcbCaa0luCgAsS3SzPLM7hAqfa00A4ulSSQkd5z4esQD4wuthPFb5KTSWpyUTOLY0OItLjiQWYwKjlHBLXJUi74X9BnzhLac6msJBA0hBIIt0q5sEZeu9RkzADmYmMtg3GH9GJwC_3TozOZfKIN8xBDJqT9kYFfmAJc4yGwXdp6-gMLm24LDlzrD__7ucbd_wfBm9_-ie2QZYJcsMtnapDn--LL7AG3G5sBNYbje3MsfG_rwFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50FfQivl1dNYoHL8WapI-Il1WU9bHiQcVbSdusKNIuuivsv3cmfSwLKt4K_QLtTKb5Jp18A3Dgp9S8gSuHJ4HrSKRvTpwcC4frnkyM78Wh1enu3vmdR3n97D1PwWl1FqbQh6g33Cgy7PeaApw2pI_GqqH6DZNCzCbCaZiRPg-ofwGX92PJXal4RX7VMeeVrpDLj-qhE6tRUZD4E9WcZK526blchIWSM7J24eQlmDLZMsye5cjrRivwdI8EePCaMjQYfsiMPWfMdCk2wvIee6HaGtZ_p5KXE9ZmMe2x5Bkb4Sy3APNVTkC0BisUiEer8Hh58XDeccpuCY6mLnFOEPqhNIqkGDFnQkOniS_SXuB7SOqEMiLmwniYSCfcS4WQIgg0nZzWOsQYRSa2Bo0sz8wGsNDVSnN0WZoEMhRWFF_3hBe7UisZu004rKwWJaWUOHW0eI8KEWQekYEjMnAT9mtov9DP-Am0Zk1fI4g1-JgJNqFV-SIqY-sz4shyqDKX47i9-jZGBf3q0JnJh4QhQWJM5dQfGFyWBfIlgZj1ws_jB1DUfVsKfFPr-N-fPWpfn3G62Pw_dBfmOg_d2-j26u5mC-aRg4VFWVsLGoOPodlGnjOId-x0_gZxOPKN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB68EF_E2_WM4oMvxW6SHtGn9Vi82QcV30rapqJIu-gq7L93Jj0WQcW3Qr9AO5Npvmkm3wDs-Sk1b-DK4UngOhLpmxMnbeFwncnE-F4cWp3um1v__F5ePnqPY3BUn4Up9SGaH24UGfZ7TQHeT7ODkWiofsGcEJOJcBwmabOP6rm47I0Ud6XiNfdVbc5rWSGXHzRDvy1GZT3iT0zzO3G1K093DmYrysg6pY_nYczkCzB1XCCtGy7CQw_57-A5ZWgv_I4Ze8yY6UprhBUZe6LSGtZ_pYqXQ9ZhMf1iKXI2xEluAeazmn9oDFYKEA-X4L57dndy7lTNEhxNTeKcIPRDaRQpMWLKhHZOE1-kWeB7yOmEMiLmwniYRyfcS4WQIgg0HZzWOsQQRSK2DBN5kZtVYKGrlebosTQJZCisJr7OhBe7UisZuy3Yr60WJZWSODW0eI1KDWQekYEjMnALdhtov5TP-Am0bE3fIIg0-JgItmCj9kVUhdZ7xJHkUGEux3E7zW0MCtrp0LkpPghDesSYyak_MLgqC6RLAjErpZ9HD6Co-bYU-KbW8b8_e9S5POZ0sfZ_6DZM90670fXF7dU6zCADC8uitg2YGLx9mE1kOYN4y87mLw2H8b8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plastid+phylogenomic+analysis+of+green+plants%3A+A+billion+years+of+evolutionary+history&rft.jtitle=American+journal+of+botany&rft.au=Gitzendanner%2C+Matthew+A&rft.au=Soltis%2C+Pamela+S&rft.au=Wong%2C+Gane+K-S&rft.au=Ruhfel%2C+Brad+R&rft.date=2018-03-01&rft.eissn=1537-2197&rft.volume=105&rft.issue=3&rft.spage=291&rft_id=info:doi/10.1002%2Fajb2.1048&rft_id=info%3Apmid%2F29603143&rft.externalDocID=29603143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9122&client=summon