Plastid phylogenomic analysis of green plants A billion years of evolutionary history
Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylo...
Saved in:
Published in | American journal of botany Vol. 105; no. 3; pp. 291 - 301 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley and Sons, Inc
01.03.2018
Botanical Society of America, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Premise of the Study
For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes.
Methods
We analyzed amino acid sequences from protein‐coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank.
Key Results
Our results largely agree with previous plastid‐based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non‐Pinaceae (Gne‐Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered.
Conclusions
This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome. |
---|---|
AbstractList | Premise of the Study
For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes.
Methods
We analyzed amino acid sequences from protein‐coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank.
Key Results
Our results largely agree with previous plastid‐based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non‐Pinaceae (Gne‐Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered.
Conclusions
This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome. For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome. PREMISE OF THE STUDY: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. METHODS: We analyzed amino acid sequences from protein‐coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. KEY RESULTS: Our results largely agree with previous plastid‐based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non‐Pinaceae (Gne‐Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. CONCLUSIONS: This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome. For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes.PREMISE OF THE STUDYFor the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes.We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank.METHODSWe analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank.Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered.KEY RESULTSOur results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered.This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.CONCLUSIONSThis plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome. |
Author | Ruhfel, Brad R. Soltis, Pamela S. Wong, Gane K.-S. Soltis, Douglas E. Gitzendanner, Matthew A. |
Author_xml | – sequence: 1 givenname: Matthew A. surname: Gitzendanner fullname: Gitzendanner, Matthew A. – sequence: 2 givenname: Pamela S. surname: Soltis fullname: Soltis, Pamela S. – sequence: 3 givenname: Gane K.-S. surname: Wong fullname: Wong, Gane K.-S. – sequence: 4 givenname: Brad R. surname: Ruhfel fullname: Ruhfel, Brad R. – sequence: 5 givenname: Douglas E. surname: Soltis fullname: Soltis, Douglas E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29603143$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOwzAQRS0Eog9Y8AGgSGxgEWp7Ej-WpeKpSrCAteUkbnGVxsVOhfr3JGoqpArEajzyudfjuQN0WLnKIHRG8A3BmI70IqPNKREHqE9S4DElkh-iPm4uY0ko7aFBCIumlYmkx6hHJcNAEuij-LXUobZFtPrYlG5uKre0eaQrXW6CDZGbRXNvTBWtSl3V4QQdzXQZzGlXh-j9_u5t8hhPXx6eJuNprBPJRcwFE4mRQIAmmCS5KXIGxYyzlDAC0kBGwaQmozlNC4AEONdEpFRrwSVgAUN0tfVdefe5NqFWSxtyUzZDGLcOinIiIMUS5P8ops1iJGMtermHLtzaN19tKZ4yxhlt377oqHW2NIVaebvUfqN2O2uA0RbIvQvBm5nKba1r66raa1sqglWbimpTUW0qjeJ6T7Ez_Y3t3L9saTZ_g2r8fEs7xflWsQi18z_zMkaYkBK-AUjroEo |
CitedBy_id | crossref_primary_10_1093_botlinnean_boaa077 crossref_primary_10_1186_s12862_019_1479_z crossref_primary_10_1186_s12870_024_05905_9 crossref_primary_10_3390_ijms242115634 crossref_primary_10_2174_1381612828666220406125132 crossref_primary_10_1016_j_ympev_2019_02_024 crossref_primary_10_1002_ajb2_1479 crossref_primary_10_1186_s12864_018_4633_x crossref_primary_10_1016_j_biotechadv_2020_107671 crossref_primary_10_1007_s00606_020_01690_8 crossref_primary_10_1186_s12870_022_03946_6 crossref_primary_10_1016_j_ympev_2023_107826 crossref_primary_10_3389_fpls_2024_1500607 crossref_primary_10_1093_aob_mcab021 crossref_primary_10_3390_d17020136 crossref_primary_10_1016_j_ympev_2022_107544 crossref_primary_10_1080_07352689_2019_1650517 crossref_primary_10_1111_tpj_16097 crossref_primary_10_1371_journal_pone_0302365 crossref_primary_10_1111_pbi_13556 crossref_primary_10_1016_j_ympev_2019_02_018 crossref_primary_10_1186_s12859_021_04309_y crossref_primary_10_1016_j_pld_2020_09_005 crossref_primary_10_1186_s12862_019_1361_z crossref_primary_10_1111_nph_16486 crossref_primary_10_1080_23802359_2024_2350619 crossref_primary_10_1002_ajb2_1469 crossref_primary_10_1007_s10265_022_01417_5 crossref_primary_10_1002_ajb2_1468 crossref_primary_10_1038_s41576_023_00620_x crossref_primary_10_7717_peerj_6563 crossref_primary_10_1615_InterJAlgae_v26_i3_30 crossref_primary_10_3389_fpls_2022_967456 crossref_primary_10_1016_j_ympev_2020_106903 crossref_primary_10_1016_j_phytochem_2019_03_023 crossref_primary_10_1038_s41477_018_0344_1 crossref_primary_10_1016_j_ympev_2022_107432 crossref_primary_10_1002_ece3_10868 crossref_primary_10_1111_cla_12396 crossref_primary_10_1134_S1062360419060080 crossref_primary_10_1098_rspb_2018_1012 crossref_primary_10_3390_ijms24032566 crossref_primary_10_1007_s44281_023_00026_z crossref_primary_10_1371_journal_pone_0286144 crossref_primary_10_1186_s12864_023_09607_8 crossref_primary_10_1093_jxb_erad044 crossref_primary_10_1371_journal_pone_0279849 crossref_primary_10_1098_rspb_2019_0099 crossref_primary_10_3389_fevo_2022_1082639 crossref_primary_10_1016_j_ympev_2024_108093 crossref_primary_10_5586_asbp_8937 crossref_primary_10_1093_plphys_kiac390 crossref_primary_10_1016_j_ympev_2025_108325 crossref_primary_10_1155_2019_7417239 crossref_primary_10_1093_sysbio_syad029 crossref_primary_10_1093_plphys_kiac153 crossref_primary_10_1080_23802359_2024_2383680 crossref_primary_10_1038_s41467_022_28449_8 crossref_primary_10_1155_2020_1732586 crossref_primary_10_3390_ijms241914735 crossref_primary_10_1186_s12870_020_02518_w crossref_primary_10_1186_s12870_019_1896_6 crossref_primary_10_1111_pre_12576 crossref_primary_10_1186_s12915_021_01166_2 crossref_primary_10_1186_s12859_020_3475_0 crossref_primary_10_3389_fpls_2020_00376 crossref_primary_10_1093_icb_icac150 crossref_primary_10_1111_jse_12727 crossref_primary_10_2174_1389202924666221201140603 crossref_primary_10_3390_agronomy13061454 crossref_primary_10_1016_j_ympev_2021_107232 crossref_primary_10_3390_plants10020283 crossref_primary_10_3390_genes14091743 crossref_primary_10_1016_j_ympev_2021_107341 crossref_primary_10_3389_fpls_2019_01035 crossref_primary_10_3390_plants9030358 crossref_primary_10_4236_cmb_2022_121004 crossref_primary_10_1111_jse_12537 crossref_primary_10_7717_peerj_8392 crossref_primary_10_3390_horticulturae10010007 crossref_primary_10_1080_23802359_2023_2252944 crossref_primary_10_1111_jse_12533 crossref_primary_10_3390_ijms19123780 crossref_primary_10_3389_fpls_2022_1047592 crossref_primary_10_3389_fpls_2021_781793 crossref_primary_10_7717_peerj_7747 crossref_primary_10_3389_fpls_2022_808156 crossref_primary_10_1111_jipb_13609 crossref_primary_10_1111_nph_17135 crossref_primary_10_1002_ece3_70838 crossref_primary_10_3389_fpls_2024_1328080 crossref_primary_10_1093_gbe_evz004 crossref_primary_10_1007_s11295_022_01541_2 crossref_primary_10_1186_s12870_023_04663_4 crossref_primary_10_1002_aps3_1038 crossref_primary_10_1038_s41396_018_0303_x crossref_primary_10_1111_tpj_16142 crossref_primary_10_1111_jse_13164 crossref_primary_10_1111_njb_02072 crossref_primary_10_1371_journal_pone_0301346 crossref_primary_10_1080_23802359_2024_2389918 crossref_primary_10_1016_j_revpalbo_2025_105314 crossref_primary_10_1093_aob_mcad137 crossref_primary_10_3390_genes14101894 crossref_primary_10_3390_sym14071288 crossref_primary_10_1016_j_ympev_2023_107808 crossref_primary_10_3390_molecules23061276 crossref_primary_10_3389_fpls_2021_662715 crossref_primary_10_1016_j_tplants_2019_07_011 crossref_primary_10_1080_23802359_2024_2392759 crossref_primary_10_1016_j_aquabot_2022_103530 crossref_primary_10_3390_genes13040570 crossref_primary_10_1080_23802359_2021_2002211 crossref_primary_10_1038_s41477_019_0421_0 crossref_primary_10_1111_nph_16261 crossref_primary_10_1016_j_ympev_2019_05_022 crossref_primary_10_1017_S0960258522000046 crossref_primary_10_1007_s10265_023_01514_z crossref_primary_10_3390_d14100782 crossref_primary_10_1111_tpj_15157 crossref_primary_10_1016_j_ympev_2018_06_043 crossref_primary_10_1186_s12870_022_03991_1 crossref_primary_10_1093_sysbio_syy086 crossref_primary_10_1111_cla_12419 crossref_primary_10_1111_jse_12579 crossref_primary_10_3389_fpls_2022_768810 crossref_primary_10_1093_hr_uhae330 crossref_primary_10_1016_j_pld_2023_02_004 crossref_primary_10_1038_s41598_021_91071_z crossref_primary_10_1016_j_pld_2018_06_005 crossref_primary_10_1111_nph_19595 crossref_primary_10_1002_ajb2_1623 crossref_primary_10_1177_00368504241272741 crossref_primary_10_2478_dim_2019_0002 crossref_primary_10_7717_peerj_8225 crossref_primary_10_7717_peerj_9315 crossref_primary_10_1002_ajb2_16175 crossref_primary_10_1002_ajb2_1071 crossref_primary_10_1002_ajb2_1070 crossref_primary_10_1093_aob_mcae003 crossref_primary_10_1016_j_japb_2023_03_002 crossref_primary_10_1111_1755_0998_13104 crossref_primary_10_1093_gbe_evy189 crossref_primary_10_1186_s12870_022_03750_2 crossref_primary_10_1007_s11295_022_01556_9 crossref_primary_10_1016_j_ympev_2024_108255 crossref_primary_10_1038_s41559_020_1221_7 crossref_primary_10_3390_md18040228 crossref_primary_10_1111_nph_18006 crossref_primary_10_1186_s12870_024_05669_2 crossref_primary_10_1007_s00239_020_09987_5 crossref_primary_10_1177_11769343231210756 crossref_primary_10_3389_fpls_2020_01062 crossref_primary_10_1007_s12229_023_09287_9 crossref_primary_10_1038_s42003_021_01933_5 crossref_primary_10_1002_tax_13167 crossref_primary_10_1016_j_protis_2024_126073 crossref_primary_10_1002_aps3_1216 crossref_primary_10_3389_fpls_2023_1144406 crossref_primary_10_3389_fpls_2022_909768 crossref_primary_10_1016_j_xplc_2020_100027 crossref_primary_10_1093_molbev_msaa160 crossref_primary_10_1016_j_ympev_2019_106601 crossref_primary_10_1016_j_ympev_2022_107581 crossref_primary_10_3389_fpls_2023_1125107 crossref_primary_10_3389_fpls_2022_1100302 crossref_primary_10_3390_horticulturae9070796 crossref_primary_10_3389_fgene_2022_867736 crossref_primary_10_1186_s12870_022_03492_1 crossref_primary_10_1038_s41598_023_46017_y crossref_primary_10_1093_sysbio_syab035 crossref_primary_10_1038_s41438_021_00471_9 crossref_primary_10_1002_ajb2_1041 crossref_primary_10_1186_s12915_024_01878_1 crossref_primary_10_1016_j_pld_2018_07_002 crossref_primary_10_3390_plants9040432 crossref_primary_10_5114_bta_2021_108723 crossref_primary_10_1186_s12915_023_01544_y crossref_primary_10_1042_BCJ20190365 crossref_primary_10_1016_j_ympev_2021_107171 crossref_primary_10_1002_ajb2_1703 crossref_primary_10_7717_peerj_10774 crossref_primary_10_3389_fgene_2020_00802 crossref_primary_10_1002_ajb2_1397 crossref_primary_10_3389_fpls_2018_01447 crossref_primary_10_3390_plants12122237 crossref_primary_10_1002_ajb2_1152 crossref_primary_10_1080_23802359_2019_1617047 crossref_primary_10_1111_jse_12708 crossref_primary_10_1111_jse_12706 crossref_primary_10_1002_ppp3_10159 crossref_primary_10_1016_j_hpj_2022_06_005 crossref_primary_10_1007_s12038_021_00166_2 crossref_primary_10_1016_j_aquabot_2019_05_001 crossref_primary_10_1016_j_tplants_2022_09_009 crossref_primary_10_1002_cyto_a_24295 crossref_primary_10_1080_09670262_2021_1898677 crossref_primary_10_1111_nph_17763 crossref_primary_10_3389_fcell_2022_868352 crossref_primary_10_3390_ijms20122886 crossref_primary_10_1093_jxb_erad241 crossref_primary_10_1016_j_pld_2024_07_007 crossref_primary_10_1016_j_gene_2020_144355 crossref_primary_10_1093_botlinnean_boz020 crossref_primary_10_1186_s12862_019_1384_5 crossref_primary_10_3390_d16070426 crossref_primary_10_3390_biology12081043 crossref_primary_10_1186_s12915_025_02135_9 crossref_primary_10_1038_s41586_019_1693_2 crossref_primary_10_1111_jse_12920 crossref_primary_10_1002_tax_13122 crossref_primary_10_1016_j_cell_2019_10_019 crossref_primary_10_1371_journal_pone_0231020 crossref_primary_10_1093_aob_mcad098 crossref_primary_10_1111_jipb_13224 crossref_primary_10_11110_kjpt_2023_53_3_230 |
Cites_doi | 10.1111/jse.12219 10.1186/s12862-014-0211-2 10.1186/1741-7007-5-2 10.1086/513470 10.1002/tax.563001 10.1093/aob/mcs017 10.3732/ajb.1000404 10.1038/nature12872 10.1016/S0022-2836(05)80360-2 10.1073/pnas.0603335103 10.1126/science.1163197 10.3417/2010023 10.1186/1741-7007-12-11 10.1093/oxfordjournals.molbev.a026290 10.1038/29286 10.1016/S0168-9525(00)02024-2 10.1093/molbev/msk018 10.3732/ajb.91.10.1557 10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2 10.1105/tpc.13.3.645 10.1111/boj.12385 10.1080/10635150050207456 10.1093/bioinformatics/btp348 10.1093/gbe/evr105 10.1111/jse.12229 10.1093/oxfordjournals.molbev.a025702 10.3732/ajb.89.12.1991 10.5642/aliso.20062201.06 10.1093/molbev/mst010 10.1098/rstb.2000.0615 10.3732/ajb.0900384 10.1016/j.cub.2012.07.021 10.1007/s11103-011-9762-4 10.1016/S1360-1385(98)01361-2 10.3732/ajb.0800207 10.1007/BF00985205 10.1073/pnas.97.8.4086 10.2216/i0031-8884-43-1-105.1 10.1093/bioinformatics/btv184 10.1371/journal.pone.0029696 10.1038/46528 10.1073/pnas.092136399 10.3732/ajb.0800178 10.2307/2656759 10.1073/pnas.0907801107 10.1371/journal.pgen.1002411 10.1073/pnas.97.8.4092 10.1073/pnas.032087199 10.1093/molbev/msh203 10.1186/1471-2148-14-23 10.1007/978-3-319-32669-6_41-1 10.1093/oxfordjournals.molbev.a026089 10.2307/3647457 10.1126/science.1065156 10.1111/j.1529-8817.2012.01222.x 10.1007/s11103-009-9545-3 10.5642/aliso.20062201.02 10.1186/1471-2148-9-37 10.1111/boj.12260 10.1111/nph.14772 10.1038/46536 10.1016/j.ympev.2014.11.003 10.1016/j.ympev.2015.12.006 10.1073/pnas.1323926111 10.1093/sysbio/sys001 10.1086/513474 10.1093/molbev/msq170 10.1016/j.plaphy.2010.04.009 |
ContentType | Journal Article |
Copyright | 2018 Botanical Society of America 2018 Botanical Society of America. Copyright Botanical Society of America, Inc. Mar 2018 |
Copyright_xml | – notice: 2018 Botanical Society of America – notice: 2018 Botanical Society of America. – notice: Copyright Botanical Society of America, Inc. Mar 2018 |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7SN 7SS 7ST 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1002/ajb2.1048 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Biology |
EISSN | 1537-2197 |
EndPage | 301 |
ExternalDocumentID | 29603143 10_1002_ajb2_1048 AJB21048 26616899 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 1OC 23M 2AX 2FS 2KS 2WC 33P 4.4 53G 5GY 5VS 6J9 85S AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCUV ABJNI ABLJU ABPLY ABPPZ ABTLG ABXSQ ACAHQ ACCZN ACGFO ACGFS ACGOD ACKOT ACNCT ACPOU ACPRK ACSTJ ACXBN ACXQS ADBBV ADHUB ADKYN ADNWM ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUPB AEUYR AEYWJ AFAZZ AFFNX AFFPM AFRAH AFWVQ AGFXO AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BKOMP CBGCD CS3 CUYZI D0L DCZOG DEVKO DRFUL DRSTM E.L E3Z EBS ECGQY EJD F5P HGLYW H~9 IPSME JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST KQ8 L7B LATKE LEEKS LU7 LUTES LYRES MEWTI MV1 N9A NHB O9- OK1 OMK P2P P2W PQQKQ RHI ROL RXW SA0 SJN SUPJJ TAE TBT TN5 TR2 UHB UKR UPT USG W8F WH7 WIN WOHZO WOQ WXSBR X6Y XSW XZL YZZ ZCA ZUP ZVN ZZTAW ~02 ~KM 1OB 24P 42X 6TJ 79B AAHHS AAYOK ABCQX ABDPE ABEFU ABTAH ACCFJ ACHIC ADULT ADZOD AEEZP AEQDE AFQQW AGNAY AHXOZ AI. AIDAL AILXY AIWBW AJBDE AQVQM AS~ BIYOS C1A DOOOF GTFYD H13 HGD HQ2 HTVGU JSODD K-O MVM NEJ OHT QZG RHF RJQFR SAMSI SKT UQL VH1 VQA WHG WYJ XOL YSQ YV5 YXE YYP ZCG ZY4 AAYXX ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QL 7SN 7SS 7ST 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a4978-78684e931324014cedc63df76516139e3b23e5eb2c25d334377a1852aa8793083 |
IEDL.DBID | 24P |
ISSN | 0002-9122 1537-2197 |
IngestDate | Fri Jul 11 18:26:07 EDT 2025 Fri Jul 11 16:48:13 EDT 2025 Wed Aug 13 09:09:17 EDT 2025 Mon Jul 21 06:01:02 EDT 2025 Tue Jul 01 02:49:32 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 22 16:31:47 EST 2025 Thu Jul 03 21:56:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | morphological innovations green plants plastid phylogenomics transcriptomes chloroplast phylogeny Viridiplantae plant evolution |
Language | English |
License | 2018 Botanical Society of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4978-78684e931324014cedc63df76516139e3b23e5eb2c25d334377a1852aa8793083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7078-4336 0000-0001-6108-5560 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajb2.1048 |
PMID | 29603143 |
PQID | 2075667628 |
PQPubID | 30240 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2718350939 proquest_miscellaneous_2020489669 proquest_journals_2075667628 pubmed_primary_29603143 crossref_citationtrail_10_1002_ajb2_1048 crossref_primary_10_1002_ajb2_1048 wiley_primary_10_1002_ajb2_1048_AJB21048 jstor_primary_26616899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180301 March 2018 2018-03-00 2018-Mar |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180301 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Columbus |
PublicationTitle | American journal of botany |
PublicationTitleAlternate | Am J Bot |
PublicationYear | 2018 |
Publisher | John Wiley and Sons, Inc Botanical Society of America, Inc |
Publisher_xml | – name: John Wiley and Sons, Inc – name: Botanical Society of America, Inc |
References | 2004; 21 2012; 61 2010; 97 2000; 49 1999b; 16 2010; 107 2015; 31 2002; 99 2011; 98 1999; 86 2016; 181 2003; 52 1999; 402 1998; 394 1990; 215 2001; 294 2009; 96 2010; 27 2000; 16 2000; 17 2006; 23 2006; 22 2018; 217 2015; 83 2002; 89 1997; 14 2015; 178 2000; 97 2014; 14 2007; 5 2001; 13 2012; 22 2014; 12 2004; 43 2009; 25 2007; 168 2000; 355 2016; 54 2016; 96 2011; 76 1999; 4 1998; 213 2008; 322 2004; 91 2014; 111 2011; 3 2007; 56 2011; 7 2012; 109 1999a; 402 2010; 48 2014; 506 2009; 71 2007; 110 2013; 30 2009; 9 2008; 46 2017 2016 2015 2012; 48 2012; 7 2006; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Qiu Y.‐L. (e_1_2_7_41_1) 2008; 46 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 Podani J. (e_1_2_7_39_1) 2015 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Soltis D. (e_1_2_7_57_1) 2017 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Judd W. S. (e_1_2_7_22_1) 2016 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 56 start-page: 1E year: 2007 end-page: 44E article-title: Towards a phylogenetic nomenclature of Tracheophyta publication-title: Taxon – volume: 355 start-page: 769 year: 2000 end-page: 793 article-title: Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny publication-title: Philosophical Transactions of the Royal Society, B, Biological Sciences – volume: 96 start-page: 228 year: 2009 end-page: 236 article-title: Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data publication-title: American Journal of Botany – volume: 98 start-page: 839 year: 2011 end-page: 849 article-title: Inferring the higher‐order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set publication-title: American Journal of Botany – volume: 43 start-page: 105 year: 2004 end-page: 113 article-title: Unusual position of the genus Spirotaenia (Zygnematophyceae) among streptophytes revealed by SSU rDNA and sequence comparisons publication-title: Phycologia – volume: 48 start-page: 636 year: 2010 end-page: 645 article-title: Plastid genes in plant evolution publication-title: Plant Physiology and Biochemistry – volume: 99 start-page: 4430 year: 2002 end-page: 4435 article-title: Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils publication-title: Proceedings of the National Acadamy of Sciences, USA – volume: 46 start-page: 287 year: 2008 end-page: 306 article-title: Phylogeny and evolution of charophytic algae and land plants publication-title: Journal of Systematics and Evolution – volume: 96 start-page: 1551 year: 2009 end-page: 1570 article-title: Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life publication-title: American Journal of Botany – volume: 76 start-page: 273 year: 2011 end-page: 297 article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function publication-title: Plant Molecular Biology – volume: 3 start-page: 1340 year: 2011 end-page: 1348 article-title: Systematic error in seed plant phylogenomics publication-title: Genome Biology and Evolution – volume: 294 start-page: 2351 year: 2001 end-page: 2353 article-title: The closest living relatives of land plants publication-title: Science – volume: 103 start-page: 15511 year: 2006 end-page: 15516 article-title: The deepest divergences in land plants inferred from phylogenomic evidence publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 start-page: e1002411 year: 2011 article-title: A functional phylogenomic view of the seed plants publication-title: PLOS Genetics – volume: 86 start-page: 372 year: 1999 end-page: 386 article-title: Phylogenetic relationships of land plants using mitochondrial small‐subunit rDNA sequences publication-title: American Journal of Botany – volume: 4 start-page: 26 year: 1999 end-page: 30 article-title: Phylogeny of early land plants: insights from genes and genomes publication-title: Trends in Plant Science – volume: 506 start-page: 89 year: 2014 end-page: 92 article-title: Three keys to the radiation of angiosperms into freezing environments publication-title: Nature – volume: 16 start-page: 1774 year: 1999b end-page: 1784 article-title: The phylogeny of land plants inferredfrom 18S rDNA sequences: pushing the limits of rDNA signal? publication-title: Molecular Biology and Evolution – volume: 99 start-page: 6848 year: 2002 end-page: 6853 article-title: The root of the angiosperms revisited publication-title: Proceedings of the National Academy of Sciences, USA – volume: 322 start-page: 86 year: 2008 end-page: 89 article-title: Rates of molecular evolution are linked to life history in flowering plants publication-title: Science – volume: 31 start-page: 2577 year: 2015 end-page: 2579 article-title: ExaML version 3: a tool for phylogenomic analyses on supercomputers publication-title: Bioinformatics – volume: 83 start-page: 156 year: 2015 end-page: 166 article-title: Deep phylogenetic incongruence in the angiosperm clade Rosidae publication-title: Molecular Phylogenetics and Evolution – volume: 213 start-page: 259 year: 1998 end-page: 287 article-title: Simultaneous parsimony jackknife analysis of 2538 DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants publication-title: Plant Systematics and Evolution – volume: 14 start-page: 211 year: 2014 article-title: Chloroplast phylogenomic analysis resolves deep‐level relationships within the green algal class Trebouxiophyceae publication-title: BMC evolutionary biology – volume: 52 start-page: 583 year: 2003 end-page: 584 article-title: How many species of seed plants are there? a response publication-title: Taxon – volume: 168 start-page: 679 year: 2007 end-page: 689 article-title: The green algal ancestry of land plants as revealed by the chloroplast genome publication-title: International Journal of Plant Sciences, USA – volume: 109 start-page: 851 year: 2012 end-page: 871 article-title: Major transitions in the evolution of early land plants: a bryological perspective publication-title: Annals of Botany – volume: 49 start-page: 102 year: 2000 end-page: 113 article-title: A comparison of bootstrap, fast bootstrap, and jackknife values in three empirical data sets publication-title: Systematic Biology – volume: 9 start-page: 37 year: 2009 article-title: Mega‐phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches publication-title: BMC Evolutionary Biology – volume: 107 start-page: 4623 year: 2010 end-page: 4628 article-title: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots publication-title: Proceedings of the National Academy of Sciences, USA – volume: 111 start-page: E4859 year: 2014 end-page: E4868 article-title: Phylotranscriptomic analysis of the origin and early diversification of land plants publication-title: Proceedings of the National Academy of Sciences – volume: 110 start-page: 179 year: 2007 end-page: 213 article-title: Bryophyte phylogeny: advancing the molecular and morphological frontiers publication-title: Bryologist – volume: 91 start-page: 1557 year: 2004 end-page: 1581 article-title: Phylogeny and diversification of bryophytes publication-title: American Journal of Botany – volume: 217 start-page: 836 year: 2018 end-page: 854 article-title: Disparity, diversity, and duplications in the Caryophyllales publication-title: New Phytologist – year: 2015 – volume: 13 start-page: 645 year: 2001 end-page: 658 article-title: Many parallel losses of from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus publication-title: Plant Cell Online – volume: 22 start-page: 63 year: 2006 end-page: 75 article-title: Multigene analyses of monocot relationships publication-title: Aliso – volume: 97 start-page: 4086 year: 2000 end-page: 4091 article-title: Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers publication-title: Proceedings of the National Academy of Sciences, USA – volume: 178 start-page: 375 year: 2015 end-page: 393 article-title: Phylogenetics, divergence times and diversification from three genomic partitions in monocots publication-title: Botanical Journal of the Linnean Society – volume: 97 start-page: 584 year: 2010 end-page: 616 article-title: Assembling the tree of the Monocotyledons: plastome sequence phylogeny and evolution of Poales publication-title: Annals of the Missouri Botanical Garden – volume: 23 start-page: 1324 year: 2006 end-page: 1338 article-title: The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants publication-title: Molecular Biology and Evolution – volume: 61 start-page: 490 year: 2012 end-page: 509 article-title: Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns publication-title: Systematic Biology – volume: 71 start-page: 627 year: 2009 article-title: Unparalleled GC content in the plastid DNA of publication-title: Plant Molecular Biology – volume: 22 start-page: 3 year: 2006 end-page: 21 article-title: Robust inference of monocot deep phylogeny using an expanded multigene plastid data set publication-title: Aliso – volume: 17 start-page: 1885 year: 2000 end-page: 1895 article-title: Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants publication-title: Molecular Biology and Evolution – volume: 48 start-page: 1057 year: 2012 end-page: 1063 article-title: How many species of algae are there? publication-title: Journal of Phycology – volume: 22 start-page: 1456 year: 2012 end-page: 1457 article-title: Multigene phylogeny of the green lineage reveals the origin and diversification of land plants publication-title: Current Biology – start-page: 1 year: 2016 end-page: 30 – volume: 168 start-page: 691 year: 2007 end-page: 708 article-title: A nonflowering land plant phylogeny inferred from nucleotide dequences of deven chloroplast, mitochondrial, and nuclear genes publication-title: International Journal of Plant Sciences, USA – volume: 89 start-page: 1991 year: 2002 end-page: 2006 article-title: Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages publication-title: American Journal of Botany – volume: 402 start-page: 404 year: 1999 end-page: 407 article-title: The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes publication-title: Nature – volume: 181 start-page: 1 year: 2016 end-page: 20 article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV publication-title: Botanical Journal of the Linnean Society – volume: 54 start-page: 563 year: 2016 end-page: 603 article-title: A community‐derived classification for extant lycophytes and ferns publication-title: Journal of Systematics and Evolution – year: 2016 – volume: 27 start-page: 2855 year: 2010 end-page: 2863 article-title: The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics publication-title: Molecular Biology and Evolution – volume: 5 start-page: 2 year: 2007 article-title: A clade uniting the green algae and represents the deepest branch of the Streptophyta in chloroplast genome‐based phylogenies publication-title: BMC Biology – volume: 54 start-page: 277 year: 2016 end-page: 306 article-title: Tree of life for the genera of Chinese vascular plants publication-title: Journal of Systematics and Evolution – volume: 30 start-page: 772 year: 2013 end-page: 780 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Molecular Biology and Evolution – volume: 98 start-page: 704 year: 2011 end-page: 730 article-title: Angiosperm phylogeny: 17 genes, 640 taxa publication-title: American Journal of Botany – volume: 7 start-page: e29696 year: 2012 article-title: Broad phylogenomic sampling and the sister lineage of land plants publication-title: PLOS ONE – volume: 14 start-page: 56 year: 1997 end-page: 58 article-title: Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences publication-title: Molecular Biology and Evolution – volume: 215 start-page: 403 year: 1990 end-page: 410 article-title: Basic local alignment search tool publication-title: Journal of Molecular Biology – volume: 25 start-page: 1972 year: 2009 end-page: 1973 article-title: trimAl: a tool for automated alignment trimming in large‐scale phylogenetic analyses publication-title: Bioinformatics – volume: 97 start-page: 4092 year: 2000 end-page: 4097 article-title: Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers publication-title: Proceedings of the National Academy of Sciences – volume: 96 start-page: 93 year: 2016 end-page: 101 article-title: Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early‐diverging eudicots, including an angiosperm‐wide analysis of IR gene content evolution publication-title: Molecular Phylogenetics and Evolution – volume: 12 start-page: 11 year: 2014 article-title: Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there publication-title: BMC Biology – volume: 21 start-page: 1813 year: 2004 end-page: 1819 article-title: Chloroplast phylogeny indicates that bryophytes are monophyletic publication-title: Molecular Biology and Evolution – volume: 14 start-page: 23 year: 2014 article-title: From algae to angiosperms—inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes publication-title: BMC Evolutionary Biology – year: 2017 – volume: 16 start-page: 276 year: 2000 end-page: 277 article-title: EMBOSS: the European molecular biology open software suite publication-title: Trends in Genetics – volume: 394 start-page: 671 year: 1998 end-page: 674 article-title: The gain of three mitochondrial introns identifies liverworts as the earliest land plants publication-title: Nature – volume: 402 start-page: 402 year: 1999a end-page: 404 article-title: Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology publication-title: Nature – ident: e_1_2_7_11_1 doi: 10.1111/jse.12219 – ident: e_1_2_7_29_1 doi: 10.1186/s12862-014-0211-2 – ident: e_1_2_7_28_1 doi: 10.1186/1741-7007-5-2 – ident: e_1_2_7_66_1 doi: 10.1086/513470 – ident: e_1_2_7_5_1 doi: 10.1002/tax.563001 – ident: e_1_2_7_30_1 doi: 10.1093/aob/mcs017 – ident: e_1_2_7_58_1 doi: 10.3732/ajb.1000404 – ident: e_1_2_7_71_1 doi: 10.1038/nature12872 – volume-title: A növények evolúciója és osztályozása year: 2015 ident: e_1_2_7_39_1 – ident: e_1_2_7_2_1 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.0603335103 – ident: e_1_2_7_56_1 doi: 10.1126/science.1163197 – ident: e_1_2_7_15_1 doi: 10.3417/2010023 – ident: e_1_2_7_12_1 doi: 10.1186/1741-7007-12-11 – ident: e_1_2_7_37_1 doi: 10.1093/oxfordjournals.molbev.a026290 – ident: e_1_2_7_42_1 doi: 10.1038/29286 – ident: e_1_2_7_49_1 doi: 10.1016/S0168-9525(00)02024-2 – ident: e_1_2_7_65_1 doi: 10.1093/molbev/msk018 – ident: e_1_2_7_52_1 doi: 10.3732/ajb.91.10.1557 – volume-title: Plant systematics: a phylogenetic approach year: 2016 ident: e_1_2_7_22_1 – ident: e_1_2_7_48_1 doi: 10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2 – ident: e_1_2_7_34_1 doi: 10.1105/tpc.13.3.645 – volume: 46 start-page: 287 year: 2008 ident: e_1_2_7_41_1 article-title: Phylogeny and evolution of charophytic algae and land plants publication-title: Journal of Systematics and Evolution – ident: e_1_2_7_3_1 doi: 10.1111/boj.12385 – ident: e_1_2_7_35_1 doi: 10.1080/10635150050207456 – ident: e_1_2_7_6_1 doi: 10.1093/bioinformatics/btp348 – ident: e_1_2_7_72_1 doi: 10.1093/gbe/evr105 – ident: e_1_2_7_40_1 doi: 10.1111/jse.12229 – ident: e_1_2_7_10_1 doi: 10.1093/oxfordjournals.molbev.a025702 – ident: e_1_2_7_31_1 doi: 10.3732/ajb.89.12.1991 – ident: e_1_2_7_8_1 doi: 10.5642/aliso.20062201.06 – ident: e_1_2_7_25_1 doi: 10.1093/molbev/mst010 – ident: e_1_2_7_47_1 doi: 10.1098/rstb.2000.0615 – ident: e_1_2_7_7_1 doi: 10.3732/ajb.0900384 – ident: e_1_2_7_14_1 doi: 10.1016/j.cub.2012.07.021 – ident: e_1_2_7_67_1 doi: 10.1007/s11103-011-9762-4 – ident: e_1_2_7_46_1 doi: 10.1016/S1360-1385(98)01361-2 – ident: e_1_2_7_69_1 doi: 10.3732/ajb.0800207 – ident: e_1_2_7_23_1 doi: 10.1007/BF00985205 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.97.8.4086 – ident: e_1_2_7_16_1 doi: 10.2216/i0031-8884-43-1-105.1 – ident: e_1_2_7_26_1 doi: 10.1093/bioinformatics/btv184 – ident: e_1_2_7_64_1 doi: 10.1371/journal.pone.0029696 – ident: e_1_2_7_59_1 doi: 10.1038/46528 – ident: e_1_2_7_70_1 doi: 10.1073/pnas.092136399 – ident: e_1_2_7_33_1 doi: 10.3732/ajb.0800178 – volume-title: Phylogeny and evolution of the Angiosperms: revised and updated edition year: 2017 ident: e_1_2_7_57_1 – ident: e_1_2_7_13_1 doi: 10.2307/2656759 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.0907801107 – ident: e_1_2_7_27_1 doi: 10.1371/journal.pgen.1002411 – ident: e_1_2_7_4_1 doi: 10.1073/pnas.97.8.4092 – ident: e_1_2_7_60_1 doi: 10.1073/pnas.032087199 – ident: e_1_2_7_38_1 doi: 10.1093/molbev/msh203 – ident: e_1_2_7_51_1 doi: 10.1186/1471-2148-14-23 – ident: e_1_2_7_20_1 doi: 10.1007/978-3-319-32669-6_41-1 – ident: e_1_2_7_61_1 doi: 10.1093/oxfordjournals.molbev.a026089 – ident: e_1_2_7_17_1 doi: 10.2307/3647457 – ident: e_1_2_7_24_1 doi: 10.1126/science.1065156 – ident: e_1_2_7_19_1 doi: 10.1111/j.1529-8817.2012.01222.x – ident: e_1_2_7_53_1 doi: 10.1007/s11103-009-9545-3 – ident: e_1_2_7_18_1 doi: 10.5642/aliso.20062201.02 – ident: e_1_2_7_54_1 doi: 10.1186/1471-2148-9-37 – ident: e_1_2_7_21_1 doi: 10.1111/boj.12260 – ident: e_1_2_7_55_1 doi: 10.1111/nph.14772 – ident: e_1_2_7_43_1 doi: 10.1038/46536 – ident: e_1_2_7_62_1 doi: 10.1016/j.ympev.2014.11.003 – ident: e_1_2_7_63_1 doi: 10.1016/j.ympev.2015.12.006 – ident: e_1_2_7_68_1 doi: 10.1073/pnas.1323926111 – ident: e_1_2_7_50_1 doi: 10.1093/sysbio/sys001 – ident: e_1_2_7_44_1 doi: 10.1086/513474 – ident: e_1_2_7_73_1 doi: 10.1093/molbev/msq170 – ident: e_1_2_7_32_1 doi: 10.1016/j.plaphy.2010.04.009 |
SSID | ssj0009492 |
Score | 2.6212606 |
Snippet | Premise of the Study
For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary... For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain... Premise of the Study For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary... PREMISE OF THE STUDY: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 291 |
SubjectTerms | Amborella Amino Acid Sequence Amino Acids Angiosperms Aquatic plants Biological Evolution Biology Biometrics Bryophyta Bryophyta - genetics Ceratophyllum Chloranthales chloroplast phylogeny Classification Conifers Conjugatophyceae Cycadopsida - genetics data collection Datasets as Topic Dating techniques Dilleniaceae Divergence DNA, Plant - analysis Equisetum Evolution Evolution, Molecular Evolutionary genetics Ferns Ferns - genetics Floating plants Flowers & plants Gene sequencing Genes, Plant Genome, Plant Genome, Plastid Genomes Genomics - methods Ginkgo Ginkgo biloba - genetics Gnetophyta - genetics green plants Gymnosperms INVITED SPECIAL ARTICLE: For the Special Issue: Using and Navigating the Plant Tree of Life Liliopsida Macroevolution Magnoliopsida - genetics Marattiales Molecular chains morphological innovations Nymphaeales Phylogenetics Phylogeny plant evolution Plant Proteins - genetics plastid genome plastid phylogenomics Plastids - genetics Plastomes Proteins Psilotaceae transcriptome transcriptomes Viridiplantae Viridiplantae - genetics |
Subtitle | A billion years of evolutionary history |
Title | Plastid phylogenomic analysis of green plants |
URI | https://www.jstor.org/stable/26616899 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajb2.1048 https://www.ncbi.nlm.nih.gov/pubmed/29603143 https://www.proquest.com/docview/2075667628 https://www.proquest.com/docview/2020489669 https://www.proquest.com/docview/2718350939 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9z-uCL-O10ShQffCmrSdom-jRFGRNlghPfStJmokgrOoX9996lH2MwxZdS6AXau1zyu_Tud4Qchyk2b2DKY0nkewLgm2eSU-4xPRKJDQMjHU_37V3YG4r-U_DUIOdVLUzBD1EfuKFnuPUaHVybz86UNFS_QkwIwYRcIItYWov5fEwMpoy7QrEK-6pTxipaIZ916qEzm1GRjzgPac4CV7fzXK-SlRIy0m5h4zXSsNk6WbrIAdZNNsjjAPDv-CWloC9Yx6wrM6a65Bqh-Yg-Y2oNfX_DjJcz2qUGj1jyjE5gkjsB-13OP1AGLQiIJ5tkeH31cNnzymYJnsYmcV4kQymsQiZGCJlAz2kS8nQUhQFgOq4sN4zbAOLohAUp54JHkcbCaa0luCgAsS3SzPLM7hAqfa00A4ulSSQkd5z4esQD4wuthPFb5KTSWpyUTOLY0OItLjiQWYwKjlHBLXJUi74X9BnzhLac6msJBA0hBIIt0q5sEZeu9RkzADmYmMtg3GH9GJwC_3TozOZfKIN8xBDJqT9kYFfmAJc4yGwXdp6-gMLm24LDlzrD__7ucbd_wfBm9_-ie2QZYJcsMtnapDn--LL7AG3G5sBNYbje3MsfG_rwFg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50FfQivl1dNYoHL8WapI-Il1WU9bHiQcVbSdusKNIuuivsv3cmfSwLKt4K_QLtTKb5Jp18A3Dgp9S8gSuHJ4HrSKRvTpwcC4frnkyM78Wh1enu3vmdR3n97D1PwWl1FqbQh6g33Cgy7PeaApw2pI_GqqH6DZNCzCbCaZiRPg-ofwGX92PJXal4RX7VMeeVrpDLj-qhE6tRUZD4E9WcZK526blchIWSM7J24eQlmDLZMsye5cjrRivwdI8EePCaMjQYfsiMPWfMdCk2wvIee6HaGtZ_p5KXE9ZmMe2x5Bkb4Sy3APNVTkC0BisUiEer8Hh58XDeccpuCY6mLnFOEPqhNIqkGDFnQkOniS_SXuB7SOqEMiLmwniYSCfcS4WQIgg0nZzWOsQYRSa2Bo0sz8wGsNDVSnN0WZoEMhRWFF_3hBe7UisZu004rKwWJaWUOHW0eI8KEWQekYEjMnAT9mtov9DP-Am0Zk1fI4g1-JgJNqFV-SIqY-sz4shyqDKX47i9-jZGBf3q0JnJh4QhQWJM5dQfGFyWBfIlgZj1ws_jB1DUfVsKfFPr-N-fPWpfn3G62Pw_dBfmOg_d2-j26u5mC-aRg4VFWVsLGoOPodlGnjOId-x0_gZxOPKN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB68EF_E2_WM4oMvxW6SHtGn9Vi82QcV30rapqJIu-gq7L93Jj0WQcW3Qr9AO5Npvmkm3wDs-Sk1b-DK4UngOhLpmxMnbeFwncnE-F4cWp3um1v__F5ePnqPY3BUn4Up9SGaH24UGfZ7TQHeT7ODkWiofsGcEJOJcBwmabOP6rm47I0Ud6XiNfdVbc5rWSGXHzRDvy1GZT3iT0zzO3G1K093DmYrysg6pY_nYczkCzB1XCCtGy7CQw_57-A5ZWgv_I4Ze8yY6UprhBUZe6LSGtZ_pYqXQ9ZhMf1iKXI2xEluAeazmn9oDFYKEA-X4L57dndy7lTNEhxNTeKcIPRDaRQpMWLKhHZOE1-kWeB7yOmEMiLmwniYRyfcS4WQIgg0HZzWOsQQRSK2DBN5kZtVYKGrlebosTQJZCisJr7OhBe7UisZuy3Yr60WJZWSODW0eI1KDWQekYEjMnALdhtov5TP-Am0bE3fIIg0-JgItmCj9kVUhdZ7xJHkUGEux3E7zW0MCtrp0LkpPghDesSYyak_MLgqC6RLAjErpZ9HD6Co-bYU-KbW8b8_e9S5POZ0sfZ_6DZM90670fXF7dU6zCADC8uitg2YGLx9mE1kOYN4y87mLw2H8b8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plastid+phylogenomic+analysis+of+green+plants%3A+A+billion+years+of+evolutionary+history&rft.jtitle=American+journal+of+botany&rft.au=Gitzendanner%2C+Matthew+A&rft.au=Soltis%2C+Pamela+S&rft.au=Wong%2C+Gane+K-S&rft.au=Ruhfel%2C+Brad+R&rft.date=2018-03-01&rft.eissn=1537-2197&rft.volume=105&rft.issue=3&rft.spage=291&rft_id=info:doi/10.1002%2Fajb2.1048&rft_id=info%3Apmid%2F29603143&rft.externalDocID=29603143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9122&client=summon |