Catalytic Asymmetric Diastereodivergent Synthesis of 2‑Alkenylindoles Bearing both Axial and Central Chirality
The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with o-hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of...
Saved in:
Published in | Precision Chemistry Vol. 2; no. 5; pp. 208 - 220 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
University of Science and Technology of China and American Chemical Society
27.05.2024
American Chemical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with o-hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover, theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction conditions. More importantly, these 2-alkenylindoles were utilized in asymmetric catalysis as chiral organocatalysts and in medicinal chemistry for evaluation of their cytotoxicity, which demonstrated their potential applications. This study has not only established the catalytic atroposelective synthesis of axially chiral 2-alkenylindoles, but also provided an efficient strategy for catalytic asymmetric diastereodivergent construction of indole-based scaffolds bearing both axial and central chirality. |
---|---|
AbstractList | The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with
-hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover, theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction conditions. More importantly, these 2-alkenylindoles were utilized in asymmetric catalysis as chiral organocatalysts and in medicinal chemistry for evaluation of their cytotoxicity, which demonstrated their potential applications. This study has not only established the catalytic atroposelective synthesis of axially chiral 2-alkenylindoles, but also provided an efficient strategy for catalytic asymmetric diastereodivergent construction of indole-based scaffolds bearing both axial and central chirality. The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with o -hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover, theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction conditions. More importantly, these 2-alkenylindoles were utilized in asymmetric catalysis as chiral organocatalysts and in medicinal chemistry for evaluation of their cytotoxicity, which demonstrated their potential applications. This study has not only established the catalytic atroposelective synthesis of axially chiral 2-alkenylindoles, but also provided an efficient strategy for catalytic asymmetric diastereodivergent construction of indole-based scaffolds bearing both axial and central chirality. The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with o-hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover, theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction conditions. More importantly, these 2-alkenylindoles were utilized in asymmetric catalysis as chiral organocatalysts and in medicinal chemistry for evaluation of their cytotoxicity, which demonstrated their potential applications. This study has not only established the catalytic atroposelective synthesis of axially chiral 2-alkenylindoles, but also provided an efficient strategy for catalytic asymmetric diastereodivergent construction of indole-based scaffolds bearing both axial and central chirality. The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with o-hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover, theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction conditions. More importantly, these 2-alkenylindoles were utilized in asymmetric catalysis as chiral organocatalysts and in medicinal chemistry for evaluation of their cytotoxicity, which demonstrated their potential applications. This study has not only established the catalytic atroposelective synthesis of axially chiral 2-alkenylindoles, but also provided an efficient strategy for catalytic asymmetric diastereodivergent construction of indole-based scaffolds bearing both axial and central chirality.The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with o-hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover, theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction conditions. More importantly, these 2-alkenylindoles were utilized in asymmetric catalysis as chiral organocatalysts and in medicinal chemistry for evaluation of their cytotoxicity, which demonstrated their potential applications. This study has not only established the catalytic atroposelective synthesis of axially chiral 2-alkenylindoles, but also provided an efficient strategy for catalytic asymmetric diastereodivergent construction of indole-based scaffolds bearing both axial and central chirality. |
Author | Yang, Shuang Chen, Yu-Yu Shi, Feng Wang, Ning-Yi Ni, Shao-Fei Wang, Da-Hua Huang, Jia-Bo Zhang, Yu-Chen Chen, Hao Ke, Xin-Yan |
AuthorAffiliation | Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science School of Petrochemical Engineering Department of Otolaryngology, Xuzhou First People’s Hospital Changzhou University |
AuthorAffiliation_xml | – name: Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science – name: Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University – name: School of Petrochemical Engineering – name: Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province – name: Changzhou University – name: Department of Otolaryngology, Xuzhou First People’s Hospital |
Author_xml | – sequence: 1 givenname: Shuang surname: Yang fullname: Yang, Shuang organization: Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science – sequence: 2 givenname: Jia-Bo surname: Huang fullname: Huang, Jia-Bo organization: Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province – sequence: 3 givenname: Da-Hua surname: Wang fullname: Wang, Da-Hua organization: Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University – sequence: 4 givenname: Ning-Yi surname: Wang fullname: Wang, Ning-Yi organization: Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science – sequence: 5 givenname: Yu-Yu surname: Chen fullname: Chen, Yu-Yu organization: Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science – sequence: 6 givenname: Xin-Yan surname: Ke fullname: Ke, Xin-Yan organization: Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province – sequence: 7 givenname: Hao surname: Chen fullname: Chen, Hao organization: Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science – sequence: 8 givenname: Shao-Fei orcidid: 0000-0001-9860-2138 surname: Ni fullname: Ni, Shao-Fei email: sfni@stu.edu.cn organization: Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province – sequence: 9 givenname: Yu-Chen orcidid: 0000-0002-8399-7824 surname: Zhang fullname: Zhang, Yu-Chen email: zhangyc@jsnu.edu.cn organization: Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science – sequence: 10 givenname: Feng orcidid: 0000-0003-3922-0708 surname: Shi fullname: Shi, Feng email: fshi@jsnu.edu.cn organization: Changzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39474410$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiPUipbSMzeUIxLa1p9xckJL-KpUiQNwthx7svGS2IvtrciNv8Bf5JfgZbdVi1RfZjR-32c0mnlWHDnvoCheYHSBEcGXmwB6gOmCaZRf_aQ4JULgRUNxdXQvPynOY1xnBREVqhh9WpzQhgnGMDotNq1KapyT1eUyztMEKeT0nVUxQQBv7A2EFbhUfpldGiDaWPq-JH9-_V6O38HNo3XGjxDLt6CCdauy82kolz-tGkvlTNlmb8h5O9gcbJqfF8e9GiOcH-JZ8e3D-6_tp8X1549X7fJ6oVhTpYXpcGdohxkmmiFBDQMuGDKUG1FxlgcRimkQwLimuKlNzxFwDrjmpuZK0LPias81Xq3lJthJhVl6ZeW_gg8rqUIeewQJSHNmEFI64wTtGqaJ0H3da2EIa1BmvdmzNttuAqP3Mz2APvxxdpArfyMx5ojxekd4dSAE_2MLMcnJRg3jqBz4bZQUE1JRUpGd9OX9ZnddbneWBXwv0MHHGKCX2iaVrN_1tqPESO7OQx7OQx7OI_su__Pdoh93vN47lI5y7bfB5Y09qv4LUmDPnQ |
CitedBy_id | crossref_primary_10_1002_anie_202410581 crossref_primary_10_1021_acs_joc_4c02791 crossref_primary_10_1002_cctc_202401022 crossref_primary_10_1002_ejoc_202401405 crossref_primary_10_1021_acs_joc_4c01489 crossref_primary_10_1007_s11426_024_2472_2 crossref_primary_10_1039_D4QO01047G crossref_primary_10_1039_D4QO01611D crossref_primary_10_1039_D3CS00238A crossref_primary_10_1021_acscatal_4c06672 crossref_primary_10_1039_D5QO00280J crossref_primary_10_1021_acs_orglett_4c04864 crossref_primary_10_1055_a_2503_3181 crossref_primary_10_1002_cctc_202401925 crossref_primary_10_1002_chem_202403374 crossref_primary_10_1021_acs_orglett_4c02485 crossref_primary_10_1039_D4SC05760K crossref_primary_10_1002_ange_202410581 crossref_primary_10_1021_acs_orglett_4c02120 |
Cites_doi | 10.1021/acscatal.9b00767 10.1039/D2SC00748G 10.1016/j.xcrp.2022.101005 10.1007/s11426-022-1363-y 10.1038/s41467-020-19294-8 10.1002/anie.202012932 10.1021/acs.accounts.9b00549 10.1021/acs.orglett.3c00237 10.1002/ejoc.201200599 10.1039/b807577h 10.1021/acscatal.7b01855 10.1016/j.chempr.2022.08.019 10.1021/jacs.1c05087 10.1021/acscatal.1c01232 10.1002/anie.201914049 10.1021/acs.joc.2c02518 10.1039/C9OB02419K 10.1021/acs.joc.0c01528 10.1021/acs.orglett.2c01141 10.1021/acs.orglett.2c04234 10.1021/acs.accounts.7b00602 10.1021/jacs.1c07635 10.1002/anie.202305450 10.1002/anie.202206501 10.1002/chem.201604617 10.1038/nchem.2866 10.1002/anie.202107418 10.1002/anie.202312930 10.1021/ja00377a014 10.1016/j.gresc.2021.12.005 10.1039/C9CC03967H 10.1002/anie.202111860 10.1021/jacs.0c11077 10.1039/D2SC06813C 10.1002/anie.202000585 10.1021/acs.orglett.2c03003 10.1002/anie.202112226 10.1021/acs.chemrev.7b00561 10.1002/anie.202111842 10.1021/jacs.9b04711 10.1248/cpb.41.2096 10.1038/s41467-019-10674-3 10.1039/C6CS00247A 10.1002/cjoc.202200503 10.1021/jacs.7b12174 10.1002/cjoc.202300589 10.1002/anie.201908279 10.1021/acs.orglett.2c01818 10.1038/s41929-019-0387-3 10.1126/science.1237068 10.1002/chir.530050514 10.1002/anie.202207621 10.1021/ar2000343 10.1002/anie.202212101 10.1021/acs.orglett.1c02574 10.6023/A23040192 10.1002/anie.202100363 10.1039/D0CS00870B 10.31635/ccschem.021.202101154 10.1021/acs.orglett.0c03355 10.1002/anie.202116829 10.1038/s41557-021-00750-x 10.1021/acscatal.2c02574 10.1016/j.chempr.2020.06.001 10.1021/cr068374j 10.1039/D1SC05161J 10.1002/anie.201806294 10.1038/s44160-022-00063-y 10.6023/cjoc201904030 10.1002/cjoc.202000446 10.1021/acs.orglett.0c02519 10.6023/cjoc202203018 10.1055/a-1781-6538 10.1002/cjoc.202000751 10.1039/C7CC06863H 10.1002/cjoc.202000022 10.1021/acscatal.3c00732 10.1002/cmdc.201900367 10.1039/D3SC03686C 10.1021/acs.orglett.1c02012 10.1002/anie.202210086 10.1038/s44160-022-00050-3 10.1002/adsc.202300686 10.3390/ph14090877 10.1021/jacs.6b13340 10.1021/acs.orglett.2c00686 10.1021/jacs.6b06156 10.1002/chem.201601626 10.1002/anie.202311053 10.1038/s41467-023-41299-2 10.1038/s41467-023-38872-0 10.1002/cjoc.202100214 10.1021/acs.orglett.0c01558 10.1002/anie.201811177 10.1002/cjoc.202200327 10.1002/ejoc.201800078 10.1021/jacs.7b12824 10.1002/chem.202282861 10.1038/s41467-022-29059-0 10.1002/chem.202202395 10.1055/s-0029-1218801 10.1021/acs.accounts.2c00486 10.1002/anie.202201436 10.1002/chem.202300779 10.1002/anie.201608150 10.1021/acs.accounts.3c00419 10.1016/j.fmre.2022.01.002 10.1038/s41557-022-01095-9 10.1002/anie.201908961 10.1039/D2QO01625G 10.1021/acs.chemrev.0c01306 10.1021/acs.orglett.3c00425 10.1002/anie.202316454 10.1021/acs.orglett.9b02243 10.1021/acscatal.3c02851 10.1021/acs.joc.2c02303 10.1021/acs.joc.7b01458 10.1002/cjoc.202000131 10.1021/acscatal.2c06175 10.1021/acs.accounts.2c00509 10.20517/cs.2022.46 10.1039/C9SC00810A 10.1002/anie.202105093 10.1021/cr5001496 10.1021/acscatal.3c03422 10.1021/acs.accounts.2c00465 10.1002/cjoc.202200618 10.1002/anie.202218871 10.1038/s41467-019-13529-z 10.1002/anie.201909855 10.1039/C8CS00436F 10.1002/cjoc.202300355 10.1002/chem.201904213 10.1002/anie.202305067 10.1038/s41467-022-28211-0 10.6023/cjoc202211022 10.1021/jacs.2c12648 10.1002/anie.202300419 10.1002/chem.201000243 10.1002/chem.202001397 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society – notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. – notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/prechem.4c00008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2771-9316 |
EndPage | 220 |
ExternalDocumentID | oai_doaj_org_article_e0c54d00ac7e473b94c27cf8fc7d2490 PMC11504580 39474410 10_1021_prechem_4c00008 b196508816 |
Genre | Journal Article |
GroupedDBID | ABBLG ACS ADUCK ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. RPM VF5 AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a496t-db1bd3b1412c4073d4e5740d35d76546067a4ce7e45c3198df50e55e185d85a73 |
IEDL.DBID | N~. |
ISSN | 2771-9316 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Thu Aug 21 18:44:08 EDT 2025 Fri Jul 11 06:35:31 EDT 2025 Wed Feb 19 02:13:44 EST 2025 Thu Apr 24 23:03:29 EDT 2025 Sun Jul 06 05:07:36 EDT 2025 Tue May 27 03:14:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Diastereodivergent synthesis 2-Alkenylindole Axial chirality Central chirality Chiral phosphoric acid |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a496t-db1bd3b1412c4073d4e5740d35d76546067a4ce7e45c3198df50e55e185d85a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9860-2138 0000-0002-8399-7824 0000-0003-3922-0708 |
OpenAccessLink | https://doaj.org/article/e0c54d00ac7e473b94c27cf8fc7d2490 |
PMID | 39474410 |
PQID | 3122632620 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0c54d00ac7e473b94c27cf8fc7d2490 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11504580 proquest_miscellaneous_3122632620 pubmed_primary_39474410 crossref_citationtrail_10_1021_prechem_4c00008 crossref_primary_10_1021_prechem_4c00008 acs_journals_10_1021_prechem_4c00008 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-27 |
PublicationDateYYYYMMDD | 2024-05-27 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Precision Chemistry |
PublicationTitleAlternate | Precis. Chem |
PublicationYear | 2024 |
Publisher | University of Science and Technology of China and American Chemical Society American Chemical Society |
Publisher_xml | – name: University of Science and Technology of China and American Chemical Society – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 Lemke T. L. (ref3/cit3) 2013 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref110/cit110 doi: 10.1021/acscatal.9b00767 – ident: ref66/cit66 doi: 10.1039/D2SC00748G – ident: ref119/cit119 doi: 10.1016/j.xcrp.2022.101005 – ident: ref128/cit128 doi: 10.1007/s11426-022-1363-y – ident: ref29/cit29 doi: 10.1038/s41467-020-19294-8 – ident: ref61/cit61 doi: 10.1002/anie.202012932 – ident: ref127/cit127 doi: 10.1021/acs.accounts.9b00549 – ident: ref113/cit113 doi: 10.1021/acs.orglett.3c00237 – ident: ref48/cit48 doi: 10.1002/ejoc.201200599 – ident: ref135/cit135 doi: 10.1039/b807577h – ident: ref88/cit88 doi: 10.1021/acscatal.7b01855 – ident: ref121/cit121 doi: 10.1016/j.chempr.2022.08.019 – ident: ref30/cit30 doi: 10.1021/jacs.1c05087 – ident: ref63/cit63 doi: 10.1021/acscatal.1c01232 – ident: ref97/cit97 doi: 10.1002/anie.201914049 – ident: ref73/cit73 doi: 10.1021/acs.joc.2c02518 – ident: ref15/cit15 doi: 10.1039/C9OB02419K – ident: ref106/cit106 doi: 10.1021/acs.joc.0c01528 – ident: ref100/cit100 doi: 10.1021/acs.orglett.2c01141 – ident: ref102/cit102 doi: 10.1021/acs.orglett.2c04234 – ident: ref32/cit32 doi: 10.1021/acs.accounts.7b00602 – ident: ref40/cit40 doi: 10.1021/jacs.1c07635 – ident: ref129/cit129 doi: 10.1002/anie.202305450 – ident: ref99/cit99 doi: 10.1002/anie.202206501 – ident: ref11/cit11 doi: 10.1002/chem.201604617 – ident: ref78/cit78 doi: 10.1038/nchem.2866 – ident: ref23/cit23 doi: 10.1002/anie.202107418 – ident: ref122/cit122 doi: 10.1002/anie.202312930 – ident: ref46/cit46 doi: 10.1021/ja00377a014 – ident: ref41/cit41 doi: 10.1016/j.gresc.2021.12.005 – ident: ref33/cit33 doi: 10.1039/C9CC03967H – ident: ref120/cit120 doi: 10.1002/anie.202111860 – ident: ref20/cit20 doi: 10.1021/jacs.0c11077 – ident: ref22/cit22 doi: 10.1039/D2SC06813C – ident: ref53/cit53 doi: 10.1002/anie.202000585 – ident: ref69/cit69 doi: 10.1021/acs.orglett.2c03003 – ident: ref55/cit55 doi: 10.1002/anie.202112226 – ident: ref14/cit14 doi: 10.1021/acs.chemrev.7b00561 – ident: ref10/cit10 doi: 10.1002/anie.202111842 – ident: ref109/cit109 doi: 10.1021/jacs.9b04711 – ident: ref47/cit47 doi: 10.1248/cpb.41.2096 – ident: ref8/cit8 doi: 10.1038/s41467-019-10674-3 – ident: ref13/cit13 doi: 10.1039/C6CS00247A – ident: ref126/cit126 doi: 10.1002/cjoc.202200503 – ident: ref5/cit5 doi: 10.1021/jacs.7b12174 – ident: ref103/cit103 doi: 10.1002/cjoc.202300589 – ident: ref49/cit49 doi: 10.1002/anie.201908279 – ident: ref101/cit101 doi: 10.1021/acs.orglett.2c01818 – ident: ref9/cit9 doi: 10.1038/s41929-019-0387-3 – ident: ref17/cit17 doi: 10.1126/science.1237068 – ident: ref4/cit4 doi: 10.1002/chir.530050514 – ident: ref25/cit25 doi: 10.1002/anie.202207621 – ident: ref137/cit137 doi: 10.1021/ar2000343 – ident: ref111/cit111 doi: 10.1002/anie.202212101 – ident: ref92/cit92 doi: 10.1021/acs.orglett.1c02574 – ident: ref132/cit132 doi: 10.6023/A23040192 – ident: ref62/cit62 doi: 10.1002/anie.202100363 – ident: ref38/cit38 doi: 10.1039/D0CS00870B – ident: ref98/cit98 doi: 10.31635/ccschem.021.202101154 – ident: ref90/cit90 doi: 10.1021/acs.orglett.0c03355 – ident: ref51/cit51 doi: 10.1002/anie.202116829 – ident: ref81/cit81 doi: 10.1038/s41557-021-00750-x – ident: ref67/cit67 doi: 10.1021/acscatal.2c02574 – ident: ref80/cit80 doi: 10.1016/j.chempr.2020.06.001 – ident: ref134/cit134 doi: 10.1021/cr068374j – ident: ref82/cit82 doi: 10.1039/D1SC05161J – ident: ref52/cit52 doi: 10.1002/anie.201806294 – volume-title: Foye’s Principles of Medicinal Chemistry year: 2013 ident: ref3/cit3 – ident: ref21/cit21 doi: 10.1038/s44160-022-00063-y – ident: ref36/cit36 doi: 10.6023/cjoc201904030 – ident: ref140/cit140 doi: 10.1002/cjoc.202000446 – ident: ref54/cit54 doi: 10.1021/acs.orglett.0c02519 – ident: ref125/cit125 doi: 10.6023/cjoc202203018 – ident: ref133/cit133 doi: 10.1055/a-1781-6538 – ident: ref37/cit37 doi: 10.1002/cjoc.202000751 – ident: ref34/cit34 doi: 10.1039/C7CC06863H – ident: ref105/cit105 doi: 10.1002/cjoc.202000022 – ident: ref72/cit72 doi: 10.1021/acscatal.3c00732 – ident: ref1/cit1 doi: 10.1002/cmdc.201900367 – ident: ref116/cit116 doi: 10.1039/D3SC03686C – ident: ref91/cit91 doi: 10.1021/acs.orglett.1c02012 – ident: ref16/cit16 doi: 10.1002/anie.202210086 – ident: ref26/cit26 doi: 10.1038/s44160-022-00050-3 – ident: ref123/cit123 doi: 10.1002/adsc.202300686 – ident: ref2/cit2 doi: 10.3390/ph14090877 – ident: ref12/cit12 doi: 10.1021/jacs.6b13340 – ident: ref68/cit68 doi: 10.1021/acs.orglett.2c00686 – ident: ref18/cit18 doi: 10.1021/jacs.6b06156 – ident: ref19/cit19 doi: 10.1002/chem.201601626 – ident: ref31/cit31 doi: 10.1002/anie.202311053 – ident: ref70/cit70 doi: 10.1038/s41467-023-41299-2 – ident: ref71/cit71 doi: 10.1038/s41467-023-38872-0 – ident: ref117/cit117 doi: 10.1002/cjoc.202100214 – ident: ref89/cit89 doi: 10.1021/acs.orglett.0c01558 – ident: ref104/cit104 doi: 10.1002/anie.201811177 – ident: ref107/cit107 doi: 10.1002/cjoc.202200327 – ident: ref35/cit35 doi: 10.1002/ejoc.201800078 – ident: ref6/cit6 doi: 10.1021/jacs.7b12824 – ident: ref42/cit42 doi: 10.1002/chem.202282861 – ident: ref24/cit24 doi: 10.1038/s41467-022-29059-0 – ident: ref65/cit65 doi: 10.1002/chem.202202395 – ident: ref136/cit136 doi: 10.1055/s-0029-1218801 – ident: ref43/cit43 doi: 10.1021/acs.accounts.2c00486 – ident: ref64/cit64 doi: 10.1002/anie.202201436 – ident: ref75/cit75 doi: 10.1002/chem.202300779 – ident: ref77/cit77 doi: 10.1002/anie.201608150 – ident: ref45/cit45 doi: 10.1021/acs.accounts.3c00419 – ident: ref84/cit84 doi: 10.1016/j.fmre.2022.01.002 – ident: ref93/cit93 doi: 10.1038/s41557-022-01095-9 – ident: ref96/cit96 doi: 10.1002/anie.201908961 – ident: ref85/cit85 doi: 10.1039/D2QO01625G – ident: ref39/cit39 doi: 10.1021/acs.chemrev.0c01306 – ident: ref86/cit86 doi: 10.1021/acs.orglett.3c00425 – ident: ref130/cit130 doi: 10.1002/anie.202316454 – ident: ref60/cit60 doi: 10.1021/acs.orglett.9b02243 – ident: ref27/cit27 doi: 10.1021/acscatal.3c02851 – ident: ref108/cit108 doi: 10.1021/acs.joc.2c02303 – ident: ref124/cit124 doi: 10.1021/acs.joc.7b01458 – ident: ref50/cit50 doi: 10.1002/cjoc.202000131 – ident: ref76/cit76 doi: 10.1021/acscatal.2c06175 – ident: ref44/cit44 doi: 10.1021/acs.accounts.2c00509 – ident: ref87/cit87 doi: 10.20517/cs.2022.46 – ident: ref95/cit95 doi: 10.1039/C9SC00810A – ident: ref118/cit118 doi: 10.1002/anie.202105093 – ident: ref138/cit138 doi: 10.1021/cr5001496 – ident: ref94/cit94 doi: 10.1021/acscatal.3c03422 – ident: ref57/cit57 doi: 10.1021/acs.accounts.2c00465 – ident: ref141/cit141 doi: 10.1002/cjoc.202200618 – ident: ref114/cit114 doi: 10.1002/anie.202218871 – ident: ref7/cit7 doi: 10.1038/s41467-019-13529-z – ident: ref59/cit59 doi: 10.1002/anie.201909855 – ident: ref139/cit139 doi: 10.1039/C8CS00436F – ident: ref74/cit74 doi: 10.1002/cjoc.202300355 – ident: ref79/cit79 doi: 10.1002/chem.201904213 – ident: ref115/cit115 doi: 10.1002/anie.202305067 – ident: ref83/cit83 doi: 10.1038/s41467-022-28211-0 – ident: ref131/cit131 doi: 10.6023/cjoc202211022 – ident: ref28/cit28 doi: 10.1021/jacs.2c12648 – ident: ref112/cit112 doi: 10.1002/anie.202300419 – ident: ref58/cit58 doi: 10.1002/chem.201000243 – ident: ref56/cit56 doi: 10.1002/chem.202001397 |
SSID | ssj0002760643 |
Score | 2.4034111 |
Snippet | The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition... The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 208 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQLuOCYPzqYJORduCSNnbs2Dm23aoJCS4waTfLsR21sKbV0kn0xr_Av7i_ZO85adUiJi5cYzux_J7zfbafv0fImfLSSphESZXmVSKqXGAQgEt0AeibA2FoN3M-f8kvr8Sna3m9k-oLY8JaeeB24AYhdVL4NLVOBaGyshCOK1fpyikPS4e4WgfM21lMfY_HaTli7VbLhw2W8AOZhnlfuEiTEIxcswdGUbP_b0Tzz3jJHQCaPCfPOuZIh22PX5AnoT4ih-NNwraXZDnGrZg1FNNhs57PMVeWo-czi1oIYeExAgMvUtGv6xpoXzNr6KKi_P7X7-HNj1CvgXBGeSc6Au8HRKMlWJEOf4KHUlt72m0E0_F0dhvZ-ytyNbn4Nr5MuoQKiRVFvkp8yUqflUww7mAhl3kRpBKpz6RXeKkJkMsKF2CgpYOpqX0l0yBlAEz3WlqVvSYH9aIObwn1eeEyqZRkHnCw1Np7yzi8XjnBCqF75AzG13QTojHxrJsz05nBdGbokf7GAMZ1ouSYG-Pm8QYftw2WrR7H41VHaNFtNRTSjg_AvUznXuZf7tUjHzb-YMCceJpi67C4a0zGOGrd5xzqvGn9Y_uprBAKeCaU6D3P2evLfkk9m0Zxb2ToQur0-H_0_h15yoGEYbQDV-_Jwer2LpwAiVqVp3G-PAA0zhzf priority: 102 providerName: Directory of Open Access Journals |
Title | Catalytic Asymmetric Diastereodivergent Synthesis of 2‑Alkenylindoles Bearing both Axial and Central Chirality |
URI | http://dx.doi.org/10.1021/prechem.4c00008 https://www.ncbi.nlm.nih.gov/pubmed/39474410 https://www.proquest.com/docview/3122632620 https://pubmed.ncbi.nlm.nih.gov/PMC11504580 https://doaj.org/article/e0c54d00ac7e473b94c27cf8fc7d2490 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHOCCyme3hZWReuCSJf52jttAVSHBpVTqzXJsR7uim101W4m9VP0L_Yv8EsbebGALlbjGjpN4ZvSex84bhA6VF1ZAEGV1LuuM15LHQwAu0wWgrwTCsE7mfPkqT87453Nx_lss-u4OPiUfFhD5kzAbcZf4zUP0iEpwuljj8nrUp1OokhFcYyk5pUhWMCJ7IZ-_xohI5NotJEqC_f9imXcPS_6BPse76GlHG_F4bedn6EFonqPH5aZa2wu0KGMeZgXNeNyuZrNYKMvhj1MbhRDC3MfjF_EvKny6aoDztdMWz2tMf97cji--h2YFbDNpO-EjcH2AM1yBCfH4B7gnto3HXRYYl5PpZaLuL9HZ8adv5UnWVVPILC_kMvMVqTyrCCfUwSqOeR6E4rlnwqv4RxPAluUuqMCFg7jUvhZ5ECIAoHstrGKv0E4zb8Iewl4WjgmlBPEAgpXW3ltCYXjlOCm4HqBDmF_TRUNr0kY3JaYzg-nMMECjjQGM6xTJY2GMi_tveN_fsFiLcdzf9ShatO8WVbTTBXAt0wWlCbkT3Oe5dfDVilUFd1S5WtdOeViW5gP0buMPBswZt1JsE-ZXrWGERqF7SaHP67V_9I9iBVdAMqFFb3nO1rtstzTTSVL2jvScC53v_98EHqAnFDhWPMxA1Ru0s7y8Cm-BIy2rIawRytNhyjAMU6QMUyLrF0F_EbE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOZQLlPdCASP1wCVL_E6OaaBaoK2E2kq9WYntaFftZlfNrsT21L_AX-SXMPZmA1uoBNfYcfyYyXwej79BaFdZUQhQoqiKZRXxSnIfBGCiJAXrKwEwLJ05h0dycMo_n4mzDRSv7sJAJxpoqQmH-L_YBcj7KfwAhm7c5ybAnDvoLkAR6mU6y487rwpV0ttYn1FOKRKljMiOz-ePNrxBMs2aQQq8_X8DmzdjJn8zQvsP0Neu-yH25Lw_n5V9c3WD2fF_xreN7reIFGdLEXqINlz9CG3lq0Rwj9E09y6eBRTjrFmMxz4Hl8EfRoXnWHAT6yM7_AUtfLyoAU42owZPKkx_XH_PLs5dvQAgG2ij8B5oFVhKXIJ04OwbSD4uaotbBzPOh6PLsCt4gk73P57kg6hN1BAVPJWzyJaktKwknFADG0RmuROKx5YJq_xlKbCIBTdOOS4MqHxiKxE7IRxgBZuIQrGnaLOe1O45wlamhgmlBLFgX8sksbYgFJpXhpOUJz20C7OnW0VrdDhDp0S306fb6euh_mpRtWnJzn3OjYvbX3jXvTBd8nzcXnXPS0lXzRN0hwewpLrVd-1iI7iN48LAqBUrU26oMlVSGWVhxxv30NuVjGlYTn9KU9RuMm80I9Rz6EsKdZ4tZa77FEu5AvwKJcmaNK71Zb2kHg0DabhH_lwk8Yt_m8A3aGtwcnigDz4dfXmJ7lGAcj5mgqodtDm7nLtXAMVm5eugfT8BdBEv1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgSMAL4jrKZRhpD7ykxLc4eew6qnGrkGDS3qzEdtSKNa2WTqIviL_AX9wv2TmuG9HBJF5jx3F8zsn3xZfvELKvnSoVBFFSp1mdyDqTuAnAJnkB6JsBYVhP5nweZ0fH8sOJOomHwvAsDHSihZbasIiPUb1wdVQYYG8X8BGY-Flf2kB1bpJbQEZSTNgw_tnvZla4zhBnMauc1iwpBMs6TZ-_2kBQsu0WKAXt_n8Rzqv7Jv8AotF9ci8ySDpYm_wBueGbh-TOcJO47RFZDHFKZgXFdNCuZjPMmWXp4bRETQQ_d7gTAw9U0a-rBuhfO23pvKb84tfvwel336yAeAaZJ3oAUQDIRiuwJh38AE-lZeNonBCmw8n0LLD4x-R49O7b8CiJiRWSUhbZMnEVq5yomGTcwg-dcNIrLVMnlNN4uAkQrJTWay-VhRDNXa1Sr5QHbHe5KrV4QnaaeeOfEuqywgqltWIO8LDKc-dKxqF5bSUrZN4j-zC-JgZGa8KaN2cmmsFEM_RIf2MAY6M4OebIOL3-hjfdDYu1Lsf1VQ_Qol01FNQOF8DFTIxP41OrpEvT0sJba1EV0nJt67y22sEfatojrzf-YMCcuKpSNn5-3hrBOGreZxzq7K79o3uUKKQGvgkl-ZbnbPVlu6SZToLINzJ1qfL02f8N4Cty-8vhyHx6P_74nNzlwLxwiwPXL8jO8uzcvwTmtKz2QqBcAm6AFWY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+Asymmetric+Diastereodivergent+Synthesis+of+2-Alkenylindoles+Bearing+both+Axial+and+Central+Chirality&rft.jtitle=Precision+Chemistry&rft.au=Yang%2C+Shuang&rft.au=Huang%2C+Jia-Bo&rft.au=Wang%2C+Da-Hua&rft.au=Wang%2C+Ning-Yi&rft.date=2024-05-27&rft.issn=2771-9316&rft.eissn=2771-9316&rft.volume=2&rft.issue=5&rft.spage=208&rft.epage=220&rft_id=info:doi/10.1021%2Fprechem.4c00008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_prechem_4c00008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9316&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9316&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9316&client=summon |