LASP to the Future of Atomic Simulation: Intelligence and Automation

Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potenti...

Full description

Saved in:
Bibliographic Details
Published inPrecision Chemistry Vol. 2; no. 12; pp. 612 - 627
Main Authors Xie, Xin-Tian, Yang, Zheng-Xin, Chen, Dongxiao, Shi, Yun-Fei, Kang, Pei-Lin, Ma, Sicong, Li, Ye-Fei, Shang, Cheng, Liu, Zhi-Pan
Format Journal Article
LanguageEnglish
Published United States University of Science and Technology of China and American Chemical Society 23.12.2024
American Chemical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal–ligand properties for a new catalyst design.
AbstractList Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal–ligand properties for a new catalyst design.
Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal-ligand properties for a new catalyst design.Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal-ligand properties for a new catalyst design.
Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal–ligand properties for a new catalyst design.
Author Kang, Pei-Lin
Xie, Xin-Tian
Yang, Zheng-Xin
Li, Ye-Fei
Shang, Cheng
Liu, Zhi-Pan
Shi, Yun-Fei
Ma, Sicong
Chen, Dongxiao
AuthorAffiliation Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
State Key Laboratory of Metal Organic Chemistry
AuthorAffiliation_xml – name: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– name: State Key Laboratory of Metal Organic Chemistry
– name: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Xin-Tian
  orcidid: 0009-0009-5166-2825
  surname: Xie
  fullname: Xie, Xin-Tian
  organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– sequence: 2
  givenname: Zheng-Xin
  surname: Yang
  fullname: Yang, Zheng-Xin
  organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– sequence: 3
  givenname: Dongxiao
  surname: Chen
  fullname: Chen, Dongxiao
  organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– sequence: 4
  givenname: Yun-Fei
  surname: Shi
  fullname: Shi, Yun-Fei
  organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– sequence: 5
  givenname: Pei-Lin
  orcidid: 0000-0003-2147-2472
  surname: Kang
  fullname: Kang, Pei-Lin
  organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– sequence: 6
  givenname: Sicong
  orcidid: 0000-0001-5894-5910
  surname: Ma
  fullname: Ma, Sicong
  organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
– sequence: 7
  givenname: Ye-Fei
  orcidid: 0000-0003-4433-7433
  surname: Li
  fullname: Li, Ye-Fei
  organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– sequence: 8
  givenname: Cheng
  orcidid: 0000-0001-7486-1514
  surname: Shang
  fullname: Shang, Cheng
  email: cshang@fudan.edu.cn
  organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry
– sequence: 9
  givenname: Zhi-Pan
  orcidid: 0000-0002-2906-5217
  surname: Liu
  fullname: Liu, Zhi-Pan
  email: zpliu@fudan.edu.cn
  organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39734761$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1rHCEUxaUkNB_Nc9-Kj4WyiY6O4_SlLPloFxZaSPssjt7ZdZnRrTqF_vc1u9uQFBoQFO_vnHv1nKEjHzwg9JaSS0oqerWNYNYwXnJDCBHkFTqtmobOWkbF0ZPzCbpIaVOQqhFEcPYanbC2YbwR9BTdLOf333AOOK8B3015ioBDj-c5jM7gezdOg84u-I944TMMg1uBN4C1t3g-FWhXfIOOez0kuDjs5-jH3e336y-z5dfPi-v5cqZ5K_LM2FqaXnZVqzugwjbE2s5KCVVT1aalrOrAaEsoo9D0lrRcitZK3tfQlcXZOVrsfW3QG7WNbtTxtwraqd1FiCulY3ZmAGWB133DgUjWcdFDV3EGWpiaG2tEq4vXp73XdupGsAZ8jnp4Zvq84t1arcIvRako4zJZHN4fHGL4OUHKanTJlD_SHsKUFKN1eYqQghX03dNmj13-5lCAqz1gYkgpQv-IUKIewlaHsNUh7KKo_1EYl3dplGnd8ILuw16nTVKbMEVfEvsv_QeR1b8k
CitedBy_id crossref_primary_10_1021_acscatal_4c06717
crossref_primary_10_1021_acs_jctc_4c01355
crossref_primary_10_1021_acs_jctc_5c00051
crossref_primary_10_1021_acs_jpca_4c06669
crossref_primary_10_1021_jacs_5c02046
crossref_primary_10_1021_prechem_4c00086
crossref_primary_10_1021_jacs_4c14404
crossref_primary_10_1021_acs_jpcc_4c08577
Cites_doi 10.1021/acscatal.2c01970
10.1063/1.4989540
10.1016/j.micromeso.2020.110638
10.1021/acscentsci.7b00555
10.1103/PhysRev.34.57
10.1021/jacs.7b11239
10.1021/acs.accounts.0c00807
10.1016/j.susc.2005.11.020
10.1021/acs.jctc.3c01203
10.1063/1.5051772
10.1103/PhysRevLett.128.226102
10.1021/acscatal.0c00630
10.1021/acs.chemrev.8b00588
10.1103/PhysRevLett.96.146101
10.48550/ARXIV.2210.07237
10.1021/acs.jpcc.7b08176
10.1021/jp710613q
10.1021/acscatal.0c05421
10.4153/CJM-1956-045-5
10.1016/S0009-2614(00)00318-3
10.1126/science.abb3649
10.1016/B978-0-323-90049-2.00018-4
10.1016/j.ccr.2006.01.001
10.1021/acscatal.9b03443
10.1016/0001-6160(54)90102-9
10.1063/5.0080766
10.1016/j.cpc.2018.03.016
10.1063/1674-0068/cjcp2108145
10.1039/C8CP00044A
10.1016/j.ccr.2008.04.017
10.1016/j.gee.2020.10.015
10.1039/B913356A
10.1063/5.0138367
10.1021/acs.jcim.0c00451
10.1021/ie00028a003
10.1007/s41061-021-00339-5
10.1016/j.cpc.2016.02.013
10.1021/jo000691h
10.1016/j.compchemeng.2012.06.008
10.1016/j.apcatb.2020.119308
10.1021/acscatal.8b04317
10.1063/5.0084545
10.1016/j.scib.2019.02.009
10.1016/0001-6160(54)90103-0
10.1063/5.0007045
10.1002/chem.202102790
10.1063/5.0155600
10.1063/1.4811109
10.1126/sciadv.1603015
10.1103/PhysRevLett.98.146401
10.1021/ar990080f
10.1002/wcms.1415
10.1021/ct9005147
10.1002/jcc.26004
10.1016/0927-0256(96)00008-0
10.1038/s41467-023-36329-y
10.1063/5.0004944
10.1021/acs.jcim.1c00297
10.1021/jacs.2c09840
10.1039/C7SC01459G
10.1063/1.2210932
10.1021/ct400238j
10.1021/acs.jctc.5b00211
10.1021/acs.accounts.6b00023
10.1103/PhysRevB.59.1758
10.1039/C8SC03427C
10.1063/5.0155322
10.1039/C8CS00774H
10.1039/D3CP02443A
10.1021/jp970984n
10.1039/C4CP01485E
10.1021/jp5010852
10.1021/acs.jctc.3c00873
10.3390/ma13081822
10.1002/anie.202303200
10.1021/acscatal.0c01136
10.1039/C8CY00304A
10.1021/ja052306h
10.1016/j.cpc.2021.108171
10.1016/S1387-1811(01)00389-4
10.1021/acs.chemmater.8b03290
10.1038/s41563-020-0777-6
10.1021/ct300250h
10.1021/acscatal.3c02504
10.1021/jacs.1c09718
10.1021/acs.chemrev.1c00022
10.1038/s41467-022-32514-7
10.1021/acs.jctc.3c00777
10.1002/jcc.25636
10.1038/s41929-024-01135-2
10.1016/j.crci.2004.12.009
10.1107/S160057671900997X
10.1021/jacs.9b11535
10.1088/0959-5309/43/5/301
10.48550/ARXIV.2202.02541
10.1021/acs.jctc.8b00908
10.1039/a901227c
10.1021/acs.jctc.4c00660
10.1039/b909229c
10.1103/PhysRevLett.96.146102
10.1021/acs.jctc.4c00253
10.1002/anie.201609317
10.1103/PhysRevLett.75.288
10.1126/science.1215614
10.1039/D2SC01225A
10.1021/acs.jctc.2c00404
10.1107/S2052520616003954
10.1126/science.285.5432.1368
10.1126/science.abj4213
10.1039/C4CP04456H
10.1038/nchem.2501
10.1021/ct301010b
10.1021/acs.jpcc.6b10074
10.1038/s41467-023-43720-2
10.1088/0953-8984/21/39/395502
10.1021/jacs.2c06044
10.1021/jacs.5b04528
10.1103/PhysRevLett.80.1357
10.1002/jcc.20621
10.1002/jcc.23271
10.1039/c3cp44063j
10.1126/science.aaz1293
10.1140/epjb/s10051-021-00156-1
10.1038/s41467-022-29939-5
10.1021/ct4008475
10.1039/C6CP06895B
10.1021/acscatal.9b05103
10.1039/D3SC02054A
ContentType Journal Article
Copyright 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society
2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.
2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society
– notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.
– notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/prechem.4c00060
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2771-9316
EndPage 627
ExternalDocumentID oai_doaj_org_article_de45f74e083b46feb243ea6c54cdc69a
PMC11672538
39734761
10_1021_prechem_4c00060
a360133901
Genre Journal Article
Review
GroupedDBID ABBLG
ACS
ADUCK
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
RPM
VF5
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a496t-cd58cf8b29abe16d70ddbd88e2725c9132becad0131e7fd094869d84f5eb5eb43
IEDL.DBID N~.
ISSN 2771-9316
IngestDate Wed Aug 27 01:28:17 EDT 2025
Thu Aug 21 18:29:46 EDT 2025
Fri Jul 11 16:31:42 EDT 2025
Wed Feb 19 02:03:05 EST 2025
Sun Jul 06 05:08:14 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Tue May 27 03:14:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Potential energy surface
Global neural network potential
Material design
Machine learning
First-principles
Software
Catalytic reactions
Large-scale atomic simulation
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a496t-cd58cf8b29abe16d70ddbd88e2725c9132becad0131e7fd094869d84f5eb5eb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5894-5910
0000-0003-2147-2472
0009-0009-5166-2825
0000-0001-7486-1514
0000-0002-2906-5217
0000-0003-4433-7433
OpenAccessLink https://doaj.org/article/de45f74e083b46feb243ea6c54cdc69a
PMID 39734761
PQID 3150136863
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_de45f74e083b46feb243ea6c54cdc69a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11672538
proquest_miscellaneous_3150136863
pubmed_primary_39734761
crossref_primary_10_1021_prechem_4c00060
crossref_citationtrail_10_1021_prechem_4c00060
acs_journals_10_1021_prechem_4c00060
PublicationCentury 2000
PublicationDate 2024-12-23
PublicationDateYYYYMMDD 2024-12-23
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Precision Chemistry
PublicationTitleAlternate Precis. Chem
PublicationYear 2024
Publisher University of Science and Technology of China and American Chemical Society
American Chemical Society
Publisher_xml – name: University of Science and Technology of China and American Chemical Society
– name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref127/cit127
  doi: 10.1021/acscatal.2c01970
– ident: ref93/cit93
  doi: 10.1063/1.4989540
– ident: ref112/cit112
  doi: 10.1016/j.micromeso.2020.110638
– ident: ref14/cit14
– ident: ref31/cit31
– ident: ref72/cit72
  doi: 10.1021/acscentsci.7b00555
– ident: ref45/cit45
  doi: 10.1103/PhysRev.34.57
– ident: ref90/cit90
  doi: 10.1021/jacs.7b11239
– ident: ref121/cit121
  doi: 10.1021/acs.accounts.0c00807
– ident: ref62/cit62
  doi: 10.1016/j.susc.2005.11.020
– ident: ref9/cit9
  doi: 10.1021/acs.jctc.3c01203
– ident: ref30/cit30
  doi: 10.1063/1.5051772
– ident: ref66/cit66
  doi: 10.1103/PhysRevLett.128.226102
– ident: ref78/cit78
  doi: 10.1021/acscatal.0c00630
– ident: ref122/cit122
  doi: 10.1021/acs.chemrev.8b00588
– ident: ref60/cit60
  doi: 10.1103/PhysRevLett.96.146101
– ident: ref22/cit22
  doi: 10.48550/ARXIV.2210.07237
– ident: ref111/cit111
  doi: 10.1021/acs.jpcc.7b08176
– ident: ref116/cit116
  doi: 10.1021/jp710613q
– ident: ref92/cit92
  doi: 10.1021/acscatal.0c05421
– ident: ref71/cit71
  doi: 10.4153/CJM-1956-045-5
– ident: ref55/cit55
  doi: 10.1016/S0009-2614(00)00318-3
– ident: ref96/cit96
  doi: 10.1126/science.abb3649
– ident: ref23/cit23
  doi: 10.1016/B978-0-323-90049-2.00018-4
– ident: ref119/cit119
  doi: 10.1016/j.ccr.2006.01.001
– ident: ref59/cit59
  doi: 10.1021/acscatal.9b03443
– ident: ref69/cit69
  doi: 10.1016/0001-6160(54)90102-9
– ident: ref10/cit10
  doi: 10.1063/5.0080766
– ident: ref3/cit3
  doi: 10.1016/j.cpc.2018.03.016
– ident: ref2/cit2
  doi: 10.1063/1674-0068/cjcp2108145
– ident: ref80/cit80
  doi: 10.1039/C8CP00044A
– ident: ref123/cit123
  doi: 10.1016/j.ccr.2008.04.017
– ident: ref98/cit98
  doi: 10.1016/j.gee.2020.10.015
– ident: ref124/cit124
  doi: 10.1039/B913356A
– ident: ref6/cit6
  doi: 10.1063/5.0138367
– ident: ref11/cit11
  doi: 10.1021/acs.jcim.0c00451
– ident: ref77/cit77
  doi: 10.1021/ie00028a003
– ident: ref8/cit8
  doi: 10.1007/s41061-021-00339-5
– ident: ref73/cit73
  doi: 10.1016/j.cpc.2016.02.013
– ident: ref118/cit118
  doi: 10.1021/jo000691h
– ident: ref75/cit75
  doi: 10.1016/j.compchemeng.2012.06.008
– ident: ref97/cit97
  doi: 10.1016/j.apcatb.2020.119308
– ident: ref110/cit110
  doi: 10.1021/acscatal.8b04317
– ident: ref58/cit58
  doi: 10.1063/5.0084545
– ident: ref65/cit65
  doi: 10.1016/j.scib.2019.02.009
– ident: ref70/cit70
  doi: 10.1016/0001-6160(54)90103-0
– ident: ref34/cit34
  doi: 10.1063/5.0007045
– ident: ref114/cit114
  doi: 10.1002/chem.202102790
– ident: ref4/cit4
  doi: 10.1063/5.0155600
– ident: ref27/cit27
  doi: 10.1063/1.4811109
– ident: ref19/cit19
  doi: 10.1126/sciadv.1603015
– ident: ref39/cit39
  doi: 10.1103/PhysRevLett.98.146401
– ident: ref117/cit117
  doi: 10.1021/ar990080f
– ident: ref1/cit1
  doi: 10.1002/wcms.1415
– ident: ref94/cit94
  doi: 10.1021/ct9005147
– ident: ref7/cit7
  doi: 10.1002/jcc.26004
– ident: ref32/cit32
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref16/cit16
  doi: 10.1038/s41467-023-36329-y
– ident: ref29/cit29
  doi: 10.1063/5.0004944
– ident: ref76/cit76
  doi: 10.1021/acs.jcim.1c00297
– ident: ref130/cit130
  doi: 10.1021/jacs.2c09840
– ident: ref26/cit26
  doi: 10.1039/C7SC01459G
– ident: ref54/cit54
  doi: 10.1063/1.2210932
– ident: ref48/cit48
  doi: 10.1021/ct400238j
– ident: ref28/cit28
  doi: 10.1021/acs.jctc.5b00211
– ident: ref83/cit83
  doi: 10.1021/acs.accounts.6b00023
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.59.1758
– ident: ref40/cit40
  doi: 10.1039/C8SC03427C
– ident: ref17/cit17
  doi: 10.1063/5.0155322
– ident: ref104/cit104
  doi: 10.1039/C8CS00774H
– ident: ref87/cit87
  doi: 10.1039/D3CP02443A
– ident: ref49/cit49
  doi: 10.1021/jp970984n
– ident: ref25/cit25
  doi: 10.1039/C4CP01485E
– ident: ref64/cit64
  doi: 10.1021/jp5010852
– ident: ref42/cit42
  doi: 10.1021/acs.jctc.3c00873
– ident: ref106/cit106
  doi: 10.3390/ma13081822
– ident: ref67/cit67
  doi: 10.1002/anie.202303200
– ident: ref115/cit115
  doi: 10.1021/acscatal.0c01136
– ident: ref74/cit74
  doi: 10.1039/C8CY00304A
– ident: ref109/cit109
  doi: 10.1021/ja052306h
– ident: ref35/cit35
  doi: 10.1016/j.cpc.2021.108171
– ident: ref113/cit113
  doi: 10.1016/S1387-1811(01)00389-4
– ident: ref105/cit105
  doi: 10.1021/acs.chemmater.8b03290
– ident: ref20/cit20
  doi: 10.1038/s41563-020-0777-6
– ident: ref37/cit37
  doi: 10.1021/ct300250h
– ident: ref68/cit68
  doi: 10.1021/acscatal.3c02504
– ident: ref126/cit126
  doi: 10.1021/jacs.1c09718
– ident: ref21/cit21
  doi: 10.1021/acs.chemrev.1c00022
– ident: ref81/cit81
  doi: 10.1038/s41467-022-32514-7
– ident: ref47/cit47
  doi: 10.1021/acs.jctc.3c00777
– ident: ref46/cit46
  doi: 10.1002/jcc.25636
– ident: ref63/cit63
  doi: 10.1038/s41929-024-01135-2
– ident: ref108/cit108
  doi: 10.1016/j.crci.2004.12.009
– ident: ref102/cit102
  doi: 10.1107/S160057671900997X
– ident: ref89/cit89
  doi: 10.1021/jacs.9b11535
– ident: ref44/cit44
  doi: 10.1088/0959-5309/43/5/301
– ident: ref12/cit12
  doi: 10.48550/ARXIV.2202.02541
– ident: ref5/cit5
  doi: 10.1021/acs.jctc.8b00908
– ident: ref52/cit52
  doi: 10.1039/a901227c
– ident: ref43/cit43
  doi: 10.1021/acs.jctc.4c00660
– ident: ref125/cit125
  doi: 10.1039/b909229c
– ident: ref61/cit61
  doi: 10.1103/PhysRevLett.96.146102
– ident: ref13/cit13
  doi: 10.1021/acs.jctc.4c00253
– ident: ref57/cit57
  doi: 10.1002/anie.201609317
– ident: ref53/cit53
  doi: 10.1103/PhysRevLett.75.288
– ident: ref95/cit95
  doi: 10.1126/science.1215614
– ident: ref107/cit107
  doi: 10.1039/D2SC01225A
– ident: ref86/cit86
  doi: 10.1021/acs.jctc.2c00404
– ident: ref101/cit101
  doi: 10.1107/S2052520616003954
– ident: ref51/cit51
  doi: 10.1126/science.285.5432.1368
– ident: ref129/cit129
  doi: 10.1126/science.abj4213
– ident: ref84/cit84
  doi: 10.1039/C4CP04456H
– ident: ref128/cit128
  doi: 10.1038/nchem.2501
– ident: ref24/cit24
  doi: 10.1021/ct301010b
– ident: ref91/cit91
  doi: 10.1021/acs.jpcc.6b10074
– ident: ref18/cit18
  doi: 10.1038/s41467-023-43720-2
– ident: ref36/cit36
  doi: 10.1088/0953-8984/21/39/395502
– ident: ref100/cit100
  doi: 10.1021/jacs.2c06044
– ident: ref88/cit88
  doi: 10.1021/jacs.5b04528
– ident: ref50/cit50
  doi: 10.1103/PhysRevLett.80.1357
– ident: ref56/cit56
  doi: 10.1002/jcc.20621
– ident: ref79/cit79
  doi: 10.1002/jcc.23271
– ident: ref82/cit82
  doi: 10.1039/c3cp44063j
– ident: ref120/cit120
  doi: 10.1126/science.aaz1293
– ident: ref41/cit41
  doi: 10.1140/epjb/s10051-021-00156-1
– ident: ref15/cit15
  doi: 10.1038/s41467-022-29939-5
– ident: ref38/cit38
  doi: 10.1021/ct4008475
– ident: ref85/cit85
  doi: 10.1039/C6CP06895B
– ident: ref103/cit103
  doi: 10.1021/acscatal.9b05103
– ident: ref99/cit99
  doi: 10.1039/D3SC02054A
SSID ssj0002760643
Score 2.360904
SecondaryResourceType review_article
Snippet Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy...
Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 612
SubjectTerms Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQF7hUpaVtaItciUMvgXViO05vC3RFEUKVKBI3y_GMBQiyqJv9f8ZOdrVbFfVSKafETqyZseeNZvKGsQNJIADR1DmA1Lk0KuROKJ835N5RFVDR-RCrLS712bU8v1E3K62-Yk1YTw_cC-4IUKpQSSSo0EgdKBCUJTrtlfTgdZ2gEfm8lWDqPqXTdPS1Sy4fcfREB8gtPh5KnzhIojPyszVnlDj7_wY0_6yXXHFAk9fs1YAc-bhf8Q7bwPYN2zpZNGx7y04vxlc_eTflhOn4JHGF8Gng4y7-eMyv7h6HTl3f-I8VHk7uWuDjOQ1KD3fZ9eT7r5OzfGiSkDtZ6y73oIwPpilq16DQUI0AGjAGi6pQvqZgk7TkINLqYBWAojmjazAyKGzokuU7ttlOW_zAuGyEqHwJEEQtRwZpK4Ojd4VR5ZCAWsYOSGZ2MPKZTfnrQthBtHYQbcYOF0K1fiAaj_0uHl6e8HU54ann2Hh56HHU0nJYJMdON8hk7GAy9l8mk7EvCx1bUlHMkLgWp_OZLQkei1IbXWbsfa_z5acIuJWy0iJjZs0a1tay_qS9u02E3THXVZBn2fsfq__ItgsCVrGkpig_sc3u9xw_EzDqmv20B54BykMOuQ
  priority: 102
  providerName: Directory of Open Access Journals
Title LASP to the Future of Atomic Simulation: Intelligence and Automation
URI http://dx.doi.org/10.1021/prechem.4c00060
https://www.ncbi.nlm.nih.gov/pubmed/39734761
https://www.proquest.com/docview/3150136863
https://pubmed.ncbi.nlm.nih.gov/PMC11672538
https://doaj.org/article/de45f74e083b46feb243ea6c54cdc69a
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOCCKM_wWBmpBy5Z1m-H27LtqiCEkJZKvVl-qpXabMVmr_x2xt5s6BYqVcopHjvRzDjz2eN8g9ABBxAQo27qELisuRaptkT42kF4j4IGBd-HfNriuzw-4V9PxelfsuibGXxKPl7BzD-Ll2PuC3nIffSASnC6XOPy93jYTqFK5uCaS8kpReqGETkQ-fwzRo5EfrUTiQph__9Q5s3Dkteiz_wJetzDRjzd2Hkf3YvtU_Rwtq3W9gwdfpsufuBuiQHQ4XkhCsHLhKdd_usYL84v-zJdn_CXaySc2LYBT9cgVBqfo5P50c_Zcd1XSKgtb2RX-yC0T9rRxrpIZFCTEFzQOlJFhW9gpQkmsiFz6kSVAizltGyC5klEBxdnL9Beu2zjK4S5I0R5FkIiDZ_oCPM4WBgrTZSNgNIqdAA6M72Hr0xJXlNietWaXrUVGm-VanzPMp6LXVzc3uHD0OFqQ7Bxu-jnbKVBLDNjlxvgLqafaCZELpLiEaCl4zJFRzmLVnrBffCysRV6v7WxARPl9Iht43K9MgywMWFSS1ahlxubD48C1Ma4kqRCescbdt5lt6U9Pyts3TnRRSGsvL6bAt-gRxRwUz4xQ9lbtNf9Wsd3gHs6NwLcP1uMyq7BqHj_qGxO_QHRRgK9
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8i7haaQeuGRZO47tcFsWVltYKtC2Um9W_Iha0WYrkr3w6xl7s6FbqARSTontOJ6x53Nm_A3APkcQ4L0qUue4SLnKq7SkuU0NmnefMydxfQjRFodiesw_neQnWzBcn4XBTjTYUhOd-L_ZBejbS1wATv3FgNvIIXILbiMUYUGnR-N5_1eFSRFsbMgoJyVNi4yKns_njzaCQbLNhkGKvP1_A5vXYyavGKHJXfjWdz_GnnwfLFszsD-vMTv-z_fdg90OkZLRSoXuw5avH8DOeJ0I7iF8mI3mX0m7IIgVySRykJBFRUZtONBM5mcXXQawd-TgCr8nKWtHRkssFB8-guPJx6PxNO2SL6QlL0SbWpcrWynDitJ4KpwcOmecUp5JltsCN7Eo_dIFuh4vK4e7RCUKp3iVe4MXzx7Ddr2o_RMg3FAqbeZcRQs-VB6XCFdiW9VQlh4BYAL7OCK6mzyNjn5xRnU3JLobkgQGa0Fp2xGYhzwa5zdXeNNXuFxxd9xc9H2QfF8skG7HGygm3c1h7TzPK8k9olbDReUN45kvhc25dVYUZQKv13qjUUTB81LWfrFsdIawm2ZCiSyBvZUe9a9CQJhxKWgCakPDNvqy-aQ-O41E4MGHxtBiPf23AXwFO9OjLzM9Ozj8_AzuMIRnITCHZc9hu_2x9C8QXrXmZZxRvwCA4yDf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL4t1AASP1wCXL-hHb6W1pWbVQrSqVSr1ZfqqVaHbVZK_97Yyz3qgLVELKKX7Emhl7PmfsbxDa4wACQlB16T0XJVdVLA2pXGnBvYeKegnrQzptMRNH5_z7RXWRL4WluzAwiBZ6avsgfprVCx8zwwD5soBF4DJcj7jreUQeokcARsYpYcPsdjT8WaFSJD-bsspJScqaETFw-vzVR3JKrt1wSj13_78A55_nJu84oukz9DQjSDxZqfw5ehCaF-jJwTpx20t0eDI5O8XdHAO2w9OeMwTPI5506QIyPru6zhm79vHxHT5ObBqPJ0uo1Be-QufTbz8PjsqcLKE0vBZd6XylXFSW1sYGIrwce2-9UoFKWrkaNp2gLeMTvU6Q0cOuTonaKx6rYOHh7DXaauZN2EGYW0KkY95HUvOxCjClvYG-4liaAICtQHsgM52NvdV9HJsSnUWrs2gLNFoLVbtMOJ7yXvy6v8HnocFixbVxf9WvSUtDtUSS3b8As9F5zmkfeBUlD4AyLRcxWMpZMMJV3HknalOgT2sda1BRipSYJsyXrWYAkwkTSrACvVnpfPgUADjGpSAFUhvWsDGWzZLm6rIn7k4xLwoe5u3_CfAjenx6ONUnx7Mf79A2BTSVztFQtou2uptleA9oqLMfeuP_DbzABnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LASP+to+the+Future+of+Atomic+Simulation%3A+Intelligence+and+Automation&rft.jtitle=Precision+Chemistry&rft.au=Xie%2C+Xin-Tian&rft.au=Yang%2C+Zheng-Xin&rft.au=Chen%2C+Dongxiao&rft.au=Shi%2C+Yun-Fei&rft.date=2024-12-23&rft.eissn=2771-9316&rft.volume=2&rft.issue=12&rft.spage=612&rft_id=info:doi/10.1021%2Fprechem.4c00060&rft_id=info%3Apmid%2F39734761&rft.externalDocID=39734761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9316&client=summon