LASP to the Future of Atomic Simulation: Intelligence and Automation
Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potenti...
Saved in:
Published in | Precision Chemistry Vol. 2; no. 12; pp. 612 - 627 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
University of Science and Technology of China and American Chemical Society
23.12.2024
American Chemical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal–ligand properties for a new catalyst design. |
---|---|
AbstractList | Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal–ligand properties for a new catalyst design. Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal-ligand properties for a new catalyst design.Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal-ligand properties for a new catalyst design. Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal–ligand properties for a new catalyst design. |
Author | Kang, Pei-Lin Xie, Xin-Tian Yang, Zheng-Xin Li, Ye-Fei Shang, Cheng Liu, Zhi-Pan Shi, Yun-Fei Ma, Sicong Chen, Dongxiao |
AuthorAffiliation | Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry State Key Laboratory of Metal Organic Chemistry |
AuthorAffiliation_xml | – name: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – name: State Key Laboratory of Metal Organic Chemistry – name: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Xin-Tian orcidid: 0009-0009-5166-2825 surname: Xie fullname: Xie, Xin-Tian organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – sequence: 2 givenname: Zheng-Xin surname: Yang fullname: Yang, Zheng-Xin organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – sequence: 3 givenname: Dongxiao surname: Chen fullname: Chen, Dongxiao organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – sequence: 4 givenname: Yun-Fei surname: Shi fullname: Shi, Yun-Fei organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – sequence: 5 givenname: Pei-Lin orcidid: 0000-0003-2147-2472 surname: Kang fullname: Kang, Pei-Lin organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – sequence: 6 givenname: Sicong orcidid: 0000-0001-5894-5910 surname: Ma fullname: Ma, Sicong organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences – sequence: 7 givenname: Ye-Fei orcidid: 0000-0003-4433-7433 surname: Li fullname: Li, Ye-Fei organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – sequence: 8 givenname: Cheng orcidid: 0000-0001-7486-1514 surname: Shang fullname: Shang, Cheng email: cshang@fudan.edu.cn organization: Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry – sequence: 9 givenname: Zhi-Pan orcidid: 0000-0002-2906-5217 surname: Liu fullname: Liu, Zhi-Pan email: zpliu@fudan.edu.cn organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39734761$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1rHCEUxaUkNB_Nc9-Kj4WyiY6O4_SlLPloFxZaSPssjt7ZdZnRrTqF_vc1u9uQFBoQFO_vnHv1nKEjHzwg9JaSS0oqerWNYNYwXnJDCBHkFTqtmobOWkbF0ZPzCbpIaVOQqhFEcPYanbC2YbwR9BTdLOf333AOOK8B3015ioBDj-c5jM7gezdOg84u-I944TMMg1uBN4C1t3g-FWhXfIOOez0kuDjs5-jH3e336y-z5dfPi-v5cqZ5K_LM2FqaXnZVqzugwjbE2s5KCVVT1aalrOrAaEsoo9D0lrRcitZK3tfQlcXZOVrsfW3QG7WNbtTxtwraqd1FiCulY3ZmAGWB133DgUjWcdFDV3EGWpiaG2tEq4vXp73XdupGsAZ8jnp4Zvq84t1arcIvRako4zJZHN4fHGL4OUHKanTJlD_SHsKUFKN1eYqQghX03dNmj13-5lCAqz1gYkgpQv-IUKIewlaHsNUh7KKo_1EYl3dplGnd8ILuw16nTVKbMEVfEvsv_QeR1b8k |
CitedBy_id | crossref_primary_10_1021_acscatal_4c06717 crossref_primary_10_1021_acs_jctc_4c01355 crossref_primary_10_1021_acs_jctc_5c00051 crossref_primary_10_1021_acs_jpca_4c06669 crossref_primary_10_1021_jacs_5c02046 crossref_primary_10_1021_prechem_4c00086 crossref_primary_10_1021_jacs_4c14404 crossref_primary_10_1021_acs_jpcc_4c08577 |
Cites_doi | 10.1021/acscatal.2c01970 10.1063/1.4989540 10.1016/j.micromeso.2020.110638 10.1021/acscentsci.7b00555 10.1103/PhysRev.34.57 10.1021/jacs.7b11239 10.1021/acs.accounts.0c00807 10.1016/j.susc.2005.11.020 10.1021/acs.jctc.3c01203 10.1063/1.5051772 10.1103/PhysRevLett.128.226102 10.1021/acscatal.0c00630 10.1021/acs.chemrev.8b00588 10.1103/PhysRevLett.96.146101 10.48550/ARXIV.2210.07237 10.1021/acs.jpcc.7b08176 10.1021/jp710613q 10.1021/acscatal.0c05421 10.4153/CJM-1956-045-5 10.1016/S0009-2614(00)00318-3 10.1126/science.abb3649 10.1016/B978-0-323-90049-2.00018-4 10.1016/j.ccr.2006.01.001 10.1021/acscatal.9b03443 10.1016/0001-6160(54)90102-9 10.1063/5.0080766 10.1016/j.cpc.2018.03.016 10.1063/1674-0068/cjcp2108145 10.1039/C8CP00044A 10.1016/j.ccr.2008.04.017 10.1016/j.gee.2020.10.015 10.1039/B913356A 10.1063/5.0138367 10.1021/acs.jcim.0c00451 10.1021/ie00028a003 10.1007/s41061-021-00339-5 10.1016/j.cpc.2016.02.013 10.1021/jo000691h 10.1016/j.compchemeng.2012.06.008 10.1016/j.apcatb.2020.119308 10.1021/acscatal.8b04317 10.1063/5.0084545 10.1016/j.scib.2019.02.009 10.1016/0001-6160(54)90103-0 10.1063/5.0007045 10.1002/chem.202102790 10.1063/5.0155600 10.1063/1.4811109 10.1126/sciadv.1603015 10.1103/PhysRevLett.98.146401 10.1021/ar990080f 10.1002/wcms.1415 10.1021/ct9005147 10.1002/jcc.26004 10.1016/0927-0256(96)00008-0 10.1038/s41467-023-36329-y 10.1063/5.0004944 10.1021/acs.jcim.1c00297 10.1021/jacs.2c09840 10.1039/C7SC01459G 10.1063/1.2210932 10.1021/ct400238j 10.1021/acs.jctc.5b00211 10.1021/acs.accounts.6b00023 10.1103/PhysRevB.59.1758 10.1039/C8SC03427C 10.1063/5.0155322 10.1039/C8CS00774H 10.1039/D3CP02443A 10.1021/jp970984n 10.1039/C4CP01485E 10.1021/jp5010852 10.1021/acs.jctc.3c00873 10.3390/ma13081822 10.1002/anie.202303200 10.1021/acscatal.0c01136 10.1039/C8CY00304A 10.1021/ja052306h 10.1016/j.cpc.2021.108171 10.1016/S1387-1811(01)00389-4 10.1021/acs.chemmater.8b03290 10.1038/s41563-020-0777-6 10.1021/ct300250h 10.1021/acscatal.3c02504 10.1021/jacs.1c09718 10.1021/acs.chemrev.1c00022 10.1038/s41467-022-32514-7 10.1021/acs.jctc.3c00777 10.1002/jcc.25636 10.1038/s41929-024-01135-2 10.1016/j.crci.2004.12.009 10.1107/S160057671900997X 10.1021/jacs.9b11535 10.1088/0959-5309/43/5/301 10.48550/ARXIV.2202.02541 10.1021/acs.jctc.8b00908 10.1039/a901227c 10.1021/acs.jctc.4c00660 10.1039/b909229c 10.1103/PhysRevLett.96.146102 10.1021/acs.jctc.4c00253 10.1002/anie.201609317 10.1103/PhysRevLett.75.288 10.1126/science.1215614 10.1039/D2SC01225A 10.1021/acs.jctc.2c00404 10.1107/S2052520616003954 10.1126/science.285.5432.1368 10.1126/science.abj4213 10.1039/C4CP04456H 10.1038/nchem.2501 10.1021/ct301010b 10.1021/acs.jpcc.6b10074 10.1038/s41467-023-43720-2 10.1088/0953-8984/21/39/395502 10.1021/jacs.2c06044 10.1021/jacs.5b04528 10.1103/PhysRevLett.80.1357 10.1002/jcc.20621 10.1002/jcc.23271 10.1039/c3cp44063j 10.1126/science.aaz1293 10.1140/epjb/s10051-021-00156-1 10.1038/s41467-022-29939-5 10.1021/ct4008475 10.1039/C6CP06895B 10.1021/acscatal.9b05103 10.1039/D3SC02054A |
ContentType | Journal Article |
Copyright | 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society – notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. – notice: 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/prechem.4c00060 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2771-9316 |
EndPage | 627 |
ExternalDocumentID | oai_doaj_org_article_de45f74e083b46feb243ea6c54cdc69a PMC11672538 39734761 10_1021_prechem_4c00060 a360133901 |
Genre | Journal Article Review |
GroupedDBID | ABBLG ACS ADUCK ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. RPM VF5 AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a496t-cd58cf8b29abe16d70ddbd88e2725c9132becad0131e7fd094869d84f5eb5eb43 |
IEDL.DBID | N~. |
ISSN | 2771-9316 |
IngestDate | Wed Aug 27 01:28:17 EDT 2025 Thu Aug 21 18:29:46 EDT 2025 Fri Jul 11 16:31:42 EDT 2025 Wed Feb 19 02:03:05 EST 2025 Sun Jul 06 05:08:14 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Tue May 27 03:14:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Potential energy surface Global neural network potential Material design Machine learning First-principles Software Catalytic reactions Large-scale atomic simulation |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a496t-cd58cf8b29abe16d70ddbd88e2725c9132becad0131e7fd094869d84f5eb5eb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5894-5910 0000-0003-2147-2472 0009-0009-5166-2825 0000-0001-7486-1514 0000-0002-2906-5217 0000-0003-4433-7433 |
OpenAccessLink | https://doaj.org/article/de45f74e083b46feb243ea6c54cdc69a |
PMID | 39734761 |
PQID | 3150136863 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_de45f74e083b46feb243ea6c54cdc69a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11672538 proquest_miscellaneous_3150136863 pubmed_primary_39734761 crossref_primary_10_1021_prechem_4c00060 crossref_citationtrail_10_1021_prechem_4c00060 acs_journals_10_1021_prechem_4c00060 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-23 |
PublicationDateYYYYMMDD | 2024-12-23 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Precision Chemistry |
PublicationTitleAlternate | Precis. Chem |
PublicationYear | 2024 |
Publisher | University of Science and Technology of China and American Chemical Society American Chemical Society |
Publisher_xml | – name: University of Science and Technology of China and American Chemical Society – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref127/cit127 doi: 10.1021/acscatal.2c01970 – ident: ref93/cit93 doi: 10.1063/1.4989540 – ident: ref112/cit112 doi: 10.1016/j.micromeso.2020.110638 – ident: ref14/cit14 – ident: ref31/cit31 – ident: ref72/cit72 doi: 10.1021/acscentsci.7b00555 – ident: ref45/cit45 doi: 10.1103/PhysRev.34.57 – ident: ref90/cit90 doi: 10.1021/jacs.7b11239 – ident: ref121/cit121 doi: 10.1021/acs.accounts.0c00807 – ident: ref62/cit62 doi: 10.1016/j.susc.2005.11.020 – ident: ref9/cit9 doi: 10.1021/acs.jctc.3c01203 – ident: ref30/cit30 doi: 10.1063/1.5051772 – ident: ref66/cit66 doi: 10.1103/PhysRevLett.128.226102 – ident: ref78/cit78 doi: 10.1021/acscatal.0c00630 – ident: ref122/cit122 doi: 10.1021/acs.chemrev.8b00588 – ident: ref60/cit60 doi: 10.1103/PhysRevLett.96.146101 – ident: ref22/cit22 doi: 10.48550/ARXIV.2210.07237 – ident: ref111/cit111 doi: 10.1021/acs.jpcc.7b08176 – ident: ref116/cit116 doi: 10.1021/jp710613q – ident: ref92/cit92 doi: 10.1021/acscatal.0c05421 – ident: ref71/cit71 doi: 10.4153/CJM-1956-045-5 – ident: ref55/cit55 doi: 10.1016/S0009-2614(00)00318-3 – ident: ref96/cit96 doi: 10.1126/science.abb3649 – ident: ref23/cit23 doi: 10.1016/B978-0-323-90049-2.00018-4 – ident: ref119/cit119 doi: 10.1016/j.ccr.2006.01.001 – ident: ref59/cit59 doi: 10.1021/acscatal.9b03443 – ident: ref69/cit69 doi: 10.1016/0001-6160(54)90102-9 – ident: ref10/cit10 doi: 10.1063/5.0080766 – ident: ref3/cit3 doi: 10.1016/j.cpc.2018.03.016 – ident: ref2/cit2 doi: 10.1063/1674-0068/cjcp2108145 – ident: ref80/cit80 doi: 10.1039/C8CP00044A – ident: ref123/cit123 doi: 10.1016/j.ccr.2008.04.017 – ident: ref98/cit98 doi: 10.1016/j.gee.2020.10.015 – ident: ref124/cit124 doi: 10.1039/B913356A – ident: ref6/cit6 doi: 10.1063/5.0138367 – ident: ref11/cit11 doi: 10.1021/acs.jcim.0c00451 – ident: ref77/cit77 doi: 10.1021/ie00028a003 – ident: ref8/cit8 doi: 10.1007/s41061-021-00339-5 – ident: ref73/cit73 doi: 10.1016/j.cpc.2016.02.013 – ident: ref118/cit118 doi: 10.1021/jo000691h – ident: ref75/cit75 doi: 10.1016/j.compchemeng.2012.06.008 – ident: ref97/cit97 doi: 10.1016/j.apcatb.2020.119308 – ident: ref110/cit110 doi: 10.1021/acscatal.8b04317 – ident: ref58/cit58 doi: 10.1063/5.0084545 – ident: ref65/cit65 doi: 10.1016/j.scib.2019.02.009 – ident: ref70/cit70 doi: 10.1016/0001-6160(54)90103-0 – ident: ref34/cit34 doi: 10.1063/5.0007045 – ident: ref114/cit114 doi: 10.1002/chem.202102790 – ident: ref4/cit4 doi: 10.1063/5.0155600 – ident: ref27/cit27 doi: 10.1063/1.4811109 – ident: ref19/cit19 doi: 10.1126/sciadv.1603015 – ident: ref39/cit39 doi: 10.1103/PhysRevLett.98.146401 – ident: ref117/cit117 doi: 10.1021/ar990080f – ident: ref1/cit1 doi: 10.1002/wcms.1415 – ident: ref94/cit94 doi: 10.1021/ct9005147 – ident: ref7/cit7 doi: 10.1002/jcc.26004 – ident: ref32/cit32 doi: 10.1016/0927-0256(96)00008-0 – ident: ref16/cit16 doi: 10.1038/s41467-023-36329-y – ident: ref29/cit29 doi: 10.1063/5.0004944 – ident: ref76/cit76 doi: 10.1021/acs.jcim.1c00297 – ident: ref130/cit130 doi: 10.1021/jacs.2c09840 – ident: ref26/cit26 doi: 10.1039/C7SC01459G – ident: ref54/cit54 doi: 10.1063/1.2210932 – ident: ref48/cit48 doi: 10.1021/ct400238j – ident: ref28/cit28 doi: 10.1021/acs.jctc.5b00211 – ident: ref83/cit83 doi: 10.1021/acs.accounts.6b00023 – ident: ref33/cit33 doi: 10.1103/PhysRevB.59.1758 – ident: ref40/cit40 doi: 10.1039/C8SC03427C – ident: ref17/cit17 doi: 10.1063/5.0155322 – ident: ref104/cit104 doi: 10.1039/C8CS00774H – ident: ref87/cit87 doi: 10.1039/D3CP02443A – ident: ref49/cit49 doi: 10.1021/jp970984n – ident: ref25/cit25 doi: 10.1039/C4CP01485E – ident: ref64/cit64 doi: 10.1021/jp5010852 – ident: ref42/cit42 doi: 10.1021/acs.jctc.3c00873 – ident: ref106/cit106 doi: 10.3390/ma13081822 – ident: ref67/cit67 doi: 10.1002/anie.202303200 – ident: ref115/cit115 doi: 10.1021/acscatal.0c01136 – ident: ref74/cit74 doi: 10.1039/C8CY00304A – ident: ref109/cit109 doi: 10.1021/ja052306h – ident: ref35/cit35 doi: 10.1016/j.cpc.2021.108171 – ident: ref113/cit113 doi: 10.1016/S1387-1811(01)00389-4 – ident: ref105/cit105 doi: 10.1021/acs.chemmater.8b03290 – ident: ref20/cit20 doi: 10.1038/s41563-020-0777-6 – ident: ref37/cit37 doi: 10.1021/ct300250h – ident: ref68/cit68 doi: 10.1021/acscatal.3c02504 – ident: ref126/cit126 doi: 10.1021/jacs.1c09718 – ident: ref21/cit21 doi: 10.1021/acs.chemrev.1c00022 – ident: ref81/cit81 doi: 10.1038/s41467-022-32514-7 – ident: ref47/cit47 doi: 10.1021/acs.jctc.3c00777 – ident: ref46/cit46 doi: 10.1002/jcc.25636 – ident: ref63/cit63 doi: 10.1038/s41929-024-01135-2 – ident: ref108/cit108 doi: 10.1016/j.crci.2004.12.009 – ident: ref102/cit102 doi: 10.1107/S160057671900997X – ident: ref89/cit89 doi: 10.1021/jacs.9b11535 – ident: ref44/cit44 doi: 10.1088/0959-5309/43/5/301 – ident: ref12/cit12 doi: 10.48550/ARXIV.2202.02541 – ident: ref5/cit5 doi: 10.1021/acs.jctc.8b00908 – ident: ref52/cit52 doi: 10.1039/a901227c – ident: ref43/cit43 doi: 10.1021/acs.jctc.4c00660 – ident: ref125/cit125 doi: 10.1039/b909229c – ident: ref61/cit61 doi: 10.1103/PhysRevLett.96.146102 – ident: ref13/cit13 doi: 10.1021/acs.jctc.4c00253 – ident: ref57/cit57 doi: 10.1002/anie.201609317 – ident: ref53/cit53 doi: 10.1103/PhysRevLett.75.288 – ident: ref95/cit95 doi: 10.1126/science.1215614 – ident: ref107/cit107 doi: 10.1039/D2SC01225A – ident: ref86/cit86 doi: 10.1021/acs.jctc.2c00404 – ident: ref101/cit101 doi: 10.1107/S2052520616003954 – ident: ref51/cit51 doi: 10.1126/science.285.5432.1368 – ident: ref129/cit129 doi: 10.1126/science.abj4213 – ident: ref84/cit84 doi: 10.1039/C4CP04456H – ident: ref128/cit128 doi: 10.1038/nchem.2501 – ident: ref24/cit24 doi: 10.1021/ct301010b – ident: ref91/cit91 doi: 10.1021/acs.jpcc.6b10074 – ident: ref18/cit18 doi: 10.1038/s41467-023-43720-2 – ident: ref36/cit36 doi: 10.1088/0953-8984/21/39/395502 – ident: ref100/cit100 doi: 10.1021/jacs.2c06044 – ident: ref88/cit88 doi: 10.1021/jacs.5b04528 – ident: ref50/cit50 doi: 10.1103/PhysRevLett.80.1357 – ident: ref56/cit56 doi: 10.1002/jcc.20621 – ident: ref79/cit79 doi: 10.1002/jcc.23271 – ident: ref82/cit82 doi: 10.1039/c3cp44063j – ident: ref120/cit120 doi: 10.1126/science.aaz1293 – ident: ref41/cit41 doi: 10.1140/epjb/s10051-021-00156-1 – ident: ref15/cit15 doi: 10.1038/s41467-022-29939-5 – ident: ref38/cit38 doi: 10.1021/ct4008475 – ident: ref85/cit85 doi: 10.1039/C6CP06895B – ident: ref103/cit103 doi: 10.1021/acscatal.9b05103 – ident: ref99/cit99 doi: 10.1039/D3SC02054A |
SSID | ssj0002760643 |
Score | 2.360904 |
SecondaryResourceType | review_article |
Snippet | Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy... Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 612 |
SubjectTerms | Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQF7hUpaVtaItciUMvgXViO05vC3RFEUKVKBI3y_GMBQiyqJv9f8ZOdrVbFfVSKafETqyZseeNZvKGsQNJIADR1DmA1Lk0KuROKJ835N5RFVDR-RCrLS712bU8v1E3K62-Yk1YTw_cC-4IUKpQSSSo0EgdKBCUJTrtlfTgdZ2gEfm8lWDqPqXTdPS1Sy4fcfREB8gtPh5KnzhIojPyszVnlDj7_wY0_6yXXHFAk9fs1YAc-bhf8Q7bwPYN2zpZNGx7y04vxlc_eTflhOn4JHGF8Gng4y7-eMyv7h6HTl3f-I8VHk7uWuDjOQ1KD3fZ9eT7r5OzfGiSkDtZ6y73oIwPpilq16DQUI0AGjAGi6pQvqZgk7TkINLqYBWAojmjazAyKGzokuU7ttlOW_zAuGyEqHwJEEQtRwZpK4Ojd4VR5ZCAWsYOSGZ2MPKZTfnrQthBtHYQbcYOF0K1fiAaj_0uHl6e8HU54ann2Hh56HHU0nJYJMdON8hk7GAy9l8mk7EvCx1bUlHMkLgWp_OZLQkei1IbXWbsfa_z5acIuJWy0iJjZs0a1tay_qS9u02E3THXVZBn2fsfq__ItgsCVrGkpig_sc3u9xw_EzDqmv20B54BykMOuQ priority: 102 providerName: Directory of Open Access Journals |
Title | LASP to the Future of Atomic Simulation: Intelligence and Automation |
URI | http://dx.doi.org/10.1021/prechem.4c00060 https://www.ncbi.nlm.nih.gov/pubmed/39734761 https://www.proquest.com/docview/3150136863 https://pubmed.ncbi.nlm.nih.gov/PMC11672538 https://doaj.org/article/de45f74e083b46feb243ea6c54cdc69a |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOCCKM_wWBmpBy5Z1m-H27LtqiCEkJZKvVl-qpXabMVmr_x2xt5s6BYqVcopHjvRzDjz2eN8g9ABBxAQo27qELisuRaptkT42kF4j4IGBd-HfNriuzw-4V9PxelfsuibGXxKPl7BzD-Ll2PuC3nIffSASnC6XOPy93jYTqFK5uCaS8kpReqGETkQ-fwzRo5EfrUTiQph__9Q5s3Dkteiz_wJetzDRjzd2Hkf3YvtU_Rwtq3W9gwdfpsufuBuiQHQ4XkhCsHLhKdd_usYL84v-zJdn_CXaySc2LYBT9cgVBqfo5P50c_Zcd1XSKgtb2RX-yC0T9rRxrpIZFCTEFzQOlJFhW9gpQkmsiFz6kSVAizltGyC5klEBxdnL9Beu2zjK4S5I0R5FkIiDZ_oCPM4WBgrTZSNgNIqdAA6M72Hr0xJXlNietWaXrUVGm-VanzPMp6LXVzc3uHD0OFqQ7Bxu-jnbKVBLDNjlxvgLqafaCZELpLiEaCl4zJFRzmLVnrBffCysRV6v7WxARPl9Iht43K9MgywMWFSS1ahlxubD48C1Ma4kqRCescbdt5lt6U9Pyts3TnRRSGsvL6bAt-gRxRwUz4xQ9lbtNf9Wsd3gHs6NwLcP1uMyq7BqHj_qGxO_QHRRgK9 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8i7haaQeuGRZO47tcFsWVltYKtC2Um9W_Iha0WYrkr3w6xl7s6FbqARSTontOJ6x53Nm_A3APkcQ4L0qUue4SLnKq7SkuU0NmnefMydxfQjRFodiesw_neQnWzBcn4XBTjTYUhOd-L_ZBejbS1wATv3FgNvIIXILbiMUYUGnR-N5_1eFSRFsbMgoJyVNi4yKns_njzaCQbLNhkGKvP1_A5vXYyavGKHJXfjWdz_GnnwfLFszsD-vMTv-z_fdg90OkZLRSoXuw5avH8DOeJ0I7iF8mI3mX0m7IIgVySRykJBFRUZtONBM5mcXXQawd-TgCr8nKWtHRkssFB8-guPJx6PxNO2SL6QlL0SbWpcrWynDitJ4KpwcOmecUp5JltsCN7Eo_dIFuh4vK4e7RCUKp3iVe4MXzx7Ddr2o_RMg3FAqbeZcRQs-VB6XCFdiW9VQlh4BYAL7OCK6mzyNjn5xRnU3JLobkgQGa0Fp2xGYhzwa5zdXeNNXuFxxd9xc9H2QfF8skG7HGygm3c1h7TzPK8k9olbDReUN45kvhc25dVYUZQKv13qjUUTB81LWfrFsdIawm2ZCiSyBvZUe9a9CQJhxKWgCakPDNvqy-aQ-O41E4MGHxtBiPf23AXwFO9OjLzM9Ozj8_AzuMIRnITCHZc9hu_2x9C8QXrXmZZxRvwCA4yDf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL4t1AASP1wCXL-hHb6W1pWbVQrSqVSr1ZfqqVaHbVZK_97Yyz3qgLVELKKX7Emhl7PmfsbxDa4wACQlB16T0XJVdVLA2pXGnBvYeKegnrQzptMRNH5_z7RXWRL4WluzAwiBZ6avsgfprVCx8zwwD5soBF4DJcj7jreUQeokcARsYpYcPsdjT8WaFSJD-bsspJScqaETFw-vzVR3JKrt1wSj13_78A55_nJu84oukz9DQjSDxZqfw5ehCaF-jJwTpx20t0eDI5O8XdHAO2w9OeMwTPI5506QIyPru6zhm79vHxHT5ObBqPJ0uo1Be-QufTbz8PjsqcLKE0vBZd6XylXFSW1sYGIrwce2-9UoFKWrkaNp2gLeMTvU6Q0cOuTonaKx6rYOHh7DXaauZN2EGYW0KkY95HUvOxCjClvYG-4liaAICtQHsgM52NvdV9HJsSnUWrs2gLNFoLVbtMOJ7yXvy6v8HnocFixbVxf9WvSUtDtUSS3b8As9F5zmkfeBUlD4AyLRcxWMpZMMJV3HknalOgT2sda1BRipSYJsyXrWYAkwkTSrACvVnpfPgUADjGpSAFUhvWsDGWzZLm6rIn7k4xLwoe5u3_CfAjenx6ONUnx7Mf79A2BTSVztFQtou2uptleA9oqLMfeuP_DbzABnI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LASP+to+the+Future+of+Atomic+Simulation%3A+Intelligence+and+Automation&rft.jtitle=Precision+Chemistry&rft.au=Xie%2C+Xin-Tian&rft.au=Yang%2C+Zheng-Xin&rft.au=Chen%2C+Dongxiao&rft.au=Shi%2C+Yun-Fei&rft.date=2024-12-23&rft.eissn=2771-9316&rft.volume=2&rft.issue=12&rft.spage=612&rft_id=info:doi/10.1021%2Fprechem.4c00060&rft_id=info%3Apmid%2F39734761&rft.externalDocID=39734761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9316&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9316&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9316&client=summon |