Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded d...
Saved in:
Published in | Precision Chemistry Vol. 1; no. 10; pp. 608 - 615 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
University of Science and Technology of China and American Chemical Society
25.12.2023
American Chemical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host–guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10–2, 2.55 × 10–2, 4.01 × 10–2, and 1.2 × 10–1 S cm–1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10–1 S cm–1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials. |
---|---|
AbstractList | Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials. Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host–guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10–2, 2.55 × 10–2, 4.01 × 10–2, and 1.2 × 10–1 S cm–1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10–1 S cm–1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials. Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, , , , and , which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of , , , and can reach 4.56 × 10 , 2.55 × 10 , 4.01 × 10 , and 1.2 × 10 S cm , respectively, with superprotonic conductivity. Doping into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of reached a maximum value of 1.14 × 10 S cm , which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials. Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS , G 3 TSPHB , G 4 TSP , and G 6 HSPB , which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host–guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS , G 3 TSPHB , G 4 TSP , and G 6 HSPB can reach 4.56 × 10 –2 , 2.55 × 10 –2 , 4.01 × 10 –2 , and 1.2 × 10 –1 S cm –1 , respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10 –1 S cm –1 , which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials. |
Author | Bai, Xiang-Tian Cao, Li-Hui Chen, Xu-Yong Cao, Xiao-Jie Gao, Yi-Da Yang, Dan |
AuthorAffiliation | Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Xu-Yong surname: Chen fullname: Chen, Xu-Yong – sequence: 2 givenname: Li-Hui orcidid: 0000-0002-3676-0242 surname: Cao fullname: Cao, Li-Hui email: caolihui@sust.edu.cn – sequence: 3 givenname: Xiang-Tian surname: Bai fullname: Bai, Xiang-Tian – sequence: 4 givenname: Xiao-Jie surname: Cao fullname: Cao, Xiao-Jie – sequence: 5 givenname: Dan surname: Yang fullname: Yang, Dan – sequence: 6 givenname: Yi-Da surname: Gao fullname: Gao, Yi-Da |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39473576$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1u1DAUhSNUREvpmh3KEgml9Y1jJ1khGNEfqaJILWvLsW9mPCR2sJ1W8wy8NG5nilqkrmz5nvMdS_e8zfass5hl74EcAynhZPKoVjgeU0UIaatX2UFZ11C0FPjek_t-dhTCOknKmhNe0TfZPm2rmrKaH2R_rucJ_eRddNaofOGsnlU0tyZuctfnZ7O0Rhtr5jG_8ktpXZiH3lkZMT_faO-WaIuvyYR6O0-MUy9HvHP-V8jvTFzl35Mrzh0W1ys5Jd2Ph7D8xksbJudjvlhJa3EI77LXvRwCHu3Ow-zn6bebxXlxeXV2sfhyWciq5bHgrW4Zb6CjFZVQ9r3UjCCTinWlqqGtStIDNIAKS64BNJHQVElISMUb2tHD7GLL1U6uxeTNKP1GOGnEw4PzSyF9NGpAoQioDjgBDqRCTjpZt6CZZshUU-s-sT5vWdPcjagV2ujl8Az6fGLNSizdrQBg6TsVSYSPO4J3v2cMUYwmKBwGadHNQVAoS045aViSfnga9i_lcZ1JwLYC5V0IHnuhTJTRuPtsMwgg4r45YtccsWtO8p3853tEv-z4tHVIFcTazd6mjb2o_gvb09mi |
CitedBy_id | crossref_primary_10_1016_j_jssc_2024_125109 crossref_primary_10_1021_acsanm_4c03599 crossref_primary_10_1002_chem_202303580 crossref_primary_10_1021_acs_jpcc_4c05094 crossref_primary_10_1039_D4CC00701H crossref_primary_10_1002_adfm_202409359 crossref_primary_10_1002_zaac_202400179 crossref_primary_10_1002_adfm_202419970 crossref_primary_10_1016_j_snb_2025_137399 crossref_primary_10_1021_acsami_4c15701 crossref_primary_10_1002_asia_202400870 |
Cites_doi | 10.1021/jacs.1c03432 10.1021/jacs.9b06589 10.1002/chem.202300028 10.1073/pnas.1121227109 10.1021/acsami.0c21840 10.1021/acs.accounts.6b00360 10.1126/science.1204369 10.1002/anie.198202082 10.1016/j.rser.2021.110771 10.1021/jacs.8b12124 10.1039/D1SC02690A 10.1038/nature20782 10.1002/adma.201907090 10.1021/acsmaterialslett.2c00432 10.1002/adfm.202101584 10.1002/anie.202215584 10.1038/s41467-019-12453-6 10.1126/science.aau6771 10.1002/anie.202101400 10.1002/anie.201102997 10.1002/chem.202202655 10.1016/0009-2614(95)00905-J 10.1073/pnas.1817470116 10.1021/jacs.0c06473 10.1126/science.abm6304 10.1039/D1ME00055A 10.1038/s41565-020-0695-4 10.1016/j.ccr.2020.213465 10.1021/jacs.8b07065 10.1021/cr020715f 10.1021/acsami.1c15748 10.1002/anie.202012079 10.1039/D0TA07207A 10.1021/ja2066016 10.1038/s41557-021-00740-z 10.1021/acs.inorgchem.9b02649 10.1021/acs.chemmater.2c03817 10.1021/jacs.7b09452 10.1021/jacs.2c02598 10.1021/cm00044a019 10.1021/jacs.2c10225 10.1021/jacsau.1c00556 10.1038/s41467-023-38455-z 10.1021/jacs.5b00534 10.1126/science.276.5312.575 10.1039/C7SC00201G 10.1021/ja4129795 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society – notice: 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. – notice: 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2023 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/prechem.3c00094 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2771-9316 |
EndPage | 615 |
ExternalDocumentID | oai_doaj_org_article_c01cb16016104e60ba791d5d5e5c87df PMC11504640 39473576 10_1021_prechem_3c00094 a355998347 |
Genre | Journal Article |
GroupedDBID | ABBLG ACS ADUCK ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. RPM VF5 AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a496t-69d95681b343a12ffad50e5ac5b2c719420f1181ece26d11d0a18412f004683b3 |
IEDL.DBID | N~. |
ISSN | 2771-9316 |
IngestDate | Wed Aug 27 01:23:34 EDT 2025 Thu Aug 21 18:44:06 EDT 2025 Fri Jul 11 06:53:11 EDT 2025 Wed Feb 19 02:13:42 EST 2025 Sun Jul 06 05:04:14 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Tue May 27 03:14:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | proton conduction charge-assisted proton exchange membrane hydrogen-bonded organic frameworks nanotubular |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a496t-69d95681b343a12ffad50e5ac5b2c719420f1181ece26d11d0a18412f004683b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3676-0242 |
OpenAccessLink | https://doaj.org/article/c01cb16016104e60ba791d5d5e5c87df |
PMID | 39473576 |
PQID | 3122636085 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c01cb16016104e60ba791d5d5e5c87df pubmedcentral_primary_oai_pubmedcentral_nih_gov_11504640 proquest_miscellaneous_3122636085 pubmed_primary_39473576 crossref_citationtrail_10_1021_prechem_3c00094 crossref_primary_10_1021_prechem_3c00094 acs_journals_10_1021_prechem_3c00094 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-25 |
PublicationDateYYYYMMDD | 2023-12-25 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Precision Chemistry |
PublicationTitleAlternate | Precis. Chem |
PublicationYear | 2023 |
Publisher | University of Science and Technology of China and American Chemical Society American Chemical Society |
Publisher_xml | – name: University of Science and Technology of China and American Chemical Society – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1021/jacs.1c03432 – ident: ref40/cit40 doi: 10.1021/jacs.9b06589 – ident: ref45/cit45 doi: 10.1002/chem.202300028 – ident: ref1/cit1 doi: 10.1073/pnas.1121227109 – ident: ref25/cit25 doi: 10.1021/acsami.0c21840 – ident: ref38/cit38 doi: 10.1021/acs.accounts.6b00360 – ident: ref37/cit37 doi: 10.1126/science.1204369 – ident: ref48/cit48 doi: 10.1002/anie.198202082 – ident: ref8/cit8 doi: 10.1016/j.rser.2021.110771 – ident: ref17/cit17 doi: 10.1021/jacs.8b12124 – ident: ref21/cit21 doi: 10.1039/D1SC02690A – ident: ref18/cit18 doi: 10.1039/D1SC02690A – ident: ref3/cit3 doi: 10.1038/nature20782 – ident: ref26/cit26 doi: 10.1002/adma.201907090 – ident: ref13/cit13 doi: 10.1021/acsmaterialslett.2c00432 – ident: ref14/cit14 doi: 10.1002/adfm.202101584 – ident: ref29/cit29 doi: 10.1002/anie.202215584 – ident: ref24/cit24 doi: 10.1038/s41467-019-12453-6 – ident: ref4/cit4 doi: 10.1126/science.aau6771 – ident: ref10/cit10 doi: 10.1002/anie.202101400 – ident: ref27/cit27 doi: 10.1002/anie.201102997 – ident: ref44/cit44 doi: 10.1002/chem.202202655 – ident: ref49/cit49 doi: 10.1016/0009-2614(95)00905-J – ident: ref7/cit7 doi: 10.1073/pnas.1817470116 – ident: ref22/cit22 doi: 10.1021/jacs.0c06473 – ident: ref5/cit5 doi: 10.1126/science.abm6304 – ident: ref43/cit43 doi: 10.1039/D1ME00055A – ident: ref2/cit2 doi: 10.1038/s41565-020-0695-4 – ident: ref28/cit28 doi: 10.1016/j.ccr.2020.213465 – ident: ref36/cit36 doi: 10.1021/jacs.8b07065 – ident: ref6/cit6 doi: 10.1021/cr020715f – ident: ref19/cit19 doi: 10.1021/acsami.1c15748 – ident: ref9/cit9 doi: 10.1002/anie.202012079 – ident: ref20/cit20 doi: 10.1039/D0TA07207A – ident: ref15/cit15 doi: 10.1021/ja2066016 – ident: ref32/cit32 doi: 10.1038/s41557-021-00740-z – ident: ref12/cit12 doi: 10.1021/acs.inorgchem.9b02649 – ident: ref46/cit46 doi: 10.1021/acs.chemmater.2c03817 – ident: ref33/cit33 doi: 10.1039/D1ME00055A – ident: ref23/cit23 doi: 10.1021/jacs.7b09452 – ident: ref34/cit34 doi: 10.1021/jacs.2c02598 – ident: ref41/cit41 doi: 10.1021/cm00044a019 – ident: ref30/cit30 doi: 10.1021/jacs.2c10225 – ident: ref47/cit47 doi: 10.1021/jacsau.1c00556 – ident: ref31/cit31 doi: 10.1038/s41467-023-38455-z – ident: ref35/cit35 doi: 10.1021/jacs.5b00534 – ident: ref42/cit42 doi: 10.1126/science.276.5312.575 – ident: ref39/cit39 doi: 10.1039/C7SC00201G – ident: ref16/cit16 doi: 10.1021/ja4129795 |
SSID | ssj0002760643 |
Score | 2.3334224 |
Snippet | Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate... Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 608 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlGfKQ0bqgUvaOH4kPsKK1QoJhFQq9RbFL-2iNlk1yYHf0D_NjJONdhEVF67xOLY845mxPfMNIaey5E5qUaTWhDIVeRCpESyk3LkyOGu5UJgo_PWbWl2KL1fyaq_UF8aEjfDA48Kd24xZwxA0BA4OXmWmLjRz0kkvbVm4gNoXbN7eYepnfE5TaGtnLB92vgUFsvY3Z9zGaDo0RrY7MEYRs_9vjuaf8ZJ7Bmj5hDyePEf6cZzxMXngm6fk4WJXsO0ZubsYthhA2PYId0sXbYNYrrE4BG0DBWFoNmCpNsMNjRmYbTdcB7w893T1y922IEopVhn2bmyHfyx3oVsdxQtbCrq47Qfj04t1vQW673EwOiOkU0xWaMDcPieXy88_Fqt0qrWQ1kKrPlXaYeIgM1zwmuUh1E5mXtZWmtwWTIs8C5ij6q3PlWPMZTWcDYEQD9glN_wFOWraxr8iNJhCaCxsBa6jsMrWImgVssC1B2XGQkJOYemraa90VXwGz1k1caiaOJSQsx1vKjvhlWPZjOv7O3yYO2xHqI77ST8hs2cyxNiOH0Dyqknyqn9JXkLe70SlAk7jQ0vd-HboKs7AqeUKvNmEvBxFZx6Kayz2XKiElAdCdTCXw5Zms4643-i8CyWyk_8x-9fkUQ7-Gkbm5PINOepvB_8W_KvevItb6TcBzSfX priority: 102 providerName: Directory of Open Access Journals |
Title | Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels |
URI | http://dx.doi.org/10.1021/prechem.3c00094 https://www.ncbi.nlm.nih.gov/pubmed/39473576 https://www.proquest.com/docview/3122636085 https://pubmed.ncbi.nlm.nih.gov/PMC11504640 https://doaj.org/article/c01cb16016104e60ba791d5d5e5c87df |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOcBlxXvLozLSHri4xI848REqqgqJFVJZaW9R4odaaTepNslhL_wB_jQzbhrowkpc40cSz4xnPJ75hpDTNJcuNSpjtgo5UyIoVikemHQuD85aqTQmCn8908tz9eUivfgNFn37Bl_wD1uQ_LW_mkkbw-DukwdC5znK4NmP2ehOEZlG5Yql5LKMMyO5HoF8_poDNZFtDzRRBOz_l5V5O1jyD-2zeEyOB7ORftzR-Qm55-un5OF8X63tGfm56rcYPdh0iHVL502NQK6xMgRtAgVOqDegpjb9FY3pl03bXwb0nHu6vHHXDfARwxLD3u3aYY7FPm6rpeitpbARN11febZal1vo9y2-jI7w6BQzFWrQtc_J-eLz9_mSDYUWWKmM7pg2DrMGeSWVLLkIoXRp4tPSppWwGTdKJAETVL31QjvOXVLCwRA64uk6l5V8QY7qpvYnhIYqUwarWoHdqKy2pQpGhyRI42En42FCTmHpi0FQ2iLegQteDBQqBgpNyGxPm8IOYOVYM-Py7gHvxwHbHU7H3V0_IbHHbgiwHR8A1xWDvBY24bbiiFUD51Wvk6rMDHepS31q88zBf7zbs0oBlMZblrL2Td8WkoNFKzWYshPycsc646ukwUrPmZ6Q_ICpDr7lsKXerCPoN1ruSqvk1f8t4GvySIA5hoE3In1Djrrr3r8F86mrpnB8mK-m0fkwjUI0jT6uXyZIHTA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXVJ4N5bFIReLi4H3aPnCAQJTSNkJqK_Vm7H0okVo7qm2hXvgD_Al-KjOOYwhQiUuv9nq99szuzOzOfB8heyoWViUyCkzu40ByL4NcMh8Ia2NvjRFSY6Hw0VRPTuWnM3W2QX6samFgEBX0VLWH-L_QBdibBSwAM3cxFKbNhuvSKA_c1VcI0qq3-x9Aoq84H388GU2CjkcgyGSi60AnFoviWC6kyBj3PrMqdCozKucmgiiehx7rL51xXFvGbJhB3AMNMXiMRS6g31vkNrg-Cqf-9Nuw38XhkUabjgx2UcSCRDDd4wf9NWY0gKZaM4AtT8C_nNs_czR_M3rjbXK381bpu6V63SMbrrhPtkYrkrgH5Ptxs8CkxbJGiF06KgvEj20JKWjpKShgMQfrOG8uaFv1WVbNuccNe0cnV_ayBPUNkNnY2eV96GO8SherKG4SU1j_y7rJXXA8yxbQ7nP7MtqjslMskCjAxD8kpzcil0dksygLt0OozyOZIJkWuKvSaJNJn2gfepE4WECZH5A9-PVpNz-rtD165yztJJR2EhqQ4Uo2qekw0pGq4_z6B173DyyW8CDXN32Pwu6bIa53ewE0Pe2WidSEzOQMIXIgTHY6zLMoYVZZ5ZSJIwvf8XKlKilIGg93ssKVTZUKBo600OBBD8jjper0rxIJEkxHekDiNaVaG8v6nWI-a7HGMWCQWoZP_u8HviBbk5Ojw_Rwf3qwS-5w8Agx94erp2SzvmzcM_Dg6vx5O4ko-XLTs_YnBgBYWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s3yNFKRuGQbP5McOMCW1ZbCqlKp1FtI_NCu1CZRkwj1wh_gb_BDmclmIxaoxKXX2LGdzIxnxp75hpAdFQurEhkFJvdxILmXQS6ZD4S1sbfGCKkxUfjzXM-O5ccTdbJFfq5zYWARNYxUd5f4KNWV9T3CANutYBNYuLOxMF1EXB9KeeAuvoGjVr_d3wOqvuZ8-uHLZBb0tQSCTCa6CXRiMTGO5UKKjHHvM6tCpzKjcm4i8OR56DEH0xnHtWXMhhn4PtARHchY5ALGvUaug_ETovjPv4-HkxweadTrWMUuiliQCKYHDKG_1oxK0NQbSrCrFfAvA_fPOM3fFN_0DrndW6z03YrF7pItV9wjNyfrQnH3yY-jtsLAxbJBmF06KQvEkO2KUtDSU2DCYgkactme0S7zs6zbU4-H9o7OLux5CSwcYHVjZ1ftMMZ0HTJWUzwopqADyqbNXXC0yCrod9hNRgdkdopJEgWo-Qfk-Ero8pBsF2XhHhPq80gmWFALTFZptMmkT7QPvUgcbKLMj8gO_Pq0l9E67a7fOUt7CqU9hUZkvKZNanqcdCzXcXr5C2-GF6oVRMjlXd8jsYduiO3dPQBuT_utIjUhMzlDmBxwlZ0O8yxKmFVWOWXiyMJ3vFqzSgqUxguerHBlW6eCgTEtNFjRI_JoxTrDVCLBItORHpF4g6k21rLZUiwXHd44Og1Sy_DJ__3Al-TG4d40_bQ_P3hKbnEwCjH8h6tnZLs5b91zMOKa_EUnQ5R8vWqh_QX3YVln |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superprotonic+Conductivity+of+Guanidinium+Organosulfonate+Hydrogen-Bonded+Organic+Frameworks+with+Nanotube-Shaped+Proton+Transport+Channels&rft.jtitle=Precision+Chemistry&rft.au=Chen%2C+Xu-Yong&rft.au=Cao%2C+Li-Hui&rft.au=Bai%2C+Xiang-Tian&rft.au=Cao%2C+Xiao-Jie&rft.date=2023-12-25&rft.pub=University+of+Science+and+Technology+of+China+and+American+Chemical+Society&rft.eissn=2771-9316&rft.volume=1&rft.issue=10&rft.spage=608&rft.epage=615&rft_id=info:doi/10.1021%2Fprechem.3c00094&rft.externalDocID=PMC11504640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9316&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9316&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9316&client=summon |