Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels

Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded d...

Full description

Saved in:
Bibliographic Details
Published inPrecision Chemistry Vol. 1; no. 10; pp. 608 - 615
Main Authors Chen, Xu-Yong, Cao, Li-Hui, Bai, Xiang-Tian, Cao, Xiao-Jie, Yang, Dan, Gao, Yi-Da
Format Journal Article
LanguageEnglish
Published United States University of Science and Technology of China and American Chemical Society 25.12.2023
American Chemical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host–guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10–2, 2.55 × 10–2, 4.01 × 10–2, and 1.2 × 10–1 S cm–1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10–1 S cm–1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
AbstractList Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host–guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10–2, 2.55 × 10–2, 4.01 × 10–2, and 1.2 × 10–1 S cm–1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10–1 S cm–1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, , , , and , which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of , , , and can reach 4.56 × 10 , 2.55 × 10 , 4.01 × 10 , and 1.2 × 10 S cm , respectively, with superprotonic conductivity. Doping into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of reached a maximum value of 1.14 × 10 S cm , which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS , G 3 TSPHB , G 4 TSP , and G 6 HSPB , which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host–guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS , G 3 TSPHB , G 4 TSP , and G 6 HSPB can reach 4.56 × 10 –2 , 2.55 × 10 –2 , 4.01 × 10 –2 , and 1.2 × 10 –1 S cm –1 , respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10 –1 S cm –1 , which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Author Bai, Xiang-Tian
Cao, Li-Hui
Chen, Xu-Yong
Cao, Xiao-Jie
Gao, Yi-Da
Yang, Dan
AuthorAffiliation Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Xu-Yong
  surname: Chen
  fullname: Chen, Xu-Yong
– sequence: 2
  givenname: Li-Hui
  orcidid: 0000-0002-3676-0242
  surname: Cao
  fullname: Cao, Li-Hui
  email: caolihui@sust.edu.cn
– sequence: 3
  givenname: Xiang-Tian
  surname: Bai
  fullname: Bai, Xiang-Tian
– sequence: 4
  givenname: Xiao-Jie
  surname: Cao
  fullname: Cao, Xiao-Jie
– sequence: 5
  givenname: Dan
  surname: Yang
  fullname: Yang, Dan
– sequence: 6
  givenname: Yi-Da
  surname: Gao
  fullname: Gao, Yi-Da
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39473576$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhSNUREvpmh3KEgml9Y1jJ1khGNEfqaJILWvLsW9mPCR2sJ1W8wy8NG5nilqkrmz5nvMdS_e8zfass5hl74EcAynhZPKoVjgeU0UIaatX2UFZ11C0FPjek_t-dhTCOknKmhNe0TfZPm2rmrKaH2R_rucJ_eRddNaofOGsnlU0tyZuctfnZ7O0Rhtr5jG_8ktpXZiH3lkZMT_faO-WaIuvyYR6O0-MUy9HvHP-V8jvTFzl35Mrzh0W1ys5Jd2Ph7D8xksbJudjvlhJa3EI77LXvRwCHu3Ow-zn6bebxXlxeXV2sfhyWciq5bHgrW4Zb6CjFZVQ9r3UjCCTinWlqqGtStIDNIAKS64BNJHQVElISMUb2tHD7GLL1U6uxeTNKP1GOGnEw4PzSyF9NGpAoQioDjgBDqRCTjpZt6CZZshUU-s-sT5vWdPcjagV2ujl8Az6fGLNSizdrQBg6TsVSYSPO4J3v2cMUYwmKBwGadHNQVAoS045aViSfnga9i_lcZ1JwLYC5V0IHnuhTJTRuPtsMwgg4r45YtccsWtO8p3853tEv-z4tHVIFcTazd6mjb2o_gvb09mi
CitedBy_id crossref_primary_10_1016_j_jssc_2024_125109
crossref_primary_10_1021_acsanm_4c03599
crossref_primary_10_1002_chem_202303580
crossref_primary_10_1021_acs_jpcc_4c05094
crossref_primary_10_1039_D4CC00701H
crossref_primary_10_1002_adfm_202409359
crossref_primary_10_1002_zaac_202400179
crossref_primary_10_1002_adfm_202419970
crossref_primary_10_1016_j_snb_2025_137399
crossref_primary_10_1021_acsami_4c15701
crossref_primary_10_1002_asia_202400870
Cites_doi 10.1021/jacs.1c03432
10.1021/jacs.9b06589
10.1002/chem.202300028
10.1073/pnas.1121227109
10.1021/acsami.0c21840
10.1021/acs.accounts.6b00360
10.1126/science.1204369
10.1002/anie.198202082
10.1016/j.rser.2021.110771
10.1021/jacs.8b12124
10.1039/D1SC02690A
10.1038/nature20782
10.1002/adma.201907090
10.1021/acsmaterialslett.2c00432
10.1002/adfm.202101584
10.1002/anie.202215584
10.1038/s41467-019-12453-6
10.1126/science.aau6771
10.1002/anie.202101400
10.1002/anie.201102997
10.1002/chem.202202655
10.1016/0009-2614(95)00905-J
10.1073/pnas.1817470116
10.1021/jacs.0c06473
10.1126/science.abm6304
10.1039/D1ME00055A
10.1038/s41565-020-0695-4
10.1016/j.ccr.2020.213465
10.1021/jacs.8b07065
10.1021/cr020715f
10.1021/acsami.1c15748
10.1002/anie.202012079
10.1039/D0TA07207A
10.1021/ja2066016
10.1038/s41557-021-00740-z
10.1021/acs.inorgchem.9b02649
10.1021/acs.chemmater.2c03817
10.1021/jacs.7b09452
10.1021/jacs.2c02598
10.1021/cm00044a019
10.1021/jacs.2c10225
10.1021/jacsau.1c00556
10.1038/s41467-023-38455-z
10.1021/jacs.5b00534
10.1126/science.276.5312.575
10.1039/C7SC00201G
10.1021/ja4129795
ContentType Journal Article
Copyright 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society
2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.
2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society
– notice: 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.
– notice: 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society 2023 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/prechem.3c00094
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2771-9316
EndPage 615
ExternalDocumentID oai_doaj_org_article_c01cb16016104e60ba791d5d5e5c87df
PMC11504640
39473576
10_1021_prechem_3c00094
a355998347
Genre Journal Article
GroupedDBID ABBLG
ACS
ADUCK
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
RPM
VF5
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a496t-69d95681b343a12ffad50e5ac5b2c719420f1181ece26d11d0a18412f004683b3
IEDL.DBID N~.
ISSN 2771-9316
IngestDate Wed Aug 27 01:23:34 EDT 2025
Thu Aug 21 18:44:06 EDT 2025
Fri Jul 11 06:53:11 EDT 2025
Wed Feb 19 02:13:42 EST 2025
Sun Jul 06 05:04:14 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Tue May 27 03:14:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords proton conduction
charge-assisted
proton exchange membrane
hydrogen-bonded organic frameworks
nanotubular
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a496t-69d95681b343a12ffad50e5ac5b2c719420f1181ece26d11d0a18412f004683b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3676-0242
OpenAccessLink https://doaj.org/article/c01cb16016104e60ba791d5d5e5c87df
PMID 39473576
PQID 3122636085
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_c01cb16016104e60ba791d5d5e5c87df
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11504640
proquest_miscellaneous_3122636085
pubmed_primary_39473576
crossref_citationtrail_10_1021_prechem_3c00094
crossref_primary_10_1021_prechem_3c00094
acs_journals_10_1021_prechem_3c00094
PublicationCentury 2000
PublicationDate 2023-12-25
PublicationDateYYYYMMDD 2023-12-25
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Precision Chemistry
PublicationTitleAlternate Precis. Chem
PublicationYear 2023
Publisher University of Science and Technology of China and American Chemical Society
American Chemical Society
Publisher_xml – name: University of Science and Technology of China and American Chemical Society
– name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1021/jacs.1c03432
– ident: ref40/cit40
  doi: 10.1021/jacs.9b06589
– ident: ref45/cit45
  doi: 10.1002/chem.202300028
– ident: ref1/cit1
  doi: 10.1073/pnas.1121227109
– ident: ref25/cit25
  doi: 10.1021/acsami.0c21840
– ident: ref38/cit38
  doi: 10.1021/acs.accounts.6b00360
– ident: ref37/cit37
  doi: 10.1126/science.1204369
– ident: ref48/cit48
  doi: 10.1002/anie.198202082
– ident: ref8/cit8
  doi: 10.1016/j.rser.2021.110771
– ident: ref17/cit17
  doi: 10.1021/jacs.8b12124
– ident: ref21/cit21
  doi: 10.1039/D1SC02690A
– ident: ref18/cit18
  doi: 10.1039/D1SC02690A
– ident: ref3/cit3
  doi: 10.1038/nature20782
– ident: ref26/cit26
  doi: 10.1002/adma.201907090
– ident: ref13/cit13
  doi: 10.1021/acsmaterialslett.2c00432
– ident: ref14/cit14
  doi: 10.1002/adfm.202101584
– ident: ref29/cit29
  doi: 10.1002/anie.202215584
– ident: ref24/cit24
  doi: 10.1038/s41467-019-12453-6
– ident: ref4/cit4
  doi: 10.1126/science.aau6771
– ident: ref10/cit10
  doi: 10.1002/anie.202101400
– ident: ref27/cit27
  doi: 10.1002/anie.201102997
– ident: ref44/cit44
  doi: 10.1002/chem.202202655
– ident: ref49/cit49
  doi: 10.1016/0009-2614(95)00905-J
– ident: ref7/cit7
  doi: 10.1073/pnas.1817470116
– ident: ref22/cit22
  doi: 10.1021/jacs.0c06473
– ident: ref5/cit5
  doi: 10.1126/science.abm6304
– ident: ref43/cit43
  doi: 10.1039/D1ME00055A
– ident: ref2/cit2
  doi: 10.1038/s41565-020-0695-4
– ident: ref28/cit28
  doi: 10.1016/j.ccr.2020.213465
– ident: ref36/cit36
  doi: 10.1021/jacs.8b07065
– ident: ref6/cit6
  doi: 10.1021/cr020715f
– ident: ref19/cit19
  doi: 10.1021/acsami.1c15748
– ident: ref9/cit9
  doi: 10.1002/anie.202012079
– ident: ref20/cit20
  doi: 10.1039/D0TA07207A
– ident: ref15/cit15
  doi: 10.1021/ja2066016
– ident: ref32/cit32
  doi: 10.1038/s41557-021-00740-z
– ident: ref12/cit12
  doi: 10.1021/acs.inorgchem.9b02649
– ident: ref46/cit46
  doi: 10.1021/acs.chemmater.2c03817
– ident: ref33/cit33
  doi: 10.1039/D1ME00055A
– ident: ref23/cit23
  doi: 10.1021/jacs.7b09452
– ident: ref34/cit34
  doi: 10.1021/jacs.2c02598
– ident: ref41/cit41
  doi: 10.1021/cm00044a019
– ident: ref30/cit30
  doi: 10.1021/jacs.2c10225
– ident: ref47/cit47
  doi: 10.1021/jacsau.1c00556
– ident: ref31/cit31
  doi: 10.1038/s41467-023-38455-z
– ident: ref35/cit35
  doi: 10.1021/jacs.5b00534
– ident: ref42/cit42
  doi: 10.1126/science.276.5312.575
– ident: ref39/cit39
  doi: 10.1039/C7SC00201G
– ident: ref16/cit16
  doi: 10.1021/ja4129795
SSID ssj0002760643
Score 2.3334224
Snippet Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate...
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 608
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlGfKQ0bqgUvaOH4kPsKK1QoJhFQq9RbFL-2iNlk1yYHf0D_NjJONdhEVF67xOLY845mxPfMNIaey5E5qUaTWhDIVeRCpESyk3LkyOGu5UJgo_PWbWl2KL1fyaq_UF8aEjfDA48Kd24xZwxA0BA4OXmWmLjRz0kkvbVm4gNoXbN7eYepnfE5TaGtnLB92vgUFsvY3Z9zGaDo0RrY7MEYRs_9vjuaf8ZJ7Bmj5hDyePEf6cZzxMXngm6fk4WJXsO0ZubsYthhA2PYId0sXbYNYrrE4BG0DBWFoNmCpNsMNjRmYbTdcB7w893T1y922IEopVhn2bmyHfyx3oVsdxQtbCrq47Qfj04t1vQW673EwOiOkU0xWaMDcPieXy88_Fqt0qrWQ1kKrPlXaYeIgM1zwmuUh1E5mXtZWmtwWTIs8C5ij6q3PlWPMZTWcDYEQD9glN_wFOWraxr8iNJhCaCxsBa6jsMrWImgVssC1B2XGQkJOYemraa90VXwGz1k1caiaOJSQsx1vKjvhlWPZjOv7O3yYO2xHqI77ST8hs2cyxNiOH0Dyqknyqn9JXkLe70SlAk7jQ0vd-HboKs7AqeUKvNmEvBxFZx6Kayz2XKiElAdCdTCXw5Zms4643-i8CyWyk_8x-9fkUQ7-Gkbm5PINOepvB_8W_KvevItb6TcBzSfX
  priority: 102
  providerName: Directory of Open Access Journals
Title Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels
URI http://dx.doi.org/10.1021/prechem.3c00094
https://www.ncbi.nlm.nih.gov/pubmed/39473576
https://www.proquest.com/docview/3122636085
https://pubmed.ncbi.nlm.nih.gov/PMC11504640
https://doaj.org/article/c01cb16016104e60ba791d5d5e5c87df
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOcBlxXvLozLSHri4xI848REqqgqJFVJZaW9R4odaaTepNslhL_wB_jQzbhrowkpc40cSz4xnPJ75hpDTNJcuNSpjtgo5UyIoVikemHQuD85aqTQmCn8908tz9eUivfgNFn37Bl_wD1uQ_LW_mkkbw-DukwdC5znK4NmP2ehOEZlG5Yql5LKMMyO5HoF8_poDNZFtDzRRBOz_l5V5O1jyD-2zeEyOB7ORftzR-Qm55-un5OF8X63tGfm56rcYPdh0iHVL502NQK6xMgRtAgVOqDegpjb9FY3pl03bXwb0nHu6vHHXDfARwxLD3u3aYY7FPm6rpeitpbARN11febZal1vo9y2-jI7w6BQzFWrQtc_J-eLz9_mSDYUWWKmM7pg2DrMGeSWVLLkIoXRp4tPSppWwGTdKJAETVL31QjvOXVLCwRA64uk6l5V8QY7qpvYnhIYqUwarWoHdqKy2pQpGhyRI42En42FCTmHpi0FQ2iLegQteDBQqBgpNyGxPm8IOYOVYM-Py7gHvxwHbHU7H3V0_IbHHbgiwHR8A1xWDvBY24bbiiFUD51Wvk6rMDHepS31q88zBf7zbs0oBlMZblrL2Td8WkoNFKzWYshPycsc646ukwUrPmZ6Q_ICpDr7lsKXerCPoN1ruSqvk1f8t4GvySIA5hoE3In1Djrrr3r8F86mrpnB8mK-m0fkwjUI0jT6uXyZIHTA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXVJ4N5bFIReLi4H3aPnCAQJTSNkJqK_Vm7H0okVo7qm2hXvgD_Al-KjOOYwhQiUuv9nq99szuzOzOfB8heyoWViUyCkzu40ByL4NcMh8Ia2NvjRFSY6Hw0VRPTuWnM3W2QX6samFgEBX0VLWH-L_QBdibBSwAM3cxFKbNhuvSKA_c1VcI0qq3-x9Aoq84H388GU2CjkcgyGSi60AnFoviWC6kyBj3PrMqdCozKucmgiiehx7rL51xXFvGbJhB3AMNMXiMRS6g31vkNrg-Cqf-9Nuw38XhkUabjgx2UcSCRDDd4wf9NWY0gKZaM4AtT8C_nNs_czR_M3rjbXK381bpu6V63SMbrrhPtkYrkrgH5Ptxs8CkxbJGiF06KgvEj20JKWjpKShgMQfrOG8uaFv1WVbNuccNe0cnV_ayBPUNkNnY2eV96GO8SherKG4SU1j_y7rJXXA8yxbQ7nP7MtqjslMskCjAxD8kpzcil0dksygLt0OozyOZIJkWuKvSaJNJn2gfepE4WECZH5A9-PVpNz-rtD165yztJJR2EhqQ4Uo2qekw0pGq4_z6B173DyyW8CDXN32Pwu6bIa53ewE0Pe2WidSEzOQMIXIgTHY6zLMoYVZZ5ZSJIwvf8XKlKilIGg93ssKVTZUKBo600OBBD8jjper0rxIJEkxHekDiNaVaG8v6nWI-a7HGMWCQWoZP_u8HviBbk5Ojw_Rwf3qwS-5w8Agx94erp2SzvmzcM_Dg6vx5O4ko-XLTs_YnBgBYWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s3yNFKRuGQbP5McOMCW1ZbCqlKp1FtI_NCu1CZRkwj1wh_gb_BDmclmIxaoxKXX2LGdzIxnxp75hpAdFQurEhkFJvdxILmXQS6ZD4S1sbfGCKkxUfjzXM-O5ccTdbJFfq5zYWARNYxUd5f4KNWV9T3CANutYBNYuLOxMF1EXB9KeeAuvoGjVr_d3wOqvuZ8-uHLZBb0tQSCTCa6CXRiMTGO5UKKjHHvM6tCpzKjcm4i8OR56DEH0xnHtWXMhhn4PtARHchY5ALGvUaug_ETovjPv4-HkxweadTrWMUuiliQCKYHDKG_1oxK0NQbSrCrFfAvA_fPOM3fFN_0DrndW6z03YrF7pItV9wjNyfrQnH3yY-jtsLAxbJBmF06KQvEkO2KUtDSU2DCYgkactme0S7zs6zbU4-H9o7OLux5CSwcYHVjZ1ftMMZ0HTJWUzwopqADyqbNXXC0yCrod9hNRgdkdopJEgWo-Qfk-Ero8pBsF2XhHhPq80gmWFALTFZptMmkT7QPvUgcbKLMj8gO_Pq0l9E67a7fOUt7CqU9hUZkvKZNanqcdCzXcXr5C2-GF6oVRMjlXd8jsYduiO3dPQBuT_utIjUhMzlDmBxwlZ0O8yxKmFVWOWXiyMJ3vFqzSgqUxguerHBlW6eCgTEtNFjRI_JoxTrDVCLBItORHpF4g6k21rLZUiwXHd44Og1Sy_DJ__3Al-TG4d40_bQ_P3hKbnEwCjH8h6tnZLs5b91zMOKa_EUnQ5R8vWqh_QX3YVln
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superprotonic+Conductivity+of+Guanidinium+Organosulfonate+Hydrogen-Bonded+Organic+Frameworks+with+Nanotube-Shaped+Proton+Transport+Channels&rft.jtitle=Precision+Chemistry&rft.au=Chen%2C+Xu-Yong&rft.au=Cao%2C+Li-Hui&rft.au=Bai%2C+Xiang-Tian&rft.au=Cao%2C+Xiao-Jie&rft.date=2023-12-25&rft.pub=University+of+Science+and+Technology+of+China+and+American+Chemical+Society&rft.eissn=2771-9316&rft.volume=1&rft.issue=10&rft.spage=608&rft.epage=615&rft_id=info:doi/10.1021%2Fprechem.3c00094&rft.externalDocID=PMC11504640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9316&client=summon