The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the MnII 2 form of NrdF is an important component in understanding O2-mediated f...
Saved in:
Published in | Biochemistry (Easton) Vol. 51; no. 18; pp. 3861 - 3871 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.05.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-2960 1520-4995 1520-4995 |
DOI | 10.1021/bi201925t |
Cover
Abstract | Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the MnII 2 form of NrdF is an important component in understanding O2-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli MnII 2-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis MnII 2-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli MnII 2-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the MnII 2 cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for MnIII 2-Y• cofactor assembly in class Ib RNRs. |
---|---|
AbstractList | Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn(II)(2)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn(II)(2)-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn(II)(2)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn(II)(2) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn(III)(2)-Y(•) cofactor assembly in class Ib RNRs. Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mnᴵᴵᴵ₂-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mnᴵᴵ₂ form of NrdF is an important component in understanding O₂-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mnᴵᴵ₂-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mnᴵᴵ₂-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mnᴵᴵ₂-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mnᴵᴵ₂ cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mnᴵᴵᴵ₂-Y• cofactor assembly in class Ib RNRs. Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn{sub 2}{sup II} form of NrdF is an important component in understanding O{sub 2}-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn{sub 2}{sup II}-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 {angstrom} resolution crystal structure of Bacillus subtilis Mn{sub 2}{sup II}-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the {beta}2 dimer are distinct from those observed in E. coli Mn{sub 2}{sup II}-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn{sub 2}{sup II} cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly in class Ib RNRs. Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn III 2 -Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn II 2 form of NrdF is an important component in understanding O 2 -mediated formation of the active metallocofactor, a subject of much interest since a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn II 2 -NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn II 2 -NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus genera. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn II 2 -NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn II 2 cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn III 2 -Y• cofactor assembly in class Ib RNRs. Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn(II)(2)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn(II)(2)-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn(II)(2)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn(II)(2) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn(III)(2)-Y(•) cofactor assembly in class Ib RNRs.Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn(II)(2)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn(II)(2)-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn(II)(2)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn(II)(2) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn(III)(2)-Y(•) cofactor assembly in class Ib RNRs. Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the MnII 2 form of NrdF is an important component in understanding O2-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli MnII 2-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis MnII 2-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli MnII 2-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the MnII 2 cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for MnIII 2-Y• cofactor assembly in class Ib RNRs. |
Author | Stubbe, JoAnne Cotruvo, Joseph A Rosenzweig, Amy C Boal, Amie K |
AuthorAffiliation | Department of Chemistry Northwestern University Massachusetts Institute of Technology Department of Biology |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Northwestern University – name: Department of Biology – name: Massachusetts Institute of Technology – name: Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston IL 60208 – name: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 – name: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 |
Author_xml | – sequence: 1 givenname: Amie K surname: Boal fullname: Boal, Amie K – sequence: 2 givenname: Joseph A surname: Cotruvo fullname: Cotruvo, Joseph A – sequence: 3 givenname: JoAnne surname: Stubbe fullname: Stubbe, JoAnne email: amyr@northwestern.edu, stubbe@mit.edu – sequence: 4 givenname: Amy C surname: Rosenzweig fullname: Rosenzweig, Amy C email: amyr@northwestern.edu, stubbe@mit.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22443445$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1047906$$D View this record in Osti.gov |
BookMark | eNqFkV9rFDEUxYNU7Lb64BeQQSi0D2Nv_kwyeRHqqnWhUKj1OSSZTDclm9RJRvDbm2XbYqXgUwj53XPPyTlAezFFh9BbDB8wEHxqPAEsSVdeoAXuCLRMym4PLQCAt0Ry2EcHOd_WKwPBXqF9QhijjHULdHm9ds1nv9HxRkeX3fFqddJ898U1aWw-aetDmHOTZ1N88LlZBp1zszLNlTcpzja4VPzgmis3zLbo7F6jl6MO2b25Pw_Rj69frpff2ovL89Xy7KLVTPLScmCCjL01wgySMwe4p5pRA1QyKbgQQlaHxMFIhBZAuekpUNtJMZBu6Dk9RB93unez2bjBulgmHdTdVKNMv1XSXj19iX6tbtIvRSnrKadV4P1OIOXiVbY1sl3bFKOzReFqT8J2y_H9lin9nF0uauOzdSHUv0pzVtU15x2RPfk_Chj3HQCBir772_uj6YdWKnC6A-yUcp7cqKo9XXzaRvGhaqlt7-qx9zpx8s_Eg-hz7NGO1Tar2zRPsRb1DPcHZ_a2JQ |
CitedBy_id | crossref_primary_10_1016_j_ica_2017_02_016 crossref_primary_10_1021_acs_inorgchem_4c01538 crossref_primary_10_1016_j_bbabio_2019_148060 crossref_primary_10_1021_ja312457t crossref_primary_10_1038_s41467_019_10568_4 crossref_primary_10_1093_jb_mvv078 crossref_primary_10_1021_acs_inorgchem_5b00699 crossref_primary_10_1021_bi400819x crossref_primary_10_1074_jbc_M112_438796 crossref_primary_10_1007_s00775_019_01703_z crossref_primary_10_1016_j_csbj_2022_02_027 crossref_primary_10_1021_bi401056e crossref_primary_10_1073_pnas_1800356115 crossref_primary_10_1016_j_ccr_2012_05_021 crossref_primary_10_1038_s41467_025_57735_4 crossref_primary_10_3390_molecules24132462 crossref_primary_10_1016_j_jinorgbio_2024_112583 crossref_primary_10_1074_jbc_M113_533554 crossref_primary_10_1039_c2mt20142a crossref_primary_10_1039_C8DT01378K crossref_primary_10_1371_journal_pone_0167549 crossref_primary_10_1021_ar500227u crossref_primary_10_1021_cb400757h crossref_primary_10_1021_acs_inorgchem_3c04163 crossref_primary_10_1039_C4DT00520A crossref_primary_10_1039_D2CB00250G crossref_primary_10_1007_s00775_014_1140_7 crossref_primary_10_1074_jbc_M115_675223 |
Cites_doi | 10.1021/bi101881d 10.1021/ja982280c 10.1073/pnas.0807348105 10.1021/bi801212f 10.1016/j.cbpa.2010.12.001 10.1038/370533a0 10.1016/S0076-6879(97)76066-X 10.1111/j.1742-4658.2010.07815.x 10.1021/bi200348q 10.1021/cr020421u 10.1021/ja1036995 10.1007/978-1-60327-058-8_28 10.1016/S0969-2126(96)00112-8 10.1126/science.1190187 10.1021/bi981380s 10.1016/j.bbagen.2010.05.010 10.1074/jbc.M111.278119 10.1074/jbc.M002751200 10.1146/annurev-biochem-061408-095817 10.1186/1471-2164-10-589 10.1073/pnas.0506410102 10.1111/j.1742-4658.2010.07885.x 10.1016/j.febslet.2004.05.059 10.1021/bi011429l 10.1021/ja994406r 10.1016/S0021-9258(19)43313-9 10.1073/pnas.91.26.12892 10.1016/S0021-9258(19)36739-0 10.1107/S0021889892009944 10.1093/nar/gki370 10.1107/S0108767310099757 10.1021/bi902106n 10.1021/ar030204v 10.1021/cr9900275 10.1021/bi702085z 10.1126/science.1141179 10.1074/jbc.M407346200 10.1128/JB.00185-08 10.1146/annurev.biochem.75.103004.142443 10.1002/anie.200907143 10.1111/j.1365-2958.2011.07593.x 10.1021/ja0370387 10.1016/j.jmb.2006.03.035 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI 5PM |
DOI | 10.1021/bi201925t |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 3871 |
ExternalDocumentID | PMC3348363 1047906 22443445 10_1021_bi201925t b877823516 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation | This work was supported by National Institutes of Health Grants GM58518 (A.C.R.) and GM81393 (J.S.), a National Research Service Award fellowship to A.K.B., and a National Defense Science and Engineering Graduate fellowship to J.A.C. |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM058518 – fundername: NIGMS NIH HHS grantid: GM58518 – fundername: NIGMS NIH HHS grantid: GM81393 – fundername: NIGMS NIH HHS grantid: K99 GM100011 – fundername: NIGMS NIH HHS grantid: R01 GM081393 – fundername: NCI NIH HHS grantid: F32 CA138027 – fundername: NCI NIH HHS grantid: P30 CA060553 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM081393-04 || GM – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM058518-13 || GM |
GroupedDBID | - .K2 02 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AJYGW ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 AAUGY ABFRP OTOTI 5PM |
ID | FETCH-LOGICAL-a496t-60472f8cb7bd964e0183a43b039497677794432e0f27a7036b8303c597d25d863 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Thu Aug 21 18:15:57 EDT 2025 Fri May 19 00:39:05 EDT 2023 Fri Jul 11 05:23:37 EDT 2025 Thu Jul 10 19:21:10 EDT 2025 Mon Jul 21 05:17:02 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Tue Jul 01 03:33:08 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a496t-60472f8cb7bd964e0183a43b039497677794432e0f27a7036b8303c597d25d863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 OTHERNIH |
PMID | 22443445 |
PQID | 1011850020 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3348363 osti_scitechconnect_1047906 proquest_miscellaneous_1836652982 proquest_miscellaneous_1011850020 pubmed_primary_22443445 crossref_citationtrail_10_1021_bi201925t crossref_primary_10_1021_bi201925t acs_journals_10_1021_bi201925t |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-08 |
PublicationDateYYYYMMDD | 2012-05-08 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Cotruvo J. A. (ref19/cit19) 2008; 105 Boal A. K. (ref21/cit21) 2010; 329 Strand K. R. (ref22/cit22) 2004; 279 Otwinowski Z. (ref30/cit30) 1997; 276 Stolle P. (ref15/cit15) 2010; 277 Zhang Y. (ref18/cit18) 2011; 50 Huque Y. (ref12/cit12) 2000; 275 Delano W. L. (ref36/cit36) 2002 Eriksson M. (ref25/cit25) 1998; 37 Atta M. (ref39/cit39) 1992; 267 Rardin R. L. (ref29/cit29) 1991; 15 Krissinel E. (ref38/cit38) 2004; 60 Martin J. E. (ref17/cit17) 2011; 80 Uppsten M. (ref43/cit43) 2006; 359 Røhr A. K. (ref44/cit44) 2010; 49 Högbom M. (ref24/cit24) 2002; 41 Andersson M. E. (ref48/cit48) 1999; 121 Nordlund P. (ref1/cit1) 2006; 75 Chen V. B. (ref35/cit35) 2010; 66 Landau M. (ref51/cit51) 2005; 33 Roca I. (ref20/cit20) 2008; 190 Jiang W. (ref8/cit8) 2008; 47 Sazinsky M. H. (ref28/cit28) 2006; 39 Uhlin U. (ref42/cit42) 1994; 370 Cotruvo J. A. (ref16/cit16) 2011; 50 McCoy A. J. (ref31/cit31) 2005; 61 Stubbe J. (ref9/cit9) 2011; 15 Yang Y. S. (ref45/cit45) 2000; 122 Cotruvo J. A. (ref3/cit3) 2011; 80 Uppsten M. (ref26/cit26) 2004; 569 Laskowski R. A. (ref34/cit34) 1993; 26 Solomon E. I. (ref4/cit4) 2000; 100 Lundin D. (ref10/cit10) 2009; 10 Jiang W. (ref7/cit7) 2007; 316 Logan D. T. (ref27/cit27) 1996; 4 Johansson R. (ref41/cit41) 2010; 277 Tomter A. B. (ref46/cit46) 2008; 47 Murshudov G. N. (ref33/cit33) 1997; 53 Cotruvo J. A. (ref13/cit13) 2010; 49 Cox N. (ref14/cit14) 2010; 132 Zwart P. H. (ref37/cit37) 2008; 426 Torrents E. (ref40/cit40) 2005; 102 Stubbe J. (ref2/cit2) 2003; 103 Emsley P. (ref32/cit32) 2004; 60 Andrews S. C. (ref5/cit5) 2010; 1800 Atkin C. L. (ref6/cit6) 1973; 248 Jordan A. (ref11/cit11) 1994; 91 Crona M. (ref50/cit50) 2011; 286 Voegtli W. C. (ref23/cit23) 2003; 125 |
References_xml | – volume: 50 start-page: 1672 year: 2011 ident: ref16/cit16 publication-title: Biochemistry doi: 10.1021/bi101881d – volume: 121 start-page: 2346 year: 1999 ident: ref48/cit48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982280c – volume: 105 start-page: 14383 year: 2008 ident: ref19/cit19 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0807348105 – volume: 47 start-page: 11300 year: 2008 ident: ref46/cit46 publication-title: Biochemistry doi: 10.1021/bi801212f – volume: 15 start-page: 284 year: 2011 ident: ref9/cit9 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.12.001 – volume: 370 start-page: 533 year: 1994 ident: ref42/cit42 publication-title: Nature doi: 10.1038/370533a0 – volume: 276 start-page: 307 year: 1997 ident: ref30/cit30 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 277 start-page: 4265 year: 2010 ident: ref41/cit41 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07815.x – volume: 50 start-page: 5615 year: 2011 ident: ref18/cit18 publication-title: Biochemistry doi: 10.1021/bi200348q – volume: 103 start-page: 2167 year: 2003 ident: ref2/cit2 publication-title: Chem. Rev. doi: 10.1021/cr020421u – volume: 132 start-page: 11197 year: 2010 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1036995 – volume: 426 start-page: 419 year: 2008 ident: ref37/cit37 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-058-8_28 – volume: 4 start-page: 1053 year: 1996 ident: ref27/cit27 publication-title: Structure doi: 10.1016/S0969-2126(96)00112-8 – volume: 329 start-page: 1526 year: 2010 ident: ref21/cit21 publication-title: Science doi: 10.1126/science.1190187 – volume: 37 start-page: 13359 year: 1998 ident: ref25/cit25 publication-title: Biochemistry doi: 10.1021/bi981380s – volume: 1800 start-page: 691 year: 2010 ident: ref5/cit5 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2010.05.010 – volume: 15 start-page: 417 year: 1991 ident: ref29/cit29 publication-title: New J. Chem. – volume: 286 start-page: 33053 year: 2011 ident: ref50/cit50 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.278119 – volume: 53 start-page: 240 year: 1997 ident: ref33/cit33 publication-title: Acta Crystallogr. – volume: 275 start-page: 25365 year: 2000 ident: ref12/cit12 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002751200 – volume: 80 start-page: 733 year: 2011 ident: ref3/cit3 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061408-095817 – volume: 10 start-page: 589 year: 2009 ident: ref10/cit10 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-589 – volume: 102 start-page: 17946 year: 2005 ident: ref40/cit40 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506410102 – volume: 277 start-page: 4849 year: 2010 ident: ref15/cit15 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07885.x – volume: 61 start-page: 458 year: 2005 ident: ref31/cit31 publication-title: Acta Crystallogr. – volume: 569 start-page: 117 year: 2004 ident: ref26/cit26 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.05.059 – volume: 41 start-page: 1381 year: 2002 ident: ref24/cit24 publication-title: Biochemistry doi: 10.1021/bi011429l – volume: 122 start-page: 8495 year: 2000 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja994406r – volume: 248 start-page: 7464 year: 1973 ident: ref6/cit6 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)43313-9 – volume: 91 start-page: 12892 year: 1994 ident: ref11/cit11 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.91.26.12892 – volume: 60 start-page: 2126 year: 2004 ident: ref32/cit32 publication-title: Acta Crystallogr. – volume: 267 start-page: 20682 year: 1992 ident: ref39/cit39 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36739-0 – volume: 26 start-page: 283 year: 1993 ident: ref34/cit34 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892009944 – volume: 33 start-page: W299 year: 2005 ident: ref51/cit51 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki370 – volume: 66 start-page: 12 year: 2010 ident: ref35/cit35 publication-title: Acta Crystallogr. doi: 10.1107/S0108767310099757 – volume-title: The PyMOL molecular graphics system year: 2002 ident: ref36/cit36 – volume: 49 start-page: 1297 year: 2010 ident: ref13/cit13 publication-title: Biochemistry doi: 10.1021/bi902106n – volume: 60 start-page: 2256 year: 2004 ident: ref38/cit38 publication-title: Acta Crystallogr. – volume: 39 start-page: 558 year: 2006 ident: ref28/cit28 publication-title: Acc. Chem. Res. doi: 10.1021/ar030204v – volume: 100 start-page: 235 year: 2000 ident: ref4/cit4 publication-title: Chem. Rev. doi: 10.1021/cr9900275 – volume: 47 start-page: 4477 year: 2008 ident: ref8/cit8 publication-title: Biochemistry doi: 10.1021/bi702085z – volume: 316 start-page: 1188 year: 2007 ident: ref7/cit7 publication-title: Science doi: 10.1126/science.1141179 – volume: 279 start-page: 46794 year: 2004 ident: ref22/cit22 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M407346200 – volume: 190 start-page: 4849 year: 2008 ident: ref20/cit20 publication-title: J. Bacteriol. doi: 10.1128/JB.00185-08 – volume: 75 start-page: 681 year: 2006 ident: ref1/cit1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.75.103004.142443 – volume: 49 start-page: 2324 year: 2010 ident: ref44/cit44 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907143 – volume: 80 start-page: 319 year: 2011 ident: ref17/cit17 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07593.x – volume: 125 start-page: 15822 year: 2003 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0370387 – volume: 359 start-page: 365 year: 2006 ident: ref43/cit43 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.03.035 |
SSID | ssj0004074 |
Score | 2.1902573 |
Snippet | Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction... Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate... Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mnᴵᴵᴵ₂-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction... Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2)... Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn III 2 -Y•, in their homodimeric NrdF (β2) subunit to initiate... |
SourceID | pubmedcentral osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3861 |
SubjectTerms | 60 APPLIED LIFE SCIENCES BACILLUS BACILLUS SUBTILIS Bacillus subtilis - enzymology BASIC BIOLOGICAL SCIENCES Catalytic Domain CRYSTAL STRUCTURE Crystallography, X-Ray DIMERS ENZYMES ESCHERICHIA COLI Manganese - chemistry OXIDOREDUCTASES phylogeny PROTEINS RADICALS RESIDUES RESOLUTION ribonucleotide reductase Ribonucleotide Reductases - chemistry ribonucleotides sequence alignment SOLVENTS STAPHYLOCOCCUS |
Title | The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase |
URI | http://dx.doi.org/10.1021/bi201925t https://www.ncbi.nlm.nih.gov/pubmed/22443445 https://www.proquest.com/docview/1011850020 https://www.proquest.com/docview/1836652982 https://www.osti.gov/biblio/1047906 https://pubmed.ncbi.nlm.nih.gov/PMC3348363 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V5QCXAi3QUFqZh1A5pM3ajpMcy5aqiwRILZV6i2LHoRHbBBHnAL-emWyy7cJSbpEyeXlmPN_E428AXhsdFZHQ2jcW01Wpc4supcd-zPMis1khiq4ly8dP6uRcfrgIL9bg1T9W8Pn4QJecYEjo7sBdrtC8CP9Mzq43PwY91TI-iyMeH-iDbl5Kocc0S6FnVKMLrYKVf1ZH3gg3xw_gaNi0M68y-bbfOr1vfv3N4XjblzyE9R5ussO5fTyCNVttwOZhhan21U_2hnUFoN2f9Q24Nxmav23CZzQfdlReZdXXjHpU7k2nb9kZwlNWF-xdZsrZrG1Y02pXzsqGda012VSz01LXFVEk167MLTslYliHgfIxnB-__zI58fveC34mE-V8RSySRYyq1HmipA3Q9TMpdCASiQgmitCPpeA2KHiUEYmXjjEYGkxPch7msRJPYFTVld0CVuC8kFuLQCjBO9ixxklS6VyYKMx0JIQHu6ictPedJu2Wxfk4XQyXB3uD3lLTM5dTA43ZKtGXC9Hvc7qOVULbpPwUMQYR5RqqKDIuJdKKJFAevBhsIsVBp_UTHOi6pRfDbCwkgH2LTCyUCnkScw-ezu1o8SKIlqSQMvQgWrKwhQBRfS-fqcrLjvKb9ksLJZ79b6i24T4e8a4iM34OI_ejtTuImpze7bzmN-ESD6U |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BcigXHi2UUCgGIVQOKVnbeR2XhWoX2iL1IfUW2Y4DEdsEkeQAv54Zb3bbrVbANZk4znjG8zkefwPw2ui4iIXWvrG4XJU6t-hSeugnPC-UVYUoXEmWo-Noci4_XYQXPU0OnYXBTjTYUuM28a_YBYbvdMkJjYTtbbiDIIRTmYbR-PTqDGTQMy7jKznC8gWL0PVHKQKZZiUCDWr0pHXo8maS5LWoc3B_Xr7I9dclm3zf71q9b37foHL8vw96APd68MlGc2t5CLdstQlbowoX3pe_2Bvm0kHdf_ZN2BgvSsFtwRc0JvahvFTVV0UVK_em07fsFMEqqwv2XplyNusa1nS6LWdlw1yhTTbV7KTUdUWEyXVb5padEE1si2HzEZwffDwbT_y-EoOvZBq1fkSckkWCA6vzNJI2wIlASaEDkUrEM3GMXi0Ft0HBY0WUXjrB0GhwsZLzME8i8RgGVV3ZJ8AKnCVyaxEWpdiCHWqcMiOdCxOHSsdCeLCL2sp6T2oyt0nOh9lSXR7sLYYvMz2POZXTmK0TfbUU_TEn71gntEM2kCHiINpcQ_lFps2IwiINIg9eLkwjQ6XTbgoquu6oY7g2Cwlu_0UmERHaappwD7bn5rTsCGInKaQMPYhXDG0pQMTfq3eq8psjAKfT0yIST_-lqhewMTk7OswOp8efd-AuXuUuVzN5BoP2Z2efI55q9a5zpD_GUxgG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEJ_omagvfrR-nNW6GmPaByq3uyzweF699PxoTWuTvhF2WZR4hUbgQf96Z_Y47DUX9RUGWIaZnd-ws78BeGV0mIdCa89YTFelziy6lB55Ec_y1Ka5yF1Llk-H6uBUvj8LzrpEkfbC4CBqvFPtFvHJqy-yvGMYGL3RBSdEEjTX4QYt11GrhvHk5M8-SL9jXcbHcoTmSyahy5dSFDL1ShQaVOhN6xDm1ULJS5FneheO-jG7gpPve22j98yvK3SO__9S9-BOB0LZeGE19-GaLTdgc1xiAn7-k71mrizU_W_fgFuTZUu4TThCo2L7xXlafk2pc-XObLbLThC0sipnb1NTzOdtzepWN8W8qJlruMlmmh0XuiqJOLlqisyyY6KLbTB8PoDT6bsvkwOv68jgpTJWjaeIWzKP8APrLFbS-jghpFJoX8QScU0YondLwa2f8zAlai8dYYg0mLRkPMgiJR7CoKxK-xhYjrNFZi3CoxjvYEcap06lM2HCINWhEEPYRo0lnUfViVss56OkV9cQdpafMDEdnzm11ZivE33Zi14sSDzWCW2RHSSIPIg-11CdkWkSorKIfTWEF0vzSFDptKqCiq5aGhjmaAHB7r_IREKpgMcRH8KjhUn1A0EMJYWUwRDCFWPrBYgAfPVMWXxzROC0i1oo8eRfqnoONz_vT5OPs8MPW3AbD3JXshk9hUHzo7XPEFY1etv50m_k2BqJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dimanganese%28II%29+Site+of+Bacillus+subtilis+Class+Ib+Ribonucleotide+Reductase&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Boal%2C+Amie+K.&rft.au=Cotruvo%2C+Jr.%2C+Joseph+A.&rft.au=Stubbe%2C+JoAnne&rft.au=Rosenzweig%2C+Amy+C.&rft.date=2012-05-08&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=51&rft.issue=%2818%29+%3B+05%2C+2012&rft_id=info:doi/10.1021%2Fbi201925t&rft.externalDocID=1047906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |