The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase

Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the MnII 2 form of NrdF is an important component in understanding O2-mediated f...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 51; no. 18; pp. 3861 - 3871
Main Authors Boal, Amie K, Cotruvo, Joseph A, Stubbe, JoAnne, Rosenzweig, Amy C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.05.2012
Subjects
Online AccessGet full text
ISSN0006-2960
1520-4995
1520-4995
DOI10.1021/bi201925t

Cover

Abstract Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the MnII 2 form of NrdF is an important component in understanding O2-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli MnII 2-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis MnII 2-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli MnII 2-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the MnII 2 cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for MnIII 2-Y• cofactor assembly in class Ib RNRs.
AbstractList Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn(II)(2)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn(II)(2)-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn(II)(2)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn(II)(2) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn(III)(2)-Y(•) cofactor assembly in class Ib RNRs.
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mnᴵᴵᴵ₂-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mnᴵᴵ₂ form of NrdF is an important component in understanding O₂-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mnᴵᴵ₂-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mnᴵᴵ₂-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mnᴵᴵ₂-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mnᴵᴵ₂ cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mnᴵᴵᴵ₂-Y• cofactor assembly in class Ib RNRs.
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn{sub 2}{sup II} form of NrdF is an important component in understanding O{sub 2}-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn{sub 2}{sup II}-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 {angstrom} resolution crystal structure of Bacillus subtilis Mn{sub 2}{sup II}-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the {beta}2 dimer are distinct from those observed in E. coli Mn{sub 2}{sup II}-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn{sub 2}{sup II} cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly in class Ib RNRs.
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn III 2 -Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn II 2 form of NrdF is an important component in understanding O 2 -mediated formation of the active metallocofactor, a subject of much interest since a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn II 2 -NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn II 2 -NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus genera. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn II 2 -NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn II 2 cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn III 2 -Y• cofactor assembly in class Ib RNRs.
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn(II)(2)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn(II)(2)-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn(II)(2)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn(II)(2) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn(III)(2)-Y(•) cofactor assembly in class Ib RNRs.Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn(II)(2)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn(II)(2)-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn(II)(2)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn(II)(2) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn(III)(2)-Y(•) cofactor assembly in class Ib RNRs.
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the MnII 2 form of NrdF is an important component in understanding O2-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli MnII 2-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis MnII 2-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli MnII 2-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the MnII 2 cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for MnIII 2-Y• cofactor assembly in class Ib RNRs.
Author Stubbe, JoAnne
Cotruvo, Joseph A
Rosenzweig, Amy C
Boal, Amie K
AuthorAffiliation Department of Chemistry
Northwestern University
Massachusetts Institute of Technology
Department of Biology
AuthorAffiliation_xml – name: Department of Chemistry
– name: Northwestern University
– name: Department of Biology
– name: Massachusetts Institute of Technology
– name: Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston IL 60208
– name: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
– name: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Author_xml – sequence: 1
  givenname: Amie K
  surname: Boal
  fullname: Boal, Amie K
– sequence: 2
  givenname: Joseph A
  surname: Cotruvo
  fullname: Cotruvo, Joseph A
– sequence: 3
  givenname: JoAnne
  surname: Stubbe
  fullname: Stubbe, JoAnne
  email: amyr@northwestern.edu, stubbe@mit.edu
– sequence: 4
  givenname: Amy C
  surname: Rosenzweig
  fullname: Rosenzweig, Amy C
  email: amyr@northwestern.edu, stubbe@mit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22443445$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1047906$$D View this record in Osti.gov
BookMark eNqFkV9rFDEUxYNU7Lb64BeQQSi0D2Nv_kwyeRHqqnWhUKj1OSSZTDclm9RJRvDbm2XbYqXgUwj53XPPyTlAezFFh9BbDB8wEHxqPAEsSVdeoAXuCLRMym4PLQCAt0Ry2EcHOd_WKwPBXqF9QhijjHULdHm9ds1nv9HxRkeX3fFqddJ898U1aWw-aetDmHOTZ1N88LlZBp1zszLNlTcpzja4VPzgmis3zLbo7F6jl6MO2b25Pw_Rj69frpff2ovL89Xy7KLVTPLScmCCjL01wgySMwe4p5pRA1QyKbgQQlaHxMFIhBZAuekpUNtJMZBu6Dk9RB93unez2bjBulgmHdTdVKNMv1XSXj19iX6tbtIvRSnrKadV4P1OIOXiVbY1sl3bFKOzReFqT8J2y_H9lin9nF0uauOzdSHUv0pzVtU15x2RPfk_Chj3HQCBir772_uj6YdWKnC6A-yUcp7cqKo9XXzaRvGhaqlt7-qx9zpx8s_Eg-hz7NGO1Tar2zRPsRb1DPcHZ_a2JQ
CitedBy_id crossref_primary_10_1016_j_ica_2017_02_016
crossref_primary_10_1021_acs_inorgchem_4c01538
crossref_primary_10_1016_j_bbabio_2019_148060
crossref_primary_10_1021_ja312457t
crossref_primary_10_1038_s41467_019_10568_4
crossref_primary_10_1093_jb_mvv078
crossref_primary_10_1021_acs_inorgchem_5b00699
crossref_primary_10_1021_bi400819x
crossref_primary_10_1074_jbc_M112_438796
crossref_primary_10_1007_s00775_019_01703_z
crossref_primary_10_1016_j_csbj_2022_02_027
crossref_primary_10_1021_bi401056e
crossref_primary_10_1073_pnas_1800356115
crossref_primary_10_1016_j_ccr_2012_05_021
crossref_primary_10_1038_s41467_025_57735_4
crossref_primary_10_3390_molecules24132462
crossref_primary_10_1016_j_jinorgbio_2024_112583
crossref_primary_10_1074_jbc_M113_533554
crossref_primary_10_1039_c2mt20142a
crossref_primary_10_1039_C8DT01378K
crossref_primary_10_1371_journal_pone_0167549
crossref_primary_10_1021_ar500227u
crossref_primary_10_1021_cb400757h
crossref_primary_10_1021_acs_inorgchem_3c04163
crossref_primary_10_1039_C4DT00520A
crossref_primary_10_1039_D2CB00250G
crossref_primary_10_1007_s00775_014_1140_7
crossref_primary_10_1074_jbc_M115_675223
Cites_doi 10.1021/bi101881d
10.1021/ja982280c
10.1073/pnas.0807348105
10.1021/bi801212f
10.1016/j.cbpa.2010.12.001
10.1038/370533a0
10.1016/S0076-6879(97)76066-X
10.1111/j.1742-4658.2010.07815.x
10.1021/bi200348q
10.1021/cr020421u
10.1021/ja1036995
10.1007/978-1-60327-058-8_28
10.1016/S0969-2126(96)00112-8
10.1126/science.1190187
10.1021/bi981380s
10.1016/j.bbagen.2010.05.010
10.1074/jbc.M111.278119
10.1074/jbc.M002751200
10.1146/annurev-biochem-061408-095817
10.1186/1471-2164-10-589
10.1073/pnas.0506410102
10.1111/j.1742-4658.2010.07885.x
10.1016/j.febslet.2004.05.059
10.1021/bi011429l
10.1021/ja994406r
10.1016/S0021-9258(19)43313-9
10.1073/pnas.91.26.12892
10.1016/S0021-9258(19)36739-0
10.1107/S0021889892009944
10.1093/nar/gki370
10.1107/S0108767310099757
10.1021/bi902106n
10.1021/ar030204v
10.1021/cr9900275
10.1021/bi702085z
10.1126/science.1141179
10.1074/jbc.M407346200
10.1128/JB.00185-08
10.1146/annurev.biochem.75.103004.142443
10.1002/anie.200907143
10.1111/j.1365-2958.2011.07593.x
10.1021/ja0370387
10.1016/j.jmb.2006.03.035
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OTOTI
5PM
DOI 10.1021/bi201925t
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 3871
ExternalDocumentID PMC3348363
1047906
22443445
10_1021_bi201925t
b877823516
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation This work was supported by National Institutes of Health Grants GM58518 (A.C.R.) and GM81393 (J.S.), a National Research Service Award fellowship to A.K.B., and a National Defense Science and Engineering Graduate fellowship to J.A.C.
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM058518
– fundername: NIGMS NIH HHS
  grantid: GM58518
– fundername: NIGMS NIH HHS
  grantid: GM81393
– fundername: NIGMS NIH HHS
  grantid: K99 GM100011
– fundername: NIGMS NIH HHS
  grantid: R01 GM081393
– fundername: NCI NIH HHS
  grantid: F32 CA138027
– fundername: NCI NIH HHS
  grantid: P30 CA060553
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM081393-04 || GM
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM058518-13 || GM
GroupedDBID -
.K2
02
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
AAUGY
ABFRP
OTOTI
5PM
ID FETCH-LOGICAL-a496t-60472f8cb7bd964e0183a43b039497677794432e0f27a7036b8303c597d25d863
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:15:57 EDT 2025
Fri May 19 00:39:05 EDT 2023
Fri Jul 11 05:23:37 EDT 2025
Thu Jul 10 19:21:10 EDT 2025
Mon Jul 21 05:17:02 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Tue Jul 01 03:33:08 EDT 2025
Thu Aug 27 13:42:06 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a496t-60472f8cb7bd964e0183a43b039497677794432e0f27a7036b8303c597d25d863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OTHERNIH
PMID 22443445
PQID 1011850020
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3348363
osti_scitechconnect_1047906
proquest_miscellaneous_1836652982
proquest_miscellaneous_1011850020
pubmed_primary_22443445
crossref_citationtrail_10_1021_bi201925t
crossref_primary_10_1021_bi201925t
acs_journals_10_1021_bi201925t
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-08
PublicationDateYYYYMMDD 2012-05-08
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Cotruvo J. A. (ref19/cit19) 2008; 105
Boal A. K. (ref21/cit21) 2010; 329
Strand K. R. (ref22/cit22) 2004; 279
Otwinowski Z. (ref30/cit30) 1997; 276
Stolle P. (ref15/cit15) 2010; 277
Zhang Y. (ref18/cit18) 2011; 50
Huque Y. (ref12/cit12) 2000; 275
Delano W. L. (ref36/cit36) 2002
Eriksson M. (ref25/cit25) 1998; 37
Atta M. (ref39/cit39) 1992; 267
Rardin R. L. (ref29/cit29) 1991; 15
Krissinel E. (ref38/cit38) 2004; 60
Martin J. E. (ref17/cit17) 2011; 80
Uppsten M. (ref43/cit43) 2006; 359
Røhr A. K. (ref44/cit44) 2010; 49
Högbom M. (ref24/cit24) 2002; 41
Andersson M. E. (ref48/cit48) 1999; 121
Nordlund P. (ref1/cit1) 2006; 75
Chen V. B. (ref35/cit35) 2010; 66
Landau M. (ref51/cit51) 2005; 33
Roca I. (ref20/cit20) 2008; 190
Jiang W. (ref8/cit8) 2008; 47
Sazinsky M. H. (ref28/cit28) 2006; 39
Uhlin U. (ref42/cit42) 1994; 370
Cotruvo J. A. (ref16/cit16) 2011; 50
McCoy A. J. (ref31/cit31) 2005; 61
Stubbe J. (ref9/cit9) 2011; 15
Yang Y. S. (ref45/cit45) 2000; 122
Cotruvo J. A. (ref3/cit3) 2011; 80
Uppsten M. (ref26/cit26) 2004; 569
Laskowski R. A. (ref34/cit34) 1993; 26
Solomon E. I. (ref4/cit4) 2000; 100
Lundin D. (ref10/cit10) 2009; 10
Jiang W. (ref7/cit7) 2007; 316
Logan D. T. (ref27/cit27) 1996; 4
Johansson R. (ref41/cit41) 2010; 277
Tomter A. B. (ref46/cit46) 2008; 47
Murshudov G. N. (ref33/cit33) 1997; 53
Cotruvo J. A. (ref13/cit13) 2010; 49
Cox N. (ref14/cit14) 2010; 132
Zwart P. H. (ref37/cit37) 2008; 426
Torrents E. (ref40/cit40) 2005; 102
Stubbe J. (ref2/cit2) 2003; 103
Emsley P. (ref32/cit32) 2004; 60
Andrews S. C. (ref5/cit5) 2010; 1800
Atkin C. L. (ref6/cit6) 1973; 248
Jordan A. (ref11/cit11) 1994; 91
Crona M. (ref50/cit50) 2011; 286
Voegtli W. C. (ref23/cit23) 2003; 125
References_xml – volume: 50
  start-page: 1672
  year: 2011
  ident: ref16/cit16
  publication-title: Biochemistry
  doi: 10.1021/bi101881d
– volume: 121
  start-page: 2346
  year: 1999
  ident: ref48/cit48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja982280c
– volume: 105
  start-page: 14383
  year: 2008
  ident: ref19/cit19
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0807348105
– volume: 47
  start-page: 11300
  year: 2008
  ident: ref46/cit46
  publication-title: Biochemistry
  doi: 10.1021/bi801212f
– volume: 15
  start-page: 284
  year: 2011
  ident: ref9/cit9
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2010.12.001
– volume: 370
  start-page: 533
  year: 1994
  ident: ref42/cit42
  publication-title: Nature
  doi: 10.1038/370533a0
– volume: 276
  start-page: 307
  year: 1997
  ident: ref30/cit30
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 277
  start-page: 4265
  year: 2010
  ident: ref41/cit41
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07815.x
– volume: 50
  start-page: 5615
  year: 2011
  ident: ref18/cit18
  publication-title: Biochemistry
  doi: 10.1021/bi200348q
– volume: 103
  start-page: 2167
  year: 2003
  ident: ref2/cit2
  publication-title: Chem. Rev.
  doi: 10.1021/cr020421u
– volume: 132
  start-page: 11197
  year: 2010
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1036995
– volume: 426
  start-page: 419
  year: 2008
  ident: ref37/cit37
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-058-8_28
– volume: 4
  start-page: 1053
  year: 1996
  ident: ref27/cit27
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00112-8
– volume: 329
  start-page: 1526
  year: 2010
  ident: ref21/cit21
  publication-title: Science
  doi: 10.1126/science.1190187
– volume: 37
  start-page: 13359
  year: 1998
  ident: ref25/cit25
  publication-title: Biochemistry
  doi: 10.1021/bi981380s
– volume: 1800
  start-page: 691
  year: 2010
  ident: ref5/cit5
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.05.010
– volume: 15
  start-page: 417
  year: 1991
  ident: ref29/cit29
  publication-title: New J. Chem.
– volume: 286
  start-page: 33053
  year: 2011
  ident: ref50/cit50
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.278119
– volume: 53
  start-page: 240
  year: 1997
  ident: ref33/cit33
  publication-title: Acta Crystallogr.
– volume: 275
  start-page: 25365
  year: 2000
  ident: ref12/cit12
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002751200
– volume: 80
  start-page: 733
  year: 2011
  ident: ref3/cit3
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061408-095817
– volume: 10
  start-page: 589
  year: 2009
  ident: ref10/cit10
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-589
– volume: 102
  start-page: 17946
  year: 2005
  ident: ref40/cit40
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506410102
– volume: 277
  start-page: 4849
  year: 2010
  ident: ref15/cit15
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07885.x
– volume: 61
  start-page: 458
  year: 2005
  ident: ref31/cit31
  publication-title: Acta Crystallogr.
– volume: 569
  start-page: 117
  year: 2004
  ident: ref26/cit26
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.05.059
– volume: 41
  start-page: 1381
  year: 2002
  ident: ref24/cit24
  publication-title: Biochemistry
  doi: 10.1021/bi011429l
– volume: 122
  start-page: 8495
  year: 2000
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja994406r
– volume: 248
  start-page: 7464
  year: 1973
  ident: ref6/cit6
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)43313-9
– volume: 91
  start-page: 12892
  year: 1994
  ident: ref11/cit11
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.91.26.12892
– volume: 60
  start-page: 2126
  year: 2004
  ident: ref32/cit32
  publication-title: Acta Crystallogr.
– volume: 267
  start-page: 20682
  year: 1992
  ident: ref39/cit39
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36739-0
– volume: 26
  start-page: 283
  year: 1993
  ident: ref34/cit34
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892009944
– volume: 33
  start-page: W299
  year: 2005
  ident: ref51/cit51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki370
– volume: 66
  start-page: 12
  year: 2010
  ident: ref35/cit35
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0108767310099757
– volume-title: The PyMOL molecular graphics system
  year: 2002
  ident: ref36/cit36
– volume: 49
  start-page: 1297
  year: 2010
  ident: ref13/cit13
  publication-title: Biochemistry
  doi: 10.1021/bi902106n
– volume: 60
  start-page: 2256
  year: 2004
  ident: ref38/cit38
  publication-title: Acta Crystallogr.
– volume: 39
  start-page: 558
  year: 2006
  ident: ref28/cit28
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar030204v
– volume: 100
  start-page: 235
  year: 2000
  ident: ref4/cit4
  publication-title: Chem. Rev.
  doi: 10.1021/cr9900275
– volume: 47
  start-page: 4477
  year: 2008
  ident: ref8/cit8
  publication-title: Biochemistry
  doi: 10.1021/bi702085z
– volume: 316
  start-page: 1188
  year: 2007
  ident: ref7/cit7
  publication-title: Science
  doi: 10.1126/science.1141179
– volume: 279
  start-page: 46794
  year: 2004
  ident: ref22/cit22
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M407346200
– volume: 190
  start-page: 4849
  year: 2008
  ident: ref20/cit20
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00185-08
– volume: 75
  start-page: 681
  year: 2006
  ident: ref1/cit1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.75.103004.142443
– volume: 49
  start-page: 2324
  year: 2010
  ident: ref44/cit44
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907143
– volume: 80
  start-page: 319
  year: 2011
  ident: ref17/cit17
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07593.x
– volume: 125
  start-page: 15822
  year: 2003
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0370387
– volume: 359
  start-page: 365
  year: 2006
  ident: ref43/cit43
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.03.035
SSID ssj0004074
Score 2.1902573
Snippet Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, MnIII 2-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction...
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate...
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mnᴵᴵᴵ₂-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction...
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2)...
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn III 2 -Y•, in their homodimeric NrdF (β2) subunit to initiate...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3861
SubjectTerms 60 APPLIED LIFE SCIENCES
BACILLUS
BACILLUS SUBTILIS
Bacillus subtilis - enzymology
BASIC BIOLOGICAL SCIENCES
Catalytic Domain
CRYSTAL STRUCTURE
Crystallography, X-Ray
DIMERS
ENZYMES
ESCHERICHIA COLI
Manganese - chemistry
OXIDOREDUCTASES
phylogeny
PROTEINS
RADICALS
RESIDUES
RESOLUTION
ribonucleotide reductase
Ribonucleotide Reductases - chemistry
ribonucleotides
sequence alignment
SOLVENTS
STAPHYLOCOCCUS
Title The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase
URI http://dx.doi.org/10.1021/bi201925t
https://www.ncbi.nlm.nih.gov/pubmed/22443445
https://www.proquest.com/docview/1011850020
https://www.proquest.com/docview/1836652982
https://www.osti.gov/biblio/1047906
https://pubmed.ncbi.nlm.nih.gov/PMC3348363
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V5QCXAi3QUFqZh1A5pM3ajpMcy5aqiwRILZV6i2LHoRHbBBHnAL-emWyy7cJSbpEyeXlmPN_E428AXhsdFZHQ2jcW01Wpc4supcd-zPMis1khiq4ly8dP6uRcfrgIL9bg1T9W8Pn4QJecYEjo7sBdrtC8CP9Mzq43PwY91TI-iyMeH-iDbl5Kocc0S6FnVKMLrYKVf1ZH3gg3xw_gaNi0M68y-bbfOr1vfv3N4XjblzyE9R5ussO5fTyCNVttwOZhhan21U_2hnUFoN2f9Q24Nxmav23CZzQfdlReZdXXjHpU7k2nb9kZwlNWF-xdZsrZrG1Y02pXzsqGda012VSz01LXFVEk167MLTslYliHgfIxnB-__zI58fveC34mE-V8RSySRYyq1HmipA3Q9TMpdCASiQgmitCPpeA2KHiUEYmXjjEYGkxPch7msRJPYFTVld0CVuC8kFuLQCjBO9ixxklS6VyYKMx0JIQHu6ictPedJu2Wxfk4XQyXB3uD3lLTM5dTA43ZKtGXC9Hvc7qOVULbpPwUMQYR5RqqKDIuJdKKJFAevBhsIsVBp_UTHOi6pRfDbCwkgH2LTCyUCnkScw-ezu1o8SKIlqSQMvQgWrKwhQBRfS-fqcrLjvKb9ksLJZ79b6i24T4e8a4iM34OI_ejtTuImpze7bzmN-ESD6U
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BcigXHi2UUCgGIVQOKVnbeR2XhWoX2iL1IfUW2Y4DEdsEkeQAv54Zb3bbrVbANZk4znjG8zkefwPw2ui4iIXWvrG4XJU6t-hSeugnPC-UVYUoXEmWo-Noci4_XYQXPU0OnYXBTjTYUuM28a_YBYbvdMkJjYTtbbiDIIRTmYbR-PTqDGTQMy7jKznC8gWL0PVHKQKZZiUCDWr0pHXo8maS5LWoc3B_Xr7I9dclm3zf71q9b37foHL8vw96APd68MlGc2t5CLdstQlbowoX3pe_2Bvm0kHdf_ZN2BgvSsFtwRc0JvahvFTVV0UVK_em07fsFMEqqwv2XplyNusa1nS6LWdlw1yhTTbV7KTUdUWEyXVb5padEE1si2HzEZwffDwbT_y-EoOvZBq1fkSckkWCA6vzNJI2wIlASaEDkUrEM3GMXi0Ft0HBY0WUXjrB0GhwsZLzME8i8RgGVV3ZJ8AKnCVyaxEWpdiCHWqcMiOdCxOHSsdCeLCL2sp6T2oyt0nOh9lSXR7sLYYvMz2POZXTmK0TfbUU_TEn71gntEM2kCHiINpcQ_lFps2IwiINIg9eLkwjQ6XTbgoquu6oY7g2Cwlu_0UmERHaappwD7bn5rTsCGInKaQMPYhXDG0pQMTfq3eq8psjAKfT0yIST_-lqhewMTk7OswOp8efd-AuXuUuVzN5BoP2Z2efI55q9a5zpD_GUxgG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEJ_omagvfrR-nNW6GmPaByq3uyzweF699PxoTWuTvhF2WZR4hUbgQf96Z_Y47DUX9RUGWIaZnd-ws78BeGV0mIdCa89YTFelziy6lB55Ec_y1Ka5yF1Llk-H6uBUvj8LzrpEkfbC4CBqvFPtFvHJqy-yvGMYGL3RBSdEEjTX4QYt11GrhvHk5M8-SL9jXcbHcoTmSyahy5dSFDL1ShQaVOhN6xDm1ULJS5FneheO-jG7gpPve22j98yvK3SO__9S9-BOB0LZeGE19-GaLTdgc1xiAn7-k71mrizU_W_fgFuTZUu4TThCo2L7xXlafk2pc-XObLbLThC0sipnb1NTzOdtzepWN8W8qJlruMlmmh0XuiqJOLlqisyyY6KLbTB8PoDT6bsvkwOv68jgpTJWjaeIWzKP8APrLFbS-jghpFJoX8QScU0YondLwa2f8zAlai8dYYg0mLRkPMgiJR7CoKxK-xhYjrNFZi3CoxjvYEcap06lM2HCINWhEEPYRo0lnUfViVss56OkV9cQdpafMDEdnzm11ZivE33Zi14sSDzWCW2RHSSIPIg-11CdkWkSorKIfTWEF0vzSFDptKqCiq5aGhjmaAHB7r_IREKpgMcRH8KjhUn1A0EMJYWUwRDCFWPrBYgAfPVMWXxzROC0i1oo8eRfqnoONz_vT5OPs8MPW3AbD3JXshk9hUHzo7XPEFY1etv50m_k2BqJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dimanganese%28II%29+Site+of+Bacillus+subtilis+Class+Ib+Ribonucleotide+Reductase&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Boal%2C+Amie+K.&rft.au=Cotruvo%2C+Jr.%2C+Joseph+A.&rft.au=Stubbe%2C+JoAnne&rft.au=Rosenzweig%2C+Amy+C.&rft.date=2012-05-08&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=51&rft.issue=%2818%29+%3B+05%2C+2012&rft_id=info:doi/10.1021%2Fbi201925t&rft.externalDocID=1047906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon