Bulk and Mapping Speciation Analyses Unveil the Pattern and Heterogeneity of Cu Species during Organic Waste Treatment
Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to c...
Saved in:
Published in | Environmental science & technology Vol. 58; no. 32; pp. 14439 - 14449 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.08.2024
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to changes throughout the OW treatment process, mostly depending on the anaerobic/aerobic conditions prevailing in each treatment stage. These changes were independent of the OW origin (agricultural, urban or industrial). Cu(I) prevailed in raw OWs and digestates (88–100%), whereas Cu(II) dominated in composts (46–100%). Bulk EXAFS analysis confirmed these observations and revealed that Cu(I) species in raw OWs and digestates consisted mainly of Cu(I)-sulfide (76–100%), while Cu(II) species (60–100%) in composts were Cu(II)-citrate, Cu(II)-carbonate and amorphous Cu(II)-phosphate. Interestingly, we observed that anaerobic digestion was conducive to the formation of crystallized Cu(I)-sulfides at the expense of nanosized and poorly crystalline Cu(I)-sulfide species, and that the recalcitrant Cu(I) species in composts was always crystallized Cu(I)-sulfide. XANES imaging analysis revealed Cu(II) species present in low proportions (2–4%) that were not detected using bulk XAS analysis in raw OWs and digestates. This demonstrated the potential of XANES imaging for probing minor species in complex matrices. |
---|---|
AbstractList | Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to changes throughout the OW treatment process, mostly depending on the anaerobic/aerobic conditions prevailing in each treatment stage. These changes were independent of the OW origin (agricultural, urban or industrial). Cu(I) prevailed in raw OWs and digestates (88-100%), whereas Cu(II) dominated in composts (46-100%). Bulk EXAFS analysis confirmed these observations and revealed that Cu(I) species in raw OWs and digestates consisted mainly of Cu(I)-sulfide (76-100%), while Cu(II) species (60-100%) in composts were Cu(II)-citrate, Cu(II)-carbonate and amorphous Cu(II)-phosphate. Interestingly, we observed that anaerobic digestion was conducive to the formation of crystallized Cu(I)-sulfides at the expense of nanosized and poorly crystalline Cu(I)-sulfide species, and that the recalcitrant Cu(I) species in composts was always crystallized Cu(I)-sulfide. XANES imaging analysis revealed Cu(II) species present in low proportions (2-4%) that were not detected using bulk XAS analysis in raw OWs and digestates. This demonstrated the potential of XANES imaging for probing minor species in complex matrices. Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to changes throughout the OW treatment process, mostly depending on the anaerobic/aerobic conditions prevailing in each treatment stage. These changes were independent of the OW origin (agricultural, urban or industrial). Cu(I) prevailed in raw OWs and digestates (88-100%), whereas Cu(II) dominated in composts (46-100%). Bulk EXAFS analysis confirmed these observations and revealed that Cu(I) species in raw OWs and digestates consisted mainly of Cu(I)-sulfide (76-100%), while Cu(II) species (60-100%) in composts were Cu(II)-citrate, Cu(II)-carbonate and amorphous Cu(II)-phosphate. Interestingly, we observed that anaerobic digestion was conducive to the formation of crystallized Cu(I)-sulfides at the expense of nanosized and poorly crystalline Cu(I)-sulfide species, and that the recalcitrant Cu(I) species in composts was always crystallized Cu(I)-sulfide. XANES imaging analysis revealed Cu(II) species present in low proportions (2-4%) that were not detected using bulk XAS analysis in raw OWs and digestates. This demonstrated the potential of XANES imaging for probing minor species in complex matrices.Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to changes throughout the OW treatment process, mostly depending on the anaerobic/aerobic conditions prevailing in each treatment stage. These changes were independent of the OW origin (agricultural, urban or industrial). Cu(I) prevailed in raw OWs and digestates (88-100%), whereas Cu(II) dominated in composts (46-100%). Bulk EXAFS analysis confirmed these observations and revealed that Cu(I) species in raw OWs and digestates consisted mainly of Cu(I)-sulfide (76-100%), while Cu(II) species (60-100%) in composts were Cu(II)-citrate, Cu(II)-carbonate and amorphous Cu(II)-phosphate. Interestingly, we observed that anaerobic digestion was conducive to the formation of crystallized Cu(I)-sulfides at the expense of nanosized and poorly crystalline Cu(I)-sulfide species, and that the recalcitrant Cu(I) species in composts was always crystallized Cu(I)-sulfide. XANES imaging analysis revealed Cu(II) species present in low proportions (2-4%) that were not detected using bulk XAS analysis in raw OWs and digestates. This demonstrated the potential of XANES imaging for probing minor species in complex matrices. An initial large area survey scan of 7x4 mm for raw and compost from Urban-3 or of 8x2 mm for raw and treated OWs from Agri-1 and Central-1 was collected at 15.8 keV to reveal the overall elemental distribution. Subsequently, a smaller area of interest (5x0.22 mm for raw and compost from Urban-3 or of 3x0.2 mm for raw and treated OWs from Agri-1 and Central-1) was chosen to conduct XANES imaging (XANES stack) consisting of 95 individual maps collected at increasing incident energies from 8900 eV to 9300 eV across the Cu K-edge. Energies were selected as follows: 8900-8960 eV in 10 eV increments, 8970-8975 eV in 1 eV increments, 8976-8999.5 eV in 0.5 eV in increments, 9000-9009 eV in 1 eV increments, 9010-9046 eV in 4 eV increments, 9050-9090 eV in 10 eV increments, and 9100-9300 in 25 eV increments. XANES maps were collected with a 1 ms dwell time and 2 µm steps using a motorised sample stage, and a micro-focussed X-ray beam to a spot size of 2 µm. XANES stack contained 275 000 pixels for raw and compost from Urban-3 or 150 000 pixels for raw and treated OWs from Agri-1 and Central-1 and 95 energies per pixel. Individual XANES maps were extracted as TIFF files from GeoPIXE™ and were imported into ImageJ v1.53 to be converted into a stack of TIFF images. This stack was then imported into Mantis 3.1.12 32 where PCA followed by cluster analysis were applied. 33, 34 PCA was used to find a reduced set of eigenspectra and cluster analysis was used to group spectroscopically similar pixels together. The average XANES spectra from each cluster were further analysed by LCF using the Athena software (SI-4). Not provided. Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to changes throughout the OW treatment process, mostly depending on the anaerobic/aerobic conditions prevailing in each treatment stage. These changes were independent of the OW origin (agricultural, urban or industrial). Cu(I) prevailed in raw OWs and digestates (88–100%), whereas Cu(II) dominated in composts (46–100%). Bulk EXAFS analysis confirmed these observations and revealed that Cu(I) species in raw OWs and digestates consisted mainly of Cu(I)-sulfide (76–100%), while Cu(II) species (60–100%) in composts were Cu(II)-citrate, Cu(II)-carbonate and amorphous Cu(II)-phosphate. Interestingly, we observed that anaerobic digestion was conducive to the formation of crystallized Cu(I)-sulfides at the expense of nanosized and poorly crystalline Cu(I)-sulfide species, and that the recalcitrant Cu(I) species in composts was always crystallized Cu(I)-sulfide. XANES imaging analysis revealed Cu(II) species present in low proportions (2–4%) that were not detected using bulk XAS analysis in raw OWs and digestates. This demonstrated the potential of XANES imaging for probing minor species in complex matrices. |
Author | Etschmann, Barbara Legros, Samuel Basile-Doelsch, Isabelle Brunetti, Gianluca Levard, Clément Rose, Jérôme Howard, Daryl L. Formentini, Thiago Doelsch, Emmanuel Doolette, Casey Lombi, Enzo Le Bars, Maureen Chaurand, Perrine |
AuthorAffiliation | Recyclage et Risque Australian Synchrotron Université de Montpellier, CIRAD ETH Zurich, CHN Environmental Engineering Program Regional University of Blumenau (FURB) School of Earth, Atmosphere and Environment Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science CIRAD, UPR Recyclage et Risque Future Industries Institute |
AuthorAffiliation_xml | – name: Australian Synchrotron – name: Regional University of Blumenau (FURB) – name: Future Industries Institute – name: CIRAD, UPR Recyclage et Risque – name: Recyclage et Risque – name: Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science – name: Environmental Engineering Program – name: ETH Zurich, CHN – name: School of Earth, Atmosphere and Environment – name: Université de Montpellier, CIRAD |
Author_xml | – sequence: 1 givenname: Emmanuel orcidid: 0000-0002-7478-4296 surname: Doelsch fullname: Doelsch, Emmanuel email: emmanuel.doelsch@cirad.fr organization: Université de Montpellier, CIRAD – sequence: 2 givenname: Maureen orcidid: 0000-0003-4149-4951 surname: Le Bars fullname: Le Bars, Maureen organization: ETH Zurich, CHN – sequence: 3 givenname: Barbara surname: Etschmann fullname: Etschmann, Barbara organization: School of Earth, Atmosphere and Environment – sequence: 4 givenname: Thiago orcidid: 0000-0002-1115-2072 surname: Formentini fullname: Formentini, Thiago organization: Regional University of Blumenau (FURB) – sequence: 5 givenname: Samuel orcidid: 0000-0001-7081-6679 surname: Legros fullname: Legros, Samuel organization: Université de Montpellier, CIRAD – sequence: 6 givenname: Clément orcidid: 0000-0001-7507-7959 surname: Levard fullname: Levard, Clément – sequence: 7 givenname: Perrine surname: Chaurand fullname: Chaurand, Perrine – sequence: 8 givenname: Isabelle surname: Basile-Doelsch fullname: Basile-Doelsch, Isabelle – sequence: 9 givenname: Jérôme orcidid: 0000-0003-3071-8147 surname: Rose fullname: Rose, Jérôme – sequence: 10 givenname: Gianluca orcidid: 0000-0002-6490-9948 surname: Brunetti fullname: Brunetti, Gianluca organization: Future Industries Institute – sequence: 11 givenname: Casey orcidid: 0000-0002-8092-3520 surname: Doolette fullname: Doolette, Casey organization: Future Industries Institute – sequence: 12 givenname: Daryl L. surname: Howard fullname: Howard, Daryl L. organization: Australian Synchrotron – sequence: 13 givenname: Enzo orcidid: 0000-0003-3384-0375 surname: Lombi fullname: Lombi, Enzo organization: Future Industries Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39073989$$D View this record in MEDLINE/PubMed https://hal.science/hal-04752939$$DView record in HAL https://www.osti.gov/biblio/2581451$$D View this record in Osti.gov |
BookMark | eNqFks1v0zAYxi00xLrBmRuK4AJC7fwRJ_axVECROg2JTXCzHOdN65HaxXYq9b8nWbodJk072bJ_z_v5nKET5x0g9JbgGcGUXGgTZxDTLDeYClG-QBPCKZ5ywckJmmBM2FSy4s8pOovxFmNMGRav0CmTuGRSyAnaf-nav5l2dXapdzvr1tmvHRirk_UumzvdHiLE7MbtwbZZ2kD2U6cEwd1JltBf_Roc2HTIfJMtulHeS-ouDNGuwlo7a7LfOibIrgPotAWXXqOXjW4jvDme5-jm29frxXK6uvr-YzFfTXUuizRljS5YzgToqtElMaIp6rKsmkKaWlNJWaVFI8E0JaVVLk1e5cBq0NJA3yvH7By9H-P6mKyKxiYwG-OdA5MU5YLknPTQpxHa6Fbtgt3qcFBeW7Wcr9TwhvOSU8nkfmA_juwu-H9dP3q1tdFA22oHvouKEc4ExQWXz6NYFLggPBc9-uEReuu70E9_oKRgGJflkPvdkeqqLdQPpd5vswf4CJjgYwzQqL7hu1WmoG2rCFaDa1TvGjUkObqm11080t2HflrxeVQMHw-1PkX_B9AQ06k |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2024_136039 crossref_primary_10_1021_acs_est_4c11763 |
Cites_doi | 10.1016/S0048-9697(03)00139-6 10.2134/jeq2009.0096 10.1021/acs.jafc.0c00183 10.1021/acs.est.9b01983 10.1016/j.watres.2022.118384 10.1021/acs.est.8b02697 10.1021/es060906q 10.1016/j.ultramic.2004.01.008 10.1021/es010906k 10.1016/j.chemosphere.2023.139684 10.1016/j.gca.2006.05.017 10.1021/es505878f 10.1016/j.gca.2013.03.019 10.1021/acs.est.9b07332 10.1107/S0909049505012719 10.1016/S0016-7037(97)00061-6 10.1021/acs.est.7b01662 10.1021/es201710z 10.1016/j.jenvman.2009.01.011 10.1071/EN13189 10.1016/0016-7037(92)90294-S 10.1016/j.scitotenv.2012.09.011 10.1007/s00216-011-4829-2 10.2134/jeq2010.0140 10.1021/es101651w 10.1107/S1600577520010152 10.1016/0016-7037(89)90375-X 10.1016/j.elspec.2005.01.158 10.1016/j.envpol.2016.01.077 10.1002/ima.1007 10.1021/ed063p687 10.1107/S1600577514013964 10.1016/j.envpol.2013.12.024 10.1021/acs.est.0c05164 10.1016/j.ecoenv.2007.03.015 10.1088/1742-6596/499/1/012002 10.1039/D1EW00497B 10.1016/j.aca.2014.02.044 10.1016/j.envpol.2012.02.012 10.1039/C5MT00298B 10.1016/j.scitotenv.2022.157779 10.1021/acs.est.2c05268 10.1016/j.wasman.2012.07.021 10.1039/C9EN01448A 10.1002/etc.3622 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society Copyright American Chemical Society Aug 13, 2024 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society Aug 13, 2024 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) |
CorporateAuthor_xml | – name: SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 1XC VOOES OTOTI |
DOI | 10.1021/acs.est.4c02887 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 14449 |
ExternalDocumentID | 2581451 oai_HAL_hal_04752939v1 39073989 10_1021_acs_est_4c02887 c243901611 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 53G 55A 5GY 5VS 6TJ 7~N 85S AABXI AAHBH ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV ADUKH AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA AAYXX ABBLG ABLBI CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 1XC VOOES OTOTI |
ID | FETCH-LOGICAL-a496t-3fa63438eabfa71c8f6d77bf69cda2923ba8f9ecf722b49c4b4e3dea9ce002503 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Mon Aug 25 02:21:11 EDT 2025 Sat Jun 14 06:31:08 EDT 2025 Fri Jul 11 12:27:21 EDT 2025 Fri Jul 11 16:28:51 EDT 2025 Mon Jun 30 16:39:54 EDT 2025 Mon Jul 21 06:00:53 EDT 2025 Tue Jul 01 02:56:17 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Wed Aug 14 03:11:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | trace element digestate quantitative mapping X-ray absorption spectroscopy compost copper sulfide |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a496t-3fa63438eabfa71c8f6d77bf69cda2923ba8f9ecf722b49c4b4e3dea9ce002503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE None AC02-76SF00515 |
ORCID | 0000-0001-7081-6679 0000-0001-7507-7959 0000-0002-6490-9948 0000-0003-3071-8147 0000-0003-3384-0375 0000-0002-8092-3520 0000-0002-7478-4296 0000-0003-4149-4951 0000-0002-1115-2072 0000-0002-9605-8391 0000-0002-0587-8141 0000000274784296 0000000333840375 0000000341494951 0000000330718147 0000000211152072 0000000170816679 0000000264909948 0000000280923520 0000000175077959 |
OpenAccessLink | https://hal.science/hal-04752939 |
PMID | 39073989 |
PQID | 3098300771 |
PQPubID | 45412 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_2581451 hal_primary_oai_HAL_hal_04752939v1 proquest_miscellaneous_3153820659 proquest_miscellaneous_3086061548 proquest_journals_3098300771 pubmed_primary_39073989 crossref_citationtrail_10_1021_acs_est_4c02887 crossref_primary_10_1021_acs_est_4c02887 acs_journals_10_1021_acs_est_4c02887 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-13 |
PublicationDateYYYYMMDD | 2024-08-13 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2024 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 Inglezakis V. J. (ref39/cit39) 2014; 23 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1016/S0048-9697(03)00139-6 – ident: ref48/cit48 doi: 10.2134/jeq2009.0096 – ident: ref6/cit6 doi: 10.1021/acs.jafc.0c00183 – ident: ref18/cit18 doi: 10.1021/acs.est.9b01983 – ident: ref5/cit5 doi: 10.1016/j.watres.2022.118384 – ident: ref24/cit24 doi: 10.1021/acs.est.8b02697 – ident: ref26/cit26 – ident: ref25/cit25 doi: 10.1021/es060906q – volume: 23 start-page: 635 issue: 2 year: 2014 ident: ref39/cit39 publication-title: Fresenius Environ. Bull. – ident: ref36/cit36 doi: 10.1016/j.ultramic.2004.01.008 – ident: ref44/cit44 doi: 10.1021/es010906k – ident: ref13/cit13 doi: 10.1016/j.chemosphere.2023.139684 – ident: ref42/cit42 doi: 10.1016/j.gca.2006.05.017 – ident: ref9/cit9 doi: 10.1021/es505878f – ident: ref28/cit28 doi: 10.1016/j.gca.2013.03.019 – ident: ref19/cit19 doi: 10.1021/acs.est.9b07332 – ident: ref27/cit27 doi: 10.1107/S0909049505012719 – ident: ref30/cit30 doi: 10.1016/S0016-7037(97)00061-6 – ident: ref16/cit16 doi: 10.1021/acs.est.7b01662 – ident: ref12/cit12 doi: 10.1021/es201710z – ident: ref3/cit3 doi: 10.1016/j.jenvman.2009.01.011 – ident: ref23/cit23 doi: 10.1071/EN13189 – ident: ref47/cit47 doi: 10.1016/0016-7037(92)90294-S – ident: ref2/cit2 doi: 10.1016/j.scitotenv.2012.09.011 – ident: ref22/cit22 doi: 10.1007/s00216-011-4829-2 – ident: ref21/cit21 doi: 10.2134/jeq2010.0140 – ident: ref11/cit11 doi: 10.1021/es101651w – ident: ref31/cit31 doi: 10.1107/S1600577520010152 – ident: ref45/cit45 doi: 10.1016/0016-7037(89)90375-X – ident: ref35/cit35 doi: 10.1016/j.elspec.2005.01.158 – ident: ref15/cit15 doi: 10.1016/j.envpol.2016.01.077 – ident: ref33/cit33 doi: 10.1002/ima.1007 – ident: ref43/cit43 doi: 10.1021/ed063p687 – ident: ref34/cit34 doi: 10.1107/S1600577514013964 – ident: ref8/cit8 doi: 10.1016/j.envpol.2013.12.024 – ident: ref17/cit17 doi: 10.1021/acs.est.0c05164 – ident: ref4/cit4 doi: 10.1016/j.ecoenv.2007.03.015 – ident: ref32/cit32 doi: 10.1088/1742-6596/499/1/012002 – ident: ref41/cit41 doi: 10.1039/D1EW00497B – ident: ref20/cit20 doi: 10.1016/j.aca.2014.02.044 – ident: ref14/cit14 doi: 10.1016/j.envpol.2012.02.012 – ident: ref29/cit29 doi: 10.1039/C5MT00298B – ident: ref10/cit10 doi: 10.1016/j.scitotenv.2022.157779 – ident: ref40/cit40 doi: 10.1021/acs.est.2c05268 – ident: ref37/cit37 doi: 10.1016/j.wasman.2012.07.021 – ident: ref46/cit46 doi: 10.1039/C9EN01448A – ident: ref7/cit7 doi: 10.1002/etc.3622 – ident: ref38/cit38 |
SSID | ssj0002308 |
Score | 2.4729135 |
Snippet | Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated... An initial large area survey scan of 7x4 mm for raw and compost from Urban-3 or of 8x2 mm for raw and treated OWs from Agri-1 and Central-1 was collected at... Not provided. |
SourceID | osti hal proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14439 |
SubjectTerms | Aerobic conditions Agricultural land Agricultural pollution Agricultural wastes Anaerobic conditions Anaerobic digestion Anaerobic processes Anaerobic treatment Composting Composts Copper Crystallization Engineering Environmental Sciences Environmental Sciences & Ecology Heterogeneity nanomaterials Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants Organic waste treatment Organic wastes Oxidation Pattern analysis Scale (corrosion) Soil pollution Speciation Species Sulfides Urban agriculture Valence Waste treatment X-ray absorption spectroscopy |
Title | Bulk and Mapping Speciation Analyses Unveil the Pattern and Heterogeneity of Cu Species during Organic Waste Treatment |
URI | http://dx.doi.org/10.1021/acs.est.4c02887 https://www.ncbi.nlm.nih.gov/pubmed/39073989 https://www.proquest.com/docview/3098300771 https://www.proquest.com/docview/3086061548 https://www.proquest.com/docview/3153820659 https://hal.science/hal-04752939 https://www.osti.gov/biblio/2581451 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb5RAEN7Y80UftFartNWspg--gLC7LLuP56XNxVhjYi_eG1mWpZpewAjcg7--M8Bx1ubUNwIzBIYZ5oOZ_YaQU6m0tZCpfJkL6YsoMr4Sce6HzEkT56EyDlcjX3yS84X4sIyXW7LoPyv4LHpnbB3ACzIQFlKhSvbIfSZVgt9Z09mX8aULSFpthhVoLpcji8-dE2AasvWtNLT3DZsgJxUE1W6g2SWc88d9q1bd8RRin8l10DZZYH_dZXH8973sk0cD7KTT3k-ekHuuPCAPfyMjPCCHZ9s1byA6BH39lKzft6trasqcXhhkc7ii_dB6fKS0JzVxNV2Ua_d9RQFP0s8dZ2fZqcyx3aYCL3UA92lV0Fnbq4NKv0SS9stBLf1qwOPo5abz_RlZnJ9dzub-MK7BN0LLxueFkVxw5UxWmCSyqpB5kmSF1DY3DIBkZlShnS0SxjKhrciE47kz2roOifFDMimr0r0gVGgkXAp1Zh3WmwGFIi1PbJMc4AZseOQUTJkO4VanXSWdRSnuBPumg309EmwecmoHynOcvLHarfB2VPjRs33sFn0DXjNKIUv3fPoxxX2hSGJAUXodeeQYnSoFNIOUvBZ7l2yTsljhgGSPnGx8bXsrPNSKI8kSHH49HoaYx0KOKV3VooySCEWF-osMpjKGVXOPPO_9eLxYrrE-q_TR_5nxmDwA-wv8kx7xEzJpfrbuJUCxJnvVBeENAaUtGA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tlgNw4LGwEHYBg_bAJSUPx7GPpdpVgXYFohW9RY7jANoqQaTpgV_PTJKmPFQEt8iZiRx77PmS8XwDcCakMgY9lSsyLlzu-9qVPMpcL7BCR5kntaVs5NmlmCz4m2W0PABvmwuDnajwSVUTxN-xC_gvqQ33ySE36BFlfAjXEIoE9Lk1Gn_o914E1HJbs0CFYtmT-fzxAPJGpvrFGx1-prOQgxLX1n682fidi9vwvu9xc9zkaliv06H5_huZ4_-80h241YFQNmqt5i4c2OIIbv5ETXgEx-e7DDgU7baA6h5sXtWrK6aLjM00cTt8Ym0Je5pg1lKc2Iotio39smKILtm7hsGzaFQmdPimRJu1CP5ZmbNx3aqjSpswydrkUMM-arQ_Nt-eg78Pi4vz-XjidsUbXM2VWLthrkXIQ2l1muvYNzIXWRynuVAm0wHCylTLXFmTx0GQcmV4ym2YWa2MbXBZeAyDoizsQ2BcEf2Sp1JjKfqMmJRIeiITZwg-8MKBMxzKpFt8VdLE1QM_oUYc36QbXweG27lOTEeATnU4VvsVXvQKX1vuj_2iz9F4eini7J6Mpgm1eTyOEFOpje_ACdlWgtiGCHoNnWQy6ySIJJVLduB0a3K7Vwk9JUOiXMLbz_rbuANQWEcXtqxJRgoCplz-RYYcW0AxdAcetObcdzZUFK2V6tG_DeNTuD6Zz6bJ9PXl2xO4gXPB6R-7H57CYP2tto8RpK3TJ826_AECGTV5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RRUJw4FEohBYwqAcu2ebhOPZxWbpaoK0q0RV7ixzHAdRVUpFkD_x6ZpJsykOL4BY5M5Fjjz1fMp5vAA6FVMagp3JFxoXLfV-7kkeZ6wVW6CjzpLaUjXx6JuYL_n4ZLfukMMqFwU5U-KSqDeLTqr7K8p5hwD-idtwrx9ygV5TxDtykoB19ck2mH4f9F0G13NQtUKFYDoQ-fzyAPJKpfvFIO1_oPOSoxPW1HXO2vmd2DxZDr9sjJ5fjpk7H5vtvhI7_-1r34W4PRtmks54HcMMWu3DnJ4rCXdg7vs6EQ9F-K6gewvpNs7pkusjYqSaOh8-sK2VPE806qhNbsUWxtl9XDFEmO2-ZPItWZU6HcEq0XYsfAazM2bTp1FGlS5xkXZKoYZ802iG72JyHfwSL2fHFdO72RRxczZWo3TDXIuShtDrNdewbmYssjtNcKJPpAOFlqmWurMnjIEi5MjzlNsysVsa2-Czcg1FRFvYJMK6IhslTqbEUhUZsSmQ9kYkzBCF44cAhDmXSL8IqaePrgZ9QI45v0o-vA-PNfCemJ0Knehyr7QqvB4WrjgNku-grNKBBiri755OThNo8HkeIrdTad2Cf7CtBjENEvYZONJk6CSJJZZMdONiY3fWrhJ6SIVEv4e2Xw23cCSi8owtbNiQjBQFULv8iQw4uoFi6A487kx46GyqK2kr19N-G8QXcOn87S07enX3Yh9s4FZx-tfvhAYzqb419hlitTp-3S_MH6kw3_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bulk+and+Mapping+Speciation+Analyses+Unveil+the+Pattern+and+Heterogeneity+of+Cu+Species+during+Organic+Waste+Treatment&rft.jtitle=Environmental+science+%26+technology&rft.au=Doelsch%2C+Emmanuel&rft.au=Bars%2C+Maureen+Le&rft.au=Etschmann%2C+Barbara&rft.au=Formentini%2C+Thiago&rft.date=2024-08-13&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=58&rft.issue=32&rft.spage=14439&rft.epage=14449&rft_id=info:doi/10.1021%2Facs.est.4c02887&rft_id=info%3Apmid%2F39073989&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04752939v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |