Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags

We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 11; no. 9; pp. 9068 - 9083
Main Authors Wasserberg, Dorothee, Cabanas-Danés, Jordi, Prangsma, Jord, O’Mahony, Shane, Cazade, Pierre-Andre, Tromp, Eldrich, Blum, Christian, Thompson, Damien, Huskens, Jurriaan, Subramaniam, Vinod, Jonkheijm, Pascal
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His6-tag on the TagRFP proteins. All TagRFP variants with His6-tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His6-tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His6-tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in “end-on” and “side-on” orientations with each His6-tag contributing to binding. Also, not every dihistidine subunit in a given His6-tag forms a full coordination bond with the Ni2+:NTA SAMs, which varied with the position of the His6-tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni2+:NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect.
AbstractList We report oriented immobilization of proteins using the standard hexahistidine (His )-Ni :NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His -tag on the TagRFP proteins. All TagRFP variants with His -tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His -tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His -tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in "end-on" and "side-on" orientations with each His -tag contributing to binding. Also, not every dihistidine subunit in a given His -tag forms a full coordination bond with the Ni :NTA SAMs, which varied with the position of the His -tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni :NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect.
We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His6-tag on the TagRFP proteins. All TagRFP variants with His6-tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His6-tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His6-tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in “end-on” and “side-on” orientations with each His6-tag contributing to binding. Also, not every dihistidine subunit in a given His6-tag forms a full coordination bond with the Ni2+:NTA SAMs, which varied with the position of the His6-tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni2+:NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect.
We report oriented immobilization of proteins using the standard hexahistidine (His 6 )-Ni 2+ :NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His 6 -tag on the TagRFP proteins. All TagRFP variants with His 6 -tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His 6 -tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His 6 -tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in “end-on” and “side-on” orientations with each His 6 -tag contributing to binding. Also, not every dihistidine subunit in a given His 6 -tag forms a full coordination bond with the Ni 2+ :NTA SAMs, which varied with the position of the His 6 -tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni 2+ :NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra -protein, not a single-protein, effect.
Author Wasserberg, Dorothee
Prangsma, Jord
Blum, Christian
Jonkheijm, Pascal
Subramaniam, Vinod
Cazade, Pierre-Andre
Cabanas-Danés, Jordi
Huskens, Jurriaan
Thompson, Damien
O’Mahony, Shane
Tromp, Eldrich
AuthorAffiliation University of Limerick
Molecular nanoFabrication Group, MESA+ Institute for Nanotechnology
Department of Physics, Bernal Institute
Free University of Amsterdam
Bioinspired Molecular Engineering Laboratory, MIRA Biomedical Technology and Technical Medicine Institute
Nanobiophysics Group, MESA+ Institute for Nanotechnology, and MIRA Biomedical Technology and Technical Medicine Institute
AuthorAffiliation_xml – name: Nanobiophysics Group, MESA+ Institute for Nanotechnology, and MIRA Biomedical Technology and Technical Medicine Institute
– name:
– name: Molecular nanoFabrication Group, MESA+ Institute for Nanotechnology
– name: Bioinspired Molecular Engineering Laboratory, MIRA Biomedical Technology and Technical Medicine Institute
– name: Free University of Amsterdam
– name: Department of Physics, Bernal Institute
– name: University of Limerick
Author_xml – sequence: 1
  givenname: Dorothee
  surname: Wasserberg
  fullname: Wasserberg, Dorothee
– sequence: 2
  givenname: Jordi
  surname: Cabanas-Danés
  fullname: Cabanas-Danés, Jordi
– sequence: 3
  givenname: Jord
  surname: Prangsma
  fullname: Prangsma, Jord
– sequence: 4
  givenname: Shane
  surname: O’Mahony
  fullname: O’Mahony, Shane
  organization: University of Limerick
– sequence: 5
  givenname: Pierre-Andre
  surname: Cazade
  fullname: Cazade, Pierre-Andre
  organization: University of Limerick
– sequence: 6
  givenname: Eldrich
  surname: Tromp
  fullname: Tromp, Eldrich
– sequence: 7
  givenname: Christian
  surname: Blum
  fullname: Blum, Christian
– sequence: 8
  givenname: Damien
  surname: Thompson
  fullname: Thompson, Damien
  email: damien.thompson@ul.ie
  organization: University of Limerick
– sequence: 9
  givenname: Jurriaan
  orcidid: 0000-0002-4596-9179
  surname: Huskens
  fullname: Huskens, Jurriaan
  email: j.huskens@utwente.nl
– sequence: 10
  givenname: Vinod
  orcidid: 0000-0001-6712-7266
  surname: Subramaniam
  fullname: Subramaniam, Vinod
  email: v.subramaniam@vu.nl
  organization: Free University of Amsterdam
– sequence: 11
  givenname: Pascal
  orcidid: 0000-0001-6271-0049
  surname: Jonkheijm
  fullname: Jonkheijm, Pascal
  email: p.jonkheijm@utwente.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28850777$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1LxDAUDKL4sXr2JjkKUk2apmkvgix-gbCCH3gLafpaI91Ek1TYf29k10UPnt6DmTdvmNlDm9ZZQOiQklNKcnqmdLDKulPRECao2EC7tGZlRqryZXO9c7qD9kJ4I4SLSpTbaCevKk6EELvoeeps9G4YjO3xvXcRjMUPo--UBjzzBmxU0TiLmwV-iF5F6I3G90OC5wnDrsOzwfQuuzEhmtZYwI-qD_toq1NDgIPVnKCnq8vH6U12N7u-nV7cZaqoecwAWAtFQdu0MOCEk6ZmXTJXFznjHYhKkUbkpSB5XbZalNDpUrWsIKB5wSo2QedL3fexmUOrkyWvBvnuzVz5hXTKyL-INa-yd5-Sl7SiRZ0EjlcC3n2MEKKcm6BhGJQFNwaZImR1QUX6NkFnS6r2LgQP3foNJfK7DblqQ67aSBdHv92t-T_xJ8LJkpAu5ZsbvU1h_Sv3BXdcmYo
CitedBy_id crossref_primary_10_3390_molecules28083426
crossref_primary_10_1021_acsami_9b00927
crossref_primary_10_1021_acsbiomaterials_2c00155
crossref_primary_10_3389_fbioe_2023_1200293
crossref_primary_10_1021_acsabm_3c00125
crossref_primary_10_1021_acs_biochem_0c00447
crossref_primary_10_1039_C7CC09808A
crossref_primary_10_3390_bios13010044
crossref_primary_10_1021_acs_analchem_9b01956
crossref_primary_10_3390_bios12050269
crossref_primary_10_1021_acsami_0c19041
crossref_primary_10_1016_j_biomaterials_2021_121117
crossref_primary_10_1021_acs_analchem_0c01807
crossref_primary_10_1021_acs_langmuir_1c01033
crossref_primary_10_1021_acs_langmuir_9b01700
crossref_primary_10_1002_jev2_12170
crossref_primary_10_1039_C9ME00149B
crossref_primary_10_1016_j_jddst_2023_104156
crossref_primary_10_1021_acsanm_8b00520
crossref_primary_10_1002_anie_201803632
crossref_primary_10_1021_acsanm_8b01277
crossref_primary_10_3390_bios13050507
crossref_primary_10_1016_j_jcis_2020_12_025
crossref_primary_10_1016_j_jelechem_2020_114346
crossref_primary_10_1021_acs_bioconjchem_3c00417
crossref_primary_10_1016_j_cej_2024_149714
crossref_primary_10_1016_j_cej_2023_142941
crossref_primary_10_1016_j_enzmictec_2020_109547
crossref_primary_10_3390_bios12100784
crossref_primary_10_1021_acsnano_8b09410
crossref_primary_10_1016_j_bios_2020_112748
crossref_primary_10_1002_bip_23412
crossref_primary_10_1016_j_aca_2019_12_067
crossref_primary_10_1039_D1BM01222C
crossref_primary_10_1021_acs_biomac_8b00928
crossref_primary_10_3390_toxins9120395
crossref_primary_10_1016_j_jece_2020_104266
crossref_primary_10_1021_acsabm_0c01148
crossref_primary_10_1021_acsami_0c18485
crossref_primary_10_1021_acs_langmuir_3c02994
crossref_primary_10_1039_D1SC06993D
crossref_primary_10_1016_j_btre_2021_e00645
crossref_primary_10_1002_ange_201803632
Cites_doi 10.1002/anie.200900942
10.1016/j.actbio.2015.11.007
10.1021/ja9623673
10.1021/ja071130b
10.15252/embj.201490756
10.1002/prot.10335
10.1002/anie.200503475
10.1021/nl071451l
10.1038/sj.emboj.7600262
10.1021/ja00153a029
10.1021/ic500387u
10.1021/nn101872w
10.1021/ja3102133
10.1021/ci3003649
10.1002/jccs.200500185
10.1021/ar200046h
10.1021/ja050690c
10.1021/la703709a
10.1021/ja802843m
10.1002/adfm.200500232
10.1016/j.msea.2005.10.078
10.1021/cr8004668
10.1021/bm061197b
10.1021/ac048813j
10.1586/14789450.2.1.41
10.1002/jcc.21367
10.1006/jmbi.1999.2714
10.1002/adma.200901237
10.1016/S0021-9673(00)93969-4
10.1073/pnas.0912617107
10.1021/ja505695w
10.1143/JJAP.44.8210
10.1002/jcc.20289
10.1021/bc060125e
10.1021/ja049085k
10.1039/b618002g
10.1021/cr0300789
10.1006/abio.1997.2326
10.1021/acs.jpcc.6b03076
10.1021/ja0317168
10.1002/anie.201400546
10.1002/anie.200502908
10.1021/ja972634k
10.1021/ja3061276
10.1038/nature04162
10.1002/smll.201200565
10.1002/chem.200701478
10.1021/ja308450n
10.1039/b806764c
10.1021/nl1037769
10.7569/RAA.2016.097307
10.1007/BF01674434
10.1039/b925931g
10.1002/anie.200901480
10.1002/mabi.200800289
10.1111/j.1432-1033.1990.tb19354.x
10.1021/bc0602228
10.1021/acs.accounts.5b00022
10.1021/ja0563105
10.1126/science.8259513
10.1002/adma.200702189
10.1021/jp054656w
10.1016/j.softx.2015.06.001
10.1016/0097-8485(95)00042-Q
10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
10.1021/la702696b
10.1016/j.chembiol.2010.03.005
10.1126/science.1062191
10.1021/bc900309n
10.1002/biot.201100155
10.1073/pnas.95.21.12271
10.1021/nl1003569
10.1002/anie.200702694
10.1002/smll.200700046
10.1073/pnas.072685299
10.1016/0263-7855(96)00018-5
10.1002/anie.201502615
10.1002/cbic.200900001
10.1002/prot.22218
10.1039/b714635n
10.1002/anie.200801711
10.1021/ac9605861
10.1038/nrd2410
10.1021/nn506993s
10.1039/b413971b
10.1002/chem.200500154
10.1002/cbic.200900165
10.1002/anie.200801313
10.1186/1758-2946-4-17
10.1038/nmeth1062
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright © 2017 American Chemical Society 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Copyright © 2017 American Chemical Society 2017 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsnano.7b03717
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 9083
ExternalDocumentID 10_1021_acsnano_7b03717
28850777
b511815115
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a495t-ee3de441dee33e5050b93f88594235fe78a0b72670296dc76efc6ad340ec54383
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Tue Sep 17 21:31:25 EDT 2024
Fri Aug 16 01:25:32 EDT 2024
Fri Aug 23 00:25:30 EDT 2024
Wed Oct 23 09:44:17 EDT 2024
Thu Aug 27 13:41:58 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords molecular dynamics simulations
self-assembly
protein immobilization
monolayers
multivalency
Language English
License This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a495t-ee3de441dee33e5050b93f88594235fe78a0b72670296dc76efc6ad340ec54383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4596-9179
0000-0001-6712-7266
0000-0001-6271-0049
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5618149
PMID 28850777
PQID 1933941754
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5618149
proquest_miscellaneous_1933941754
crossref_primary_10_1021_acsnano_7b03717
pubmed_primary_28850777
acs_journals_10_1021_acsnano_7b03717
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-09-26
PublicationDateYYYYMMDD 2017-09-26
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref91/cit91
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1002/anie.200900942
– ident: ref5/cit5
  doi: 10.1016/j.actbio.2015.11.007
– ident: ref32/cit32
  doi: 10.1021/ja9623673
– ident: ref24/cit24
  doi: 10.1021/ja071130b
– ident: ref7/cit7
  doi: 10.15252/embj.201490756
– ident: ref75/cit75
  doi: 10.1002/prot.10335
– ident: ref23/cit23
  doi: 10.1002/anie.200503475
– ident: ref54/cit54
  doi: 10.1021/nl071451l
– ident: ref38/cit38
  doi: 10.1038/sj.emboj.7600262
– ident: ref30/cit30
  doi: 10.1021/ja00153a029
– ident: ref88/cit88
– ident: ref73/cit73
  doi: 10.1021/ic500387u
– ident: ref34/cit34
  doi: 10.1021/nn101872w
– ident: ref21/cit21
  doi: 10.1021/ja3102133
– ident: ref89/cit89
  doi: 10.1021/ci3003649
– ident: ref72/cit72
  doi: 10.1002/jccs.200500185
– ident: ref14/cit14
  doi: 10.1021/ar200046h
– ident: ref56/cit56
  doi: 10.1021/ja050690c
– ident: ref58/cit58
  doi: 10.1021/la703709a
– ident: ref35/cit35
  doi: 10.1021/ja802843m
– ident: ref64/cit64
  doi: 10.1002/adfm.200500232
– ident: ref80/cit80
  doi: 10.1016/j.msea.2005.10.078
– ident: ref10/cit10
  doi: 10.1021/cr8004668
– ident: ref11/cit11
  doi: 10.1021/bm061197b
– ident: ref59/cit59
  doi: 10.1021/ac048813j
– ident: ref1/cit1
  doi: 10.1586/14789450.2.1.41
– ident: ref86/cit86
  doi: 10.1002/jcc.21367
– ident: ref37/cit37
  doi: 10.1006/jmbi.1999.2714
– ident: ref26/cit26
  doi: 10.1002/adma.200901237
– ident: ref43/cit43
  doi: 10.1016/S0021-9673(00)93969-4
– ident: ref25/cit25
  doi: 10.1073/pnas.0912617107
– ident: ref55/cit55
  doi: 10.1021/ja505695w
– ident: ref78/cit78
  doi: 10.1143/JJAP.44.8210
– ident: ref85/cit85
  doi: 10.1002/jcc.20289
– ident: ref17/cit17
  doi: 10.1021/bc060125e
– ident: ref67/cit67
  doi: 10.1021/ja049085k
– ident: ref19/cit19
  doi: 10.1039/b618002g
– ident: ref81/cit81
  doi: 10.1021/cr0300789
– ident: ref46/cit46
  doi: 10.1006/abio.1997.2326
– ident: ref74/cit74
  doi: 10.1021/acs.jpcc.6b03076
– ident: ref68/cit68
  doi: 10.1021/ja0317168
– ident: ref6/cit6
  doi: 10.1002/anie.201400546
– ident: ref22/cit22
  doi: 10.1002/anie.200502908
– ident: ref33/cit33
  doi: 10.1021/ja972634k
– ident: ref65/cit65
  doi: 10.1021/ja3061276
– ident: ref82/cit82
  doi: 10.1038/nature04162
– ident: ref31/cit31
  doi: 10.1002/smll.201200565
– ident: ref63/cit63
  doi: 10.1002/chem.200701478
– ident: ref27/cit27
  doi: 10.1021/ja308450n
– ident: ref18/cit18
  doi: 10.1039/b806764c
– ident: ref50/cit50
  doi: 10.1021/nl1037769
– ident: ref8/cit8
  doi: 10.7569/RAA.2016.097307
– ident: ref42/cit42
  doi: 10.1007/BF01674434
– ident: ref15/cit15
  doi: 10.1039/b925931g
– ident: ref3/cit3
  doi: 10.1002/anie.200901480
– ident: ref41/cit41
  doi: 10.1002/mabi.200800289
– ident: ref71/cit71
  doi: 10.1111/j.1432-1033.1990.tb19354.x
– ident: ref61/cit61
  doi: 10.1021/bc0602228
– ident: ref79/cit79
  doi: 10.1021/acs.accounts.5b00022
– ident: ref57/cit57
  doi: 10.1021/ja0563105
– ident: ref29/cit29
  doi: 10.1126/science.8259513
– ident: ref53/cit53
  doi: 10.1002/adma.200702189
– ident: ref77/cit77
  doi: 10.1021/jp054656w
– ident: ref91/cit91
  doi: 10.1016/j.softx.2015.06.001
– ident: ref84/cit84
  doi: 10.1016/0097-8485(95)00042-Q
– ident: ref39/cit39
  doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
– ident: ref48/cit48
  doi: 10.1021/la702696b
– ident: ref69/cit69
  doi: 10.1016/j.chembiol.2010.03.005
– ident: ref49/cit49
  doi: 10.1126/science.1062191
– ident: ref62/cit62
  doi: 10.1021/bc900309n
– ident: ref44/cit44
  doi: 10.1002/biot.201100155
– ident: ref83/cit83
  doi: 10.1073/pnas.95.21.12271
– ident: ref36/cit36
  doi: 10.1021/nl1003569
– ident: ref51/cit51
  doi: 10.1002/anie.200702694
– ident: ref52/cit52
  doi: 10.1002/smll.200700046
– ident: ref20/cit20
  doi: 10.1073/pnas.072685299
– ident: ref87/cit87
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref4/cit4
  doi: 10.1002/anie.201502615
– ident: ref47/cit47
  doi: 10.1002/cbic.200900001
– ident: ref76/cit76
  doi: 10.1002/prot.22218
– ident: ref9/cit9
  doi: 10.1039/b714635n
– ident: ref12/cit12
  doi: 10.1002/anie.200801711
– ident: ref70/cit70
  doi: 10.1021/ac9605861
– ident: ref2/cit2
  doi: 10.1038/nrd2410
– ident: ref28/cit28
  doi: 10.1021/nn506993s
– ident: ref40/cit40
  doi: 10.1039/b413971b
– ident: ref60/cit60
  doi: 10.1002/chem.200500154
– ident: ref45/cit45
  doi: 10.1002/cbic.200900165
– ident: ref13/cit13
  doi: 10.1002/anie.200801313
– ident: ref90/cit90
  doi: 10.1186/1758-2946-4-17
– ident: ref66/cit66
  doi: 10.1038/nmeth1062
SSID ssj0057876
Score 2.4807303
Snippet We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically...
We report oriented immobilization of proteins using the standard hexahistidine (His )-Ni :NTA (nitrilotriacetic acid) methodology, which we systematically...
We report oriented immobilization of proteins using the standard hexahistidine (His 6 )-Ni 2+ :NTA (nitrilotriacetic acid) methodology, which we systematically...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9068
SubjectTerms Animals
Histidine - chemistry
Immobilized Proteins - chemistry
Luminescent Proteins - chemistry
Molecular Dynamics Simulation
Nickel - chemistry
Nitrilotriacetic Acid - chemistry
Oligopeptides - chemistry
Red Fluorescent Protein
Sea Anemones - chemistry
Surface Properties
Title Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags
URI http://dx.doi.org/10.1021/acsnano.7b03717
https://www.ncbi.nlm.nih.gov/pubmed/28850777
https://search.proquest.com/docview/1933941754
https://pubmed.ncbi.nlm.nih.gov/PMC5618149
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzose_P1j_iKCBy-dbdo17XEMhwi6gZt4K0n6okVJZd0O-tf7snbTOURvhbaB5CV935f38ikh5-BpVEECnJRF2gkkCCeKlXS0r8EL0N9IZfchb-_C60Fw89h8_IJF_8zgM-9SqMIIkze4tHQ5vkxWGHpFG2e12vfTj66dd2GZQMYAGVXEjOKz0IB1Q6qYd0ML2vJnieQ3n9PZKKu1igmq0JaavDTGI9lQH4sgx7-7s0nWK-VJW-VU2SJLYLbJ2jce4Q55aJeF6_aIOu1ZgkNm6P14qIUC2h1m1TklQ-U7nWJtFe3ZnXi7yUhzTbuv2VPuWPhIhl4RaF88Fbtk0Lnqt6-d6scLjsB4aeQA-CmgTkrxwgfUSK6MfR1FzRjFV1MDj4QrOQu5y-IwVTwErUKR-oELqmnZp3ukZnIDB4RiQCZQVOpQY-jjuVp4jIGGQHCtI-2ldXKOI5JUC6dIJjlx5iXVMCXVMNXJxdRcyVuJ4fj90bOpORNcKjb_IQzkY2w79v04QL0U1Ml-ad5ZYwx753KOb_M5w88esBju-Tsme57guFGBRhhnHv6vJ0dklVllYBNb4TGpjYZjOEFdM5Knkxn9CYwQ9kM
link.rule.ids 230,315,786,790,891,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPbQc6ANKt4XWlThwyTZvJ8dq1dVCeYoFcYtsZwwRlYM2u4f213ecx5ZlhVRuUeKMbM84882M_QVgDz1NKEigk_uJdkKJwklSJR0daPRC8jdS2Tzk8Uk8ugwPr6PrFXC7szDUiYokVXUR_x-7gPeN7hlhyj6XlmSOr8KLiJOvs2BocNF9e635xU0dmeJkAhNzMp8lAdYbqWrRGy1BzMc7JR-4nuFrOJ93ut5xctefTWVf_XnE5_icUb2BjRaHsu-N4byFFTTvYP0BO-EmXA2abez2wDo7s3wOhWEXs4kWCtnppGhPLRkmf7OO5FaxM5uXtylHVmp2-qu4KR1LRVKQj0Q2FjfVFlwOf4wHI6f9DYMjKHqaOohBjoSacroIkBCTK9NAJ0mUEhSLNPJEuJL7MXf9NM4Vj1GrWORB6KKKLBPqe1gzpcEPwCg8EwQxdawpEPJcLTzfR42h4Fon2st7sEczkrXLqMrqCrnvZe00Ze009WC_01p235ByPN30a6fVjBaOrYYIg-WMZKdBkIaEnsIebDdangvzaXQu5_Q2X9D_vIEl5V58Yorbmpyb8GhCUefH_xvJF3g5Gh8fZUcHJz8_wSvfYgZb8op3YG06meEuIZ6p_Fwb-V9fnv6u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKlXlQN-wbWldiUMvWfJ2cqy2XdEXrARbcYtsZ0wjkIM2u4f213cmya5YEFK5RYkz8tjjzDcezxeAfQwsoSCFXhlm1os1Ki_LjfZsZDGIyd9ow_uQP4_Sw2n87Sw564vCuBaGOtGQpKZN4vOqviptzzAQHNB9p1w9lJqJ5uQDeJhIEsiAaHSy_P6yCaZdLpliZQIUK0KfWwLYI5lm3SPdgpk3T0tecz_jJzBddbw9dXIxXMz10Py9wel4X82ewnaPR8WnzoCewQa657B1jaXwBfwadcfZuXBdTJjXoXLiZDGzyqA4nlV99ZIT-o9Ykt0aMeH9ed56FLUVx5fVee0xJUlFvhLFqTpvXsJ0_OV0dOj1v2PwFEVRcw8xKpHQU0kXERJy8nUe2SxLcoJkiUWZKV_LMJV-mKelkSlak6oyin00CTOivoJNVzvcBUFhmiKoaVNLAVHgWxWEIVqMlbQ2s0E5gH0akaJfTk3RZsrDoOiHqeiHaQAflzNXXHXkHHc3_bCc2YIWEGdFlMN6QbLzKMpjQlHxAHa6mV4JC0k7X0p6W67ZwKoBk3OvP3HV75akm3BpRtHn6__T5D08mnweFz--Hn1_A49Dhg6c-UrfwuZ8tsA9Aj5z_a61839xlgE3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+Protein+Surface+Orientation+by+Strategic+Placement+of+Oligo-Histidine+Tags&rft.jtitle=ACS+nano&rft.au=Wasserberg%2C+Dorothee&rft.au=Cabanas-Dan%C3%A9s%2C+Jordi&rft.au=Prangsma%2C+Jord&rft.au=O%27Mahony%2C+Shane&rft.date=2017-09-26&rft.eissn=1936-086X&rft.volume=11&rft.issue=9&rft.spage=9068&rft.epage=9083&rft_id=info:doi/10.1021%2Facsnano.7b03717&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon