Review on iron availability in soil: interaction of Fe minerals, plants, and microbes

PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which,...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 14; no. 3; pp. 538 - 548
Main Authors Colombo, Claudio, Palumbo, Giuseppe, He, Ji-Zheng, Pinton, Roberto, Cesco, Stefano
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2014
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. MATERIALS AND METHODS: We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe–organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. RESULTS AND DISCUSSION: Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Feᴵᴵᴵ. Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. CONCLUSION: The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Feᴵᴵᴵ complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield’s limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites.
AbstractList PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. MATERIALS AND METHODS: We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe–organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. RESULTS AND DISCUSSION: Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Feᴵᴵᴵ. Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. CONCLUSION: The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Feᴵᴵᴵ complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield’s limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites.
Purpose: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. Materials and methods: We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe-organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. Results and discussion: Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Fe super(III). Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. Conclusion: The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Fe super(III) complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield's limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites.
The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe-organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Fe^sup III^. Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Fe^sup III^ complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield's limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites.[PUBLICATION ABSTRACT]
Purpose The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. Materials and methods We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe–organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. Results and discussion Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Fe III . Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. Conclusion The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Fe III complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield’s limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites.
Author He, Ji-Zheng
Pinton, Roberto
Colombo, Claudio
Palumbo, Giuseppe
Cesco, Stefano
Author_xml – sequence: 1
  fullname: Colombo, Claudio
– sequence: 2
  fullname: Palumbo, Giuseppe
– sequence: 3
  fullname: He, Ji-Zheng
– sequence: 4
  fullname: Pinton, Roberto
– sequence: 5
  fullname: Cesco, Stefano
BookMark eNqNUU1P3DAQtRBIBcoP4EQkLj007YztJA63ChWohFQJ2LPlTSbIKGsvdhYEv76zTQ-IA-rF8_XeeGbegdgNMZAQxwjfEKD5nhFVbUpAVYJBXb7uiH2s2Wm0gV32tWq5CuaTOMj5AUA1XN4Xixt68vRcxFD4xI97cn50Sz_66aXwocjRj2fsTJRcN3lGxKG4oGLlA2fG_LVYjy5MbF3oOduluKT8WewNXKSjf_ZQLC5-3p1flde_L3-d_7gunW6rqaTe9NS3wIHpQC5Ju6anQRJ00DdGoXKmkr0ZZNsPnesQSS5rWWmojWoMqEPxZe67TvFxQ3myK587GnkkiptssZIaqxax_g8oVEqZWkqGnr6DPsRNCryIRd0aI5X62xBnFK-cc6LBrpNfufRiEexWEztrYlkTu9XEvjKnecfp_OS2Z50S3_1DppyZmX8J95TezPQB6WQmDS5ad598totbCagBoELTtOoPw7Oqug
CitedBy_id crossref_primary_10_1080_15226514_2021_2025202
crossref_primary_10_1016_j_soilbio_2020_107840
crossref_primary_10_1016_j_jece_2024_113428
crossref_primary_10_1002_ecy_1700
crossref_primary_10_1007_s11431_024_2655_y
crossref_primary_10_1016_j_geoderma_2018_12_011
crossref_primary_10_1016_j_jenvman_2022_114957
crossref_primary_10_1021_acs_est_9b03208
crossref_primary_10_1016_j_geoderma_2017_11_039
crossref_primary_10_1073_pnas_2313487120
crossref_primary_10_1007_s10534_020_00248_y
crossref_primary_10_1093_pcp_pcae111
crossref_primary_10_1111_nph_16242
crossref_primary_10_1016_j_catena_2024_108293
crossref_primary_10_3390_land10080768
crossref_primary_10_1080_00103624_2016_1243702
crossref_primary_10_3389_fmicb_2022_1083270
crossref_primary_10_1007_s00374_015_0999_y
crossref_primary_10_1186_s13028_024_00735_z
crossref_primary_10_1016_j_apgeochem_2023_105875
crossref_primary_10_1111_evo_13328
crossref_primary_10_1063_1_5138941
crossref_primary_10_1016_j_agwat_2025_109343
crossref_primary_10_1016_j_ecoleng_2014_05_020
crossref_primary_10_2138_am_2022_8379
crossref_primary_10_3390_min11020121
crossref_primary_10_1016_j_scitotenv_2018_12_024
crossref_primary_10_1093_femsre_fuac002
crossref_primary_10_2136_sssaj2017_06_0193
crossref_primary_10_1016_j_gca_2019_04_011
crossref_primary_10_1007_s13205_020_02306_1
crossref_primary_10_1016_j_conbuildmat_2020_118474
crossref_primary_10_3389_fpls_2018_01956
crossref_primary_10_3390_su13095116
crossref_primary_10_1016_j_scitotenv_2019_04_225
crossref_primary_10_1039_C8EN00328A
crossref_primary_10_1016_j_apsoil_2023_105074
crossref_primary_10_7554_eLife_46070
crossref_primary_10_1016_j_chemgeo_2022_120995
crossref_primary_10_1093_jxb_erab531
crossref_primary_10_1007_s11105_024_01511_z
crossref_primary_10_1080_00103624_2024_2323079
crossref_primary_10_1111_pce_14544
crossref_primary_10_1016_j_jhazmat_2023_131665
crossref_primary_10_1039_C8MT00252E
crossref_primary_10_3389_fpls_2020_590774
crossref_primary_10_1007_s00374_016_1164_y
crossref_primary_10_1016_j_gsf_2022_101494
crossref_primary_10_1038_s41598_021_87384_8
crossref_primary_10_1007_s13199_024_00980_w
crossref_primary_10_1080_10643389_2024_2382498
crossref_primary_10_2139_ssrn_4181351
crossref_primary_10_1016_j_envres_2024_120599
crossref_primary_10_2139_ssrn_4170587
crossref_primary_10_1016_j_jhazmat_2021_127805
crossref_primary_10_1016_j_apsusc_2019_05_156
crossref_primary_10_1016_j_soilbio_2023_108972
crossref_primary_10_1021_acs_jafc_8b00557
crossref_primary_10_3389_fpls_2021_665583
crossref_primary_10_1016_j_jwpe_2020_101757
crossref_primary_10_1111_ejss_12158
crossref_primary_10_1111_ejss_13369
crossref_primary_10_1371_journal_pone_0316341
crossref_primary_10_1111_ejss_13489
crossref_primary_10_3389_fmicb_2024_1440978
crossref_primary_10_1016_j_funbio_2022_05_005
crossref_primary_10_1007_s00374_014_0919_6
crossref_primary_10_1007_s42398_022_00247_4
crossref_primary_10_1007_s00374_015_1043_y
crossref_primary_10_3390_microorganisms11061535
crossref_primary_10_1021_acssuschemeng_0c06406
crossref_primary_10_1002_elan_201900204
crossref_primary_10_1016_j_hydromet_2018_05_027
crossref_primary_10_3390_agriculture14050664
crossref_primary_10_1128_mSystems_00580_20
crossref_primary_10_1016_j_eehl_2023_12_003
crossref_primary_10_1002_jobm_201800200
crossref_primary_10_1016_j_catena_2019_03_026
crossref_primary_10_1080_10256016_2024_2324966
crossref_primary_10_1016_j_scitotenv_2022_153910
crossref_primary_10_1016_j_watres_2024_122603
crossref_primary_10_3390_metabo12111100
crossref_primary_10_1007_s10457_021_00623_9
crossref_primary_10_1093_jxb_eraa012
crossref_primary_10_1007_s11368_020_02566_7
crossref_primary_10_1080_03650340_2021_1893308
crossref_primary_10_3389_fsufs_2022_824444
crossref_primary_10_1016_j_jenvman_2021_113252
crossref_primary_10_1007_s11631_018_0300_9
crossref_primary_10_1016_j_scitotenv_2020_141208
crossref_primary_10_1128_msystems_00811_19
crossref_primary_10_1038_s41467_017_01998_z
crossref_primary_10_3390_agronomy11101966
crossref_primary_10_1039_C7EN01120B
crossref_primary_10_1007_s10725_020_00598_0
crossref_primary_10_1016_j_chemosphere_2020_129150
crossref_primary_10_3390_soilsystems6010008
crossref_primary_10_1021_acs_est_9b04235
crossref_primary_10_1016_j_gca_2022_03_018
crossref_primary_10_1002_jsfa_9953
crossref_primary_10_1073_pnas_1903982116
crossref_primary_10_1016_j_watres_2024_122834
crossref_primary_10_1016_j_gecco_2020_e01399
crossref_primary_10_1016_j_scitotenv_2024_178302
crossref_primary_10_1080_01904167_2022_2160742
crossref_primary_10_1039_D2EN00330A
crossref_primary_10_1016_j_chemosphere_2024_143397
crossref_primary_10_1021_acs_est_7b06574
crossref_primary_10_1080_01140671_2023_2245781
crossref_primary_10_1016_j_chemosphere_2022_135172
crossref_primary_10_1016_j_envres_2022_114448
crossref_primary_10_1016_j_envexpbot_2024_105777
crossref_primary_10_3389_fpls_2023_1297706
crossref_primary_10_3389_fpls_2021_744445
crossref_primary_10_3389_fpls_2021_663477
crossref_primary_10_1016_j_watres_2018_06_009
crossref_primary_10_1002_esp_5718
crossref_primary_10_2478_ebtj_2024_0004
crossref_primary_10_1016_j_jag_2024_104059
crossref_primary_10_1016_j_geoderma_2020_114572
crossref_primary_10_3390_ijms241512227
crossref_primary_10_1515_pac_2018_1110
crossref_primary_10_3390_ijms21093395
crossref_primary_10_1007_s11738_019_2933_7
crossref_primary_10_1007_s12649_023_02164_x
crossref_primary_10_1080_17429145_2022_2086307
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_1016_j_cej_2024_158904
crossref_primary_10_3389_feart_2021_703339
crossref_primary_10_3389_fpls_2019_00413
crossref_primary_10_1016_j_csbj_2020_11_025
crossref_primary_10_1002_esp_3764
crossref_primary_10_32604_phyton_2023_046389
crossref_primary_10_1016_j_apgeochem_2021_105116
crossref_primary_10_3390_agronomy12102383
crossref_primary_10_1007_s41207_025_00762_w
crossref_primary_10_1093_aob_mcv182
crossref_primary_10_3390_land13101678
crossref_primary_10_3390_w16131834
crossref_primary_10_1016_j_envres_2023_117883
crossref_primary_10_1016_j_geoderma_2023_116456
crossref_primary_10_1016_j_plaphy_2016_04_053
crossref_primary_10_3390_agriculture11030217
crossref_primary_10_1016_j_scitotenv_2021_146266
crossref_primary_10_1039_D1EN01177D
crossref_primary_10_1186_s40562_020_00157_5
crossref_primary_10_1016_j_sciaf_2024_e02081
crossref_primary_10_1016_j_scitotenv_2019_136128
crossref_primary_10_1016_S1002_0160_19_60810_6
crossref_primary_10_3390_plants12173104
crossref_primary_10_1016_j_scitotenv_2020_138245
crossref_primary_10_1051_e3sconf_20199806009
crossref_primary_10_1016_j_jenvman_2022_117008
crossref_primary_10_3389_fpls_2019_00675
crossref_primary_10_2174_2210315511666210512024716
crossref_primary_10_3390_biology13110852
crossref_primary_10_1093_jxb_erv364
crossref_primary_10_1111_nph_19577
crossref_primary_10_1186_s40538_018_0132_1
crossref_primary_10_1002_clen_202000277
crossref_primary_10_1016_j_envpol_2024_125417
crossref_primary_10_3390_toxics12110773
crossref_primary_10_1016_j_scitotenv_2022_156242
crossref_primary_10_1016_j_chemosphere_2022_137713
crossref_primary_10_1111_tpj_17098
crossref_primary_10_1007_s11368_021_03132_5
crossref_primary_10_1016_j_jphotochem_2023_115425
crossref_primary_10_1016_j_icarus_2020_114055
crossref_primary_10_1128_mbio_00425_22
crossref_primary_10_1016_j_fcr_2023_108906
crossref_primary_10_1016_j_oregeorev_2019_03_013
crossref_primary_10_1016_j_envpol_2017_07_094
crossref_primary_10_1016_j_cej_2022_134610
crossref_primary_10_1016_j_catena_2022_106644
crossref_primary_10_3390_toxins15010050
crossref_primary_10_1016_S1002_0160_15_60104_7
crossref_primary_10_1016_j_scitotenv_2021_149844
crossref_primary_10_1093_femsec_fiy189
crossref_primary_10_1111_pce_12980
crossref_primary_10_3390_microorganisms10030547
crossref_primary_10_1016_j_scitotenv_2021_150705
crossref_primary_10_1007_s11104_018_3827_y
crossref_primary_10_1016_j_oregeorev_2021_104595
crossref_primary_10_1016_j_scitotenv_2024_176512
crossref_primary_10_1139_cjm_2017_0393
crossref_primary_10_1007_s11356_017_9045_y
crossref_primary_10_3390_biom10101412
crossref_primary_10_1016_j_scitotenv_2022_153193
crossref_primary_10_1007_s11368_020_02769_y
crossref_primary_10_1186_s13568_019_0796_3
crossref_primary_10_3389_fmicb_2020_581508
crossref_primary_10_1093_ismejo_wrad041
crossref_primary_10_4028_www_scientific_net_MSF_936_14
crossref_primary_10_1016_j_scitotenv_2020_138442
crossref_primary_10_1080_02757540_2023_2263436
crossref_primary_10_1016_S1002_0160_17_60331_X
crossref_primary_10_1029_2020JG005894
crossref_primary_10_1002_jobm_201500450
crossref_primary_10_1016_j_geodrs_2023_e00750
crossref_primary_10_5194_hess_22_1713_2018
crossref_primary_10_1002_jsfa_11504
crossref_primary_10_1007_s10653_024_01995_4
crossref_primary_10_1007_s10661_021_08874_w
crossref_primary_10_1007_s44274_024_00039_z
crossref_primary_10_1007_s42729_024_02042_y
crossref_primary_10_1080_03235408_2019_1668115
crossref_primary_10_1093_jxb_ery433
crossref_primary_10_1016_j_scitotenv_2023_168846
crossref_primary_10_1007_s10534_022_00480_8
crossref_primary_10_1016_j_scitotenv_2021_150967
crossref_primary_10_1021_acs_jpca_0c03592
crossref_primary_10_1016_j_scitotenv_2024_177728
crossref_primary_10_3389_fpls_2019_00008
crossref_primary_10_3389_fpls_2022_958984
crossref_primary_10_1016_j_soilbio_2019_03_013
crossref_primary_10_3390_agronomy12040871
crossref_primary_10_1016_j_gexplo_2015_01_003
crossref_primary_10_1016_j_jenvman_2022_116467
crossref_primary_10_1021_acs_est_7b00305
crossref_primary_10_1021_acs_est_7b02603
crossref_primary_10_1016_j_geoderma_2025_117166
crossref_primary_10_1039_D1EN00401H
crossref_primary_10_1007_s11356_020_09692_2
crossref_primary_10_1007_s11356_021_14076_1
crossref_primary_10_1007_s11356_023_30782_4
crossref_primary_10_1007_s42729_024_02203_z
crossref_primary_10_1016_j_envpol_2022_119462
crossref_primary_10_1039_D1EN00788B
crossref_primary_10_3390_agronomy10121891
crossref_primary_10_1093_femsle_fnx279
crossref_primary_10_12688_f1000research_22411_1
crossref_primary_10_3390_stresses1040015
crossref_primary_10_1016_j_plaphy_2025_109601
crossref_primary_10_3389_fpls_2022_959840
crossref_primary_10_4236_ojss_2019_99010
crossref_primary_10_1016_j_clay_2020_105746
crossref_primary_10_18697_ajfand_91_18530
crossref_primary_10_3390_horticulturae9040437
crossref_primary_10_3390_agronomy11020383
crossref_primary_10_38211_joarps_2023_04_02_168
crossref_primary_10_1016_j_tplants_2022_03_012
crossref_primary_10_3390_ma17051208
crossref_primary_10_1021_acsenvironau_1c00030
crossref_primary_10_1002_jpln_201500535
crossref_primary_10_1007_s12403_023_00593_6
crossref_primary_10_1016_j_geoderma_2022_116249
crossref_primary_10_1016_j_scitotenv_2024_170119
crossref_primary_10_3389_fmicb_2024_1485197
crossref_primary_10_1016_j_chemgeo_2022_121166
crossref_primary_10_1016_j_gca_2024_03_020
crossref_primary_10_1128_AEM_02957_18
crossref_primary_10_1016_j_jia_2024_10_002
crossref_primary_10_1080_00103624_2020_1849266
crossref_primary_10_1021_acs_jafc_7b03955
crossref_primary_10_1080_02757540_2019_1641493
crossref_primary_10_1007_s11104_014_2308_1
crossref_primary_10_1021_acs_est_4c08032
crossref_primary_10_3390_ijerph15030543
crossref_primary_10_3934_environsci_2022029
crossref_primary_10_1007_s11356_015_5134_y
crossref_primary_10_1016_j_envres_2020_109948
crossref_primary_10_1016_j_soilbio_2021_108446
crossref_primary_10_1002_ece3_5199
crossref_primary_10_3390_plants13050666
crossref_primary_10_1016_j_jhazmat_2024_135889
crossref_primary_10_1016_j_soilbio_2018_02_018
crossref_primary_10_1038_s41598_022_15458_2
crossref_primary_10_3389_fenvs_2018_00139
crossref_primary_10_1007_s11356_019_07304_2
crossref_primary_10_1007_s12355_022_01119_1
crossref_primary_10_1016_j_geoderma_2023_116552
crossref_primary_10_1016_j_scitotenv_2021_152044
crossref_primary_10_1016_j_envres_2024_119800
crossref_primary_10_3390_plants14030381
crossref_primary_10_1007_s00374_015_1015_2
crossref_primary_10_1099_mic_0_000218
crossref_primary_10_3390_agronomy14071528
crossref_primary_10_1016_j_gca_2022_08_019
crossref_primary_10_1128_aem_00453_23
crossref_primary_10_3389_fmicb_2018_02381
crossref_primary_10_1021_acsearthspacechem_9b00127
crossref_primary_10_1016_j_catena_2023_107174
crossref_primary_10_1016_j_gca_2023_01_027
crossref_primary_10_1038_s41598_019_52368_2
crossref_primary_10_1080_02571862_2024_2386162
crossref_primary_10_1016_j_earscirev_2019_103028
crossref_primary_10_1080_15320383_2020_1771274
crossref_primary_10_1007_s11368_024_03873_z
crossref_primary_10_1021_acs_est_6b00702
crossref_primary_10_1016_j_scitotenv_2021_147943
crossref_primary_10_3390_su15097488
crossref_primary_10_3389_fpls_2019_00627
crossref_primary_10_3390_plants9010079
crossref_primary_10_3389_fpls_2023_1073546
crossref_primary_10_1016_j_agee_2016_12_014
crossref_primary_10_1111_ppl_13361
crossref_primary_10_3390_agronomy12092044
crossref_primary_10_3390_ijms24021713
crossref_primary_10_1016_j_ecolind_2021_108071
crossref_primary_10_1016_j_scitotenv_2020_136637
crossref_primary_10_2116_analsci_19P299
crossref_primary_10_1021_acsearthspacechem_0c00087
crossref_primary_10_1016_j_clet_2024_100845
crossref_primary_10_1186_s40793_024_00661_7
crossref_primary_10_3390_molecules26082256
crossref_primary_10_1016_j_indcrop_2025_120842
crossref_primary_10_1016_j_still_2024_106227
crossref_primary_10_1002_sae2_12100
crossref_primary_10_1016_j_soilbio_2018_01_031
crossref_primary_10_2138_am_2020_7359
crossref_primary_10_1080_01490451_2015_1043411
crossref_primary_10_7717_peerj_12417
crossref_primary_10_1002_jsfa_7083
crossref_primary_10_1007_s11356_022_21536_9
crossref_primary_10_1071_CP23208
crossref_primary_10_1080_10643389_2020_1853458
crossref_primary_10_3390_agronomy12061304
crossref_primary_10_1007_s42729_022_00804_0
crossref_primary_10_3390_agronomy14071553
crossref_primary_10_3390_agronomy10071000
crossref_primary_10_3390_ph11040128
crossref_primary_10_1038_s43017_023_00470_5
crossref_primary_10_1016_j_geoderma_2022_116222
crossref_primary_10_1016_j_rser_2019_109282
crossref_primary_10_1080_08912963_2019_1599884
crossref_primary_10_1016_j_plantsci_2019_04_026
crossref_primary_10_1007_s11368_024_03916_5
crossref_primary_10_1016_j_molstruc_2024_138860
crossref_primary_10_1094_PBIOMES_4_4
crossref_primary_10_1007_s10658_018_1530_8
crossref_primary_10_1016_j_apgeochem_2018_05_001
crossref_primary_10_1111_ppl_12296
crossref_primary_10_3390_agronomy12092149
crossref_primary_10_1016_j_geoderma_2024_116825
crossref_primary_10_3389_fpls_2021_660303
crossref_primary_10_1093_jxb_erab003
crossref_primary_10_1016_j_impact_2022_100444
crossref_primary_10_1016_j_chemosphere_2018_05_040
crossref_primary_10_11118_actaun_2022_030
crossref_primary_10_1111_ele_13912
crossref_primary_10_1038_s41598_018_34981_9
crossref_primary_10_1039_D3EM00534H
crossref_primary_10_1016_j_biombioe_2021_106329
crossref_primary_10_1021_jacs_3c06709
crossref_primary_10_1039_C8RA10349F
crossref_primary_10_3389_fmicb_2022_870413
crossref_primary_10_2136_vzj2015_07_0102
crossref_primary_10_1002_jpln_201800207
crossref_primary_10_1126_sciadv_adf1978
crossref_primary_10_3389_fmats_2024_1346112
crossref_primary_10_1016_j_chemgeo_2016_06_021
crossref_primary_10_3390_su142315855
crossref_primary_10_1007_s11356_019_07141_3
crossref_primary_10_1016_j_apgeochem_2020_104796
crossref_primary_10_1111_jam_15317
crossref_primary_10_1111_tpj_15286
crossref_primary_10_2965_jswe_39_197
crossref_primary_10_3389_fpls_2024_1334328
crossref_primary_10_1016_j_geoderma_2016_06_004
crossref_primary_10_1038_s41598_021_85922_y
crossref_primary_10_1016_j_eti_2023_103172
crossref_primary_10_1029_2023JG007438
crossref_primary_10_3390_plants12101945
crossref_primary_10_1038_s41564_020_0719_8
crossref_primary_10_1016_j_scitotenv_2020_144697
crossref_primary_10_3389_feart_2019_00257
crossref_primary_10_1007_s00425_022_04018_7
crossref_primary_10_1021_acs_est_0c02670
crossref_primary_10_1016_j_jprot_2016_04_006
crossref_primary_10_3390_ijms21114038
crossref_primary_10_1007_s00248_019_01324_8
crossref_primary_10_3390_soilsystems4020028
crossref_primary_10_1016_j_envres_2024_119459
crossref_primary_10_3390_agronomy13122894
crossref_primary_10_1007_s10661_024_12695_y
crossref_primary_10_1590_18069657rbcs20180041
crossref_primary_10_3390_ijerph191710883
crossref_primary_10_1007_s11356_015_4703_4
crossref_primary_10_3390_foods10020223
crossref_primary_10_3390_plants10061110
crossref_primary_10_3390_su151411296
crossref_primary_10_1016_j_cej_2015_03_034
crossref_primary_10_1021_acssuschemeng_7b03979
crossref_primary_10_3390_ijms252212057
crossref_primary_10_3390_f14030458
crossref_primary_10_1186_s12870_024_05464_z
crossref_primary_10_1080_01904167_2023_2206425
crossref_primary_10_3389_fmicb_2020_571244
crossref_primary_10_1016_j_apsoil_2018_08_006
crossref_primary_10_1016_j_scitotenv_2019_135415
crossref_primary_10_1039_D1AY01932E
crossref_primary_10_1007_s11105_025_01558_6
crossref_primary_10_1007_s10853_016_0171_6
crossref_primary_10_1016_j_plaphy_2015_07_034
crossref_primary_10_1016_j_jenvman_2024_122531
crossref_primary_10_1016_j_procbio_2025_03_004
crossref_primary_10_1007_s10653_025_02359_2
crossref_primary_10_1186_s13007_021_00812_8
crossref_primary_10_1002_fes3_547
crossref_primary_10_1016_j_eti_2024_103786
crossref_primary_10_1038_s41467_024_54832_8
crossref_primary_10_1021_acs_jpcc_8b07413
crossref_primary_10_3390_ijms20163984
crossref_primary_10_1134_S1064229324601070
crossref_primary_10_17660_ActaHortic_2018_1217_2
crossref_primary_10_3389_fagro_2024_1305034
crossref_primary_10_1088_1755_1315_408_1_012072
crossref_primary_10_1016_j_scitotenv_2016_11_168
crossref_primary_10_3389_fpls_2022_856937
crossref_primary_10_1039_C5SC03678J
crossref_primary_10_1021_acs_est_7b05772
crossref_primary_10_1021_acs_jafc_3c09657
crossref_primary_10_3390_agronomy9120776
crossref_primary_10_3389_fagro_2021_689972
crossref_primary_10_1016_j_soilbio_2015_07_004
crossref_primary_10_1016_j_earscirev_2016_01_014
crossref_primary_10_1002_jsfa_11060
crossref_primary_10_1016_j_jenvman_2020_110733
crossref_primary_10_1016_S1002_0160_21_60035_8
crossref_primary_10_1007_s10533_018_0427_0
crossref_primary_10_3390_horticulturae7090285
crossref_primary_10_1080_15226514_2018_1501341
crossref_primary_10_1016_S2095_3119_16_61509_5
crossref_primary_10_1016_j_gca_2021_04_013
crossref_primary_10_1177_11786221231184202
crossref_primary_10_1016_j_ejsobi_2016_03_007
crossref_primary_10_1094_PBIOMES_06_20_0046_R
crossref_primary_10_3390_plants14071011
crossref_primary_10_1016_j_molliq_2022_120798
crossref_primary_10_1016_j_envpol_2023_122683
crossref_primary_10_1111_pce_14459
crossref_primary_10_3389_fpls_2019_00923
crossref_primary_10_1007_s41748_021_00212_x
crossref_primary_10_1016_j_apgeochem_2021_104966
crossref_primary_10_1007_s10533_023_01094_z
crossref_primary_10_3390_biology9060116
crossref_primary_10_1007_s10534_023_00519_4
crossref_primary_10_1007_s11104_019_04012_1
crossref_primary_10_1007_s11270_015_2595_z
crossref_primary_10_1126_science_aat4082
crossref_primary_10_2174_1874467213666200518094445
Cites_doi 10.1002/3527602097
10.1016/0016-7061(86)90043-1
10.1038/nature10855
10.1128/AEM.51.4.683-689.1986
10.1099/00207713-47-4-1134
10.1007/s11157-005-2169-4
10.1016/0016-7037(94)90380-8
10.1007/978-94-009-4007-9_3
10.1023/A:1016061003397
10.1016/j.soilbio.2008.02.017
10.1023/A:1013351617532
10.1016/S0048-9697(97)05442-9
10.1007/BF00008069
10.1016/j.geoderma.2010.03.009
10.1002/jctb.280460204
10.1016/j.femsec.2003.12.014
10.1104/pp.103.025122
10.1128/AEM.02349-09
10.1111/j.1365-313X.2005.02624.x
10.1007/s11104-009-0266-9
10.1146/annurev.mi.48.100194.003523
10.1007/BF02220801
10.1111/j.1365-2389.1990.tb00078.x
10.1016/j.earscirev.2005.03.002
10.1080/01904169709365301
10.1080/01490450490253310
10.1126/science.1059567
10.1016/S0065-2113(08)60506-4
10.1007/s11103-008-9443-0
10.1016/S0167-7012(02)00024-6
10.1007/BF00011851
10.1016/S0065-2296(09)51012-9
10.1097/00010694-199903000-00004
10.1016/S0016-7037(98)00272-5
10.2175/106143001X139399
10.1128/MMBR.55.2.259-287.1991
10.1016/S0065-2113(06)94001-2
10.1111/j.1462-2920.2006.01141.x
10.1007/s11104-009-0069-z
10.1016/j.chemgeo.2008.08.027
10.1002/jpln.200700048
10.1104/pp.106.1.71
10.1080/01904169409364866
10.1007/s10653-005-9022-0
10.1128/AEM.54.6.1472-1480.1988
10.1126/science.7008198
10.1002/1522-2624(200006)163:3<285::AID-JPLN285>3.0.CO;2-Z
10.2136/sssaj2005.0343
10.1080/01904168409363181
10.1021/es9506216
10.2136/sssaj2005.0002
10.1094/MPMI-20-4-0441
10.1146/annurev.nu.01.070181.000331
10.1080/01904168209363012
10.1023/A:1004329513498
10.1111/j.1365-2486.2007.01382.x
10.1097/00010694-198001000-00004
10.1021/es8036548
10.1016/S0016-7037(99)00031-9
10.1016/j.geoderma.2009.03.016
10.1007/s00027-003-0690-5
10.1016/S0038-0717(98)00039-X
10.1016/S0168-6496(03)00028-X
10.1007/978-94-009-4007-9_11
10.1111/j.1365-3040.2009.01938.x
10.1023/A:1022371130939
10.1180/claymin.1997.032.3.07
10.1080/10715760500484351
10.1128/AEM.02586-06
10.1023/A:1020218608266
10.1023/A:1004356007312
10.1007/s11104-006-9069-4
10.1016/0038-0717(93)90136-Y
10.1007/s00374-011-0653-2
10.1104/pp.104.3.815
10.1146/annurev-arplant-042811-105522
10.1016/0341-8162(91)90006-J
10.1016/S0065-2911(04)49005-5
10.1111/j.1351-0754.2004.00655.x
10.1016/j.gca.2003.10.041
10.2136/sssaj2002.0661
10.1080/01904160009382126
10.1346/CCMN.1996.0440411
10.1007/s003740050337
10.1074/jbc.270.28.16549
10.1139/m95-017
10.1016/S0016-7061(98)00139-6
10.1016/S0166-2481(08)70016-3
10.1007/BF00008070
10.2136/sssaj2011.0393
10.1021/es9026248
10.1094/MPMI-4-005
10.1351/pac200274112145
10.1021/es900179s
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: Springer-Verlag Berlin Heidelberg 2014
DBID FBQ
AAYXX
CITATION
3V.
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7QH
7S9
L.6
DOI 10.1007/s11368-013-0814-z
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Aqualine
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
Aqualine
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1614-7480
EndPage 548
ExternalDocumentID 3221130591
10_1007_s11368_013_0814_z
US201400051879
Genre Feature
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ATCPS
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RMD
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7V
Z7Y
Z7Z
Z83
ZMTXR
~02
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
H97
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7QH
7S9
L.6
ID FETCH-LOGICAL-a495t-ed8ded904958c02be4a7def2e0c0d78313a852d8f29dfcac11e2b625406837803
IEDL.DBID U2A
ISSN 1439-0108
IngestDate Fri Jul 11 05:16:39 EDT 2025
Mon Jul 21 11:58:26 EDT 2025
Sat Jul 26 00:06:45 EDT 2025
Tue Jul 01 01:38:04 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Fri Feb 21 02:33:42 EST 2025
Wed Dec 27 19:25:23 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Weathering of Fe-containing minerals
Fe soil availability
Microbial siderophores
Plant exudates
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a495t-ed8ded904958c02be4a7def2e0c0d78313a852d8f29dfcac11e2b625406837803
Notes http://dx.doi.org/10.1007/s11368-013-0814-z
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1498823316
PQPubID 54474
PageCount 11
ParticipantIDs proquest_miscellaneous_1524159116
proquest_miscellaneous_1505338622
proquest_journals_1498823316
crossref_primary_10_1007_s11368_013_0814_z
crossref_citationtrail_10_1007_s11368_013_0814_z
springer_journals_10_1007_s11368_013_0814_z
fao_agris_US201400051879
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of soils and sediments
PublicationTitleAbbrev J Soils Sediments
PublicationYear 2014
Publisher Springer-Verlag
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Colombo, Barrón, Torrent (CR19) 1994; 58
Lemanceau, Expert, Gaymard, Bakker, Briat (CR49) 2009; 51
Schwertmann, Stucki, Goodman, Schwertmann (CR82) 1988
Guerinot, Yi (CR33) 1994; 104
Lucena (CR64) 2000; 23
Kögel-Knabner, Amelung, Cao, Fiedler, Frenzel, Jahn, Kalbitz, Kölbl, Schloter (CR45) 2010; 157
Lovley, Phillips (CR60) 1988; 54
Cesco, Neumann, Tomasi, Pinton, Weisskopf (CR15) 2010; 329
Kostka, Stucki, Nealson, Wu (CR46) 1996; 44
Ma, Shinada, Matsuda, Nomoto (CR65) 1995; 270
van Hees, Lundstrom (CR100) 2000; 94
Dhungana, Anthony, Hersman (CR26) 2007; 73
Hinsinger (CR37) 2001; 237
Cornell, Schwertmann (CR22) 2003
Bauer, Kappler (CR5) 2009; 43
Jakobsen, Postma (CR40) 1999; 63
Stumm, Furrer, Stumm (CR92) 1987
Lovley, Phillips (CR59) 1986; 51
Colombo, Palumbo, Sellitto, Rizzardo, Tomasi, Pinton, Cesco (CR20) 2012; 76
Duijff, Bakker, Schippers (CR28) 1994; 17
Munch, Ottow (CR70) 1980; 129
Cesco, Mimmo, Tonon, Tomasi, Pinton, Terzano, Neumann, Weisskopf (CR16) 2012; 48
Nagasaka, Takahashi, Nakanishi-Itai, Bashir, Nakanishi, Mori, Nishizawa (CR71) 2009; 69
Roden, Zachara (CR78) 1996; 30
Baker, Banfield (CR4) 2003; 44
Stevenson (CR89) 1994
Lalonde, Mucci, Ouellet, Gélinas (CR48) 2012; 483
Marschner, Crowley (CR66) 1998; 30
Mengel, Kirkby, Kosegarten, Appel, Mengel, Kirkby (CR69) 2001
Pinton, Cesco, Santi (CR75) 1999; 210
Guerinot (CR32) 1994; 48
Torrent, Cabedo (CR98) 1986; 37
Sobolev, Roden (CR86) 2004; 21
Heitmann, Goldhammer, Beer, Blodau (CR35) 2007; 13
Ishimaru, Suzuki, Tsukamoto, Suzuki, Nakazono, Kobayashi, Wada, Watanabe, Matsuhashi, Takahashi (CR39) 2006; 45
Xiong, Kakei, Kobayashi, Guo, Nakazono, Takahashi, Nakanishi, Shen, Zhanh, Nishizawa, Zuo (CR108) 2013
Jones, Wilson (CR42) 1985; 21
Colombo, Torrent (CR18) 1991; 18
Dehner, Awaya, Maurice, DuBois (CR25) 2010; 76
Treeby, Marschner, Romheld (CR99) 1989; 114
de Santiago, Delgado (CR24) 2006; 70
Mengel (CR68) 1994; 165
Wiseman, Püttmann (CR107) 2005; 56
Weiss, Emerson, Megonigal (CR104) 2004; 48
Borggaard, Jorgensen, Moberg, Raben-Lange (CR7) 1990; 41
Liu, He, Colombo, Violante (CR53) 1999; 1643
Loper, Buyer (CR57) 1991; 4
Raaijmakers, Van de Sluis, Koster, Bakker, Weisbeek, Schippers (CR76) 1995; 41
Yu, Bishop (CR109) 2001; 73
Neilands (CR72) 1981; 1
Carrillo-Gonzáles, Šimunek, Sauvé, Adriano (CR11) 2006; 91
El Hajji, Nkhili, Tomao, Dangles (CR29) 2006; 40
Stucki, Lee, Zhang, Larson (CR91) 2002; 74
Sposito (CR87) 1989
Schwertmann (CR84) 1991; 130
Cesco, Rombolà, Tagliavini (CR14) 2006; 287
Duckworth, Holmstrom, Pena, Sposito (CR27) 2009; 260
Adamo, Colombo, Violante (CR1) 1997; 32
Boukhalfa, Crumbliss (CR8) 2002; 15
Cesco, Römheld, Varanini, Pinton (CR12) 2000; 163
Hinsinger (CR36) 1998; 64
Vansuyt, Robin, Briat, Curie, Lemanceau (CR101) 2007; 20
Lovley (CR58) 1991; 55
CR79
Stackebrandt, Sproer, Rainey, Burghardt, Pauker, Hippe (CR88) 1997; 47
Burton, Bush, Sullivan, Hocking, Mitchell, Johnston, Fitzpatrick, Raven, McClure, Jang (CR9) 2009; 43
Robin, Vansuyt, Hinsinger, Meyer, Briat, Lemanceau (CR77) 2008; 99
Lindsay, Stucki (CR51) 1988
Connolly, Campbell, Grotz, Prichard, Guerinot (CR21) 2003; 133
Lovley, Holmes, Nevin (CR61) 2004; 49
CR2
Cornell, Giovanoli, Schneider (CR23) 1989; 46
Von Wiren, Mori, Marschner, Römheld (CR103) 1994; 106
Loeppert, Hossner, Chmielewski (CR56) 1984; 7
Welch, Barker, Banfield (CR106) 1999; 63
Marschner, Römheld (CR67) 1994; 165
Takahashi, Minai, Ambe, Makide, Ambe, Tominaga (CR94) 1997; 198
Fiedler, Vepraskas, Richardson (CR30) 2007; 94
Cheng, Yang, Cao, Yin (CR17) 2009; 151
Jones (CR41) 1998; 205
Schwertmann (CR81) 1985; 1
Tomasi, Kretzschmar, Espen, Weisskopf, Fuglsang, Palmgren, Neumann, Varanini, Pinton, Martinoia, Cesco (CR96) 2009; 32
Albrecht-Gary, Crumbliss (CR3) 1998; 35
Cesco, Nikolic, Römheld, Varanini, Pinton (CR13) 2002; 241
Kobayashi, Nishizawa (CR43) 2012; 63
Burton, Bush, Johnston, Sullivan, Keene (CR10) 2011
Liu, Xu, Wu, Yang, Luo, Christie (CR55) 2006; 28
Schwertmann, Chen, Hadar (CR83) 1990
Pinton, Cesco, De Nobili, Santi, Varanini (CR73) 1997; 26
Lower, Hochella, Beveridge (CR63) 2001; 292
Pinton, Cesco, Santi, Varanini (CR74) 1997; 20
Schnitzer, Schnitzer, Khan (CR80) 1978
Borch, Kretzschmar, Kappler, Van Cappellen, Ginder-Vogel, Voegelin, Campbell (CR6) 2010; 44
Hinsinger, Plassard, Tang, Jaillard (CR38) 2003; 248
Kraemer (CR47) 2004; 66
Fortin, Langley (CR31) 2005; 72
Tabak, Lens, van Hullebusch, Dejonghe (CR93) 2005; 4
Kögel-Knabner, Guggenberger, Kleber, Kandeler, Kalbitz, Scheu, Eusterhues, Leinweber (CR44) 2008; 171
Hansel, Benner, Nico, Fendorf (CR34) 2004; 68
Shaw, Morris, Hooker (CR85) 2006; 8
Weiss, Emerson, Megonigal (CR105) 2005; 69
Tomasi, Rizzardo, Monte, Gottardi, Jelali, Terzano, Vekemans, De Nobili, Varanini, Pinton, Cesco (CR97) 2009; 325
Lowenstam (CR62) 1981; 211
Lindsay (CR50) 1979
Liu, Colombo, Adamo, He, Violante (CR54) 2002; 66
Stubner (CR90) 2002; 50
Tomasi, Weisskopf, Renella, Landi, Pinton, Varanini, Nannipieri, Torrent, Martinoia, Cesco (CR95) 2008; 40
Von Wiren, Roemheld, Morel, Guckert, Marschner (CR102) 1993; 25
Lindsay, Schwab (CR52) 1982; 5
Y Ishimaru (814_CR39) 2006; 45
JF Ma (814_CR65) 1995; 270
A Robin (814_CR77) 2008; 99
S Cesco (814_CR16) 2012; 48
U Schwertmann (814_CR81) 1985; 1
E Stackebrandt (814_CR88) 1997; 47
M Schnitzer (814_CR80) 1978
P Hinsinger (814_CR36) 1998; 64
K Mengel (814_CR68) 1994; 165
S Cesco (814_CR14) 2006; 287
U Schwertmann (814_CR84) 1991; 130
R Carrillo-Gonzáles (814_CR11) 2006; 91
F Liu (814_CR53) 1999; 1643
H Marschner (814_CR67) 1994; 165
AM Albrecht-Gary (814_CR3) 1998; 35
LJ Shaw (814_CR85) 2006; 8
RM Cornell (814_CR23) 1989; 46
RM Cornell (814_CR22) 2003
T Borch (814_CR6) 2010; 44
OW Duckworth (814_CR27) 2009; 260
S Cesco (814_CR13) 2002; 241
C Colombo (814_CR18) 1991; 18
N Wiren Von (814_CR103) 1994; 106
PAW Hees van (814_CR100) 2000; 94
OK Borggaard (814_CR7) 1990; 41
YQ Cheng (814_CR17) 2009; 151
JV Weiss (814_CR104) 2004; 48
N Tomasi (814_CR95) 2008; 40
ED Burton (814_CR9) 2009; 43
DR Lovley (814_CR60) 1988; 54
K Mengel (814_CR69) 2001
HH Tabak (814_CR93) 2005; 4
R Pinton (814_CR74) 1997; 20
WL Lindsay (814_CR51) 1988
WL Lindsay (814_CR50) 1979
P Hinsinger (814_CR37) 2001; 237
ML Guerinot (814_CR32) 1994; 48
JE Loper (814_CR57) 1991; 4
I Kögel-Knabner (814_CR44) 2008; 171
CA Dehner (814_CR25) 2010; 76
C Colombo (814_CR19) 1994; 58
JJ Lucena (814_CR64) 2000; 23
D Jones (814_CR42) 1985; 21
S Dhungana (814_CR26) 2007; 73
W Stumm (814_CR92) 1987
H Xiong (814_CR108) 2013
WL Lindsay (814_CR52) 1982; 5
J Raaijmakers (814_CR76) 1995; 41
H Boukhalfa (814_CR8) 2002; 15
DR Lovley (814_CR61) 2004; 49
U Schwertmann (814_CR82) 1988
S Cesco (814_CR15) 2010; 329
BJ Duijff (814_CR28) 1994; 17
DL Jones (814_CR41) 1998; 205
N Tomasi (814_CR96) 2009; 32
K Lalonde (814_CR48) 2012; 483
SA Welch (814_CR106) 1999; 63
814_CR79
EE Roden (814_CR78) 1996; 30
RH Loeppert (814_CR56) 1984; 7
R Pinton (814_CR75) 1999; 210
C Colombo (814_CR20) 2012; 76
R Jakobsen (814_CR40) 1999; 63
J Torrent (814_CR98) 1986; 37
P Hinsinger (814_CR38) 2003; 248
ML Guerinot (814_CR33) 1994; 104
D Fortin (814_CR31) 2005; 72
SK Lower (814_CR63) 2001; 292
ED Burton (814_CR10) 2011
P Marschner (814_CR66) 1998; 30
T Yu (814_CR109) 2001; 73
FJ Stevenson (814_CR89) 1994
814_CR2
S Stubner (814_CR90) 2002; 50
M Treeby (814_CR99) 1989; 114
T Heitmann (814_CR35) 2007; 13
F Liu (814_CR54) 2002; 66
S Nagasaka (814_CR71) 2009; 69
JW Stucki (814_CR91) 2002; 74
JV Weiss (814_CR105) 2005; 69
DR Lovley (814_CR58) 1991; 55
BJ Baker (814_CR4) 2003; 44
CM Hansel (814_CR34) 2004; 68
CLS Wiseman (814_CR107) 2005; 56
G Vansuyt (814_CR101) 2007; 20
D Sobolev (814_CR86) 2004; 21
S Fiedler (814_CR30) 2007; 94
H Hajji El (814_CR29) 2006; 40
W Liu (814_CR55) 2006; 28
A Santiago de (814_CR24) 2006; 70
JB Neilands (814_CR72) 1981; 1
JE Kostka (814_CR46) 1996; 44
T Kobayashi (814_CR43) 2012; 63
P Lemanceau (814_CR49) 2009; 51
Y Takahashi (814_CR94) 1997; 198
I Bauer (814_CR5) 2009; 43
N Tomasi (814_CR97) 2009; 325
DR Lovley (814_CR59) 1986; 51
EL Connolly (814_CR21) 2003; 133
HA Lowenstam (814_CR62) 1981; 211
P Adamo (814_CR1) 1997; 32
I Kögel-Knabner (814_CR45) 2010; 157
G Sposito (814_CR87) 1989
JC Munch (814_CR70) 1980; 129
U Schwertmann (814_CR83) 1990
R Pinton (814_CR73) 1997; 26
N Wiren Von (814_CR102) 1993; 25
S Cesco (814_CR12) 2000; 163
SM Kraemer (814_CR47) 2004; 66
References_xml – volume: 211
  start-page: 1126
  year: 1981
  end-page: 1131
  ident: CR62
  article-title: Minerals formed by organisms
  publication-title: Science
– volume: 37
  start-page: 57
  year: 1986
  end-page: 66
  ident: CR98
  article-title: Sources of iron oxides in reddish brown soil profiles from calcarenites in Southern Spain
  publication-title: Geoderma
– volume: 292
  start-page: 1360
  year: 2001
  end-page: 1363
  ident: CR63
  article-title: Bacterial recognition of mineral surfaces: nanoscale interactions between and α-FeOOH
  publication-title: Science
– year: 1990
  ident: CR83
  article-title: Solubility and dissolution of iron oxides
  publication-title: Iron nutrition and interactions in plants
– volume: 44
  start-page: 522
  year: 1996
  end-page: 529
  ident: CR46
  article-title: Reduction of structural Fe(III) in smectite by a pure culture of strain MR-1
  publication-title: Clay Clay Miner
– volume: 69
  start-page: 621
  year: 2009
  end-page: 631
  ident: CR71
  article-title: Time-course analysis of gene expression over 24 hours in Fe-deficient barley roots
  publication-title: Plant Mol Biol
– start-page: 496
  year: 1994
  ident: CR89
  publication-title: Humus chemistry: genesis, composition, reactions
– volume: 41
  start-page: 126
  year: 1995
  end-page: 135
  ident: CR76
  article-title: Utilisation of heterologous siderophores and rhizosphere competence of fluorescent spp
  publication-title: Can J Microbiol
– volume: 8
  start-page: 1867
  year: 2006
  end-page: 1880
  ident: CR85
  article-title: Perception and modification of plant flavonoid signals by rhizosphere microorganisms
  publication-title: Environ Microbiol
– volume: 1643
  start-page: 180
  year: 1999
  end-page: 189
  ident: CR53
  article-title: Competition in adsorption of sulfate and oxalate on goethite in absence and presence of phosphate
  publication-title: Soil Sci
– volume: 163
  start-page: 285
  year: 2000
  end-page: 290
  ident: CR12
  article-title: Solubilization of iron by water-extractable humic substances
  publication-title: J Plant Nutr Soil Sci
– volume: 287
  start-page: 223
  year: 2006
  end-page: 233
  ident: CR14
  article-title: Phytosiderophores released by graminaceous species promote Fe uptake in citrus
  publication-title: Plant Soil
– volume: 17
  start-page: 2069
  year: 1994
  end-page: 2078
  ident: CR28
  article-title: Ferric pseudobactin 358 as an iron source for carnation
  publication-title: J Plant Nutr
– volume: 106
  start-page: 71
  year: 1994
  end-page: 77
  ident: CR103
  article-title: Iron inefficiency in maize mutant ys1 ( L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores
  publication-title: Plant Physiol
– volume: 18
  start-page: 51
  year: 1991
  end-page: 59
  ident: CR18
  article-title: Aggregation and iron oxides in Terra Rossa soils
  publication-title: Catena
– volume: 7
  start-page: 135
  year: 1984
  end-page: 147
  ident: CR56
  article-title: Indigenous soil properties influencing the availability of Fe in calcareous hot spots
  publication-title: J Plant Nutr
– volume: 20
  start-page: 857
  year: 1997
  end-page: 869
  ident: CR74
  article-title: Soil humic substances stimulate proton release by intact oat seedling roots
  publication-title: J Plant Nutr
– volume: 73
  start-page: 3428
  year: 2007
  end-page: 3430
  ident: CR26
  article-title: Effect of exogenous reductant on growth and iron mobilization from ferrihydrite by the ymp strain
  publication-title: Appl Environ Microbiol
– volume: 4
  start-page: 5
  year: 1991
  end-page: 13
  ident: CR57
  article-title: Siderophores in microbial interactions on plant surfaces
  publication-title: Mol Plant Microbe Interact
– volume: 51
  start-page: 683
  year: 1986
  end-page: 689
  ident: CR59
  article-title: Organic matter mineralization with reduction of ferric iron in anaerobic sediments
  publication-title: Appl Environ Microbiol
– volume: 48
  start-page: 123
  year: 2012
  end-page: 149
  ident: CR16
  article-title: Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review
  publication-title: Biol Fertil Soils
– volume: 51
  start-page: 491
  year: 2009
  end-page: 549
  ident: CR49
  article-title: Role of iron in plant–microbe interactions
  publication-title: Adv Bot Res
– volume: 94
  start-page: 201
  year: 2000
  end-page: 221
  ident: CR100
  article-title: Equilibrium models of aluminium and iron complexation with different organic acids in soil solution
  publication-title: Geoderma
– volume: 73
  start-page: 368
  year: 2001
  end-page: 373
  ident: CR109
  article-title: Stratification and oxidation-reduction potential change in an aerobic and sulfate-reducing biofilm studied using microelectrodes
  publication-title: Water Environ Res
– volume: 66
  start-page: 661
  year: 2002
  end-page: 670
  ident: CR54
  article-title: Manganese–iron nodules minerals associated with trace elements in Alfisols from China
  publication-title: Soil Sci Soc Am J
– volume: 72
  start-page: 1
  year: 2005
  end-page: 19
  ident: CR31
  article-title: Formation and occurrence of biogenic iron-rich minerals
  publication-title: Earth-Sci Rev
– volume: 47
  start-page: 1134
  year: 1997
  end-page: 1139
  ident: CR88
  article-title: Phylogenetic analysis of the genus : evidence for the misclassification of and description of as gen. nov., comb. nov
  publication-title: Int J Syst Bacteriol
– volume: 50
  start-page: 155
  year: 2002
  end-page: 164
  ident: CR90
  article-title: Enumeration of S rDNA of lineage 1 in rice field soil by real-time PCR with SybrGreen detection
  publication-title: J Microbiol Methods
– volume: 48
  start-page: 743
  year: 1994
  end-page: 772
  ident: CR32
  article-title: Microbial iron transport
  publication-title: Annu Rev Microbiol
– volume: 91
  start-page: 112
  year: 2006
  end-page: 178
  ident: CR11
  article-title: Mechanisms and pathways of trace elements mobility in soils
  publication-title: Adv Agron
– volume: 43
  start-page: 3128
  year: 2009
  end-page: 3134
  ident: CR9
  article-title: Iron-monosulfide oxidation in natural sediments: resolving microbially-mediated S transformations using XANES, electron microscopy and selective extractions
  publication-title: Environ Sci Technol
– volume: 157
  start-page: 1
  year: 2010
  end-page: 14
  ident: CR45
  article-title: Biogeochemistry of paddy soils
  publication-title: Geoderma
– volume: 45
  start-page: 335
  year: 2006
  end-page: 346
  ident: CR39
  article-title: Rice plants take up iron as an Fe -phytosiderophore and as Fe
  publication-title: Plant J
– volume: 99
  start-page: 83
  year: 2008
  end-page: 225
  ident: CR77
  article-title: Iron dynamics in the rhizosphere: consequences for plant health and nutrition
  publication-title: Adv Agron
– volume: 54
  start-page: 1472
  year: 1988
  end-page: 1480
  ident: CR60
  article-title: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese
  publication-title: Appl Environ Microbiol
– volume: 15
  start-page: 325
  year: 2002
  end-page: 339
  ident: CR8
  article-title: Chemical aspects of siderophore mediated iron transport
  publication-title: Biometals
– volume: 151
  start-page: 31
  year: 2009
  end-page: 41
  ident: CR17
  article-title: Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils
  publication-title: Geoderma
– volume: 1
  start-page: 27
  year: 1981
  end-page: 46
  ident: CR72
  article-title: Iron absorption and transport in microorganisms
  publication-title: Annu Rev Nutr
– volume: 76
  start-page: 1246
  year: 2012
  end-page: 1256
  ident: CR20
  article-title: Characteristics of insoluble, high molecular weight iron-humic substances used as plant iron sources
  publication-title: Soil Sci Soc Am J
– volume: 171
  start-page: 61
  year: 2008
  end-page: 82
  ident: CR44
  article-title: Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry
  publication-title: J Plant Nutr Soil Sci
– volume: 30
  start-page: 1275
  year: 1998
  end-page: e1280
  ident: CR66
  article-title: Phytosiderophore decrease iron stress and pyo-verdine production of Pf-5 (pvd-inaZ)
  publication-title: Soil Biol Biochem
– volume: 129
  start-page: 15
  year: 1980
  end-page: 21
  ident: CR70
  article-title: Preferential reduction of amorphous to crystalline iron oxides by bacterial activity
  publication-title: J Soil Sci
– volume: 48
  start-page: 89
  year: 2004
  end-page: 100
  ident: CR104
  article-title: Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil
  publication-title: FEMS Microbiol Ecol
– volume: 63
  start-page: 1405
  year: 1999
  end-page: 1419
  ident: CR106
  article-title: Microbial extracellular polysacchrides and plagioclase dissolution
  publication-title: Geochim Cosmochim Acta
– start-page: 197
  year: 1987
  end-page: 219
  ident: CR92
  article-title: The dissolution of oxides and aluminium silicates: examples of surface-coordination-controlled kinetics
  publication-title: Aquatic Surface Chemistry
– volume: 68
  start-page: 3217
  year: 2004
  end-page: 3229
  ident: CR34
  article-title: Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II)
  publication-title: Geochim Cosmochim Acta
– volume: 58
  start-page: 1261
  year: 1994
  end-page: 1269
  ident: CR19
  article-title: Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites
  publication-title: Geochimica et Cosmochimica acta
– volume: 70
  start-page: 1945
  year: 2006
  end-page: 1950
  ident: CR24
  article-title: Predicting iron chlorosis of L. in calcareous Spanish soils from various iron extracts
  publication-title: Soil Sci Soc Am J
– volume: 43
  start-page: 4902
  year: 2009
  end-page: 4908
  ident: CR5
  article-title: Rates and extent of reduction of Fe(III) compounds and O by humic substances
  publication-title: Environ Sci Technol
– volume: 23
  start-page: 1591
  year: 2000
  end-page: 1606
  ident: CR64
  article-title: Effect of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review
  publication-title: J Plant Nutr
– volume: 21
  start-page: 99
  year: 1985
  end-page: 105
  ident: CR42
  article-title: Chemical activity of lichens on mineral surfaces
  publication-title: Int Biodeterior
– volume: 44
  start-page: 139
  year: 2003
  end-page: 152
  ident: CR4
  article-title: Microbial communities in acid mine drainage
  publication-title: FEMS Microbiol Ecol
– volume: 63
  start-page: 131
  year: 2012
  end-page: 152
  ident: CR43
  article-title: Iron uptake, translocation, and regulation in higher plants
  publication-title: Annu Rev Plant Biol
– volume: 26
  start-page: 23
  year: 1997
  end-page: 27
  ident: CR73
  article-title: Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants
  publication-title: Biol Fertil Soils
– year: 2013
  ident: CR108
  article-title: Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil
  publication-title: Plant Cell Environ
– volume: 49
  start-page: 219
  year: 2004
  end-page: 286
  ident: CR61
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction
  publication-title: Adv Microb Physiol
– volume: 55
  start-page: 259
  year: 1991
  end-page: 287
  ident: CR58
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction
  publication-title: Microbiol Rev
– volume: 104
  start-page: 815
  year: 1994
  end-page: 820
  ident: CR33
  article-title: Iron: nutritious, noxious, and not readily available
  publication-title: Plant Physiol
– volume: 5
  start-page: 821
  year: 1982
  end-page: 840
  ident: CR52
  article-title: The chemistry of iron in soils and its availability to plants
  publication-title: J Plant Nutr
– volume: 44
  start-page: 15
  year: 2010
  end-page: 23
  ident: CR6
  article-title: Biogeochemical redox processes and their impact on contaminant dynamics
  publication-title: Environ Sci Technol
– volume: 205
  start-page: 25
  year: 1998
  end-page: 44
  ident: CR41
  article-title: Organic acids in the rhizosphere—a critical review
  publication-title: Plant Soil
– volume: 28
  start-page: 133
  year: 2006
  end-page: 140
  ident: CR55
  article-title: Decomposition of silicate minerals by I liquid culture
  publication-title: Environ Geochem Health
– volume: 21
  start-page: 1
  year: 2004
  end-page: 10
  ident: CR86
  article-title: Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing beta-proteobacterium from freshwater wetland sediments
  publication-title: Geomicrobiol J
– volume: 30
  start-page: 1618
  year: 1996
  end-page: 1628
  ident: CR78
  article-title: Microbial reduction of crystalline iron(III) oxides: influence of oxides surface area and potential for cell growth
  publication-title: Environ Sci Technol
– volume: 483
  start-page: 198
  year: 2012
  end-page: 200
  ident: CR48
  article-title: Preservation of organic matter in sediments promoted by iron
  publication-title: Nature
– volume: 69
  start-page: 1861
  year: 2005
  end-page: 1870
  ident: CR105
  article-title: Rhizosphere iron(III) deposition and reduction in a L.-dominated wetland
  publication-title: Soil Sci Soc Am J
– start-page: 553
  year: 2001
  end-page: 571
  ident: CR69
  article-title: Iron
  publication-title: Mineral nutrition
– start-page: 1
  year: 1978
  end-page: 6
  ident: CR80
  article-title: Humic substances: chemistry and reactions
  publication-title: Soil organic matter
– start-page: 267
  year: 1988
  end-page: 308
  ident: CR82
  article-title: Occurrence and formation of iron oxides in various pedoenvironments
  publication-title: Iron in Soils, Clay Minerals
– volume: 94
  start-page: 1
  year: 2007
  end-page: 57
  ident: CR30
  article-title: Soil redox potential: importance, field measurements, and observations
  publication-title: Adv Agron
– volume: 46
  start-page: 115
  year: 1989
  end-page: 134
  ident: CR23
  article-title: Review of the hydrolysis of iron (III) and the crystallization of amorphous iron (III) hydroxide hydrate
  publication-title: J Chem Technol Biotechnol
– volume: 32
  start-page: 453
  year: 1997
  end-page: 461
  ident: CR1
  article-title: Occurrence of poorly ordered Fe-rich phases at the interface between the lichen and volcanic rock from Mt Vesuvius
  publication-title: Clay Miner
– year: 1979
  ident: CR50
  publication-title: Chemical equilibria in soils
– volume: 13
  start-page: 1771
  issue: 8
  year: 2007
  end-page: 1785
  ident: CR35
  article-title: Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog
  publication-title: Glob Chang Biol
– volume: 165
  start-page: 261
  year: 1994
  end-page: 274
  ident: CR67
  article-title: Strategies of plants for acquisition of iron
  publication-title: Plant Soil
– year: 1989
  ident: CR87
  publication-title: The chemistry of soils
– volume: 198
  start-page: 61
  year: 1997
  end-page: 71
  ident: CR94
  article-title: Simultaneous determination of stability constants of humate complexes with various metal ions using multitracer technique
  publication-title: Sci Total Environ
– volume: 66
  start-page: 3
  year: 2004
  end-page: 18
  ident: CR47
  article-title: Iron oxide dissolution and solubility in the presence of siderophores
  publication-title: Aquat Sci
– volume: 74
  start-page: 2145
  year: 2002
  end-page: 2158
  ident: CR91
  article-title: Effects of iron oxidation state on the surface and structural properties of smectites
  publication-title: Pure Appl Chem
– ident: CR2
– volume: 248
  start-page: 43
  year: 2003
  end-page: 59
  ident: CR38
  article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant Soil
– year: 2003
  ident: CR22
  publication-title: The iron oxides
– year: 2011
  ident: CR10
  article-title: Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland
  publication-title: Geochim Cosmochim Acta
– volume: 20
  start-page: 441
  year: 2007
  end-page: 447
  ident: CR101
  article-title: Iron acquisition from Fe-pyoverdine by
  publication-title: Mol Plant Microbe Interact
– volume: 64
  start-page: 225
  year: 1998
  end-page: 265
  ident: CR36
  article-title: How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere
  publication-title: Adv Agron
– volume: 165
  start-page: 275
  year: 1994
  end-page: 283
  ident: CR68
  article-title: Iron availability in plants tissues-iron chlorosis on calcareous soils
  publication-title: Plant Soil
– volume: 130
  start-page: 1
  year: 1991
  end-page: 25
  ident: CR84
  article-title: Solubility and dissolution of iron oxides
  publication-title: Plant Soil
– volume: 56
  start-page: 65
  year: 2005
  end-page: 76
  ident: CR107
  article-title: Soil organic carbon and its sorptive preservation in central Germany
  publication-title: Eur J Soil Sci
– volume: 241
  start-page: 121
  year: 2002
  end-page: 128
  ident: CR13
  article-title: Uptake of Fe from soluble Fe–humate complexes by cucumber and barley plants
  publication-title: Plant Soil
– start-page: 37
  year: 1988
  end-page: 60
  ident: CR51
  article-title: Solubility and redox equilibria of iron compounds in soils
  publication-title: Iron in soils and clay minerals
– volume: 25
  start-page: 371
  year: 1993
  end-page: 376
  ident: CR102
  article-title: Influence of microorganisms on iron acquisition in maize
  publication-title: Soil Biol Biochem
– ident: CR79
– volume: 40
  start-page: 1971
  year: 2008
  end-page: 1974
  ident: CR95
  article-title: Flavonoids of white lupin roots participate in phosphorus mobilization from soil
  publication-title: Soil Biol Biochem
– volume: 325
  start-page: 25
  year: 2009
  end-page: 38
  ident: CR97
  article-title: Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution
  publication-title: Plant Soil
– volume: 35
  start-page: 239
  year: 1998
  end-page: 327
  ident: CR3
  article-title: Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release
  publication-title: Met Ions Biol Syst
– volume: 133
  start-page: 1102
  year: 2003
  end-page: 1110
  ident: CR21
  article-title: Overexpression of the FRO2 iron reductase confers tolerance to growth on low iron and uncovers post-transcriptional control
  publication-title: Plant Physiol
– volume: 260
  start-page: 149
  year: 2009
  end-page: 158
  ident: CR27
  article-title: Biogeochemistry of iron oxidation in a circumneutral freshwater habitat
  publication-title: Chem Geol
– volume: 63
  start-page: 137
  year: 1999
  end-page: 151
  ident: CR40
  article-title: Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark
  publication-title: Geochim Cosmochim Acta
– volume: 41
  start-page: 443
  year: 1990
  end-page: 449
  ident: CR7
  article-title: Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils
  publication-title: J Soil Sci
– volume: 210
  start-page: 145
  year: 1999
  end-page: 157
  ident: CR75
  article-title: Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants
  publication-title: Plant Soil
– volume: 76
  start-page: 2041
  year: 2010
  end-page: 2048
  ident: CR25
  article-title: Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium
  publication-title: Appl Environ Microbiol
– volume: 237
  start-page: 173
  year: 2001
  end-page: 195
  ident: CR37
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
– volume: 1
  start-page: 172
  year: 1985
  end-page: 200
  ident: CR81
  article-title: The effect of pedogenic environments on iron oxide minerals
  publication-title: Adv Soil Sci
– volume: 40
  start-page: 303
  year: 2006
  end-page: 320
  ident: CR29
  article-title: Interactions of quercitin with iron and copper ions: complexation and autoxidation
  publication-title: Free Radic Res
– volume: 32
  start-page: 465
  year: 2009
  end-page: 475
  ident: CR96
  article-title: Plasma membrane H-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin
  publication-title: Plant Cell Environ
– volume: 270
  start-page: 16549
  year: 1995
  end-page: 16554
  ident: CR65
  article-title: Biosynthesis of phyto-siderophores, mugineic acids, associated with methionine cycling
  publication-title: J Biol Chem
– volume: 4
  start-page: 115
  year: 2005
  end-page: 156
  ident: CR93
  article-title: Developments in bioremediation of soils and sediments polluted with metals and radionuclides 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport
  publication-title: Rev Environ Sci Bio/Technol
– volume: 114
  start-page: 217
  year: 1989
  end-page: 226
  ident: CR99
  article-title: Mobilization of iron and other micronutrient cations from calcareous soil by plant-borne, microbial, and synthetic metal chelators
  publication-title: Plant Soil
– volume: 329
  start-page: 1
  year: 2010
  end-page: 25
  ident: CR15
  article-title: Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition
  publication-title: Plant Soil
– volume-title: The iron oxides
  year: 2003
  ident: 814_CR22
  doi: 10.1002/3527602097
– volume: 37
  start-page: 57
  year: 1986
  ident: 814_CR98
  publication-title: Geoderma
  doi: 10.1016/0016-7061(86)90043-1
– volume: 483
  start-page: 198
  year: 2012
  ident: 814_CR48
  publication-title: Nature
  doi: 10.1038/nature10855
– volume: 51
  start-page: 683
  year: 1986
  ident: 814_CR59
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.51.4.683-689.1986
– volume: 47
  start-page: 1134
  year: 1997
  ident: 814_CR88
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-47-4-1134
– volume: 4
  start-page: 115
  year: 2005
  ident: 814_CR93
  publication-title: Rev Environ Sci Bio/Technol
  doi: 10.1007/s11157-005-2169-4
– volume: 58
  start-page: 1261
  year: 1994
  ident: 814_CR19
  publication-title: Geochimica et Cosmochimica acta
  doi: 10.1016/0016-7037(94)90380-8
– start-page: 37
  volume-title: Iron in soils and clay minerals
  year: 1988
  ident: 814_CR51
  doi: 10.1007/978-94-009-4007-9_3
– start-page: 197
  volume-title: Aquatic Surface Chemistry
  year: 1987
  ident: 814_CR92
– volume: 241
  start-page: 121
  year: 2002
  ident: 814_CR13
  publication-title: Plant Soil
  doi: 10.1023/A:1016061003397
– volume: 40
  start-page: 1971
  year: 2008
  ident: 814_CR95
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.02.017
– volume: 237
  start-page: 173
  year: 2001
  ident: 814_CR37
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– volume: 198
  start-page: 61
  year: 1997
  ident: 814_CR94
  publication-title: Sci Total Environ
  doi: 10.1016/S0048-9697(97)05442-9
– volume: 165
  start-page: 261
  year: 1994
  ident: 814_CR67
  publication-title: Plant Soil
  doi: 10.1007/BF00008069
– volume-title: The chemistry of soils
  year: 1989
  ident: 814_CR87
– volume: 157
  start-page: 1
  year: 2010
  ident: 814_CR45
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.009
– volume: 46
  start-page: 115
  year: 1989
  ident: 814_CR23
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.280460204
– volume: 48
  start-page: 89
  year: 2004
  ident: 814_CR104
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2003.12.014
– volume: 133
  start-page: 1102
  year: 2003
  ident: 814_CR21
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.025122
– volume: 76
  start-page: 2041
  year: 2010
  ident: 814_CR25
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02349-09
– volume: 45
  start-page: 335
  year: 2006
  ident: 814_CR39
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02624.x
– volume: 329
  start-page: 1
  year: 2010
  ident: 814_CR15
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0266-9
– volume: 48
  start-page: 743
  year: 1994
  ident: 814_CR32
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.48.100194.003523
– volume: 114
  start-page: 217
  year: 1989
  ident: 814_CR99
  publication-title: Plant Soil
  doi: 10.1007/BF02220801
– volume: 41
  start-page: 443
  year: 1990
  ident: 814_CR7
  publication-title: J Soil Sci
  doi: 10.1111/j.1365-2389.1990.tb00078.x
– volume: 72
  start-page: 1
  year: 2005
  ident: 814_CR31
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2005.03.002
– volume: 20
  start-page: 857
  year: 1997
  ident: 814_CR74
  publication-title: J Plant Nutr
  doi: 10.1080/01904169709365301
– volume: 1
  start-page: 172
  year: 1985
  ident: 814_CR81
  publication-title: Adv Soil Sci
– volume: 21
  start-page: 1
  year: 2004
  ident: 814_CR86
  publication-title: Geomicrobiol J
  doi: 10.1080/01490450490253310
– volume: 292
  start-page: 1360
  year: 2001
  ident: 814_CR63
  publication-title: Science
  doi: 10.1126/science.1059567
– volume: 64
  start-page: 225
  year: 1998
  ident: 814_CR36
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(08)60506-4
– volume: 69
  start-page: 621
  year: 2009
  ident: 814_CR71
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-008-9443-0
– volume: 50
  start-page: 155
  year: 2002
  ident: 814_CR90
  publication-title: J Microbiol Methods
  doi: 10.1016/S0167-7012(02)00024-6
– volume: 130
  start-page: 1
  year: 1991
  ident: 814_CR84
  publication-title: Plant Soil
  doi: 10.1007/BF00011851
– volume: 51
  start-page: 491
  year: 2009
  ident: 814_CR49
  publication-title: Adv Bot Res
  doi: 10.1016/S0065-2296(09)51012-9
– volume: 1643
  start-page: 180
  year: 1999
  ident: 814_CR53
  publication-title: Soil Sci
  doi: 10.1097/00010694-199903000-00004
– volume: 63
  start-page: 137
  year: 1999
  ident: 814_CR40
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/S0016-7037(98)00272-5
– volume: 73
  start-page: 368
  year: 2001
  ident: 814_CR109
  publication-title: Water Environ Res
  doi: 10.2175/106143001X139399
– volume: 55
  start-page: 259
  year: 1991
  ident: 814_CR58
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.55.2.259-287.1991
– volume: 94
  start-page: 1
  year: 2007
  ident: 814_CR30
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(06)94001-2
– volume: 91
  start-page: 112
  year: 2006
  ident: 814_CR11
  publication-title: Adv Agron
– volume: 21
  start-page: 99
  year: 1985
  ident: 814_CR42
  publication-title: Int Biodeterior
– volume: 8
  start-page: 1867
  year: 2006
  ident: 814_CR85
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2006.01141.x
– volume: 325
  start-page: 25
  year: 2009
  ident: 814_CR97
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0069-z
– volume: 260
  start-page: 149
  year: 2009
  ident: 814_CR27
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2008.08.027
– volume: 171
  start-page: 61
  year: 2008
  ident: 814_CR44
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200700048
– volume: 106
  start-page: 71
  year: 1994
  ident: 814_CR103
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.1.71
– volume: 17
  start-page: 2069
  year: 1994
  ident: 814_CR28
  publication-title: J Plant Nutr
  doi: 10.1080/01904169409364866
– volume: 28
  start-page: 133
  year: 2006
  ident: 814_CR55
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-005-9022-0
– volume: 54
  start-page: 1472
  year: 1988
  ident: 814_CR60
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.54.6.1472-1480.1988
– volume: 211
  start-page: 1126
  year: 1981
  ident: 814_CR62
  publication-title: Science
  doi: 10.1126/science.7008198
– volume: 163
  start-page: 285
  year: 2000
  ident: 814_CR12
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/1522-2624(200006)163:3<285::AID-JPLN285>3.0.CO;2-Z
– volume: 70
  start-page: 1945
  year: 2006
  ident: 814_CR24
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0343
– volume: 7
  start-page: 135
  year: 1984
  ident: 814_CR56
  publication-title: J Plant Nutr
  doi: 10.1080/01904168409363181
– volume: 30
  start-page: 1618
  year: 1996
  ident: 814_CR78
  publication-title: Environ Sci Technol
  doi: 10.1021/es9506216
– ident: 814_CR2
– volume: 69
  start-page: 1861
  year: 2005
  ident: 814_CR105
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0002
– volume: 20
  start-page: 441
  year: 2007
  ident: 814_CR101
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-20-4-0441
– volume: 1
  start-page: 27
  year: 1981
  ident: 814_CR72
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev.nu.01.070181.000331
– volume: 5
  start-page: 821
  year: 1982
  ident: 814_CR52
  publication-title: J Plant Nutr
  doi: 10.1080/01904168209363012
– start-page: 553
  volume-title: Mineral nutrition
  year: 2001
  ident: 814_CR69
– volume: 210
  start-page: 145
  year: 1999
  ident: 814_CR75
  publication-title: Plant Soil
  doi: 10.1023/A:1004329513498
– volume-title: Chemical equilibria in soils
  year: 1979
  ident: 814_CR50
– volume: 13
  start-page: 1771
  issue: 8
  year: 2007
  ident: 814_CR35
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2007.01382.x
– volume: 129
  start-page: 15
  year: 1980
  ident: 814_CR70
  publication-title: J Soil Sci
  doi: 10.1097/00010694-198001000-00004
– volume: 43
  start-page: 3128
  year: 2009
  ident: 814_CR9
  publication-title: Environ Sci Technol
  doi: 10.1021/es8036548
– volume: 63
  start-page: 1405
  year: 1999
  ident: 814_CR106
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/S0016-7037(99)00031-9
– volume: 35
  start-page: 239
  year: 1998
  ident: 814_CR3
  publication-title: Met Ions Biol Syst
– volume: 151
  start-page: 31
  year: 2009
  ident: 814_CR17
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.03.016
– volume: 66
  start-page: 3
  year: 2004
  ident: 814_CR47
  publication-title: Aquat Sci
  doi: 10.1007/s00027-003-0690-5
– volume: 30
  start-page: 1275
  year: 1998
  ident: 814_CR66
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(98)00039-X
– volume: 44
  start-page: 139
  year: 2003
  ident: 814_CR4
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/S0168-6496(03)00028-X
– start-page: 267
  volume-title: Iron in Soils, Clay Minerals
  year: 1988
  ident: 814_CR82
  doi: 10.1007/978-94-009-4007-9_11
– volume: 32
  start-page: 465
  year: 2009
  ident: 814_CR96
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.01938.x
– volume: 248
  start-page: 43
  year: 2003
  ident: 814_CR38
  publication-title: Plant Soil
  doi: 10.1023/A:1022371130939
– volume: 32
  start-page: 453
  year: 1997
  ident: 814_CR1
  publication-title: Clay Miner
  doi: 10.1180/claymin.1997.032.3.07
– volume: 40
  start-page: 303
  year: 2006
  ident: 814_CR29
  publication-title: Free Radic Res
  doi: 10.1080/10715760500484351
– volume: 73
  start-page: 3428
  year: 2007
  ident: 814_CR26
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02586-06
– volume: 15
  start-page: 325
  year: 2002
  ident: 814_CR8
  publication-title: Biometals
  doi: 10.1023/A:1020218608266
– volume: 205
  start-page: 25
  year: 1998
  ident: 814_CR41
  publication-title: Plant Soil
  doi: 10.1023/A:1004356007312
– volume: 287
  start-page: 223
  year: 2006
  ident: 814_CR14
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9069-4
– volume-title: Iron nutrition and interactions in plants
  year: 1990
  ident: 814_CR83
– volume: 25
  start-page: 371
  year: 1993
  ident: 814_CR102
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(93)90136-Y
– ident: 814_CR79
– volume: 48
  start-page: 123
  year: 2012
  ident: 814_CR16
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-011-0653-2
– volume: 104
  start-page: 815
  year: 1994
  ident: 814_CR33
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.3.815
– volume: 63
  start-page: 131
  year: 2012
  ident: 814_CR43
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042811-105522
– volume: 18
  start-page: 51
  year: 1991
  ident: 814_CR18
  publication-title: Catena
  doi: 10.1016/0341-8162(91)90006-J
– volume: 49
  start-page: 219
  year: 2004
  ident: 814_CR61
  publication-title: Adv Microb Physiol
  doi: 10.1016/S0065-2911(04)49005-5
– volume: 56
  start-page: 65
  year: 2005
  ident: 814_CR107
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1351-0754.2004.00655.x
– year: 2013
  ident: 814_CR108
  publication-title: Plant Cell Environ
– volume: 68
  start-page: 3217
  year: 2004
  ident: 814_CR34
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2003.10.041
– volume: 66
  start-page: 661
  year: 2002
  ident: 814_CR54
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2002.0661
– volume: 23
  start-page: 1591
  year: 2000
  ident: 814_CR64
  publication-title: J Plant Nutr
  doi: 10.1080/01904160009382126
– volume: 44
  start-page: 522
  year: 1996
  ident: 814_CR46
  publication-title: Clay Clay Miner
  doi: 10.1346/CCMN.1996.0440411
– year: 2011
  ident: 814_CR10
  publication-title: Geochim Cosmochim Acta
– volume: 26
  start-page: 23
  year: 1997
  ident: 814_CR73
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050337
– volume: 270
  start-page: 16549
  year: 1995
  ident: 814_CR65
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.28.16549
– volume: 41
  start-page: 126
  year: 1995
  ident: 814_CR76
  publication-title: Can J Microbiol
  doi: 10.1139/m95-017
– volume: 99
  start-page: 83
  year: 2008
  ident: 814_CR77
  publication-title: Adv Agron
– volume: 94
  start-page: 201
  year: 2000
  ident: 814_CR100
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00139-6
– start-page: 1
  volume-title: Soil organic matter
  year: 1978
  ident: 814_CR80
  doi: 10.1016/S0166-2481(08)70016-3
– start-page: 496
  volume-title: Humus chemistry: genesis, composition, reactions
  year: 1994
  ident: 814_CR89
– volume: 165
  start-page: 275
  year: 1994
  ident: 814_CR68
  publication-title: Plant Soil
  doi: 10.1007/BF00008070
– volume: 76
  start-page: 1246
  year: 2012
  ident: 814_CR20
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2011.0393
– volume: 44
  start-page: 15
  year: 2010
  ident: 814_CR6
  publication-title: Environ Sci Technol
  doi: 10.1021/es9026248
– volume: 4
  start-page: 5
  year: 1991
  ident: 814_CR57
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-4-005
– volume: 74
  start-page: 2145
  year: 2002
  ident: 814_CR91
  publication-title: Pure Appl Chem
  doi: 10.1351/pac200274112145
– volume: 43
  start-page: 4902
  year: 2009
  ident: 814_CR5
  publication-title: Environ Sci Technol
  doi: 10.1021/es900179s
SSID ssj0037161
Score 2.537294
SecondaryResourceType review_article
Snippet PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils....
Purpose The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils....
The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil,...
Purpose: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils....
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 538
SubjectTerms analytical methods
bacteria
Bioavailability
biochemical pathways
Carbon cycle
Carbon sequestration
Earth and Environmental Science
Environ Risk Assess
Environment
Environmental Physics
Flavonoids
Geochemistry
Iron
Metabolites
Microorganisms
Mineralogy
Minerals
Organic acids
organic acids and salts
oxides
phytosiderophores
plant exudates
Plant growth
Plant nutrition
Redox reactions
Sec 2 • Global Change
soil
Soil biology
Soil chemistry
soil ecology
Soil microorganisms
soil minerals
Soil Science & Conservation
Soil sciences
Soils
Solubility
Sustainable Land Use • Review Article
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x7gUeEJ9ax0BG4glm4Y80cXlBY1o1ITEhoNLeLMd2UKWSdE2HxP567hJnY5Poa-Ikzp19dz_b9zuAN6r0Mc8zyb12gWeIMbgTwnNX6tw4U0rdMTF9OctP59nn88l5WnBr07HKwSZ2hjo0ntbI32Mkj8Gg1jL_uLrgVDWKdldTCY0d2EUTbMwIdj-dnH39NthijWigg1zodhE0CzPsa3bJcxK7w7vqBkZm_OqWZ9qpXHMr6LyzT9q5n9kjeJjiRnbUK_ox3Iv1E3hw9HOduDPiU5j36_ysqRnlrjH32y2WPQ33H7aoWdsslh8Y8UOs-2wG1lRsFtmvRcc83R6y1ZJOxRwyVwe8ShRNsX0G89nJj-NTnqomcIdgZ8NjMCGGKUb-E-OFKmPmihArFYUXoTBaamcmKphKTUPlnZcyqhJREHp2IpcX-jmM6qaOe8Ckc2bqo64qU2YxILgKocrzQnhaNyrUGMQgMesTpThVtljaGzJkErJFIVsSsr0aw9vrR1Y9n8a2xnuoButQlq2df1eEBsmKmGI6hoNBNzbNutbejJExvL6-jfOFNkFcHZtLbDOh7GPEcWpbG4pr0A3ge94Nev_nM__r7_72Tr2A-_QL_Qm2Axht1pfxJYY0m_JVGrd_ARKe8AM
  priority: 102
  providerName: ProQuest
Title Review on iron availability in soil: interaction of Fe minerals, plants, and microbes
URI https://link.springer.com/article/10.1007/s11368-013-0814-z
https://www.proquest.com/docview/1498823316
https://www.proquest.com/docview/1505338622
https://www.proquest.com/docview/1524159116
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuNADamkrFigyEqeCJT_ycLhtq90iEAhBI8EpcmwHrbQkaLMgwa9nnAcU1CL1FCkZO8lM4pnP4_kMsCty46Io4NRIbWmAGINqxgzVuYyUVjmXDRPTyWl0mAZHl-FlV8dd96vd-5RkM1K_FLtxbE6b3QgUD-jjIiyHCN39Oq5UDPvhVyIAaFAWeloUZqpPZf6ti1fOaLHQ1as4801qtPE444-w2oWKZNja9hMsuHINPgyvZx1dhvsMaTu1T6qS-HI1ou_1ZNoybz-QSUnqajI9IJ4SYtYWMJCqIGNHbiYN2XS9T26nfiHMPtGlxbOelcnVXyAdj37_PKTdRglUI76ZU2eVdTbBYD9UhoncBTq2rhCOGWZjJbnUKhRWFSKxhdGGcydyBD7ozD2fPJNfYamsSrcOhGutEuNkUag8cBbxlLVFFMXM-KmiWAyA9RrLTMci7jezmGYv_MdeyRkqOfNKzh4H8P25yW1LofGe8DqaIdOoyzpLL4QHgH7gUHEygK3eNln3o9WIXBLECFLyaAA7z5fxF_F5D1266g5lQl9wjNBNvCfjQxkc-bGfvd7uf9zmX8-78V_Sm7Di36hdw7YFS_PZnfuGQc0834bl4a-r4xEef4xOz863m4_6CSLF7tA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB616QE4IJ5qoICR4AK18NqbjYOEUIFGKW0jBI3Um_HaXhQp7IZsCmp_FL-RmX20FIncet31eu3xY-bzeL4BeCZTF5IkjrhT1vMYMQa3QjhuU5Voq9NIVUxMh-NkNIk_HveO1-B3GwtD1yrbPbHaqH3h6Iz8FVryaAwqFSVv5z84ZY0i72qbQqOeFvvh9BdCtvLN3gcc3-dSDneP3o94k1WAWwQDSx689sEP0DLuaSdkGmLb9yGTQTjh-1pFyuqe9DqTA58566IoyBRRAmo-Il8XCutdh41YJUJ2YOPd7vjT53bvV4g-KoiHah5ButCtH7UK1ouw-7zKpqCjmJ9d0oTrmS0uGbn_-GUrdTe8BTcbO5Xt1BPrNqyF_A7c2Pm2aLg6wl2Y1H4FVuSMYuWY_Wmns5r2-5RNc1YW09lrRnwUizp6ghUZGwb2fVoxXZfbbD6jWzjbzOYenxIlVCjvweRK5HkfOnmRh01gkbV64ILKMp3GwSOY8z5Lkr5wdE7Vl10QrcSMayjMKZPGzFyQL5OQDQrZkJDNWRdenH8yr_k7VhXexGEwFmVZmskXSeiTdi3dH3Rhqx0b06zy0lzMyS48PX-N65OcLjYPxQmW6VG0M-JGuaoM2VGodrCel-24__Wb_7X3wepGPYFro6PDA3OwN95_CNepO_XtuS3oLBcn4RGaU8v0cTOHGXy96mXzB8E1LR8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_AkRh9IH6GQ9Q10RdlQ7vba_dMjEHhAqIXol7C27rd3ZJLzva4HhD40_zrnOkHiIn3xmu73bazHzO_nZnfALwSqfVxHIXcSuN4hBiDmyCw3KQyVkaloayYmL4O471R9Pmod7QEv9tcGAqrbPfEaqN2haUz8i205NEYlDKMt7ImLOJwZ_BhesKpghR5WttyGvUUOfAX5wjfyvf7OzjWr4UY7P74tMebCgPcIDCYc--U866PVnJP2UCkPjKJ85nwgQ1comQojeoJpzLRd5k1Ngy9SBExoBYkIvZAYr_LsJIQKurAysfd4eG3Vg9IRCIV3EOVj4A9UK1PtUrcC1EUvKqsoMKIX97QisuZKW4YvP_4aCvVN7gPq43NyrbrSfYAlnz-EO5tH88a3g7_CEa1j4EVOaO8OWbOzHhSU4BfsHHOymI8eceIm2JWZ1KwImMDz36NK9brcpNNJxSRs8lM7vAq0UP58jGMbkWeT6CTF7lfAxYao_rWyyxTaeQdAjvnsjhOAktnVonoQtBKTNuGzpyqakz0NREzCVmjkDUJWV924c3VI9Oay2NR4zUcBm1QlqUefReERGkHU0m_Cxvt2OhmxZf6en524eXVbVyr5IAxuS9OsU2PMp8RQ4pFbcimQhWE_bxtx_2v1_zve9cXf9QLuIPLRX_ZHx48hbv0N3Ug3QZ05rNT_wwtq3n6vJnCDH7e9qr5A_CEMVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+iron+availability+in+soil%3A+interaction+of+Fe+minerals%2C+plants%2C+and+microbes&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Colombo%2C+Claudio&rft.au=Palumbo%2C+Giuseppe&rft.au=He%2C+Ji-Zheng&rft.au=Pinton%2C+Roberto&rft.date=2014-03-01&rft.pub=Springer-Verlag&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=14&rft.issue=3&rft.spage=538&rft.epage=548&rft_id=info:doi/10.1007%2Fs11368-013-0814-z&rft.externalDocID=US201400051879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon