Review on iron availability in soil: interaction of Fe minerals, plants, and microbes
PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which,...
Saved in:
Published in | Journal of soils and sediments Vol. 14; no. 3; pp. 538 - 548 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.03.2014
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. MATERIALS AND METHODS: We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe–organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. RESULTS AND DISCUSSION: Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Feᴵᴵᴵ. Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. CONCLUSION: The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Feᴵᴵᴵ complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield’s limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites. |
---|---|
AbstractList | PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. MATERIALS AND METHODS: We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe–organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. RESULTS AND DISCUSSION: Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Feᴵᴵᴵ. Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. CONCLUSION: The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Feᴵᴵᴵ complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield’s limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites. Purpose: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. Materials and methods: We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe-organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. Results and discussion: Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Fe super(III). Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. Conclusion: The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Fe super(III) complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield's limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites. The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe-organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Fe^sup III^. Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Fe^sup III^ complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield's limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites.[PUBLICATION ABSTRACT] Purpose The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil, the management-induced change from oxic to anoxic environment results in temporal and spatial variations of redox reactions, which, in turn, affect the Fe dynamics and Fe mineral constituents. Measuring the Fe forms in organic complexes and the interaction between bacteria and Fe is a major challenge in getting a better quantitative understanding of the dynamics of Fe in complex soil ecosystems. Materials and methods We review the existing literature on chemical and biochemical processes in soils related with the availability of Fe that influences plant nutrition. We describe Fe acquisition by plant and bacteria, and the different Fe–organic complexes in order to understand their relationships and the role of Fe in the soil carbon cycle. Results and discussion Although total Fe is generally high in soil, the magnitude of its available fraction is generally very low and is governed by very low solubility of Fe oxides. Plants and microorganisms can have different strategies in order to improve Fe uptake including the release of organic molecules and metabolites able to form complexes with Fe III . Microorganisms appear to be highly competitive for Fe compared with plant roots. Crystalline Fe and poorly crystalline (hydro)oxides are also able to influence the carbon storage in soil. Conclusion The solubility of crystalline Fe minerals in soil is usually very low; however, the interaction with plant, microbes, and organic substance can improve the formation of soluble Fe III complexes and increase the availability of Fe for plant growth. Microbes release siderophores and plant exudates (e.g., phytosiderophores, organic acids, and flavonoids), which can bind and solubilize the Fe present in minerals. The improved understanding of this topic can enable the identification of effective solutions for remedying Fe deficiency or, alternatively, restricting the onset of its symptoms and yield’s limitations in crops. Therefore, development and testing of new analytical techniques and an integrated approach between soil biology and soil chemistry are important prerequisites. |
Author | He, Ji-Zheng Pinton, Roberto Colombo, Claudio Palumbo, Giuseppe Cesco, Stefano |
Author_xml | – sequence: 1 fullname: Colombo, Claudio – sequence: 2 fullname: Palumbo, Giuseppe – sequence: 3 fullname: He, Ji-Zheng – sequence: 4 fullname: Pinton, Roberto – sequence: 5 fullname: Cesco, Stefano |
BookMark | eNqNUU1P3DAQtRBIBcoP4EQkLj007YztJA63ChWohFQJ2LPlTSbIKGsvdhYEv76zTQ-IA-rF8_XeeGbegdgNMZAQxwjfEKD5nhFVbUpAVYJBXb7uiH2s2Wm0gV32tWq5CuaTOMj5AUA1XN4Xixt68vRcxFD4xI97cn50Sz_66aXwocjRj2fsTJRcN3lGxKG4oGLlA2fG_LVYjy5MbF3oOduluKT8WewNXKSjf_ZQLC5-3p1flde_L3-d_7gunW6rqaTe9NS3wIHpQC5Ju6anQRJ00DdGoXKmkr0ZZNsPnesQSS5rWWmojWoMqEPxZe67TvFxQ3myK587GnkkiptssZIaqxax_g8oVEqZWkqGnr6DPsRNCryIRd0aI5X62xBnFK-cc6LBrpNfufRiEexWEztrYlkTu9XEvjKnecfp_OS2Z50S3_1DppyZmX8J95TezPQB6WQmDS5ad598totbCagBoELTtOoPw7Oqug |
CitedBy_id | crossref_primary_10_1080_15226514_2021_2025202 crossref_primary_10_1016_j_soilbio_2020_107840 crossref_primary_10_1016_j_jece_2024_113428 crossref_primary_10_1002_ecy_1700 crossref_primary_10_1007_s11431_024_2655_y crossref_primary_10_1016_j_geoderma_2018_12_011 crossref_primary_10_1016_j_jenvman_2022_114957 crossref_primary_10_1021_acs_est_9b03208 crossref_primary_10_1016_j_geoderma_2017_11_039 crossref_primary_10_1073_pnas_2313487120 crossref_primary_10_1007_s10534_020_00248_y crossref_primary_10_1093_pcp_pcae111 crossref_primary_10_1111_nph_16242 crossref_primary_10_1016_j_catena_2024_108293 crossref_primary_10_3390_land10080768 crossref_primary_10_1080_00103624_2016_1243702 crossref_primary_10_3389_fmicb_2022_1083270 crossref_primary_10_1007_s00374_015_0999_y crossref_primary_10_1186_s13028_024_00735_z crossref_primary_10_1016_j_apgeochem_2023_105875 crossref_primary_10_1111_evo_13328 crossref_primary_10_1063_1_5138941 crossref_primary_10_1016_j_agwat_2025_109343 crossref_primary_10_1016_j_ecoleng_2014_05_020 crossref_primary_10_2138_am_2022_8379 crossref_primary_10_3390_min11020121 crossref_primary_10_1016_j_scitotenv_2018_12_024 crossref_primary_10_1093_femsre_fuac002 crossref_primary_10_2136_sssaj2017_06_0193 crossref_primary_10_1016_j_gca_2019_04_011 crossref_primary_10_1007_s13205_020_02306_1 crossref_primary_10_1016_j_conbuildmat_2020_118474 crossref_primary_10_3389_fpls_2018_01956 crossref_primary_10_3390_su13095116 crossref_primary_10_1016_j_scitotenv_2019_04_225 crossref_primary_10_1039_C8EN00328A crossref_primary_10_1016_j_apsoil_2023_105074 crossref_primary_10_7554_eLife_46070 crossref_primary_10_1016_j_chemgeo_2022_120995 crossref_primary_10_1093_jxb_erab531 crossref_primary_10_1007_s11105_024_01511_z crossref_primary_10_1080_00103624_2024_2323079 crossref_primary_10_1111_pce_14544 crossref_primary_10_1016_j_jhazmat_2023_131665 crossref_primary_10_1039_C8MT00252E crossref_primary_10_3389_fpls_2020_590774 crossref_primary_10_1007_s00374_016_1164_y crossref_primary_10_1016_j_gsf_2022_101494 crossref_primary_10_1038_s41598_021_87384_8 crossref_primary_10_1007_s13199_024_00980_w crossref_primary_10_1080_10643389_2024_2382498 crossref_primary_10_2139_ssrn_4181351 crossref_primary_10_1016_j_envres_2024_120599 crossref_primary_10_2139_ssrn_4170587 crossref_primary_10_1016_j_jhazmat_2021_127805 crossref_primary_10_1016_j_apsusc_2019_05_156 crossref_primary_10_1016_j_soilbio_2023_108972 crossref_primary_10_1021_acs_jafc_8b00557 crossref_primary_10_3389_fpls_2021_665583 crossref_primary_10_1016_j_jwpe_2020_101757 crossref_primary_10_1111_ejss_12158 crossref_primary_10_1111_ejss_13369 crossref_primary_10_1371_journal_pone_0316341 crossref_primary_10_1111_ejss_13489 crossref_primary_10_3389_fmicb_2024_1440978 crossref_primary_10_1016_j_funbio_2022_05_005 crossref_primary_10_1007_s00374_014_0919_6 crossref_primary_10_1007_s42398_022_00247_4 crossref_primary_10_1007_s00374_015_1043_y crossref_primary_10_3390_microorganisms11061535 crossref_primary_10_1021_acssuschemeng_0c06406 crossref_primary_10_1002_elan_201900204 crossref_primary_10_1016_j_hydromet_2018_05_027 crossref_primary_10_3390_agriculture14050664 crossref_primary_10_1128_mSystems_00580_20 crossref_primary_10_1016_j_eehl_2023_12_003 crossref_primary_10_1002_jobm_201800200 crossref_primary_10_1016_j_catena_2019_03_026 crossref_primary_10_1080_10256016_2024_2324966 crossref_primary_10_1016_j_scitotenv_2022_153910 crossref_primary_10_1016_j_watres_2024_122603 crossref_primary_10_3390_metabo12111100 crossref_primary_10_1007_s10457_021_00623_9 crossref_primary_10_1093_jxb_eraa012 crossref_primary_10_1007_s11368_020_02566_7 crossref_primary_10_1080_03650340_2021_1893308 crossref_primary_10_3389_fsufs_2022_824444 crossref_primary_10_1016_j_jenvman_2021_113252 crossref_primary_10_1007_s11631_018_0300_9 crossref_primary_10_1016_j_scitotenv_2020_141208 crossref_primary_10_1128_msystems_00811_19 crossref_primary_10_1038_s41467_017_01998_z crossref_primary_10_3390_agronomy11101966 crossref_primary_10_1039_C7EN01120B crossref_primary_10_1007_s10725_020_00598_0 crossref_primary_10_1016_j_chemosphere_2020_129150 crossref_primary_10_3390_soilsystems6010008 crossref_primary_10_1021_acs_est_9b04235 crossref_primary_10_1016_j_gca_2022_03_018 crossref_primary_10_1002_jsfa_9953 crossref_primary_10_1073_pnas_1903982116 crossref_primary_10_1016_j_watres_2024_122834 crossref_primary_10_1016_j_gecco_2020_e01399 crossref_primary_10_1016_j_scitotenv_2024_178302 crossref_primary_10_1080_01904167_2022_2160742 crossref_primary_10_1039_D2EN00330A crossref_primary_10_1016_j_chemosphere_2024_143397 crossref_primary_10_1021_acs_est_7b06574 crossref_primary_10_1080_01140671_2023_2245781 crossref_primary_10_1016_j_chemosphere_2022_135172 crossref_primary_10_1016_j_envres_2022_114448 crossref_primary_10_1016_j_envexpbot_2024_105777 crossref_primary_10_3389_fpls_2023_1297706 crossref_primary_10_3389_fpls_2021_744445 crossref_primary_10_3389_fpls_2021_663477 crossref_primary_10_1016_j_watres_2018_06_009 crossref_primary_10_1002_esp_5718 crossref_primary_10_2478_ebtj_2024_0004 crossref_primary_10_1016_j_jag_2024_104059 crossref_primary_10_1016_j_geoderma_2020_114572 crossref_primary_10_3390_ijms241512227 crossref_primary_10_1515_pac_2018_1110 crossref_primary_10_3390_ijms21093395 crossref_primary_10_1007_s11738_019_2933_7 crossref_primary_10_1007_s12649_023_02164_x crossref_primary_10_1080_17429145_2022_2086307 crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_1016_j_cej_2024_158904 crossref_primary_10_3389_feart_2021_703339 crossref_primary_10_3389_fpls_2019_00413 crossref_primary_10_1016_j_csbj_2020_11_025 crossref_primary_10_1002_esp_3764 crossref_primary_10_32604_phyton_2023_046389 crossref_primary_10_1016_j_apgeochem_2021_105116 crossref_primary_10_3390_agronomy12102383 crossref_primary_10_1007_s41207_025_00762_w crossref_primary_10_1093_aob_mcv182 crossref_primary_10_3390_land13101678 crossref_primary_10_3390_w16131834 crossref_primary_10_1016_j_envres_2023_117883 crossref_primary_10_1016_j_geoderma_2023_116456 crossref_primary_10_1016_j_plaphy_2016_04_053 crossref_primary_10_3390_agriculture11030217 crossref_primary_10_1016_j_scitotenv_2021_146266 crossref_primary_10_1039_D1EN01177D crossref_primary_10_1186_s40562_020_00157_5 crossref_primary_10_1016_j_sciaf_2024_e02081 crossref_primary_10_1016_j_scitotenv_2019_136128 crossref_primary_10_1016_S1002_0160_19_60810_6 crossref_primary_10_3390_plants12173104 crossref_primary_10_1016_j_scitotenv_2020_138245 crossref_primary_10_1051_e3sconf_20199806009 crossref_primary_10_1016_j_jenvman_2022_117008 crossref_primary_10_3389_fpls_2019_00675 crossref_primary_10_2174_2210315511666210512024716 crossref_primary_10_3390_biology13110852 crossref_primary_10_1093_jxb_erv364 crossref_primary_10_1111_nph_19577 crossref_primary_10_1186_s40538_018_0132_1 crossref_primary_10_1002_clen_202000277 crossref_primary_10_1016_j_envpol_2024_125417 crossref_primary_10_3390_toxics12110773 crossref_primary_10_1016_j_scitotenv_2022_156242 crossref_primary_10_1016_j_chemosphere_2022_137713 crossref_primary_10_1111_tpj_17098 crossref_primary_10_1007_s11368_021_03132_5 crossref_primary_10_1016_j_jphotochem_2023_115425 crossref_primary_10_1016_j_icarus_2020_114055 crossref_primary_10_1128_mbio_00425_22 crossref_primary_10_1016_j_fcr_2023_108906 crossref_primary_10_1016_j_oregeorev_2019_03_013 crossref_primary_10_1016_j_envpol_2017_07_094 crossref_primary_10_1016_j_cej_2022_134610 crossref_primary_10_1016_j_catena_2022_106644 crossref_primary_10_3390_toxins15010050 crossref_primary_10_1016_S1002_0160_15_60104_7 crossref_primary_10_1016_j_scitotenv_2021_149844 crossref_primary_10_1093_femsec_fiy189 crossref_primary_10_1111_pce_12980 crossref_primary_10_3390_microorganisms10030547 crossref_primary_10_1016_j_scitotenv_2021_150705 crossref_primary_10_1007_s11104_018_3827_y crossref_primary_10_1016_j_oregeorev_2021_104595 crossref_primary_10_1016_j_scitotenv_2024_176512 crossref_primary_10_1139_cjm_2017_0393 crossref_primary_10_1007_s11356_017_9045_y crossref_primary_10_3390_biom10101412 crossref_primary_10_1016_j_scitotenv_2022_153193 crossref_primary_10_1007_s11368_020_02769_y crossref_primary_10_1186_s13568_019_0796_3 crossref_primary_10_3389_fmicb_2020_581508 crossref_primary_10_1093_ismejo_wrad041 crossref_primary_10_4028_www_scientific_net_MSF_936_14 crossref_primary_10_1016_j_scitotenv_2020_138442 crossref_primary_10_1080_02757540_2023_2263436 crossref_primary_10_1016_S1002_0160_17_60331_X crossref_primary_10_1029_2020JG005894 crossref_primary_10_1002_jobm_201500450 crossref_primary_10_1016_j_geodrs_2023_e00750 crossref_primary_10_5194_hess_22_1713_2018 crossref_primary_10_1002_jsfa_11504 crossref_primary_10_1007_s10653_024_01995_4 crossref_primary_10_1007_s10661_021_08874_w crossref_primary_10_1007_s44274_024_00039_z crossref_primary_10_1007_s42729_024_02042_y crossref_primary_10_1080_03235408_2019_1668115 crossref_primary_10_1093_jxb_ery433 crossref_primary_10_1016_j_scitotenv_2023_168846 crossref_primary_10_1007_s10534_022_00480_8 crossref_primary_10_1016_j_scitotenv_2021_150967 crossref_primary_10_1021_acs_jpca_0c03592 crossref_primary_10_1016_j_scitotenv_2024_177728 crossref_primary_10_3389_fpls_2019_00008 crossref_primary_10_3389_fpls_2022_958984 crossref_primary_10_1016_j_soilbio_2019_03_013 crossref_primary_10_3390_agronomy12040871 crossref_primary_10_1016_j_gexplo_2015_01_003 crossref_primary_10_1016_j_jenvman_2022_116467 crossref_primary_10_1021_acs_est_7b00305 crossref_primary_10_1021_acs_est_7b02603 crossref_primary_10_1016_j_geoderma_2025_117166 crossref_primary_10_1039_D1EN00401H crossref_primary_10_1007_s11356_020_09692_2 crossref_primary_10_1007_s11356_021_14076_1 crossref_primary_10_1007_s11356_023_30782_4 crossref_primary_10_1007_s42729_024_02203_z crossref_primary_10_1016_j_envpol_2022_119462 crossref_primary_10_1039_D1EN00788B crossref_primary_10_3390_agronomy10121891 crossref_primary_10_1093_femsle_fnx279 crossref_primary_10_12688_f1000research_22411_1 crossref_primary_10_3390_stresses1040015 crossref_primary_10_1016_j_plaphy_2025_109601 crossref_primary_10_3389_fpls_2022_959840 crossref_primary_10_4236_ojss_2019_99010 crossref_primary_10_1016_j_clay_2020_105746 crossref_primary_10_18697_ajfand_91_18530 crossref_primary_10_3390_horticulturae9040437 crossref_primary_10_3390_agronomy11020383 crossref_primary_10_38211_joarps_2023_04_02_168 crossref_primary_10_1016_j_tplants_2022_03_012 crossref_primary_10_3390_ma17051208 crossref_primary_10_1021_acsenvironau_1c00030 crossref_primary_10_1002_jpln_201500535 crossref_primary_10_1007_s12403_023_00593_6 crossref_primary_10_1016_j_geoderma_2022_116249 crossref_primary_10_1016_j_scitotenv_2024_170119 crossref_primary_10_3389_fmicb_2024_1485197 crossref_primary_10_1016_j_chemgeo_2022_121166 crossref_primary_10_1016_j_gca_2024_03_020 crossref_primary_10_1128_AEM_02957_18 crossref_primary_10_1016_j_jia_2024_10_002 crossref_primary_10_1080_00103624_2020_1849266 crossref_primary_10_1021_acs_jafc_7b03955 crossref_primary_10_1080_02757540_2019_1641493 crossref_primary_10_1007_s11104_014_2308_1 crossref_primary_10_1021_acs_est_4c08032 crossref_primary_10_3390_ijerph15030543 crossref_primary_10_3934_environsci_2022029 crossref_primary_10_1007_s11356_015_5134_y crossref_primary_10_1016_j_envres_2020_109948 crossref_primary_10_1016_j_soilbio_2021_108446 crossref_primary_10_1002_ece3_5199 crossref_primary_10_3390_plants13050666 crossref_primary_10_1016_j_jhazmat_2024_135889 crossref_primary_10_1016_j_soilbio_2018_02_018 crossref_primary_10_1038_s41598_022_15458_2 crossref_primary_10_3389_fenvs_2018_00139 crossref_primary_10_1007_s11356_019_07304_2 crossref_primary_10_1007_s12355_022_01119_1 crossref_primary_10_1016_j_geoderma_2023_116552 crossref_primary_10_1016_j_scitotenv_2021_152044 crossref_primary_10_1016_j_envres_2024_119800 crossref_primary_10_3390_plants14030381 crossref_primary_10_1007_s00374_015_1015_2 crossref_primary_10_1099_mic_0_000218 crossref_primary_10_3390_agronomy14071528 crossref_primary_10_1016_j_gca_2022_08_019 crossref_primary_10_1128_aem_00453_23 crossref_primary_10_3389_fmicb_2018_02381 crossref_primary_10_1021_acsearthspacechem_9b00127 crossref_primary_10_1016_j_catena_2023_107174 crossref_primary_10_1016_j_gca_2023_01_027 crossref_primary_10_1038_s41598_019_52368_2 crossref_primary_10_1080_02571862_2024_2386162 crossref_primary_10_1016_j_earscirev_2019_103028 crossref_primary_10_1080_15320383_2020_1771274 crossref_primary_10_1007_s11368_024_03873_z crossref_primary_10_1021_acs_est_6b00702 crossref_primary_10_1016_j_scitotenv_2021_147943 crossref_primary_10_3390_su15097488 crossref_primary_10_3389_fpls_2019_00627 crossref_primary_10_3390_plants9010079 crossref_primary_10_3389_fpls_2023_1073546 crossref_primary_10_1016_j_agee_2016_12_014 crossref_primary_10_1111_ppl_13361 crossref_primary_10_3390_agronomy12092044 crossref_primary_10_3390_ijms24021713 crossref_primary_10_1016_j_ecolind_2021_108071 crossref_primary_10_1016_j_scitotenv_2020_136637 crossref_primary_10_2116_analsci_19P299 crossref_primary_10_1021_acsearthspacechem_0c00087 crossref_primary_10_1016_j_clet_2024_100845 crossref_primary_10_1186_s40793_024_00661_7 crossref_primary_10_3390_molecules26082256 crossref_primary_10_1016_j_indcrop_2025_120842 crossref_primary_10_1016_j_still_2024_106227 crossref_primary_10_1002_sae2_12100 crossref_primary_10_1016_j_soilbio_2018_01_031 crossref_primary_10_2138_am_2020_7359 crossref_primary_10_1080_01490451_2015_1043411 crossref_primary_10_7717_peerj_12417 crossref_primary_10_1002_jsfa_7083 crossref_primary_10_1007_s11356_022_21536_9 crossref_primary_10_1071_CP23208 crossref_primary_10_1080_10643389_2020_1853458 crossref_primary_10_3390_agronomy12061304 crossref_primary_10_1007_s42729_022_00804_0 crossref_primary_10_3390_agronomy14071553 crossref_primary_10_3390_agronomy10071000 crossref_primary_10_3390_ph11040128 crossref_primary_10_1038_s43017_023_00470_5 crossref_primary_10_1016_j_geoderma_2022_116222 crossref_primary_10_1016_j_rser_2019_109282 crossref_primary_10_1080_08912963_2019_1599884 crossref_primary_10_1016_j_plantsci_2019_04_026 crossref_primary_10_1007_s11368_024_03916_5 crossref_primary_10_1016_j_molstruc_2024_138860 crossref_primary_10_1094_PBIOMES_4_4 crossref_primary_10_1007_s10658_018_1530_8 crossref_primary_10_1016_j_apgeochem_2018_05_001 crossref_primary_10_1111_ppl_12296 crossref_primary_10_3390_agronomy12092149 crossref_primary_10_1016_j_geoderma_2024_116825 crossref_primary_10_3389_fpls_2021_660303 crossref_primary_10_1093_jxb_erab003 crossref_primary_10_1016_j_impact_2022_100444 crossref_primary_10_1016_j_chemosphere_2018_05_040 crossref_primary_10_11118_actaun_2022_030 crossref_primary_10_1111_ele_13912 crossref_primary_10_1038_s41598_018_34981_9 crossref_primary_10_1039_D3EM00534H crossref_primary_10_1016_j_biombioe_2021_106329 crossref_primary_10_1021_jacs_3c06709 crossref_primary_10_1039_C8RA10349F crossref_primary_10_3389_fmicb_2022_870413 crossref_primary_10_2136_vzj2015_07_0102 crossref_primary_10_1002_jpln_201800207 crossref_primary_10_1126_sciadv_adf1978 crossref_primary_10_3389_fmats_2024_1346112 crossref_primary_10_1016_j_chemgeo_2016_06_021 crossref_primary_10_3390_su142315855 crossref_primary_10_1007_s11356_019_07141_3 crossref_primary_10_1016_j_apgeochem_2020_104796 crossref_primary_10_1111_jam_15317 crossref_primary_10_1111_tpj_15286 crossref_primary_10_2965_jswe_39_197 crossref_primary_10_3389_fpls_2024_1334328 crossref_primary_10_1016_j_geoderma_2016_06_004 crossref_primary_10_1038_s41598_021_85922_y crossref_primary_10_1016_j_eti_2023_103172 crossref_primary_10_1029_2023JG007438 crossref_primary_10_3390_plants12101945 crossref_primary_10_1038_s41564_020_0719_8 crossref_primary_10_1016_j_scitotenv_2020_144697 crossref_primary_10_3389_feart_2019_00257 crossref_primary_10_1007_s00425_022_04018_7 crossref_primary_10_1021_acs_est_0c02670 crossref_primary_10_1016_j_jprot_2016_04_006 crossref_primary_10_3390_ijms21114038 crossref_primary_10_1007_s00248_019_01324_8 crossref_primary_10_3390_soilsystems4020028 crossref_primary_10_1016_j_envres_2024_119459 crossref_primary_10_3390_agronomy13122894 crossref_primary_10_1007_s10661_024_12695_y crossref_primary_10_1590_18069657rbcs20180041 crossref_primary_10_3390_ijerph191710883 crossref_primary_10_1007_s11356_015_4703_4 crossref_primary_10_3390_foods10020223 crossref_primary_10_3390_plants10061110 crossref_primary_10_3390_su151411296 crossref_primary_10_1016_j_cej_2015_03_034 crossref_primary_10_1021_acssuschemeng_7b03979 crossref_primary_10_3390_ijms252212057 crossref_primary_10_3390_f14030458 crossref_primary_10_1186_s12870_024_05464_z crossref_primary_10_1080_01904167_2023_2206425 crossref_primary_10_3389_fmicb_2020_571244 crossref_primary_10_1016_j_apsoil_2018_08_006 crossref_primary_10_1016_j_scitotenv_2019_135415 crossref_primary_10_1039_D1AY01932E crossref_primary_10_1007_s11105_025_01558_6 crossref_primary_10_1007_s10853_016_0171_6 crossref_primary_10_1016_j_plaphy_2015_07_034 crossref_primary_10_1016_j_jenvman_2024_122531 crossref_primary_10_1016_j_procbio_2025_03_004 crossref_primary_10_1007_s10653_025_02359_2 crossref_primary_10_1186_s13007_021_00812_8 crossref_primary_10_1002_fes3_547 crossref_primary_10_1016_j_eti_2024_103786 crossref_primary_10_1038_s41467_024_54832_8 crossref_primary_10_1021_acs_jpcc_8b07413 crossref_primary_10_3390_ijms20163984 crossref_primary_10_1134_S1064229324601070 crossref_primary_10_17660_ActaHortic_2018_1217_2 crossref_primary_10_3389_fagro_2024_1305034 crossref_primary_10_1088_1755_1315_408_1_012072 crossref_primary_10_1016_j_scitotenv_2016_11_168 crossref_primary_10_3389_fpls_2022_856937 crossref_primary_10_1039_C5SC03678J crossref_primary_10_1021_acs_est_7b05772 crossref_primary_10_1021_acs_jafc_3c09657 crossref_primary_10_3390_agronomy9120776 crossref_primary_10_3389_fagro_2021_689972 crossref_primary_10_1016_j_soilbio_2015_07_004 crossref_primary_10_1016_j_earscirev_2016_01_014 crossref_primary_10_1002_jsfa_11060 crossref_primary_10_1016_j_jenvman_2020_110733 crossref_primary_10_1016_S1002_0160_21_60035_8 crossref_primary_10_1007_s10533_018_0427_0 crossref_primary_10_3390_horticulturae7090285 crossref_primary_10_1080_15226514_2018_1501341 crossref_primary_10_1016_S2095_3119_16_61509_5 crossref_primary_10_1016_j_gca_2021_04_013 crossref_primary_10_1177_11786221231184202 crossref_primary_10_1016_j_ejsobi_2016_03_007 crossref_primary_10_1094_PBIOMES_06_20_0046_R crossref_primary_10_3390_plants14071011 crossref_primary_10_1016_j_molliq_2022_120798 crossref_primary_10_1016_j_envpol_2023_122683 crossref_primary_10_1111_pce_14459 crossref_primary_10_3389_fpls_2019_00923 crossref_primary_10_1007_s41748_021_00212_x crossref_primary_10_1016_j_apgeochem_2021_104966 crossref_primary_10_1007_s10533_023_01094_z crossref_primary_10_3390_biology9060116 crossref_primary_10_1007_s10534_023_00519_4 crossref_primary_10_1007_s11104_019_04012_1 crossref_primary_10_1007_s11270_015_2595_z crossref_primary_10_1126_science_aat4082 crossref_primary_10_2174_1874467213666200518094445 |
Cites_doi | 10.1002/3527602097 10.1016/0016-7061(86)90043-1 10.1038/nature10855 10.1128/AEM.51.4.683-689.1986 10.1099/00207713-47-4-1134 10.1007/s11157-005-2169-4 10.1016/0016-7037(94)90380-8 10.1007/978-94-009-4007-9_3 10.1023/A:1016061003397 10.1016/j.soilbio.2008.02.017 10.1023/A:1013351617532 10.1016/S0048-9697(97)05442-9 10.1007/BF00008069 10.1016/j.geoderma.2010.03.009 10.1002/jctb.280460204 10.1016/j.femsec.2003.12.014 10.1104/pp.103.025122 10.1128/AEM.02349-09 10.1111/j.1365-313X.2005.02624.x 10.1007/s11104-009-0266-9 10.1146/annurev.mi.48.100194.003523 10.1007/BF02220801 10.1111/j.1365-2389.1990.tb00078.x 10.1016/j.earscirev.2005.03.002 10.1080/01904169709365301 10.1080/01490450490253310 10.1126/science.1059567 10.1016/S0065-2113(08)60506-4 10.1007/s11103-008-9443-0 10.1016/S0167-7012(02)00024-6 10.1007/BF00011851 10.1016/S0065-2296(09)51012-9 10.1097/00010694-199903000-00004 10.1016/S0016-7037(98)00272-5 10.2175/106143001X139399 10.1128/MMBR.55.2.259-287.1991 10.1016/S0065-2113(06)94001-2 10.1111/j.1462-2920.2006.01141.x 10.1007/s11104-009-0069-z 10.1016/j.chemgeo.2008.08.027 10.1002/jpln.200700048 10.1104/pp.106.1.71 10.1080/01904169409364866 10.1007/s10653-005-9022-0 10.1128/AEM.54.6.1472-1480.1988 10.1126/science.7008198 10.1002/1522-2624(200006)163:3<285::AID-JPLN285>3.0.CO;2-Z 10.2136/sssaj2005.0343 10.1080/01904168409363181 10.1021/es9506216 10.2136/sssaj2005.0002 10.1094/MPMI-20-4-0441 10.1146/annurev.nu.01.070181.000331 10.1080/01904168209363012 10.1023/A:1004329513498 10.1111/j.1365-2486.2007.01382.x 10.1097/00010694-198001000-00004 10.1021/es8036548 10.1016/S0016-7037(99)00031-9 10.1016/j.geoderma.2009.03.016 10.1007/s00027-003-0690-5 10.1016/S0038-0717(98)00039-X 10.1016/S0168-6496(03)00028-X 10.1007/978-94-009-4007-9_11 10.1111/j.1365-3040.2009.01938.x 10.1023/A:1022371130939 10.1180/claymin.1997.032.3.07 10.1080/10715760500484351 10.1128/AEM.02586-06 10.1023/A:1020218608266 10.1023/A:1004356007312 10.1007/s11104-006-9069-4 10.1016/0038-0717(93)90136-Y 10.1007/s00374-011-0653-2 10.1104/pp.104.3.815 10.1146/annurev-arplant-042811-105522 10.1016/0341-8162(91)90006-J 10.1016/S0065-2911(04)49005-5 10.1111/j.1351-0754.2004.00655.x 10.1016/j.gca.2003.10.041 10.2136/sssaj2002.0661 10.1080/01904160009382126 10.1346/CCMN.1996.0440411 10.1007/s003740050337 10.1074/jbc.270.28.16549 10.1139/m95-017 10.1016/S0016-7061(98)00139-6 10.1016/S0166-2481(08)70016-3 10.1007/BF00008070 10.2136/sssaj2011.0393 10.1021/es9026248 10.1094/MPMI-4-005 10.1351/pac200274112145 10.1021/es900179s |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2013 Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 – notice: Springer-Verlag Berlin Heidelberg 2014 |
DBID | FBQ AAYXX CITATION 3V. 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7QH 7S9 L.6 |
DOI | 10.1007/s11368-013-0814-z |
DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts Aqualine AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Aqualine AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1614-7480 |
EndPage | 548 |
ExternalDocumentID | 3221130591 10_1007_s11368_013_0814_z US201400051879 |
Genre | Feature |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ATCPS AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAS LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RMD ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7U Z7V Z7Y Z7Z Z83 ZMTXR ~02 ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS H13 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 H97 L.G PKEHL PQEST PQUKI Q9U SOI 7QH 7S9 L.6 |
ID | FETCH-LOGICAL-a495t-ed8ded904958c02be4a7def2e0c0d78313a852d8f29dfcac11e2b625406837803 |
IEDL.DBID | U2A |
ISSN | 1439-0108 |
IngestDate | Fri Jul 11 05:16:39 EDT 2025 Mon Jul 21 11:58:26 EDT 2025 Sat Jul 26 00:06:45 EDT 2025 Tue Jul 01 01:38:04 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Fri Feb 21 02:33:42 EST 2025 Wed Dec 27 19:25:23 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Weathering of Fe-containing minerals Fe soil availability Microbial siderophores Plant exudates |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a495t-ed8ded904958c02be4a7def2e0c0d78313a852d8f29dfcac11e2b625406837803 |
Notes | http://dx.doi.org/10.1007/s11368-013-0814-z SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1498823316 |
PQPubID | 54474 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1524159116 proquest_miscellaneous_1505338622 proquest_journals_1498823316 crossref_primary_10_1007_s11368_013_0814_z crossref_citationtrail_10_1007_s11368_013_0814_z springer_journals_10_1007_s11368_013_0814_z fao_agris_US201400051879 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of soils and sediments |
PublicationTitleAbbrev | J Soils Sediments |
PublicationYear | 2014 |
Publisher | Springer-Verlag Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Colombo, Barrón, Torrent (CR19) 1994; 58 Lemanceau, Expert, Gaymard, Bakker, Briat (CR49) 2009; 51 Schwertmann, Stucki, Goodman, Schwertmann (CR82) 1988 Guerinot, Yi (CR33) 1994; 104 Lucena (CR64) 2000; 23 Kögel-Knabner, Amelung, Cao, Fiedler, Frenzel, Jahn, Kalbitz, Kölbl, Schloter (CR45) 2010; 157 Lovley, Phillips (CR60) 1988; 54 Cesco, Neumann, Tomasi, Pinton, Weisskopf (CR15) 2010; 329 Kostka, Stucki, Nealson, Wu (CR46) 1996; 44 Ma, Shinada, Matsuda, Nomoto (CR65) 1995; 270 van Hees, Lundstrom (CR100) 2000; 94 Dhungana, Anthony, Hersman (CR26) 2007; 73 Hinsinger (CR37) 2001; 237 Cornell, Schwertmann (CR22) 2003 Bauer, Kappler (CR5) 2009; 43 Jakobsen, Postma (CR40) 1999; 63 Stumm, Furrer, Stumm (CR92) 1987 Lovley, Phillips (CR59) 1986; 51 Colombo, Palumbo, Sellitto, Rizzardo, Tomasi, Pinton, Cesco (CR20) 2012; 76 Duijff, Bakker, Schippers (CR28) 1994; 17 Munch, Ottow (CR70) 1980; 129 Cesco, Mimmo, Tonon, Tomasi, Pinton, Terzano, Neumann, Weisskopf (CR16) 2012; 48 Nagasaka, Takahashi, Nakanishi-Itai, Bashir, Nakanishi, Mori, Nishizawa (CR71) 2009; 69 Roden, Zachara (CR78) 1996; 30 Baker, Banfield (CR4) 2003; 44 Stevenson (CR89) 1994 Lalonde, Mucci, Ouellet, Gélinas (CR48) 2012; 483 Marschner, Crowley (CR66) 1998; 30 Mengel, Kirkby, Kosegarten, Appel, Mengel, Kirkby (CR69) 2001 Pinton, Cesco, Santi (CR75) 1999; 210 Guerinot (CR32) 1994; 48 Torrent, Cabedo (CR98) 1986; 37 Sobolev, Roden (CR86) 2004; 21 Heitmann, Goldhammer, Beer, Blodau (CR35) 2007; 13 Ishimaru, Suzuki, Tsukamoto, Suzuki, Nakazono, Kobayashi, Wada, Watanabe, Matsuhashi, Takahashi (CR39) 2006; 45 Xiong, Kakei, Kobayashi, Guo, Nakazono, Takahashi, Nakanishi, Shen, Zhanh, Nishizawa, Zuo (CR108) 2013 Jones, Wilson (CR42) 1985; 21 Colombo, Torrent (CR18) 1991; 18 Dehner, Awaya, Maurice, DuBois (CR25) 2010; 76 Treeby, Marschner, Romheld (CR99) 1989; 114 de Santiago, Delgado (CR24) 2006; 70 Mengel (CR68) 1994; 165 Wiseman, Püttmann (CR107) 2005; 56 Weiss, Emerson, Megonigal (CR104) 2004; 48 Borggaard, Jorgensen, Moberg, Raben-Lange (CR7) 1990; 41 Liu, He, Colombo, Violante (CR53) 1999; 1643 Loper, Buyer (CR57) 1991; 4 Raaijmakers, Van de Sluis, Koster, Bakker, Weisbeek, Schippers (CR76) 1995; 41 Yu, Bishop (CR109) 2001; 73 Neilands (CR72) 1981; 1 Carrillo-Gonzáles, Šimunek, Sauvé, Adriano (CR11) 2006; 91 El Hajji, Nkhili, Tomao, Dangles (CR29) 2006; 40 Stucki, Lee, Zhang, Larson (CR91) 2002; 74 Sposito (CR87) 1989 Schwertmann (CR84) 1991; 130 Cesco, Rombolà, Tagliavini (CR14) 2006; 287 Duckworth, Holmstrom, Pena, Sposito (CR27) 2009; 260 Adamo, Colombo, Violante (CR1) 1997; 32 Boukhalfa, Crumbliss (CR8) 2002; 15 Cesco, Römheld, Varanini, Pinton (CR12) 2000; 163 Hinsinger (CR36) 1998; 64 Vansuyt, Robin, Briat, Curie, Lemanceau (CR101) 2007; 20 Lovley (CR58) 1991; 55 CR79 Stackebrandt, Sproer, Rainey, Burghardt, Pauker, Hippe (CR88) 1997; 47 Burton, Bush, Sullivan, Hocking, Mitchell, Johnston, Fitzpatrick, Raven, McClure, Jang (CR9) 2009; 43 Robin, Vansuyt, Hinsinger, Meyer, Briat, Lemanceau (CR77) 2008; 99 Lindsay, Stucki (CR51) 1988 Connolly, Campbell, Grotz, Prichard, Guerinot (CR21) 2003; 133 Lovley, Holmes, Nevin (CR61) 2004; 49 CR2 Cornell, Giovanoli, Schneider (CR23) 1989; 46 Von Wiren, Mori, Marschner, Römheld (CR103) 1994; 106 Loeppert, Hossner, Chmielewski (CR56) 1984; 7 Welch, Barker, Banfield (CR106) 1999; 63 Marschner, Römheld (CR67) 1994; 165 Takahashi, Minai, Ambe, Makide, Ambe, Tominaga (CR94) 1997; 198 Fiedler, Vepraskas, Richardson (CR30) 2007; 94 Cheng, Yang, Cao, Yin (CR17) 2009; 151 Jones (CR41) 1998; 205 Schwertmann (CR81) 1985; 1 Tomasi, Kretzschmar, Espen, Weisskopf, Fuglsang, Palmgren, Neumann, Varanini, Pinton, Martinoia, Cesco (CR96) 2009; 32 Albrecht-Gary, Crumbliss (CR3) 1998; 35 Cesco, Nikolic, Römheld, Varanini, Pinton (CR13) 2002; 241 Kobayashi, Nishizawa (CR43) 2012; 63 Burton, Bush, Johnston, Sullivan, Keene (CR10) 2011 Liu, Xu, Wu, Yang, Luo, Christie (CR55) 2006; 28 Schwertmann, Chen, Hadar (CR83) 1990 Pinton, Cesco, De Nobili, Santi, Varanini (CR73) 1997; 26 Lower, Hochella, Beveridge (CR63) 2001; 292 Pinton, Cesco, Santi, Varanini (CR74) 1997; 20 Schnitzer, Schnitzer, Khan (CR80) 1978 Borch, Kretzschmar, Kappler, Van Cappellen, Ginder-Vogel, Voegelin, Campbell (CR6) 2010; 44 Hinsinger, Plassard, Tang, Jaillard (CR38) 2003; 248 Kraemer (CR47) 2004; 66 Fortin, Langley (CR31) 2005; 72 Tabak, Lens, van Hullebusch, Dejonghe (CR93) 2005; 4 Kögel-Knabner, Guggenberger, Kleber, Kandeler, Kalbitz, Scheu, Eusterhues, Leinweber (CR44) 2008; 171 Hansel, Benner, Nico, Fendorf (CR34) 2004; 68 Shaw, Morris, Hooker (CR85) 2006; 8 Weiss, Emerson, Megonigal (CR105) 2005; 69 Tomasi, Rizzardo, Monte, Gottardi, Jelali, Terzano, Vekemans, De Nobili, Varanini, Pinton, Cesco (CR97) 2009; 325 Lowenstam (CR62) 1981; 211 Lindsay (CR50) 1979 Liu, Colombo, Adamo, He, Violante (CR54) 2002; 66 Stubner (CR90) 2002; 50 Tomasi, Weisskopf, Renella, Landi, Pinton, Varanini, Nannipieri, Torrent, Martinoia, Cesco (CR95) 2008; 40 Von Wiren, Roemheld, Morel, Guckert, Marschner (CR102) 1993; 25 Lindsay, Schwab (CR52) 1982; 5 Y Ishimaru (814_CR39) 2006; 45 JF Ma (814_CR65) 1995; 270 A Robin (814_CR77) 2008; 99 S Cesco (814_CR16) 2012; 48 U Schwertmann (814_CR81) 1985; 1 E Stackebrandt (814_CR88) 1997; 47 M Schnitzer (814_CR80) 1978 P Hinsinger (814_CR36) 1998; 64 K Mengel (814_CR68) 1994; 165 S Cesco (814_CR14) 2006; 287 U Schwertmann (814_CR84) 1991; 130 R Carrillo-Gonzáles (814_CR11) 2006; 91 F Liu (814_CR53) 1999; 1643 H Marschner (814_CR67) 1994; 165 AM Albrecht-Gary (814_CR3) 1998; 35 LJ Shaw (814_CR85) 2006; 8 RM Cornell (814_CR23) 1989; 46 RM Cornell (814_CR22) 2003 T Borch (814_CR6) 2010; 44 OW Duckworth (814_CR27) 2009; 260 S Cesco (814_CR13) 2002; 241 C Colombo (814_CR18) 1991; 18 N Wiren Von (814_CR103) 1994; 106 PAW Hees van (814_CR100) 2000; 94 OK Borggaard (814_CR7) 1990; 41 YQ Cheng (814_CR17) 2009; 151 JV Weiss (814_CR104) 2004; 48 N Tomasi (814_CR95) 2008; 40 ED Burton (814_CR9) 2009; 43 DR Lovley (814_CR60) 1988; 54 K Mengel (814_CR69) 2001 HH Tabak (814_CR93) 2005; 4 R Pinton (814_CR74) 1997; 20 WL Lindsay (814_CR51) 1988 WL Lindsay (814_CR50) 1979 P Hinsinger (814_CR37) 2001; 237 ML Guerinot (814_CR32) 1994; 48 JE Loper (814_CR57) 1991; 4 I Kögel-Knabner (814_CR44) 2008; 171 CA Dehner (814_CR25) 2010; 76 C Colombo (814_CR19) 1994; 58 JJ Lucena (814_CR64) 2000; 23 D Jones (814_CR42) 1985; 21 S Dhungana (814_CR26) 2007; 73 W Stumm (814_CR92) 1987 H Xiong (814_CR108) 2013 WL Lindsay (814_CR52) 1982; 5 J Raaijmakers (814_CR76) 1995; 41 H Boukhalfa (814_CR8) 2002; 15 DR Lovley (814_CR61) 2004; 49 U Schwertmann (814_CR82) 1988 S Cesco (814_CR15) 2010; 329 BJ Duijff (814_CR28) 1994; 17 DL Jones (814_CR41) 1998; 205 N Tomasi (814_CR96) 2009; 32 K Lalonde (814_CR48) 2012; 483 SA Welch (814_CR106) 1999; 63 814_CR79 EE Roden (814_CR78) 1996; 30 RH Loeppert (814_CR56) 1984; 7 R Pinton (814_CR75) 1999; 210 C Colombo (814_CR20) 2012; 76 R Jakobsen (814_CR40) 1999; 63 J Torrent (814_CR98) 1986; 37 P Hinsinger (814_CR38) 2003; 248 ML Guerinot (814_CR33) 1994; 104 D Fortin (814_CR31) 2005; 72 SK Lower (814_CR63) 2001; 292 ED Burton (814_CR10) 2011 P Marschner (814_CR66) 1998; 30 T Yu (814_CR109) 2001; 73 FJ Stevenson (814_CR89) 1994 814_CR2 S Stubner (814_CR90) 2002; 50 M Treeby (814_CR99) 1989; 114 T Heitmann (814_CR35) 2007; 13 F Liu (814_CR54) 2002; 66 S Nagasaka (814_CR71) 2009; 69 JW Stucki (814_CR91) 2002; 74 JV Weiss (814_CR105) 2005; 69 DR Lovley (814_CR58) 1991; 55 BJ Baker (814_CR4) 2003; 44 CM Hansel (814_CR34) 2004; 68 CLS Wiseman (814_CR107) 2005; 56 G Vansuyt (814_CR101) 2007; 20 D Sobolev (814_CR86) 2004; 21 S Fiedler (814_CR30) 2007; 94 H Hajji El (814_CR29) 2006; 40 W Liu (814_CR55) 2006; 28 A Santiago de (814_CR24) 2006; 70 JB Neilands (814_CR72) 1981; 1 JE Kostka (814_CR46) 1996; 44 T Kobayashi (814_CR43) 2012; 63 P Lemanceau (814_CR49) 2009; 51 Y Takahashi (814_CR94) 1997; 198 I Bauer (814_CR5) 2009; 43 N Tomasi (814_CR97) 2009; 325 DR Lovley (814_CR59) 1986; 51 EL Connolly (814_CR21) 2003; 133 HA Lowenstam (814_CR62) 1981; 211 P Adamo (814_CR1) 1997; 32 I Kögel-Knabner (814_CR45) 2010; 157 G Sposito (814_CR87) 1989 JC Munch (814_CR70) 1980; 129 U Schwertmann (814_CR83) 1990 R Pinton (814_CR73) 1997; 26 N Wiren Von (814_CR102) 1993; 25 S Cesco (814_CR12) 2000; 163 SM Kraemer (814_CR47) 2004; 66 |
References_xml | – volume: 211 start-page: 1126 year: 1981 end-page: 1131 ident: CR62 article-title: Minerals formed by organisms publication-title: Science – volume: 37 start-page: 57 year: 1986 end-page: 66 ident: CR98 article-title: Sources of iron oxides in reddish brown soil profiles from calcarenites in Southern Spain publication-title: Geoderma – volume: 292 start-page: 1360 year: 2001 end-page: 1363 ident: CR63 article-title: Bacterial recognition of mineral surfaces: nanoscale interactions between and α-FeOOH publication-title: Science – year: 1990 ident: CR83 article-title: Solubility and dissolution of iron oxides publication-title: Iron nutrition and interactions in plants – volume: 44 start-page: 522 year: 1996 end-page: 529 ident: CR46 article-title: Reduction of structural Fe(III) in smectite by a pure culture of strain MR-1 publication-title: Clay Clay Miner – volume: 69 start-page: 621 year: 2009 end-page: 631 ident: CR71 article-title: Time-course analysis of gene expression over 24 hours in Fe-deficient barley roots publication-title: Plant Mol Biol – start-page: 496 year: 1994 ident: CR89 publication-title: Humus chemistry: genesis, composition, reactions – volume: 41 start-page: 126 year: 1995 end-page: 135 ident: CR76 article-title: Utilisation of heterologous siderophores and rhizosphere competence of fluorescent spp publication-title: Can J Microbiol – volume: 8 start-page: 1867 year: 2006 end-page: 1880 ident: CR85 article-title: Perception and modification of plant flavonoid signals by rhizosphere microorganisms publication-title: Environ Microbiol – volume: 1643 start-page: 180 year: 1999 end-page: 189 ident: CR53 article-title: Competition in adsorption of sulfate and oxalate on goethite in absence and presence of phosphate publication-title: Soil Sci – volume: 163 start-page: 285 year: 2000 end-page: 290 ident: CR12 article-title: Solubilization of iron by water-extractable humic substances publication-title: J Plant Nutr Soil Sci – volume: 287 start-page: 223 year: 2006 end-page: 233 ident: CR14 article-title: Phytosiderophores released by graminaceous species promote Fe uptake in citrus publication-title: Plant Soil – volume: 17 start-page: 2069 year: 1994 end-page: 2078 ident: CR28 article-title: Ferric pseudobactin 358 as an iron source for carnation publication-title: J Plant Nutr – volume: 106 start-page: 71 year: 1994 end-page: 77 ident: CR103 article-title: Iron inefficiency in maize mutant ys1 ( L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores publication-title: Plant Physiol – volume: 18 start-page: 51 year: 1991 end-page: 59 ident: CR18 article-title: Aggregation and iron oxides in Terra Rossa soils publication-title: Catena – volume: 7 start-page: 135 year: 1984 end-page: 147 ident: CR56 article-title: Indigenous soil properties influencing the availability of Fe in calcareous hot spots publication-title: J Plant Nutr – volume: 20 start-page: 857 year: 1997 end-page: 869 ident: CR74 article-title: Soil humic substances stimulate proton release by intact oat seedling roots publication-title: J Plant Nutr – volume: 73 start-page: 3428 year: 2007 end-page: 3430 ident: CR26 article-title: Effect of exogenous reductant on growth and iron mobilization from ferrihydrite by the ymp strain publication-title: Appl Environ Microbiol – volume: 4 start-page: 5 year: 1991 end-page: 13 ident: CR57 article-title: Siderophores in microbial interactions on plant surfaces publication-title: Mol Plant Microbe Interact – volume: 51 start-page: 683 year: 1986 end-page: 689 ident: CR59 article-title: Organic matter mineralization with reduction of ferric iron in anaerobic sediments publication-title: Appl Environ Microbiol – volume: 48 start-page: 123 year: 2012 end-page: 149 ident: CR16 article-title: Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review publication-title: Biol Fertil Soils – volume: 51 start-page: 491 year: 2009 end-page: 549 ident: CR49 article-title: Role of iron in plant–microbe interactions publication-title: Adv Bot Res – volume: 94 start-page: 201 year: 2000 end-page: 221 ident: CR100 article-title: Equilibrium models of aluminium and iron complexation with different organic acids in soil solution publication-title: Geoderma – volume: 73 start-page: 368 year: 2001 end-page: 373 ident: CR109 article-title: Stratification and oxidation-reduction potential change in an aerobic and sulfate-reducing biofilm studied using microelectrodes publication-title: Water Environ Res – volume: 66 start-page: 661 year: 2002 end-page: 670 ident: CR54 article-title: Manganese–iron nodules minerals associated with trace elements in Alfisols from China publication-title: Soil Sci Soc Am J – volume: 72 start-page: 1 year: 2005 end-page: 19 ident: CR31 article-title: Formation and occurrence of biogenic iron-rich minerals publication-title: Earth-Sci Rev – volume: 47 start-page: 1134 year: 1997 end-page: 1139 ident: CR88 article-title: Phylogenetic analysis of the genus : evidence for the misclassification of and description of as gen. nov., comb. nov publication-title: Int J Syst Bacteriol – volume: 50 start-page: 155 year: 2002 end-page: 164 ident: CR90 article-title: Enumeration of S rDNA of lineage 1 in rice field soil by real-time PCR with SybrGreen detection publication-title: J Microbiol Methods – volume: 48 start-page: 743 year: 1994 end-page: 772 ident: CR32 article-title: Microbial iron transport publication-title: Annu Rev Microbiol – volume: 91 start-page: 112 year: 2006 end-page: 178 ident: CR11 article-title: Mechanisms and pathways of trace elements mobility in soils publication-title: Adv Agron – volume: 43 start-page: 3128 year: 2009 end-page: 3134 ident: CR9 article-title: Iron-monosulfide oxidation in natural sediments: resolving microbially-mediated S transformations using XANES, electron microscopy and selective extractions publication-title: Environ Sci Technol – volume: 157 start-page: 1 year: 2010 end-page: 14 ident: CR45 article-title: Biogeochemistry of paddy soils publication-title: Geoderma – volume: 45 start-page: 335 year: 2006 end-page: 346 ident: CR39 article-title: Rice plants take up iron as an Fe -phytosiderophore and as Fe publication-title: Plant J – volume: 99 start-page: 83 year: 2008 end-page: 225 ident: CR77 article-title: Iron dynamics in the rhizosphere: consequences for plant health and nutrition publication-title: Adv Agron – volume: 54 start-page: 1472 year: 1988 end-page: 1480 ident: CR60 article-title: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese publication-title: Appl Environ Microbiol – volume: 15 start-page: 325 year: 2002 end-page: 339 ident: CR8 article-title: Chemical aspects of siderophore mediated iron transport publication-title: Biometals – volume: 151 start-page: 31 year: 2009 end-page: 41 ident: CR17 article-title: Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils publication-title: Geoderma – volume: 1 start-page: 27 year: 1981 end-page: 46 ident: CR72 article-title: Iron absorption and transport in microorganisms publication-title: Annu Rev Nutr – volume: 76 start-page: 1246 year: 2012 end-page: 1256 ident: CR20 article-title: Characteristics of insoluble, high molecular weight iron-humic substances used as plant iron sources publication-title: Soil Sci Soc Am J – volume: 171 start-page: 61 year: 2008 end-page: 82 ident: CR44 article-title: Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry publication-title: J Plant Nutr Soil Sci – volume: 30 start-page: 1275 year: 1998 end-page: e1280 ident: CR66 article-title: Phytosiderophore decrease iron stress and pyo-verdine production of Pf-5 (pvd-inaZ) publication-title: Soil Biol Biochem – volume: 129 start-page: 15 year: 1980 end-page: 21 ident: CR70 article-title: Preferential reduction of amorphous to crystalline iron oxides by bacterial activity publication-title: J Soil Sci – volume: 48 start-page: 89 year: 2004 end-page: 100 ident: CR104 article-title: Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil publication-title: FEMS Microbiol Ecol – volume: 63 start-page: 1405 year: 1999 end-page: 1419 ident: CR106 article-title: Microbial extracellular polysacchrides and plagioclase dissolution publication-title: Geochim Cosmochim Acta – start-page: 197 year: 1987 end-page: 219 ident: CR92 article-title: The dissolution of oxides and aluminium silicates: examples of surface-coordination-controlled kinetics publication-title: Aquatic Surface Chemistry – volume: 68 start-page: 3217 year: 2004 end-page: 3229 ident: CR34 article-title: Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II) publication-title: Geochim Cosmochim Acta – volume: 58 start-page: 1261 year: 1994 end-page: 1269 ident: CR19 article-title: Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites publication-title: Geochimica et Cosmochimica acta – volume: 70 start-page: 1945 year: 2006 end-page: 1950 ident: CR24 article-title: Predicting iron chlorosis of L. in calcareous Spanish soils from various iron extracts publication-title: Soil Sci Soc Am J – volume: 43 start-page: 4902 year: 2009 end-page: 4908 ident: CR5 article-title: Rates and extent of reduction of Fe(III) compounds and O by humic substances publication-title: Environ Sci Technol – volume: 23 start-page: 1591 year: 2000 end-page: 1606 ident: CR64 article-title: Effect of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review publication-title: J Plant Nutr – volume: 21 start-page: 99 year: 1985 end-page: 105 ident: CR42 article-title: Chemical activity of lichens on mineral surfaces publication-title: Int Biodeterior – volume: 44 start-page: 139 year: 2003 end-page: 152 ident: CR4 article-title: Microbial communities in acid mine drainage publication-title: FEMS Microbiol Ecol – volume: 63 start-page: 131 year: 2012 end-page: 152 ident: CR43 article-title: Iron uptake, translocation, and regulation in higher plants publication-title: Annu Rev Plant Biol – volume: 26 start-page: 23 year: 1997 end-page: 27 ident: CR73 article-title: Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants publication-title: Biol Fertil Soils – year: 2013 ident: CR108 article-title: Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil publication-title: Plant Cell Environ – volume: 49 start-page: 219 year: 2004 end-page: 286 ident: CR61 article-title: Dissimilatory Fe(III) and Mn(IV) reduction publication-title: Adv Microb Physiol – volume: 55 start-page: 259 year: 1991 end-page: 287 ident: CR58 article-title: Dissimilatory Fe(III) and Mn(IV) reduction publication-title: Microbiol Rev – volume: 104 start-page: 815 year: 1994 end-page: 820 ident: CR33 article-title: Iron: nutritious, noxious, and not readily available publication-title: Plant Physiol – volume: 5 start-page: 821 year: 1982 end-page: 840 ident: CR52 article-title: The chemistry of iron in soils and its availability to plants publication-title: J Plant Nutr – volume: 44 start-page: 15 year: 2010 end-page: 23 ident: CR6 article-title: Biogeochemical redox processes and their impact on contaminant dynamics publication-title: Environ Sci Technol – volume: 205 start-page: 25 year: 1998 end-page: 44 ident: CR41 article-title: Organic acids in the rhizosphere—a critical review publication-title: Plant Soil – volume: 28 start-page: 133 year: 2006 end-page: 140 ident: CR55 article-title: Decomposition of silicate minerals by I liquid culture publication-title: Environ Geochem Health – volume: 21 start-page: 1 year: 2004 end-page: 10 ident: CR86 article-title: Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing beta-proteobacterium from freshwater wetland sediments publication-title: Geomicrobiol J – volume: 30 start-page: 1618 year: 1996 end-page: 1628 ident: CR78 article-title: Microbial reduction of crystalline iron(III) oxides: influence of oxides surface area and potential for cell growth publication-title: Environ Sci Technol – volume: 483 start-page: 198 year: 2012 end-page: 200 ident: CR48 article-title: Preservation of organic matter in sediments promoted by iron publication-title: Nature – volume: 69 start-page: 1861 year: 2005 end-page: 1870 ident: CR105 article-title: Rhizosphere iron(III) deposition and reduction in a L.-dominated wetland publication-title: Soil Sci Soc Am J – start-page: 553 year: 2001 end-page: 571 ident: CR69 article-title: Iron publication-title: Mineral nutrition – start-page: 1 year: 1978 end-page: 6 ident: CR80 article-title: Humic substances: chemistry and reactions publication-title: Soil organic matter – start-page: 267 year: 1988 end-page: 308 ident: CR82 article-title: Occurrence and formation of iron oxides in various pedoenvironments publication-title: Iron in Soils, Clay Minerals – volume: 94 start-page: 1 year: 2007 end-page: 57 ident: CR30 article-title: Soil redox potential: importance, field measurements, and observations publication-title: Adv Agron – volume: 46 start-page: 115 year: 1989 end-page: 134 ident: CR23 article-title: Review of the hydrolysis of iron (III) and the crystallization of amorphous iron (III) hydroxide hydrate publication-title: J Chem Technol Biotechnol – volume: 32 start-page: 453 year: 1997 end-page: 461 ident: CR1 article-title: Occurrence of poorly ordered Fe-rich phases at the interface between the lichen and volcanic rock from Mt Vesuvius publication-title: Clay Miner – year: 1979 ident: CR50 publication-title: Chemical equilibria in soils – volume: 13 start-page: 1771 issue: 8 year: 2007 end-page: 1785 ident: CR35 article-title: Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog publication-title: Glob Chang Biol – volume: 165 start-page: 261 year: 1994 end-page: 274 ident: CR67 article-title: Strategies of plants for acquisition of iron publication-title: Plant Soil – year: 1989 ident: CR87 publication-title: The chemistry of soils – volume: 198 start-page: 61 year: 1997 end-page: 71 ident: CR94 article-title: Simultaneous determination of stability constants of humate complexes with various metal ions using multitracer technique publication-title: Sci Total Environ – volume: 66 start-page: 3 year: 2004 end-page: 18 ident: CR47 article-title: Iron oxide dissolution and solubility in the presence of siderophores publication-title: Aquat Sci – volume: 74 start-page: 2145 year: 2002 end-page: 2158 ident: CR91 article-title: Effects of iron oxidation state on the surface and structural properties of smectites publication-title: Pure Appl Chem – ident: CR2 – volume: 248 start-page: 43 year: 2003 end-page: 59 ident: CR38 article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant Soil – year: 2003 ident: CR22 publication-title: The iron oxides – year: 2011 ident: CR10 article-title: Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland publication-title: Geochim Cosmochim Acta – volume: 20 start-page: 441 year: 2007 end-page: 447 ident: CR101 article-title: Iron acquisition from Fe-pyoverdine by publication-title: Mol Plant Microbe Interact – volume: 64 start-page: 225 year: 1998 end-page: 265 ident: CR36 article-title: How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere publication-title: Adv Agron – volume: 165 start-page: 275 year: 1994 end-page: 283 ident: CR68 article-title: Iron availability in plants tissues-iron chlorosis on calcareous soils publication-title: Plant Soil – volume: 130 start-page: 1 year: 1991 end-page: 25 ident: CR84 article-title: Solubility and dissolution of iron oxides publication-title: Plant Soil – volume: 56 start-page: 65 year: 2005 end-page: 76 ident: CR107 article-title: Soil organic carbon and its sorptive preservation in central Germany publication-title: Eur J Soil Sci – volume: 241 start-page: 121 year: 2002 end-page: 128 ident: CR13 article-title: Uptake of Fe from soluble Fe–humate complexes by cucumber and barley plants publication-title: Plant Soil – start-page: 37 year: 1988 end-page: 60 ident: CR51 article-title: Solubility and redox equilibria of iron compounds in soils publication-title: Iron in soils and clay minerals – volume: 25 start-page: 371 year: 1993 end-page: 376 ident: CR102 article-title: Influence of microorganisms on iron acquisition in maize publication-title: Soil Biol Biochem – ident: CR79 – volume: 40 start-page: 1971 year: 2008 end-page: 1974 ident: CR95 article-title: Flavonoids of white lupin roots participate in phosphorus mobilization from soil publication-title: Soil Biol Biochem – volume: 325 start-page: 25 year: 2009 end-page: 38 ident: CR97 article-title: Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution publication-title: Plant Soil – volume: 35 start-page: 239 year: 1998 end-page: 327 ident: CR3 article-title: Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release publication-title: Met Ions Biol Syst – volume: 133 start-page: 1102 year: 2003 end-page: 1110 ident: CR21 article-title: Overexpression of the FRO2 iron reductase confers tolerance to growth on low iron and uncovers post-transcriptional control publication-title: Plant Physiol – volume: 260 start-page: 149 year: 2009 end-page: 158 ident: CR27 article-title: Biogeochemistry of iron oxidation in a circumneutral freshwater habitat publication-title: Chem Geol – volume: 63 start-page: 137 year: 1999 end-page: 151 ident: CR40 article-title: Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark publication-title: Geochim Cosmochim Acta – volume: 41 start-page: 443 year: 1990 end-page: 449 ident: CR7 article-title: Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils publication-title: J Soil Sci – volume: 210 start-page: 145 year: 1999 end-page: 157 ident: CR75 article-title: Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants publication-title: Plant Soil – volume: 76 start-page: 2041 year: 2010 end-page: 2048 ident: CR25 article-title: Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium publication-title: Appl Environ Microbiol – volume: 237 start-page: 173 year: 2001 end-page: 195 ident: CR37 article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review publication-title: Plant Soil – volume: 1 start-page: 172 year: 1985 end-page: 200 ident: CR81 article-title: The effect of pedogenic environments on iron oxide minerals publication-title: Adv Soil Sci – volume: 40 start-page: 303 year: 2006 end-page: 320 ident: CR29 article-title: Interactions of quercitin with iron and copper ions: complexation and autoxidation publication-title: Free Radic Res – volume: 32 start-page: 465 year: 2009 end-page: 475 ident: CR96 article-title: Plasma membrane H-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin publication-title: Plant Cell Environ – volume: 270 start-page: 16549 year: 1995 end-page: 16554 ident: CR65 article-title: Biosynthesis of phyto-siderophores, mugineic acids, associated with methionine cycling publication-title: J Biol Chem – volume: 4 start-page: 115 year: 2005 end-page: 156 ident: CR93 article-title: Developments in bioremediation of soils and sediments polluted with metals and radionuclides 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport publication-title: Rev Environ Sci Bio/Technol – volume: 114 start-page: 217 year: 1989 end-page: 226 ident: CR99 article-title: Mobilization of iron and other micronutrient cations from calcareous soil by plant-borne, microbial, and synthetic metal chelators publication-title: Plant Soil – volume: 329 start-page: 1 year: 2010 end-page: 25 ident: CR15 article-title: Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition publication-title: Plant Soil – volume-title: The iron oxides year: 2003 ident: 814_CR22 doi: 10.1002/3527602097 – volume: 37 start-page: 57 year: 1986 ident: 814_CR98 publication-title: Geoderma doi: 10.1016/0016-7061(86)90043-1 – volume: 483 start-page: 198 year: 2012 ident: 814_CR48 publication-title: Nature doi: 10.1038/nature10855 – volume: 51 start-page: 683 year: 1986 ident: 814_CR59 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.51.4.683-689.1986 – volume: 47 start-page: 1134 year: 1997 ident: 814_CR88 publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-47-4-1134 – volume: 4 start-page: 115 year: 2005 ident: 814_CR93 publication-title: Rev Environ Sci Bio/Technol doi: 10.1007/s11157-005-2169-4 – volume: 58 start-page: 1261 year: 1994 ident: 814_CR19 publication-title: Geochimica et Cosmochimica acta doi: 10.1016/0016-7037(94)90380-8 – start-page: 37 volume-title: Iron in soils and clay minerals year: 1988 ident: 814_CR51 doi: 10.1007/978-94-009-4007-9_3 – start-page: 197 volume-title: Aquatic Surface Chemistry year: 1987 ident: 814_CR92 – volume: 241 start-page: 121 year: 2002 ident: 814_CR13 publication-title: Plant Soil doi: 10.1023/A:1016061003397 – volume: 40 start-page: 1971 year: 2008 ident: 814_CR95 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.02.017 – volume: 237 start-page: 173 year: 2001 ident: 814_CR37 publication-title: Plant Soil doi: 10.1023/A:1013351617532 – volume: 198 start-page: 61 year: 1997 ident: 814_CR94 publication-title: Sci Total Environ doi: 10.1016/S0048-9697(97)05442-9 – volume: 165 start-page: 261 year: 1994 ident: 814_CR67 publication-title: Plant Soil doi: 10.1007/BF00008069 – volume-title: The chemistry of soils year: 1989 ident: 814_CR87 – volume: 157 start-page: 1 year: 2010 ident: 814_CR45 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.009 – volume: 46 start-page: 115 year: 1989 ident: 814_CR23 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.280460204 – volume: 48 start-page: 89 year: 2004 ident: 814_CR104 publication-title: FEMS Microbiol Ecol doi: 10.1016/j.femsec.2003.12.014 – volume: 133 start-page: 1102 year: 2003 ident: 814_CR21 publication-title: Plant Physiol doi: 10.1104/pp.103.025122 – volume: 76 start-page: 2041 year: 2010 ident: 814_CR25 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02349-09 – volume: 45 start-page: 335 year: 2006 ident: 814_CR39 publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02624.x – volume: 329 start-page: 1 year: 2010 ident: 814_CR15 publication-title: Plant Soil doi: 10.1007/s11104-009-0266-9 – volume: 48 start-page: 743 year: 1994 ident: 814_CR32 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.mi.48.100194.003523 – volume: 114 start-page: 217 year: 1989 ident: 814_CR99 publication-title: Plant Soil doi: 10.1007/BF02220801 – volume: 41 start-page: 443 year: 1990 ident: 814_CR7 publication-title: J Soil Sci doi: 10.1111/j.1365-2389.1990.tb00078.x – volume: 72 start-page: 1 year: 2005 ident: 814_CR31 publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2005.03.002 – volume: 20 start-page: 857 year: 1997 ident: 814_CR74 publication-title: J Plant Nutr doi: 10.1080/01904169709365301 – volume: 1 start-page: 172 year: 1985 ident: 814_CR81 publication-title: Adv Soil Sci – volume: 21 start-page: 1 year: 2004 ident: 814_CR86 publication-title: Geomicrobiol J doi: 10.1080/01490450490253310 – volume: 292 start-page: 1360 year: 2001 ident: 814_CR63 publication-title: Science doi: 10.1126/science.1059567 – volume: 64 start-page: 225 year: 1998 ident: 814_CR36 publication-title: Adv Agron doi: 10.1016/S0065-2113(08)60506-4 – volume: 69 start-page: 621 year: 2009 ident: 814_CR71 publication-title: Plant Mol Biol doi: 10.1007/s11103-008-9443-0 – volume: 50 start-page: 155 year: 2002 ident: 814_CR90 publication-title: J Microbiol Methods doi: 10.1016/S0167-7012(02)00024-6 – volume: 130 start-page: 1 year: 1991 ident: 814_CR84 publication-title: Plant Soil doi: 10.1007/BF00011851 – volume: 51 start-page: 491 year: 2009 ident: 814_CR49 publication-title: Adv Bot Res doi: 10.1016/S0065-2296(09)51012-9 – volume: 1643 start-page: 180 year: 1999 ident: 814_CR53 publication-title: Soil Sci doi: 10.1097/00010694-199903000-00004 – volume: 63 start-page: 137 year: 1999 ident: 814_CR40 publication-title: Geochim Cosmochim Acta doi: 10.1016/S0016-7037(98)00272-5 – volume: 73 start-page: 368 year: 2001 ident: 814_CR109 publication-title: Water Environ Res doi: 10.2175/106143001X139399 – volume: 55 start-page: 259 year: 1991 ident: 814_CR58 publication-title: Microbiol Rev doi: 10.1128/MMBR.55.2.259-287.1991 – volume: 94 start-page: 1 year: 2007 ident: 814_CR30 publication-title: Adv Agron doi: 10.1016/S0065-2113(06)94001-2 – volume: 91 start-page: 112 year: 2006 ident: 814_CR11 publication-title: Adv Agron – volume: 21 start-page: 99 year: 1985 ident: 814_CR42 publication-title: Int Biodeterior – volume: 8 start-page: 1867 year: 2006 ident: 814_CR85 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2006.01141.x – volume: 325 start-page: 25 year: 2009 ident: 814_CR97 publication-title: Plant Soil doi: 10.1007/s11104-009-0069-z – volume: 260 start-page: 149 year: 2009 ident: 814_CR27 publication-title: Chem Geol doi: 10.1016/j.chemgeo.2008.08.027 – volume: 171 start-page: 61 year: 2008 ident: 814_CR44 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200700048 – volume: 106 start-page: 71 year: 1994 ident: 814_CR103 publication-title: Plant Physiol doi: 10.1104/pp.106.1.71 – volume: 17 start-page: 2069 year: 1994 ident: 814_CR28 publication-title: J Plant Nutr doi: 10.1080/01904169409364866 – volume: 28 start-page: 133 year: 2006 ident: 814_CR55 publication-title: Environ Geochem Health doi: 10.1007/s10653-005-9022-0 – volume: 54 start-page: 1472 year: 1988 ident: 814_CR60 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.54.6.1472-1480.1988 – volume: 211 start-page: 1126 year: 1981 ident: 814_CR62 publication-title: Science doi: 10.1126/science.7008198 – volume: 163 start-page: 285 year: 2000 ident: 814_CR12 publication-title: J Plant Nutr Soil Sci doi: 10.1002/1522-2624(200006)163:3<285::AID-JPLN285>3.0.CO;2-Z – volume: 70 start-page: 1945 year: 2006 ident: 814_CR24 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0343 – volume: 7 start-page: 135 year: 1984 ident: 814_CR56 publication-title: J Plant Nutr doi: 10.1080/01904168409363181 – volume: 30 start-page: 1618 year: 1996 ident: 814_CR78 publication-title: Environ Sci Technol doi: 10.1021/es9506216 – ident: 814_CR2 – volume: 69 start-page: 1861 year: 2005 ident: 814_CR105 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0002 – volume: 20 start-page: 441 year: 2007 ident: 814_CR101 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-20-4-0441 – volume: 1 start-page: 27 year: 1981 ident: 814_CR72 publication-title: Annu Rev Nutr doi: 10.1146/annurev.nu.01.070181.000331 – volume: 5 start-page: 821 year: 1982 ident: 814_CR52 publication-title: J Plant Nutr doi: 10.1080/01904168209363012 – start-page: 553 volume-title: Mineral nutrition year: 2001 ident: 814_CR69 – volume: 210 start-page: 145 year: 1999 ident: 814_CR75 publication-title: Plant Soil doi: 10.1023/A:1004329513498 – volume-title: Chemical equilibria in soils year: 1979 ident: 814_CR50 – volume: 13 start-page: 1771 issue: 8 year: 2007 ident: 814_CR35 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2007.01382.x – volume: 129 start-page: 15 year: 1980 ident: 814_CR70 publication-title: J Soil Sci doi: 10.1097/00010694-198001000-00004 – volume: 43 start-page: 3128 year: 2009 ident: 814_CR9 publication-title: Environ Sci Technol doi: 10.1021/es8036548 – volume: 63 start-page: 1405 year: 1999 ident: 814_CR106 publication-title: Geochim Cosmochim Acta doi: 10.1016/S0016-7037(99)00031-9 – volume: 35 start-page: 239 year: 1998 ident: 814_CR3 publication-title: Met Ions Biol Syst – volume: 151 start-page: 31 year: 2009 ident: 814_CR17 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.03.016 – volume: 66 start-page: 3 year: 2004 ident: 814_CR47 publication-title: Aquat Sci doi: 10.1007/s00027-003-0690-5 – volume: 30 start-page: 1275 year: 1998 ident: 814_CR66 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(98)00039-X – volume: 44 start-page: 139 year: 2003 ident: 814_CR4 publication-title: FEMS Microbiol Ecol doi: 10.1016/S0168-6496(03)00028-X – start-page: 267 volume-title: Iron in Soils, Clay Minerals year: 1988 ident: 814_CR82 doi: 10.1007/978-94-009-4007-9_11 – volume: 32 start-page: 465 year: 2009 ident: 814_CR96 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.01938.x – volume: 248 start-page: 43 year: 2003 ident: 814_CR38 publication-title: Plant Soil doi: 10.1023/A:1022371130939 – volume: 32 start-page: 453 year: 1997 ident: 814_CR1 publication-title: Clay Miner doi: 10.1180/claymin.1997.032.3.07 – volume: 40 start-page: 303 year: 2006 ident: 814_CR29 publication-title: Free Radic Res doi: 10.1080/10715760500484351 – volume: 73 start-page: 3428 year: 2007 ident: 814_CR26 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02586-06 – volume: 15 start-page: 325 year: 2002 ident: 814_CR8 publication-title: Biometals doi: 10.1023/A:1020218608266 – volume: 205 start-page: 25 year: 1998 ident: 814_CR41 publication-title: Plant Soil doi: 10.1023/A:1004356007312 – volume: 287 start-page: 223 year: 2006 ident: 814_CR14 publication-title: Plant Soil doi: 10.1007/s11104-006-9069-4 – volume-title: Iron nutrition and interactions in plants year: 1990 ident: 814_CR83 – volume: 25 start-page: 371 year: 1993 ident: 814_CR102 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(93)90136-Y – ident: 814_CR79 – volume: 48 start-page: 123 year: 2012 ident: 814_CR16 publication-title: Biol Fertil Soils doi: 10.1007/s00374-011-0653-2 – volume: 104 start-page: 815 year: 1994 ident: 814_CR33 publication-title: Plant Physiol doi: 10.1104/pp.104.3.815 – volume: 63 start-page: 131 year: 2012 ident: 814_CR43 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042811-105522 – volume: 18 start-page: 51 year: 1991 ident: 814_CR18 publication-title: Catena doi: 10.1016/0341-8162(91)90006-J – volume: 49 start-page: 219 year: 2004 ident: 814_CR61 publication-title: Adv Microb Physiol doi: 10.1016/S0065-2911(04)49005-5 – volume: 56 start-page: 65 year: 2005 ident: 814_CR107 publication-title: Eur J Soil Sci doi: 10.1111/j.1351-0754.2004.00655.x – year: 2013 ident: 814_CR108 publication-title: Plant Cell Environ – volume: 68 start-page: 3217 year: 2004 ident: 814_CR34 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2003.10.041 – volume: 66 start-page: 661 year: 2002 ident: 814_CR54 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2002.0661 – volume: 23 start-page: 1591 year: 2000 ident: 814_CR64 publication-title: J Plant Nutr doi: 10.1080/01904160009382126 – volume: 44 start-page: 522 year: 1996 ident: 814_CR46 publication-title: Clay Clay Miner doi: 10.1346/CCMN.1996.0440411 – year: 2011 ident: 814_CR10 publication-title: Geochim Cosmochim Acta – volume: 26 start-page: 23 year: 1997 ident: 814_CR73 publication-title: Biol Fertil Soils doi: 10.1007/s003740050337 – volume: 270 start-page: 16549 year: 1995 ident: 814_CR65 publication-title: J Biol Chem doi: 10.1074/jbc.270.28.16549 – volume: 41 start-page: 126 year: 1995 ident: 814_CR76 publication-title: Can J Microbiol doi: 10.1139/m95-017 – volume: 99 start-page: 83 year: 2008 ident: 814_CR77 publication-title: Adv Agron – volume: 94 start-page: 201 year: 2000 ident: 814_CR100 publication-title: Geoderma doi: 10.1016/S0016-7061(98)00139-6 – start-page: 1 volume-title: Soil organic matter year: 1978 ident: 814_CR80 doi: 10.1016/S0166-2481(08)70016-3 – start-page: 496 volume-title: Humus chemistry: genesis, composition, reactions year: 1994 ident: 814_CR89 – volume: 165 start-page: 275 year: 1994 ident: 814_CR68 publication-title: Plant Soil doi: 10.1007/BF00008070 – volume: 76 start-page: 1246 year: 2012 ident: 814_CR20 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2011.0393 – volume: 44 start-page: 15 year: 2010 ident: 814_CR6 publication-title: Environ Sci Technol doi: 10.1021/es9026248 – volume: 4 start-page: 5 year: 1991 ident: 814_CR57 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-4-005 – volume: 74 start-page: 2145 year: 2002 ident: 814_CR91 publication-title: Pure Appl Chem doi: 10.1351/pac200274112145 – volume: 43 start-page: 4902 year: 2009 ident: 814_CR5 publication-title: Environ Sci Technol doi: 10.1021/es900179s |
SSID | ssj0037161 |
Score | 2.537294 |
SecondaryResourceType | review_article |
Snippet | PURPOSE: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils.... Purpose The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils.... The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils. In soil,... Purpose: The rationale of this paper is to review the state of the art regarding the biotic and abiotic reactions that can influence Fe availability in soils.... |
SourceID | proquest crossref springer fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 538 |
SubjectTerms | analytical methods bacteria Bioavailability biochemical pathways Carbon cycle Carbon sequestration Earth and Environmental Science Environ Risk Assess Environment Environmental Physics Flavonoids Geochemistry Iron Metabolites Microorganisms Mineralogy Minerals Organic acids organic acids and salts oxides phytosiderophores plant exudates Plant growth Plant nutrition Redox reactions Sec 2 • Global Change soil Soil biology Soil chemistry soil ecology Soil microorganisms soil minerals Soil Science & Conservation Soil sciences Soils Solubility Sustainable Land Use • Review Article |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x7gUeEJ9ax0BG4glm4Y80cXlBY1o1ITEhoNLeLMd2UKWSdE2HxP567hJnY5Poa-Ikzp19dz_b9zuAN6r0Mc8zyb12gWeIMbgTwnNX6tw4U0rdMTF9OctP59nn88l5WnBr07HKwSZ2hjo0ntbI32Mkj8Gg1jL_uLrgVDWKdldTCY0d2EUTbMwIdj-dnH39NthijWigg1zodhE0CzPsa3bJcxK7w7vqBkZm_OqWZ9qpXHMr6LyzT9q5n9kjeJjiRnbUK_ox3Iv1E3hw9HOduDPiU5j36_ysqRnlrjH32y2WPQ33H7aoWdsslh8Y8UOs-2wG1lRsFtmvRcc83R6y1ZJOxRwyVwe8ShRNsX0G89nJj-NTnqomcIdgZ8NjMCGGKUb-E-OFKmPmihArFYUXoTBaamcmKphKTUPlnZcyqhJREHp2IpcX-jmM6qaOe8Ckc2bqo64qU2YxILgKocrzQnhaNyrUGMQgMesTpThVtljaGzJkErJFIVsSsr0aw9vrR1Y9n8a2xnuoButQlq2df1eEBsmKmGI6hoNBNzbNutbejJExvL6-jfOFNkFcHZtLbDOh7GPEcWpbG4pr0A3ge94Nev_nM__r7_72Tr2A-_QL_Qm2Axht1pfxJYY0m_JVGrd_ARKe8AM priority: 102 providerName: ProQuest |
Title | Review on iron availability in soil: interaction of Fe minerals, plants, and microbes |
URI | https://link.springer.com/article/10.1007/s11368-013-0814-z https://www.proquest.com/docview/1498823316 https://www.proquest.com/docview/1505338622 https://www.proquest.com/docview/1524159116 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuNADamkrFigyEqeCJT_ycLhtq90iEAhBI8EpcmwHrbQkaLMgwa9nnAcU1CL1FCkZO8lM4pnP4_kMsCty46Io4NRIbWmAGINqxgzVuYyUVjmXDRPTyWl0mAZHl-FlV8dd96vd-5RkM1K_FLtxbE6b3QgUD-jjIiyHCN39Oq5UDPvhVyIAaFAWeloUZqpPZf6ti1fOaLHQ1as4801qtPE444-w2oWKZNja9hMsuHINPgyvZx1dhvsMaTu1T6qS-HI1ou_1ZNoybz-QSUnqajI9IJ4SYtYWMJCqIGNHbiYN2XS9T26nfiHMPtGlxbOelcnVXyAdj37_PKTdRglUI76ZU2eVdTbBYD9UhoncBTq2rhCOGWZjJbnUKhRWFSKxhdGGcydyBD7ozD2fPJNfYamsSrcOhGutEuNkUag8cBbxlLVFFMXM-KmiWAyA9RrLTMci7jezmGYv_MdeyRkqOfNKzh4H8P25yW1LofGe8DqaIdOoyzpLL4QHgH7gUHEygK3eNln3o9WIXBLECFLyaAA7z5fxF_F5D1266g5lQl9wjNBNvCfjQxkc-bGfvd7uf9zmX8-78V_Sm7Di36hdw7YFS_PZnfuGQc0834bl4a-r4xEef4xOz863m4_6CSLF7tA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB616QE4IJ5qoICR4AK18NqbjYOEUIFGKW0jBI3Um_HaXhQp7IZsCmp_FL-RmX20FIncet31eu3xY-bzeL4BeCZTF5IkjrhT1vMYMQa3QjhuU5Voq9NIVUxMh-NkNIk_HveO1-B3GwtD1yrbPbHaqH3h6Iz8FVryaAwqFSVv5z84ZY0i72qbQqOeFvvh9BdCtvLN3gcc3-dSDneP3o94k1WAWwQDSx689sEP0DLuaSdkGmLb9yGTQTjh-1pFyuqe9DqTA58566IoyBRRAmo-Il8XCutdh41YJUJ2YOPd7vjT53bvV4g-KoiHah5ButCtH7UK1ouw-7zKpqCjmJ9d0oTrmS0uGbn_-GUrdTe8BTcbO5Xt1BPrNqyF_A7c2Pm2aLg6wl2Y1H4FVuSMYuWY_Wmns5r2-5RNc1YW09lrRnwUizp6ghUZGwb2fVoxXZfbbD6jWzjbzOYenxIlVCjvweRK5HkfOnmRh01gkbV64ILKMp3GwSOY8z5Lkr5wdE7Vl10QrcSMayjMKZPGzFyQL5OQDQrZkJDNWRdenH8yr_k7VhXexGEwFmVZmskXSeiTdi3dH3Rhqx0b06zy0lzMyS48PX-N65OcLjYPxQmW6VG0M-JGuaoM2VGodrCel-24__Wb_7X3wepGPYFro6PDA3OwN95_CNepO_XtuS3oLBcn4RGaU8v0cTOHGXy96mXzB8E1LR8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_AkRh9IH6GQ9Q10RdlQ7vba_dMjEHhAqIXol7C27rd3ZJLzva4HhD40_zrnOkHiIn3xmu73bazHzO_nZnfALwSqfVxHIXcSuN4hBiDmyCw3KQyVkaloayYmL4O471R9Pmod7QEv9tcGAqrbPfEaqN2haUz8i205NEYlDKMt7ImLOJwZ_BhesKpghR5WttyGvUUOfAX5wjfyvf7OzjWr4UY7P74tMebCgPcIDCYc--U866PVnJP2UCkPjKJ85nwgQ1comQojeoJpzLRd5k1Ngy9SBExoBYkIvZAYr_LsJIQKurAysfd4eG3Vg9IRCIV3EOVj4A9UK1PtUrcC1EUvKqsoMKIX97QisuZKW4YvP_4aCvVN7gPq43NyrbrSfYAlnz-EO5tH88a3g7_CEa1j4EVOaO8OWbOzHhSU4BfsHHOymI8eceIm2JWZ1KwImMDz36NK9brcpNNJxSRs8lM7vAq0UP58jGMbkWeT6CTF7lfAxYao_rWyyxTaeQdAjvnsjhOAktnVonoQtBKTNuGzpyqakz0NREzCVmjkDUJWV924c3VI9Oay2NR4zUcBm1QlqUefReERGkHU0m_Cxvt2OhmxZf6en524eXVbVyr5IAxuS9OsU2PMp8RQ4pFbcimQhWE_bxtx_2v1_zve9cXf9QLuIPLRX_ZHx48hbv0N3Ug3QZ05rNT_wwtq3n6vJnCDH7e9qr5A_CEMVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+iron+availability+in+soil%3A+interaction+of+Fe+minerals%2C+plants%2C+and+microbes&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Colombo%2C+Claudio&rft.au=Palumbo%2C+Giuseppe&rft.au=He%2C+Ji-Zheng&rft.au=Pinton%2C+Roberto&rft.date=2014-03-01&rft.pub=Springer-Verlag&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=14&rft.issue=3&rft.spage=538&rft.epage=548&rft_id=info:doi/10.1007%2Fs11368-013-0814-z&rft.externalDocID=US201400051879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon |