Direct Visualization of Arsenic Binding on Green Rust Sulfate
“Green rust” (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interacti...
Saved in:
Published in | Environmental science & technology Vol. 54; no. 6; pp. 3297 - 3305 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | “Green rust” (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM–EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes. In the As(III)-reacted GR sulfate, no secondary Fe–As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As(V)-reacted GR sulfate and acts as an additional immobilization pathway for As(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As–GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments. |
---|---|
AbstractList | “Green rust” (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM–EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes. In the As(III)-reacted GR sulfate, no secondary Fe–As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As(V)-reacted GR sulfate and acts as an additional immobilization pathway for As(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As–GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments. "Green rust" (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM–EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes. In the As(III)-reacted GR sulfate, no secondary Fe–As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As(V)-reacted GR sulfate and acts as an additional immobilization pathway for As(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As–GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments. "Green rust" (GR), a redox-active Fe(II)-Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM-EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear ( C) inner-sphere surface complexes. In the As(III)-reacted GR sulfate, no secondary Fe-As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As(V)-reacted GR sulfate and acts as an additional immobilization pathway for As(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As-GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments. |
Author | Benning, Liane G Tobler, Dominique J Brown, Andy P S’ari, Mark H. Perez, Jeffrey Paulo Freeman, Helen M van Genuchten, Case M Dideriksen, Knud |
AuthorAffiliation | University of Leeds Geological Survey of Denmark and Greenland (GEUS) Freie Universität Berlin Nano-Science Center, Department of Chemistry School of Earth and Environment University of Copenhagen Department of Earth Sciences School of Chemical and Process Engineering Utrecht University |
AuthorAffiliation_xml | – name: Freie Universität Berlin – name: University of Leeds – name: Department of Earth Sciences – name: School of Chemical and Process Engineering – name: University of Copenhagen – name: Geological Survey of Denmark and Greenland (GEUS) – name: Utrecht University – name: Nano-Science Center, Department of Chemistry – name: School of Earth and Environment |
Author_xml | – sequence: 1 givenname: Jeffrey Paulo orcidid: 0000-0002-0256-0576 surname: H. Perez fullname: H. Perez, Jeffrey Paulo email: jpperez@gfz-potsdam.de organization: Freie Universität Berlin – sequence: 2 givenname: Helen M surname: Freeman fullname: Freeman, Helen M organization: School of Chemical and Process Engineering – sequence: 3 givenname: Andy P surname: Brown fullname: Brown, Andy P organization: School of Chemical and Process Engineering – sequence: 4 givenname: Case M orcidid: 0000-0002-6697-0697 surname: van Genuchten fullname: van Genuchten, Case M organization: Utrecht University – sequence: 5 givenname: Knud surname: Dideriksen fullname: Dideriksen, Knud organization: University of Copenhagen – sequence: 6 givenname: Mark surname: S’ari fullname: S’ari, Mark organization: School of Chemical and Process Engineering – sequence: 7 givenname: Dominique J orcidid: 0000-0001-8532-1855 surname: Tobler fullname: Tobler, Dominique J organization: University of Copenhagen – sequence: 8 givenname: Liane G surname: Benning fullname: Benning, Liane G organization: University of Leeds |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32078305$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1608399$$D View this record in Osti.gov |
BookMark | eNp1kEtLAzEUhYNUbH2s3cmgG0Gm3iTzSBYutGoVBMEX7kImk9GUaaLJzEJ_vSmtXQhyF4HLd849OdtoYJ3VCO1jGGMg-FSqMNahG_MKSuBkA41wTiDNWY4HaASAacpp8TpE2yHMAIBQYFtoSAmUjEI-QmeXxmvVJS8m9LI137IzziauSc590Nao5MLY2ti3JG6nXmubPPShSx77tpGd3kWbjWyD3lu9O-j5-uppcpPe3U9vJ-d3qcx43qV1zMqrjJGaxsuqVqxpalpWGGqqgfGGSAVFRZoMOK3zTMecOQbKSkIoKUu6gw6Xvi50RgRlOq3elbM2Rhe4AEY5j9DxEvrw7rOPrYi5CUq3rbTa9UEQWmKcFXEievQHnbne2_iFSDECRczLInW6pJR3IXjdiA9v5tJ_CQxiUb-I9YuFelV_VBysfPtqrus1_9t3BE6WwEK5vvmf3Q99d45m |
CitedBy_id | crossref_primary_10_1016_j_jes_2021_01_028 crossref_primary_10_1186_s12932_022_00080_y crossref_primary_10_1016_j_jhazmat_2020_123327 crossref_primary_10_1016_j_gr_2021_11_009 crossref_primary_10_1016_j_envpol_2022_119205 crossref_primary_10_1039_D1EN00384D crossref_primary_10_1155_2022_7921550 crossref_primary_10_1246_cl_230060 crossref_primary_10_1016_j_watres_2023_120180 crossref_primary_10_1039_D3EM00458A crossref_primary_10_1016_j_chemgeo_2022_121124 crossref_primary_10_1016_j_chemgeo_2024_121921 crossref_primary_10_1016_j_gca_2022_09_008 crossref_primary_10_1016_j_jhazmat_2022_128274 crossref_primary_10_1021_acsearthspacechem_0c00272 crossref_primary_10_1016_j_seppur_2021_118531 crossref_primary_10_1021_acs_est_1c01442 crossref_primary_10_1016_j_envres_2024_119239 crossref_primary_10_1021_acsami_3c10999 crossref_primary_10_3390_soilsystems4040068 crossref_primary_10_1016_j_jhazmat_2020_124924 crossref_primary_10_1016_j_cej_2021_129183 crossref_primary_10_1016_j_jes_2022_10_004 crossref_primary_10_1016_j_ecoenv_2021_112003 crossref_primary_10_1016_j_scitotenv_2020_144279 crossref_primary_10_1016_j_chemgeo_2021_120321 crossref_primary_10_1016_j_cej_2023_143294 |
Cites_doi | 10.1016/j.gca.2012.07.007 10.1016/j.jwpe.2018.10.014 10.1515/ract-2013-2105 10.1016/j.jhazmat.2013.10.009 10.1021/acs.estlett.8b00259 10.1021/acs.chemrev.7b00224 10.1130/G45501.1 10.1016/j.egypro.2018.07.023 10.1016/j.gca.2013.01.017 10.1016/j.scitotenv.2018.08.163 10.1021/es8011047 10.1039/C9EM00267G 10.1016/j.chemgeo.2008.06.036 10.1021/acs.est.7b02233 10.1002/zaac.201500181 10.1021/es200299f 10.2183/pjab1945.30.318 10.2113/gselements.2.2.71 10.1016/S0016-7037(96)00381-X 10.1016/S0883-2927(02)00018-5 10.1016/j.envint.2018.07.040 10.3390/soilsystems2040058 10.1021/es0208409 10.1021/es901627e 10.1107/S1600577515017786 10.1016/S0016-7037(00)00593-7 10.1021/ic9022695 10.3390/min8050207 10.2136/sssaj2006.0023 10.1021/acs.est.6b04315 10.1016/S0016-7037(03)00237-0 10.1021/acsearthspacechem.9b00031 10.1021/acs.est.6b05335 10.1023/A:1010802508927 10.1021/es050889p 10.1016/j.jes.2018.01.029 10.1107/S0567739476001551 10.1016/S1293-2558(01)01219-5 10.1021/acs.est.7b03058 10.1238/Physica.Topical.115a01011 10.1016/j.chemgeo.2012.09.046 10.1021/bk-2005-0915.ch003 10.1071/EN13184 10.1130/G32959.1 10.1016/j.jcis.2015.02.047 10.1016/j.watres.2019.115170 10.1021/es051872+ 10.1016/j.micron.2019.02.002 10.1021/acs.est.8b06480 10.1016/S0045-6535(03)00545-9 10.1016/j.chemgeo.2016.03.001 10.1180/0026461067060360 10.1038/s41598-017-17108-4 10.1016/j.gca.2009.03.032 10.1130/G46100.1 10.1016/j.gca.2008.12.005 10.1021/ic500495a 10.1021/es990376g 10.1007/s40726-019-0102-7 10.1002/cssc.201600913 10.1021/es0110271 10.1021/es901274s |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Mar 17, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Mar 17, 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 OTOTI |
DOI | 10.1021/acs.est.9b07092 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 3305 |
ExternalDocumentID | 1608399 10_1021_acs_est_9b07092 32078305 b457884663 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH ABJNI ABQRX ADHLV ADUKH AGXLV AHGAQ CGR CUPRZ CUY CVF ECM EIF GGK MS~ MW2 NPM XSW ZCA AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 ABFRP AGHSJ OTOTI |
ID | FETCH-LOGICAL-a495t-d1029b482d3320cdc8ffd37b10d3e089f2ac06b2f4093d54e0235103872232773 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Mon Mar 25 05:13:57 EDT 2024 Fri Aug 16 04:24:23 EDT 2024 Thu Oct 10 19:42:36 EDT 2024 Fri Dec 06 01:05:23 EST 2024 Sat Sep 28 08:28:48 EDT 2024 Thu Aug 27 22:06:32 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a495t-d1029b482d3320cdc8ffd37b10d3e089f2ac06b2f4093d54e0235103872232773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-06CH11357 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0001-8532-1855 0000-0002-6697-0697 0000-0002-0256-0576 0000000185321855 0000000266970697 0000000202560576 |
OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b07092 |
PMID | 32078305 |
PQID | 2382060298 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1608399 proquest_miscellaneous_2371146464 proquest_journals_2382060298 crossref_primary_10_1021_acs_est_9b07092 pubmed_primary_32078305 acs_journals_10_1021_acs_est_9b07092 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-17 |
PublicationDateYYYYMMDD | 2020-03-17 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 Su C. (ref24/cit24) 2005; 915 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 Kelly S. D. (ref64/cit64) 2008 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref58/cit58 doi: 10.1016/j.gca.2012.07.007 – ident: ref23/cit23 doi: 10.1016/j.jwpe.2018.10.014 – ident: ref49/cit49 doi: 10.1515/ract-2013-2105 – ident: ref65/cit65 doi: 10.1016/j.jhazmat.2013.10.009 – ident: ref35/cit35 doi: 10.1021/acs.estlett.8b00259 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.7b00224 – ident: ref9/cit9 doi: 10.1130/G45501.1 – ident: ref43/cit43 doi: 10.1016/j.egypro.2018.07.023 – ident: ref14/cit14 doi: 10.1016/j.gca.2013.01.017 – ident: ref25/cit25 doi: 10.1016/j.scitotenv.2018.08.163 – ident: ref19/cit19 – ident: ref7/cit7 doi: 10.1021/es8011047 – start-page: 387 volume-title: Methods of Soil Analysis Part 5—Mineralogical Methods year: 2008 ident: ref64/cit64 contributor: fullname: Kelly S. D. – ident: ref26/cit26 doi: 10.1039/C9EM00267G – ident: ref28/cit28 doi: 10.1016/j.chemgeo.2008.06.036 – ident: ref37/cit37 doi: 10.1021/acs.est.7b02233 – ident: ref51/cit51 doi: 10.1002/zaac.201500181 – ident: ref39/cit39 doi: 10.1021/es200299f – ident: ref52/cit52 doi: 10.2183/pjab1945.30.318 – ident: ref18/cit18 doi: 10.2113/gselements.2.2.71 – ident: ref5/cit5 doi: 10.1016/S0016-7037(96)00381-X – ident: ref20/cit20 doi: 10.1016/S0883-2927(02)00018-5 – ident: ref21/cit21 doi: 10.1016/j.envint.2018.07.040 – ident: ref15/cit15 doi: 10.3390/soilsystems2040058 – ident: ref16/cit16 doi: 10.1021/es0208409 – ident: ref29/cit29 doi: 10.1021/es901627e – ident: ref46/cit46 doi: 10.1107/S1600577515017786 – ident: ref27/cit27 doi: 10.1016/S0016-7037(00)00593-7 – ident: ref40/cit40 doi: 10.1021/ic9022695 – ident: ref54/cit54 doi: 10.3390/min8050207 – ident: ref47/cit47 doi: 10.2136/sssaj2006.0023 – ident: ref38/cit38 doi: 10.1021/acs.est.6b04315 – ident: ref30/cit30 doi: 10.1016/S0016-7037(03)00237-0 – ident: ref32/cit32 doi: 10.1021/acsearthspacechem.9b00031 – ident: ref33/cit33 doi: 10.1021/acs.est.6b05335 – ident: ref6/cit6 doi: 10.1023/A:1010802508927 – ident: ref63/cit63 doi: 10.1021/es050889p – ident: ref36/cit36 doi: 10.1016/j.jes.2018.01.029 – ident: ref62/cit62 doi: 10.1107/S0567739476001551 – ident: ref42/cit42 doi: 10.1016/S1293-2558(01)01219-5 – ident: ref59/cit59 doi: 10.1021/acs.est.7b03058 – ident: ref48/cit48 doi: 10.1238/Physica.Topical.115a01011 – ident: ref11/cit11 doi: 10.1016/j.chemgeo.2012.09.046 – volume: 915 start-page: 25 volume-title: Advances in Arsenic Research year: 2005 ident: ref24/cit24 doi: 10.1021/bk-2005-0915.ch003 contributor: fullname: Su C. – ident: ref13/cit13 doi: 10.1071/EN13184 – ident: ref45/cit45 – ident: ref8/cit8 doi: 10.1130/G32959.1 – ident: ref60/cit60 doi: 10.1016/j.jcis.2015.02.047 – ident: ref31/cit31 doi: 10.1016/j.watres.2019.115170 – ident: ref53/cit53 doi: 10.1021/es051872+ – ident: ref44/cit44 doi: 10.1016/j.micron.2019.02.002 – ident: ref57/cit57 doi: 10.1021/acs.est.8b06480 – ident: ref4/cit4 doi: 10.1016/S0045-6535(03)00545-9 – ident: ref41/cit41 doi: 10.1016/j.chemgeo.2016.03.001 – ident: ref12/cit12 doi: 10.1180/0026461067060360 – ident: ref56/cit56 doi: 10.1038/s41598-017-17108-4 – ident: ref2/cit2 doi: 10.1016/j.gca.2009.03.032 – ident: ref10/cit10 doi: 10.1130/G46100.1 – ident: ref34/cit34 doi: 10.1016/j.gca.2008.12.005 – ident: ref3/cit3 doi: 10.1021/ic500495a – ident: ref17/cit17 doi: 10.1021/es990376g – ident: ref22/cit22 doi: 10.1007/s40726-019-0102-7 – ident: ref50/cit50 doi: 10.1002/cssc.201600913 – ident: ref55/cit55 doi: 10.1021/es0110271 – ident: ref61/cit61 doi: 10.1021/es901274s |
SSID | ssj0002308 |
Score | 2.5137725 |
Snippet | “Green rust” (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As)... "Green rust" (GR), a redox-active Fe(II)-Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As)... "Green rust" (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As)... |
SourceID | osti proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3297 |
SubjectTerms | Absorption spectroscopy Adsorption Arsenates Arsenic Binding Distribution functions Energy dispersive X ray spectroscopy Ferric Compounds Fine structure Green rust Image resolution Immobilization Iron Mapping Morphology pH effects Phases Scanning transmission electron microscopy Spectrum analysis Substrates Sulfates Surface chemistry Transmission electron microscopy Ultrastructure X ray absorption X-Ray Absorption Spectroscopy |
Title | Direct Visualization of Arsenic Binding on Green Rust Sulfate |
URI | http://dx.doi.org/10.1021/acs.est.9b07092 https://www.ncbi.nlm.nih.gov/pubmed/32078305 https://www.proquest.com/docview/2382060298 https://search.proquest.com/docview/2371146464 https://www.osti.gov/biblio/1608399 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ6Y9aIH36u4ajDZgxdWaIHCwYOaNcZED66avRFa2mSjYY3AxV_vDLC7PmI03EpT6HQ6_SYz8xWgHxGniUTkhgrsooMS-E6ccun4KlA6Eob5dVXa7V14_ejfjIPxgiz6ewSfeaepKgZoIAexRO2M0douM4HON6Ggy9Hc6CKSjmaXFcQ8HM9ZfH4MQMeQKr4cQ50pbqffIWZ91FytN0laRc1QSBkmz4OqlAP1_pO_8e9ZbMBaCzjt80ZDNmFJ51uw-omGcAu6w0W1G3Ztt3uxDWeNQbSfJgXVXjYVm_bU4GiFzifKvpjURTE2ttYJPPZ9VZT2qHoxCGF34PFq-HB57bT3LTgpukmlk-GfxtKPWMY5c1WmImMyLqTnZly7UWxYqtxQMoM-Ic8CXxNXDhGsC8QYTAjehU4-zfUe2Fx6odA-97XMEPKoNEBkWcdIvcwTxljQR4kk7X4pkjoUzryEGlFMSSsmC05mq5S8Nuwbv3ft0SomCByI_VZRmpAqEy9EjBnHFhzMFnfxUUQrzA2Jg96C4_lr3F4UM0lzPa2oj6C6bXws2G2UYv4nKCQRob3c_99kerDCyFmnZEBxAJ3yrdKHiGhKeVTr8gcHHuv7 |
link.rule.ids | 230,314,780,784,885,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5VB6gJZngEKQOPSSbWIncXLgQBFoaQGJ8tDeotixpRUoi0hy4dcz42SzfQipKDfHcib2zPgbeeYzwGFCnCYSkRsqsI8BShR6ac6lF6pI6UQYFtqqtMureHQX_hhH4wXwZ7UwKESFI1X2EH_OLhB8ozb0k8NUopKm6HQXI7qwksDQyU3vexFQJ7M7C1Iej3syn38GoN1IVX_sRoMpWtXbSNPuOGcrcN3LahNNHoZNLYfq5S8ax_f8zCdY7uCne9zqy2dY0OUqfPyNlHAVNk7ntW_YtTP-ag2OWvfo3k8qqsRs6zfdqcHRKl1OlPt9YktkXGy16Tzur6aq3Zvm0SCgXYe7s9Pbk5HX3b7g5Rg01V6BkqYyTFjBOfNVoRJjCi5k4Bdc-0lqWK78WDKDESIvolATcw7RrQtEHEwIvgGDclrqLXC5DGKhQx5qWSAAUnmEONOemAZFIIxx4BBnJOusp8rswTgLMmrEacq6aXLg62yxsqeWi-Ptrju0mBnCCOLCVZQ0pOosiBFxpqkDu7M1nn8UsQvzY2Kkd-Cgf43GRicoeamnDfURVMWNjwObrW70kuAkiQS95_b__cw-fBjdXl5kF-dXP3dgiVEYT2mCYhcG9XOjvyDWqeWeVe9XKF_0aA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hRUJwKKXQkj4gSD1wyZLYSZwceljarpZHq4qyaG9R_JJWVNmqSS78emacbFqKKoFycyxnbM-MP2tmvgAcZsRpIhG5oQKHeEFJ4iAvuQxilSiTCctiV5V2dp7O5vHnRbLoi8KoFgaFqHGk2gXxyaqvte0ZBqIP1I6-cpxLVNQcHe_jBH0tJXJNji8H_4ugOlv_tyDn6WIg9PlrADqRVP3HiTRaoWU9jDbdqTN9DvNBXpds8nPcNnKsft2jcvzfCW3CRg9D_UmnNy_gkam24NkdcsIt2D69rYHDrr0TqF_CUecm_R_LmioyuzpOf2VxtNpUS-V_XLpSGR9bXVqP_62tG_-yvbIIbF_BfHr6_XgW9H9hCEq8PDWBRklzGWdMc85CpVVmreZCRqHmJsxyy0oVppJZvClyncSGGHSIdl0g8mBC8G0YVavKvAafyygVJuaxkRqBkCoTxJsuchrpSFjrwSGuSNFbUV24ADmLCmrEZSr6ZfLg_XrDiuuOk-Phrnu0oQXCCeLEVZQ8pJoiShF55rkH--t9vv0oYhgWpsRM78G74TUaHUVSysqsWuojqJobHw92Ov0YJMFFEhl60d1_m8xbeHJxMi2-fjr_sgdPGd3mKVtQ7MOouWnNAUKeRr5xGv4bPGv26w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Visualization+of+Arsenic+Binding+on+Green+Rust+Sulfate&rft.jtitle=Environmental+science+%26+technology&rft.au=H+Perez%2C+Jeffrey+Paulo&rft.au=Freeman%2C+Helen+M&rft.au=Brown%2C+Andy+P&rft.au=van+Genuchten%2C+Case+M&rft.date=2020-03-17&rft.eissn=1520-5851&rft.volume=54&rft.issue=6&rft.spage=3297&rft.epage=3305&rft_id=info:doi/10.1021%2Facs.est.9b07092&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |