Direct Visualization of Arsenic Binding on Green Rust Sulfate

“Green rust” (GR), a redox-active Fe­(II)–Fe­(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interacti...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 54; no. 6; pp. 3297 - 3305
Main Authors H. Perez, Jeffrey Paulo, Freeman, Helen M, Brown, Andy P, van Genuchten, Case M, Dideriksen, Knud, S’ari, Mark, Tobler, Dominique J, Benning, Liane G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract “Green rust” (GR), a redox-active Fe­(II)–Fe­(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As­(III) and As­(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM–EDX data revealed that the preferred adsorption sites of both As­(III) and As­(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes. In the As­(III)-reacted GR sulfate, no secondary Fe–As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As­(V)-reacted GR sulfate and acts as an additional immobilization pathway for As­(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As–GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments.
AbstractList “Green rust” (GR), a redox-active Fe­(II)–Fe­(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As­(III) and As­(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM–EDX data revealed that the preferred adsorption sites of both As­(III) and As­(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes. In the As­(III)-reacted GR sulfate, no secondary Fe–As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As­(V)-reacted GR sulfate and acts as an additional immobilization pathway for As­(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As–GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments.
"Green rust" (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM–EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes. In the As(III)-reacted GR sulfate, no secondary Fe–As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As(V)-reacted GR sulfate and acts as an additional immobilization pathway for As(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As–GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments.
"Green rust" (GR), a redox-active Fe(II)-Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM-EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear ( C) inner-sphere surface complexes. In the As(III)-reacted GR sulfate, no secondary Fe-As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As(V)-reacted GR sulfate and acts as an additional immobilization pathway for As(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As-GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments.
Author Benning, Liane G
Tobler, Dominique J
Brown, Andy P
S’ari, Mark
H. Perez, Jeffrey Paulo
Freeman, Helen M
van Genuchten, Case M
Dideriksen, Knud
AuthorAffiliation University of Leeds
Geological Survey of Denmark and Greenland (GEUS)
Freie Universität Berlin
Nano-Science Center, Department of Chemistry
School of Earth and Environment
University of Copenhagen
Department of Earth Sciences
School of Chemical and Process Engineering
Utrecht University
AuthorAffiliation_xml – name: Freie Universität Berlin
– name: University of Leeds
– name: Department of Earth Sciences
– name: School of Chemical and Process Engineering
– name: University of Copenhagen
– name: Geological Survey of Denmark and Greenland (GEUS)
– name: Utrecht University
– name: Nano-Science Center, Department of Chemistry
– name: School of Earth and Environment
Author_xml – sequence: 1
  givenname: Jeffrey Paulo
  orcidid: 0000-0002-0256-0576
  surname: H. Perez
  fullname: H. Perez, Jeffrey Paulo
  email: jpperez@gfz-potsdam.de
  organization: Freie Universität Berlin
– sequence: 2
  givenname: Helen M
  surname: Freeman
  fullname: Freeman, Helen M
  organization: School of Chemical and Process Engineering
– sequence: 3
  givenname: Andy P
  surname: Brown
  fullname: Brown, Andy P
  organization: School of Chemical and Process Engineering
– sequence: 4
  givenname: Case M
  orcidid: 0000-0002-6697-0697
  surname: van Genuchten
  fullname: van Genuchten, Case M
  organization: Utrecht University
– sequence: 5
  givenname: Knud
  surname: Dideriksen
  fullname: Dideriksen, Knud
  organization: University of Copenhagen
– sequence: 6
  givenname: Mark
  surname: S’ari
  fullname: S’ari, Mark
  organization: School of Chemical and Process Engineering
– sequence: 7
  givenname: Dominique J
  orcidid: 0000-0001-8532-1855
  surname: Tobler
  fullname: Tobler, Dominique J
  organization: University of Copenhagen
– sequence: 8
  givenname: Liane G
  surname: Benning
  fullname: Benning, Liane G
  organization: University of Leeds
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32078305$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1608399$$D View this record in Osti.gov
BookMark eNp1kEtLAzEUhYNUbH2s3cmgG0Gm3iTzSBYutGoVBMEX7kImk9GUaaLJzEJ_vSmtXQhyF4HLd849OdtoYJ3VCO1jGGMg-FSqMNahG_MKSuBkA41wTiDNWY4HaASAacpp8TpE2yHMAIBQYFtoSAmUjEI-QmeXxmvVJS8m9LI137IzziauSc590Nao5MLY2ti3JG6nXmubPPShSx77tpGd3kWbjWyD3lu9O-j5-uppcpPe3U9vJ-d3qcx43qV1zMqrjJGaxsuqVqxpalpWGGqqgfGGSAVFRZoMOK3zTMecOQbKSkIoKUu6gw6Xvi50RgRlOq3elbM2Rhe4AEY5j9DxEvrw7rOPrYi5CUq3rbTa9UEQWmKcFXEievQHnbne2_iFSDECRczLInW6pJR3IXjdiA9v5tJ_CQxiUb-I9YuFelV_VBysfPtqrus1_9t3BE6WwEK5vvmf3Q99d45m
CitedBy_id crossref_primary_10_1016_j_jes_2021_01_028
crossref_primary_10_1186_s12932_022_00080_y
crossref_primary_10_1016_j_jhazmat_2020_123327
crossref_primary_10_1016_j_gr_2021_11_009
crossref_primary_10_1016_j_envpol_2022_119205
crossref_primary_10_1039_D1EN00384D
crossref_primary_10_1155_2022_7921550
crossref_primary_10_1246_cl_230060
crossref_primary_10_1016_j_watres_2023_120180
crossref_primary_10_1039_D3EM00458A
crossref_primary_10_1016_j_chemgeo_2022_121124
crossref_primary_10_1016_j_chemgeo_2024_121921
crossref_primary_10_1016_j_gca_2022_09_008
crossref_primary_10_1016_j_jhazmat_2022_128274
crossref_primary_10_1021_acsearthspacechem_0c00272
crossref_primary_10_1016_j_seppur_2021_118531
crossref_primary_10_1021_acs_est_1c01442
crossref_primary_10_1016_j_envres_2024_119239
crossref_primary_10_1021_acsami_3c10999
crossref_primary_10_3390_soilsystems4040068
crossref_primary_10_1016_j_jhazmat_2020_124924
crossref_primary_10_1016_j_cej_2021_129183
crossref_primary_10_1016_j_jes_2022_10_004
crossref_primary_10_1016_j_ecoenv_2021_112003
crossref_primary_10_1016_j_scitotenv_2020_144279
crossref_primary_10_1016_j_chemgeo_2021_120321
crossref_primary_10_1016_j_cej_2023_143294
Cites_doi 10.1016/j.gca.2012.07.007
10.1016/j.jwpe.2018.10.014
10.1515/ract-2013-2105
10.1016/j.jhazmat.2013.10.009
10.1021/acs.estlett.8b00259
10.1021/acs.chemrev.7b00224
10.1130/G45501.1
10.1016/j.egypro.2018.07.023
10.1016/j.gca.2013.01.017
10.1016/j.scitotenv.2018.08.163
10.1021/es8011047
10.1039/C9EM00267G
10.1016/j.chemgeo.2008.06.036
10.1021/acs.est.7b02233
10.1002/zaac.201500181
10.1021/es200299f
10.2183/pjab1945.30.318
10.2113/gselements.2.2.71
10.1016/S0016-7037(96)00381-X
10.1016/S0883-2927(02)00018-5
10.1016/j.envint.2018.07.040
10.3390/soilsystems2040058
10.1021/es0208409
10.1021/es901627e
10.1107/S1600577515017786
10.1016/S0016-7037(00)00593-7
10.1021/ic9022695
10.3390/min8050207
10.2136/sssaj2006.0023
10.1021/acs.est.6b04315
10.1016/S0016-7037(03)00237-0
10.1021/acsearthspacechem.9b00031
10.1021/acs.est.6b05335
10.1023/A:1010802508927
10.1021/es050889p
10.1016/j.jes.2018.01.029
10.1107/S0567739476001551
10.1016/S1293-2558(01)01219-5
10.1021/acs.est.7b03058
10.1238/Physica.Topical.115a01011
10.1016/j.chemgeo.2012.09.046
10.1021/bk-2005-0915.ch003
10.1071/EN13184
10.1130/G32959.1
10.1016/j.jcis.2015.02.047
10.1016/j.watres.2019.115170
10.1021/es051872+
10.1016/j.micron.2019.02.002
10.1021/acs.est.8b06480
10.1016/S0045-6535(03)00545-9
10.1016/j.chemgeo.2016.03.001
10.1180/0026461067060360
10.1038/s41598-017-17108-4
10.1016/j.gca.2009.03.032
10.1130/G46100.1
10.1016/j.gca.2008.12.005
10.1021/ic500495a
10.1021/es990376g
10.1007/s40726-019-0102-7
10.1002/cssc.201600913
10.1021/es0110271
10.1021/es901274s
ContentType Journal Article
Copyright Copyright American Chemical Society Mar 17, 2020
Copyright_xml – notice: Copyright American Chemical Society Mar 17, 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
OTOTI
DOI 10.1021/acs.est.9b07092
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 3305
ExternalDocumentID 1608399
10_1021_acs_est_9b07092
32078305
b457884663
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
ABJNI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
MS~
MW2
NPM
XSW
ZCA
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ABFRP
AGHSJ
OTOTI
ID FETCH-LOGICAL-a495t-d1029b482d3320cdc8ffd37b10d3e089f2ac06b2f4093d54e0235103872232773
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Mon Mar 25 05:13:57 EDT 2024
Fri Aug 16 04:24:23 EDT 2024
Thu Oct 10 19:42:36 EDT 2024
Fri Dec 06 01:05:23 EST 2024
Sat Sep 28 08:28:48 EDT 2024
Thu Aug 27 22:06:32 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a495t-d1029b482d3320cdc8ffd37b10d3e089f2ac06b2f4093d54e0235103872232773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-06CH11357
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0001-8532-1855
0000-0002-6697-0697
0000-0002-0256-0576
0000000185321855
0000000266970697
0000000202560576
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b07092
PMID 32078305
PQID 2382060298
PQPubID 45412
PageCount 9
ParticipantIDs osti_scitechconnect_1608399
proquest_miscellaneous_2371146464
proquest_journals_2382060298
crossref_primary_10_1021_acs_est_9b07092
pubmed_primary_32078305
acs_journals_10_1021_acs_est_9b07092
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-03-17
PublicationDateYYYYMMDD 2020-03-17
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
Su C. (ref24/cit24) 2005; 915
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
Kelly S. D. (ref64/cit64) 2008
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref58/cit58
  doi: 10.1016/j.gca.2012.07.007
– ident: ref23/cit23
  doi: 10.1016/j.jwpe.2018.10.014
– ident: ref49/cit49
  doi: 10.1515/ract-2013-2105
– ident: ref65/cit65
  doi: 10.1016/j.jhazmat.2013.10.009
– ident: ref35/cit35
  doi: 10.1021/acs.estlett.8b00259
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.7b00224
– ident: ref9/cit9
  doi: 10.1130/G45501.1
– ident: ref43/cit43
  doi: 10.1016/j.egypro.2018.07.023
– ident: ref14/cit14
  doi: 10.1016/j.gca.2013.01.017
– ident: ref25/cit25
  doi: 10.1016/j.scitotenv.2018.08.163
– ident: ref19/cit19
– ident: ref7/cit7
  doi: 10.1021/es8011047
– start-page: 387
  volume-title: Methods of Soil Analysis Part 5—Mineralogical Methods
  year: 2008
  ident: ref64/cit64
  contributor:
    fullname: Kelly S. D.
– ident: ref26/cit26
  doi: 10.1039/C9EM00267G
– ident: ref28/cit28
  doi: 10.1016/j.chemgeo.2008.06.036
– ident: ref37/cit37
  doi: 10.1021/acs.est.7b02233
– ident: ref51/cit51
  doi: 10.1002/zaac.201500181
– ident: ref39/cit39
  doi: 10.1021/es200299f
– ident: ref52/cit52
  doi: 10.2183/pjab1945.30.318
– ident: ref18/cit18
  doi: 10.2113/gselements.2.2.71
– ident: ref5/cit5
  doi: 10.1016/S0016-7037(96)00381-X
– ident: ref20/cit20
  doi: 10.1016/S0883-2927(02)00018-5
– ident: ref21/cit21
  doi: 10.1016/j.envint.2018.07.040
– ident: ref15/cit15
  doi: 10.3390/soilsystems2040058
– ident: ref16/cit16
  doi: 10.1021/es0208409
– ident: ref29/cit29
  doi: 10.1021/es901627e
– ident: ref46/cit46
  doi: 10.1107/S1600577515017786
– ident: ref27/cit27
  doi: 10.1016/S0016-7037(00)00593-7
– ident: ref40/cit40
  doi: 10.1021/ic9022695
– ident: ref54/cit54
  doi: 10.3390/min8050207
– ident: ref47/cit47
  doi: 10.2136/sssaj2006.0023
– ident: ref38/cit38
  doi: 10.1021/acs.est.6b04315
– ident: ref30/cit30
  doi: 10.1016/S0016-7037(03)00237-0
– ident: ref32/cit32
  doi: 10.1021/acsearthspacechem.9b00031
– ident: ref33/cit33
  doi: 10.1021/acs.est.6b05335
– ident: ref6/cit6
  doi: 10.1023/A:1010802508927
– ident: ref63/cit63
  doi: 10.1021/es050889p
– ident: ref36/cit36
  doi: 10.1016/j.jes.2018.01.029
– ident: ref62/cit62
  doi: 10.1107/S0567739476001551
– ident: ref42/cit42
  doi: 10.1016/S1293-2558(01)01219-5
– ident: ref59/cit59
  doi: 10.1021/acs.est.7b03058
– ident: ref48/cit48
  doi: 10.1238/Physica.Topical.115a01011
– ident: ref11/cit11
  doi: 10.1016/j.chemgeo.2012.09.046
– volume: 915
  start-page: 25
  volume-title: Advances in Arsenic Research
  year: 2005
  ident: ref24/cit24
  doi: 10.1021/bk-2005-0915.ch003
  contributor:
    fullname: Su C.
– ident: ref13/cit13
  doi: 10.1071/EN13184
– ident: ref45/cit45
– ident: ref8/cit8
  doi: 10.1130/G32959.1
– ident: ref60/cit60
  doi: 10.1016/j.jcis.2015.02.047
– ident: ref31/cit31
  doi: 10.1016/j.watres.2019.115170
– ident: ref53/cit53
  doi: 10.1021/es051872+
– ident: ref44/cit44
  doi: 10.1016/j.micron.2019.02.002
– ident: ref57/cit57
  doi: 10.1021/acs.est.8b06480
– ident: ref4/cit4
  doi: 10.1016/S0045-6535(03)00545-9
– ident: ref41/cit41
  doi: 10.1016/j.chemgeo.2016.03.001
– ident: ref12/cit12
  doi: 10.1180/0026461067060360
– ident: ref56/cit56
  doi: 10.1038/s41598-017-17108-4
– ident: ref2/cit2
  doi: 10.1016/j.gca.2009.03.032
– ident: ref10/cit10
  doi: 10.1130/G46100.1
– ident: ref34/cit34
  doi: 10.1016/j.gca.2008.12.005
– ident: ref3/cit3
  doi: 10.1021/ic500495a
– ident: ref17/cit17
  doi: 10.1021/es990376g
– ident: ref22/cit22
  doi: 10.1007/s40726-019-0102-7
– ident: ref50/cit50
  doi: 10.1002/cssc.201600913
– ident: ref55/cit55
  doi: 10.1021/es0110271
– ident: ref61/cit61
  doi: 10.1021/es901274s
SSID ssj0002308
Score 2.5137725
Snippet “Green rust” (GR), a redox-active Fe­(II)–Fe­(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As)...
"Green rust" (GR), a redox-active Fe(II)-Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As)...
"Green rust" (GR), a redox-active Fe(II)–Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As)...
SourceID osti
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3297
SubjectTerms Absorption spectroscopy
Adsorption
Arsenates
Arsenic
Binding
Distribution functions
Energy dispersive X ray spectroscopy
Ferric Compounds
Fine structure
Green rust
Image resolution
Immobilization
Iron
Mapping
Morphology
pH effects
Phases
Scanning transmission electron microscopy
Spectrum analysis
Substrates
Sulfates
Surface chemistry
Transmission electron microscopy
Ultrastructure
X ray absorption
X-Ray Absorption Spectroscopy
Title Direct Visualization of Arsenic Binding on Green Rust Sulfate
URI http://dx.doi.org/10.1021/acs.est.9b07092
https://www.ncbi.nlm.nih.gov/pubmed/32078305
https://www.proquest.com/docview/2382060298
https://search.proquest.com/docview/2371146464
https://www.osti.gov/biblio/1608399
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ6Y9aIH36u4ajDZgxdWaIHCwYOaNcZED66avRFa2mSjYY3AxV_vDLC7PmI03EpT6HQ6_SYz8xWgHxGniUTkhgrsooMS-E6ccun4KlA6Eob5dVXa7V14_ejfjIPxgiz6ewSfeaepKgZoIAexRO2M0douM4HON6Ggy9Hc6CKSjmaXFcQ8HM9ZfH4MQMeQKr4cQ50pbqffIWZ91FytN0laRc1QSBkmz4OqlAP1_pO_8e9ZbMBaCzjt80ZDNmFJ51uw-omGcAu6w0W1G3Ztt3uxDWeNQbSfJgXVXjYVm_bU4GiFzifKvpjURTE2ttYJPPZ9VZT2qHoxCGF34PFq-HB57bT3LTgpukmlk-GfxtKPWMY5c1WmImMyLqTnZly7UWxYqtxQMoM-Ic8CXxNXDhGsC8QYTAjehU4-zfUe2Fx6odA-97XMEPKoNEBkWcdIvcwTxljQR4kk7X4pkjoUzryEGlFMSSsmC05mq5S8Nuwbv3ft0SomCByI_VZRmpAqEy9EjBnHFhzMFnfxUUQrzA2Jg96C4_lr3F4UM0lzPa2oj6C6bXws2G2UYv4nKCQRob3c_99kerDCyFmnZEBxAJ3yrdKHiGhKeVTr8gcHHuv7
link.rule.ids 230,314,780,784,885,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5VB6gJZngEKQOPSSbWIncXLgQBFoaQGJ8tDeotixpRUoi0hy4dcz42SzfQipKDfHcib2zPgbeeYzwGFCnCYSkRsqsI8BShR6ac6lF6pI6UQYFtqqtMureHQX_hhH4wXwZ7UwKESFI1X2EH_OLhB8ozb0k8NUopKm6HQXI7qwksDQyU3vexFQJ7M7C1Iej3syn38GoN1IVX_sRoMpWtXbSNPuOGcrcN3LahNNHoZNLYfq5S8ax_f8zCdY7uCne9zqy2dY0OUqfPyNlHAVNk7ntW_YtTP-ag2OWvfo3k8qqsRs6zfdqcHRKl1OlPt9YktkXGy16Tzur6aq3Zvm0SCgXYe7s9Pbk5HX3b7g5Rg01V6BkqYyTFjBOfNVoRJjCi5k4Bdc-0lqWK78WDKDESIvolATcw7RrQtEHEwIvgGDclrqLXC5DGKhQx5qWSAAUnmEONOemAZFIIxx4BBnJOusp8rswTgLMmrEacq6aXLg62yxsqeWi-Ptrju0mBnCCOLCVZQ0pOosiBFxpqkDu7M1nn8UsQvzY2Kkd-Cgf43GRicoeamnDfURVMWNjwObrW70kuAkiQS95_b__cw-fBjdXl5kF-dXP3dgiVEYT2mCYhcG9XOjvyDWqeWeVe9XKF_0aA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hRUJwKKXQkj4gSD1wyZLYSZwceljarpZHq4qyaG9R_JJWVNmqSS78emacbFqKKoFycyxnbM-MP2tmvgAcZsRpIhG5oQKHeEFJ4iAvuQxilSiTCctiV5V2dp7O5vHnRbLoi8KoFgaFqHGk2gXxyaqvte0ZBqIP1I6-cpxLVNQcHe_jBH0tJXJNji8H_4ugOlv_tyDn6WIg9PlrADqRVP3HiTRaoWU9jDbdqTN9DvNBXpds8nPcNnKsft2jcvzfCW3CRg9D_UmnNy_gkam24NkdcsIt2D69rYHDrr0TqF_CUecm_R_LmioyuzpOf2VxtNpUS-V_XLpSGR9bXVqP_62tG_-yvbIIbF_BfHr6_XgW9H9hCEq8PDWBRklzGWdMc85CpVVmreZCRqHmJsxyy0oVppJZvClyncSGGHSIdl0g8mBC8G0YVavKvAafyygVJuaxkRqBkCoTxJsuchrpSFjrwSGuSNFbUV24ADmLCmrEZSr6ZfLg_XrDiuuOk-Phrnu0oQXCCeLEVZQ8pJoiShF55rkH--t9vv0oYhgWpsRM78G74TUaHUVSysqsWuojqJobHw92Ov0YJMFFEhl60d1_m8xbeHJxMi2-fjr_sgdPGd3mKVtQ7MOouWnNAUKeRr5xGv4bPGv26w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Visualization+of+Arsenic+Binding+on+Green+Rust+Sulfate&rft.jtitle=Environmental+science+%26+technology&rft.au=H+Perez%2C+Jeffrey+Paulo&rft.au=Freeman%2C+Helen+M&rft.au=Brown%2C+Andy+P&rft.au=van+Genuchten%2C+Case+M&rft.date=2020-03-17&rft.eissn=1520-5851&rft.volume=54&rft.issue=6&rft.spage=3297&rft.epage=3305&rft_id=info:doi/10.1021%2Facs.est.9b07092&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon