Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia

Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urg...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 10; no. 1; pp. 633 - 647
Main Authors Song, Manli, Liu, Ting, Shi, Changrong, Zhang, Xiangzhong, Chen, Xiaoyuan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T 1- and T 2-MRI performance for tumor imaging and detection.
AbstractList Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T 1- and T 2-MRI performance for tumor imaging and detection.
Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T1- and T2-MRI performance for tumor imaging and detection.Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T1- and T2-MRI performance for tumor imaging and detection.
Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO 2 NPs) toward hydrogen peroxide (H 2 O 2 ) for the simultaneous production of O 2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO 2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO 2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannanconjugated MnO 2 particle (Man-HA-MnO 2 ) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1 α ) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO 2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO 2 NPs toward endogenous H 2 O 2 highly enhanced T 1 - and T 2 -MRI performance for tumor imaging and detection.
Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T1- and T2-MRI performance for tumor imaging and detection.
Author Song, Manli
Shi, Changrong
Zhang, Xiangzhong
Chen, Xiaoyuan
Liu, Ting
AuthorAffiliation State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health
Xiamen University
National Institutes of Health
Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering
AuthorAffiliation_xml – name: National Institutes of Health
– name: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health
– name: Xiamen University
– name: Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering
– name: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
– name: Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
Author_xml – sequence: 1
  givenname: Manli
  surname: Song
  fullname: Song, Manli
– sequence: 2
  givenname: Ting
  surname: Liu
  fullname: Liu, Ting
  email: tingliu20072008@yahoo.com
– sequence: 3
  givenname: Changrong
  surname: Shi
  fullname: Shi, Changrong
– sequence: 4
  givenname: Xiangzhong
  surname: Zhang
  fullname: Zhang, Xiangzhong
  email: zhangxzh@xmu.edu.cn
– sequence: 5
  givenname: Xiaoyuan
  surname: Chen
  fullname: Chen, Xiaoyuan
  email: shawn.chen@nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26650065$$D View this record in MEDLINE/PubMed
BookMark eNp9kl-P1CAUxRuzxv2jz74ZHk1Md4EWaF9MxnF1TVbdmDXxjTD0TsvYQgWq9iv5KWUzdaIm-gSBc373crin2ZF1FrLsMcHnBFNyoXSwyrpztsFciPpedkLqgue44p-ODntGjrPTEHYYM1EJ_iA7ppwzjDk7yX68ME47u5taFaFBb5VtlYUA6KVx300D6F3Cj8pHo3sI6NJ2ympA6w4GFzvwapzRBwijs8mzmdGNN4OxLbqdBufzVQhOm4WsvRs71SZKdN-UT0ck781nQDcdWBfnEZCyDVrFCHZS8UBBV_OYelEPs_tb1Qd4tKxn2cdXl7frq_z6_es369V1rsqaxbzBlQZRFZTVXAPTAm8JV6ysCaWsYJTqijLBaL2hW8EVFdCUFcE6ZcXqQpDiLHu-547TZoBGg41e9XJML1N-lk4Z-eeNNZ1s3VfJaEmLskiApwvAuy8ThCgHEzT0fUrWTUESwXFNS17xJH3ye61DkV8flAQXe0FKLwQP24OEYHk3AnIZAbmMQHKwvxzaxBSnu2vW9P_xPdv70oXcucnbFPI_1T8BDlDKOg
CitedBy_id crossref_primary_10_1126_sciadv_aaz6579
crossref_primary_10_3390_pharmaceutics16020179
crossref_primary_10_1016_j_ajps_2018_07_003
crossref_primary_10_3389_fimmu_2023_1128840
crossref_primary_10_1007_s12672_024_01186_8
crossref_primary_10_1002_adma_201904156
crossref_primary_10_1021_acsnano_8b09221
crossref_primary_10_1039_C8TB00931G
crossref_primary_10_1039_D2BM01508K
crossref_primary_10_1016_j_addr_2020_06_006
crossref_primary_10_1016_j_nantod_2020_100851
crossref_primary_10_1007_s11095_018_2480_8
crossref_primary_10_1039_D0QM00323A
crossref_primary_10_1002_adfm_201907066
crossref_primary_10_3389_fimmu_2022_1000927
crossref_primary_10_3390_ijms23031496
crossref_primary_10_1016_j_carbpol_2022_119821
crossref_primary_10_1016_j_actbio_2023_11_027
crossref_primary_10_1039_C6RA28161C
crossref_primary_10_1039_D0NR05945E
crossref_primary_10_1016_j_ccr_2021_214345
crossref_primary_10_1039_D1CS01097B
crossref_primary_10_1093_nsr_nwaa034
crossref_primary_10_1080_2162402X_2021_1887552
crossref_primary_10_1016_j_addr_2022_114136
crossref_primary_10_1186_s13045_022_01320_5
crossref_primary_10_1016_j_bioactmat_2021_07_023
crossref_primary_10_3390_molecules24010009
crossref_primary_10_1007_s11356_021_12997_5
crossref_primary_10_1016_j_biomaterials_2018_04_051
crossref_primary_10_1016_j_onano_2022_100099
crossref_primary_10_1186_s12951_023_02203_8
crossref_primary_10_1002_smll_202305174
crossref_primary_10_1016_j_ijbiomac_2024_130960
crossref_primary_10_1007_s40820_021_00674_8
crossref_primary_10_1021_jacs_7b05559
crossref_primary_10_1016_j_canlet_2022_215975
crossref_primary_10_1021_acsnano_2c10893
crossref_primary_10_1016_j_bioactmat_2023_11_017
crossref_primary_10_1021_acsnano_4c08828
crossref_primary_10_1186_s40824_023_00350_5
crossref_primary_10_1002_adfm_201906195
crossref_primary_10_1021_acs_cgd_3c01058
crossref_primary_10_1038_s41427_018_0091_9
crossref_primary_10_3389_fimmu_2024_1379365
crossref_primary_10_1021_acs_molpharmaceut_3c00846
crossref_primary_10_1016_j_actbio_2023_03_021
crossref_primary_10_1016_j_apsb_2021_03_033
crossref_primary_10_1002_adma_202002054
crossref_primary_10_1016_j_biomaterials_2017_08_030
crossref_primary_10_1021_acsami_3c06535
crossref_primary_10_1016_j_biopha_2022_113483
crossref_primary_10_1016_j_ccr_2021_214126
crossref_primary_10_1016_j_ijpharm_2019_01_048
crossref_primary_10_1007_s11427_017_9256_1
crossref_primary_10_1016_j_actbio_2022_08_020
crossref_primary_10_1016_j_tips_2020_08_003
crossref_primary_10_1109_TMECH_2023_3321758
crossref_primary_10_1002_smtd_202201404
crossref_primary_10_3390_pharmaceutics13101670
crossref_primary_10_1016_j_ijpharm_2024_125101
crossref_primary_10_1002_adma_202005562
crossref_primary_10_1002_jin2_63
crossref_primary_10_1016_j_bioactmat_2024_05_030
crossref_primary_10_1002_EXP_20210166
crossref_primary_10_3390_nano10091700
crossref_primary_10_1039_C9NR00918C
crossref_primary_10_3390_jcm9103226
crossref_primary_10_1016_j_phrs_2020_104885
crossref_primary_10_1039_C7NR09612G
crossref_primary_10_1016_j_biomaterials_2018_04_027
crossref_primary_10_3389_fbioe_2020_00537
crossref_primary_10_1021_acsnano_3c12387
crossref_primary_10_1016_j_addr_2019_09_005
crossref_primary_10_3389_fchem_2021_797094
crossref_primary_10_1021_acsami_3c05497
crossref_primary_10_1021_acsnano_8b01893
crossref_primary_10_3389_fimmu_2022_1049164
crossref_primary_10_1002_adfm_201603440
crossref_primary_10_1016_j_bioactmat_2024_05_042
crossref_primary_10_1002_advs_201801155
crossref_primary_10_1002_smll_202203240
crossref_primary_10_1038_s41419_022_04711_1
crossref_primary_10_1016_j_colsurfb_2016_10_039
crossref_primary_10_1039_D4DT02605E
crossref_primary_10_1016_j_apsb_2020_09_014
crossref_primary_10_1166_mex_2020_1813
crossref_primary_10_1002_adma_201905271
crossref_primary_10_3390_pharmaceutics16010061
crossref_primary_10_1021_acsami_1c21828
crossref_primary_10_1002_adhm_202303963
crossref_primary_10_1007_s11427_020_1939_1
crossref_primary_10_1016_j_tibtech_2021_01_007
crossref_primary_10_3389_fbioe_2023_1248421
crossref_primary_10_1016_j_biomaterials_2020_120456
crossref_primary_10_1016_j_jconrel_2020_05_039
crossref_primary_10_1007_s13233_018_6067_3
crossref_primary_10_1016_j_ijpharm_2019_118636
crossref_primary_10_1039_D0TB01373K
crossref_primary_10_1007_s11033_021_06876_y
crossref_primary_10_1002_adtp_202200108
crossref_primary_10_1016_j_cjche_2019_12_013
crossref_primary_10_1186_s12951_019_0507_x
crossref_primary_10_1039_D0SC01649G
crossref_primary_10_1021_acsnano_1c00033
crossref_primary_10_1080_1061186X_2020_1815209
crossref_primary_10_1186_s12951_021_01134_6
crossref_primary_10_1039_C8NH00191J
crossref_primary_10_1002_adfm_202304381
crossref_primary_10_3390_pharmaceutics14081682
crossref_primary_10_1016_j_biomaterials_2023_122396
crossref_primary_10_1155_2022_5775696
crossref_primary_10_1002_adma_201700996
crossref_primary_10_1016_j_cej_2022_135566
crossref_primary_10_1093_nsr_nwx062
crossref_primary_10_1002_jcp_27027
crossref_primary_10_1039_D3BM01144E
crossref_primary_10_1016_j_bioactmat_2020_12_010
crossref_primary_10_1186_s40824_023_00462_y
crossref_primary_10_1016_j_biomaterials_2020_120329
crossref_primary_10_1088_2053_1583_aa652f
crossref_primary_10_1016_j_jcis_2023_05_031
crossref_primary_10_1021_acsami_8b17660
crossref_primary_10_1016_j_jcis_2020_09_028
crossref_primary_10_1021_acsabm_3c00253
crossref_primary_10_1038_s41467_017_01050_0
crossref_primary_10_1002_cam4_5489
crossref_primary_10_1007_s00604_018_3099_5
crossref_primary_10_1016_j_biopha_2023_114833
crossref_primary_10_1039_C9NR06450H
crossref_primary_10_1002_adhm_202300313
crossref_primary_10_1039_D1TB00486G
crossref_primary_10_1016_j_phrs_2017_05_004
crossref_primary_10_1038_s41551_024_01221_7
crossref_primary_10_1007_s40843_018_9261_x
crossref_primary_10_1021_acsami_6b15387
crossref_primary_10_1039_C6NR09895A
crossref_primary_10_1186_s12951_022_01592_6
crossref_primary_10_1002_cben_202200056
crossref_primary_10_1016_j_carbpol_2019_115295
crossref_primary_10_1002_sstr_202400149
crossref_primary_10_1021_acsnano_7b03308
crossref_primary_10_1080_1061186X_2019_1648478
crossref_primary_10_1016_j_cej_2023_142159
crossref_primary_10_1039_C9TB00541B
crossref_primary_10_1016_j_addr_2023_114829
crossref_primary_10_1016_j_nantod_2023_101827
crossref_primary_10_1021_acs_nanolett_8b02670
crossref_primary_10_1039_C9NA00786E
crossref_primary_10_1016_j_jconrel_2024_09_008
crossref_primary_10_1016_j_actbio_2022_07_044
crossref_primary_10_1186_s12645_023_00182_x
crossref_primary_10_1016_j_biomaterials_2019_03_027
crossref_primary_10_1016_j_biomaterials_2018_08_004
crossref_primary_10_1039_C8NH00274F
crossref_primary_10_1002_adma_201902007
crossref_primary_10_1039_C9SC01070J
crossref_primary_10_1039_C9NR09071A
crossref_primary_10_1002_cbic_201900387
crossref_primary_10_1002_adfm_201804901
crossref_primary_10_1016_j_jconrel_2020_10_031
crossref_primary_10_1002_bmm2_12136
crossref_primary_10_1002_adhm_202201733
crossref_primary_10_1016_j_nantod_2019_05_008
crossref_primary_10_1186_s13045_017_0430_2
crossref_primary_10_1515_ntrev_2023_0133
crossref_primary_10_1002_advs_202301764
crossref_primary_10_1016_j_canlet_2019_03_032
crossref_primary_10_1016_j_actbio_2025_01_003
crossref_primary_10_1039_C9SC03161H
crossref_primary_10_3390_pharmaceutics15030943
crossref_primary_10_1016_j_actbio_2022_06_026
crossref_primary_10_1021_acsnano_7b04737
crossref_primary_10_1021_acs_biomac_3c00523
crossref_primary_10_1002_tcr_202100331
crossref_primary_10_1039_D0NR02580A
crossref_primary_10_1016_j_jare_2021_02_004
crossref_primary_10_1039_D0TB02514C
crossref_primary_10_1021_acsabm_0c00368
crossref_primary_10_1016_j_nantod_2021_101163
crossref_primary_10_1186_s40364_017_0106_7
crossref_primary_10_1021_acsnano_9b04954
crossref_primary_10_1007_s12274_021_3781_5
crossref_primary_10_1016_j_biomaterials_2018_09_017
crossref_primary_10_3390_pharmaceutics16050636
crossref_primary_10_1002_advs_202403347
crossref_primary_10_1016_j_jiec_2020_10_019
crossref_primary_10_1016_j_apsusc_2016_12_204
crossref_primary_10_3389_fchem_2020_00831
crossref_primary_10_1016_j_cej_2020_124450
crossref_primary_10_3389_fmats_2019_00286
crossref_primary_10_3390_pharmaceutics13111867
crossref_primary_10_1021_acs_analchem_9b01053
crossref_primary_10_1039_D4BM00815D
crossref_primary_10_1002_adma_202007576
crossref_primary_10_1016_j_ijbiomac_2022_12_033
crossref_primary_10_1021_acsabm_3c00544
crossref_primary_10_1021_acsnano_7b02376
crossref_primary_10_1016_j_nantod_2021_101109
crossref_primary_10_1021_acsami_8b07570
crossref_primary_10_1021_acsnano_0c07071
crossref_primary_10_1016_j_nantod_2022_101583
crossref_primary_10_1016_j_bbrc_2018_03_175
crossref_primary_10_1016_j_jcis_2023_11_086
crossref_primary_10_1002_adfm_201600676
crossref_primary_10_1021_acs_molpharmaceut_1c00085
crossref_primary_10_1002_adma_202108263
crossref_primary_10_3390_ijms222413668
crossref_primary_10_3390_pharmaceutics15030997
crossref_primary_10_1016_j_actbio_2025_03_002
crossref_primary_10_1016_j_taap_2024_117155
crossref_primary_10_1039_C9MH01565E
crossref_primary_10_1016_j_cclet_2023_108821
crossref_primary_10_1021_acs_bioconjchem_9b00448
crossref_primary_10_1002_adhm_202302111
crossref_primary_10_3390_cancers15071984
crossref_primary_10_1021_acsabm_1c00461
crossref_primary_10_3389_fbioe_2022_890257
crossref_primary_10_1021_acsnano_0c09120
crossref_primary_10_1016_j_biomaterials_2019_119515
crossref_primary_10_1002_adma_202004172
crossref_primary_10_1016_j_jcis_2024_05_067
crossref_primary_10_1111_php_13292
crossref_primary_10_1039_D0BM00125B
crossref_primary_10_1016_j_cclet_2017_05_023
crossref_primary_10_1016_j_cej_2020_125478
crossref_primary_10_1002_adhm_201900612
crossref_primary_10_1016_j_lfs_2017_12_036
crossref_primary_10_1021_acs_bioconjchem_8b00319
crossref_primary_10_1039_D0TB02631J
crossref_primary_10_1016_j_ejcb_2021_151153
crossref_primary_10_1016_j_jconrel_2022_12_009
crossref_primary_10_1002_adhm_202300028
crossref_primary_10_1016_j_biomaterials_2019_03_005
crossref_primary_10_1186_s13046_019_1095_1
crossref_primary_10_1039_C7NJ04242F
crossref_primary_10_1021_acsomega_0c05922
crossref_primary_10_1016_j_jconrel_2016_12_032
crossref_primary_10_1080_07391102_2023_2283157
crossref_primary_10_1039_D3TB01066J
crossref_primary_10_1002_smll_202103569
crossref_primary_10_1002_advs_201700847
crossref_primary_10_1039_C9NR09869K
crossref_primary_10_2147_IJN_S453265
crossref_primary_10_3390_cancers11121855
crossref_primary_10_1002_adhm_202303543
crossref_primary_10_1039_C9NR03374B
crossref_primary_10_1016_j_jconrel_2021_11_028
crossref_primary_10_1002_smtd_202000566
crossref_primary_10_1016_j_cej_2020_124494
crossref_primary_10_1021_acs_cgd_2c00900
crossref_primary_10_1002_adma_201602111
crossref_primary_10_1002_smll_201803791
crossref_primary_10_1016_j_bioactmat_2020_09_014
crossref_primary_10_1186_s12951_024_03005_2
crossref_primary_10_1016_j_ccr_2023_215548
crossref_primary_10_1002_adhm_202100518
crossref_primary_10_1002_adfm_202106123
crossref_primary_10_1186_s40580_024_00456_z
crossref_primary_10_1021_acsanm_3c03729
crossref_primary_10_1007_s40820_019_0305_x
crossref_primary_10_1039_D3TB01538F
crossref_primary_10_1021_acsnano_6b04156
crossref_primary_10_1039_D3NR01976D
crossref_primary_10_1080_10717544_2019_1693706
crossref_primary_10_1021_acsami_9b12129
crossref_primary_10_1002_adma_202008065
crossref_primary_10_3390_pharmaceutics13081167
crossref_primary_10_1039_D1BM00172H
crossref_primary_10_1016_j_addr_2019_06_007
crossref_primary_10_1016_j_biomaterials_2019_01_004
crossref_primary_10_1016_j_ijbiomac_2018_11_089
crossref_primary_10_1016_j_matt_2022_04_032
crossref_primary_10_1021_acs_biomac_9b00788
crossref_primary_10_1002_ppsc_201800078
crossref_primary_10_1021_acsami_8b01818
crossref_primary_10_1002_EXP_20230134
crossref_primary_10_3390_biom11030395
crossref_primary_10_1039_D0SC03082A
crossref_primary_10_1002_adfm_202101804
crossref_primary_10_1016_j_jconrel_2019_12_028
crossref_primary_10_1002_jcp_27533
crossref_primary_10_1016_j_semcancer_2022_02_022
crossref_primary_10_1016_j_colsurfa_2021_128184
crossref_primary_10_3389_fmats_2022_857385
crossref_primary_10_1016_j_matt_2019_03_007
crossref_primary_10_1002_adfm_202407535
crossref_primary_10_1002_adhm_202300191
crossref_primary_10_1002_smll_202200116
crossref_primary_10_1039_D1BM00508A
crossref_primary_10_1039_D0NR08050K
crossref_primary_10_3390_pharmaceutics15010144
crossref_primary_10_1016_j_cej_2022_137147
crossref_primary_10_1016_j_nano_2017_03_022
crossref_primary_10_1017_erm_2022_8
crossref_primary_10_1186_s40824_023_00369_8
crossref_primary_10_1002_anbr_202200093
crossref_primary_10_1016_j_smim_2017_09_004
crossref_primary_10_1039_C9TB01613A
crossref_primary_10_1155_2019_3687537
crossref_primary_10_1002_smll_202004345
crossref_primary_10_1002_adfm_201900095
crossref_primary_10_1016_j_smim_2017_09_007
crossref_primary_10_3390_molecules25071508
crossref_primary_10_1016_j_ijbiomac_2024_139090
crossref_primary_10_1002_adma_201801964
crossref_primary_10_1016_j_cej_2021_130356
crossref_primary_10_1021_acs_nanolett_0c01268
crossref_primary_10_2147_IJN_S393862
crossref_primary_10_1016_j_ejphar_2022_175229
crossref_primary_10_1002_smll_202305728
crossref_primary_10_2147_IJN_S301855
crossref_primary_10_1016_j_apsb_2020_05_003
crossref_primary_10_2174_1574888X15666200225093210
crossref_primary_10_1016_j_cej_2022_140688
crossref_primary_10_3390_bios11090339
crossref_primary_10_1007_s12274_016_1205_8
crossref_primary_10_1021_acs_inorgchem_9b03280
crossref_primary_10_1016_j_biomaterials_2019_119578
crossref_primary_10_1016_j_cej_2019_122079
crossref_primary_10_1016_j_apsb_2020_05_008
crossref_primary_10_1016_j_ijpx_2024_100302
crossref_primary_10_1016_j_jconrel_2019_12_042
crossref_primary_10_2217_nnm_2016_0117
crossref_primary_10_1039_D0CC02782K
crossref_primary_10_1016_j_biomaterials_2019_119580
crossref_primary_10_1039_D0TB01766C
crossref_primary_10_1016_j_cej_2020_124521
crossref_primary_10_1039_D3TB02842A
crossref_primary_10_1002_smll_202107160
crossref_primary_10_1016_j_nantod_2025_102689
crossref_primary_10_1016_j_addr_2017_09_006
crossref_primary_10_1016_j_ccr_2019_213022
crossref_primary_10_1016_j_ijpharm_2022_122488
crossref_primary_10_1021_acs_nanolett_8b03568
crossref_primary_10_1002_adma_201904639
crossref_primary_10_1016_j_biomaterials_2019_119467
crossref_primary_10_1039_C7BM00230K
crossref_primary_10_1002_smsc_202200024
crossref_primary_10_1016_j_talanta_2018_11_024
crossref_primary_10_1021_acsami_8b22579
crossref_primary_10_1021_acsnano_1c04068
crossref_primary_10_1088_1361_6528_ac2843
crossref_primary_10_1007_s10334_023_01091_1
crossref_primary_10_1016_j_jcis_2021_06_174
crossref_primary_10_1016_j_ijpharm_2022_122139
crossref_primary_10_1002_adhm_202400746
crossref_primary_10_1039_C7CS00471K
crossref_primary_10_1021_acsami_8b10564
crossref_primary_10_1021_acs_bioconjchem_8b00068
crossref_primary_10_1039_D4PY00595C
crossref_primary_10_1038_cddis_2016_255
crossref_primary_10_1177_0883911520913913
crossref_primary_10_1039_C8SC03694B
crossref_primary_10_1016_j_dyepig_2022_110095
crossref_primary_10_1002_adbi_201700084
crossref_primary_10_1186_s12645_022_00117_y
crossref_primary_10_1039_D3TB00779K
crossref_primary_10_1016_j_jinorgbio_2023_112133
crossref_primary_10_1016_j_matchemphys_2022_127178
crossref_primary_10_3389_fonc_2022_978276
crossref_primary_10_1002_adtp_202000191
crossref_primary_10_1016_j_intimp_2021_108164
crossref_primary_10_1016_j_nantod_2024_102386
crossref_primary_10_1021_acsami_3c00468
crossref_primary_10_1002_adma_201905823
crossref_primary_10_1016_j_ccr_2024_215801
crossref_primary_10_1016_j_ejps_2022_106338
crossref_primary_10_3389_fchem_2017_00109
crossref_primary_10_1016_j_apsb_2020_04_004
crossref_primary_10_1039_D4BM00853G
crossref_primary_10_1002_wnan_1527
crossref_primary_10_1039_D0TB00436G
crossref_primary_10_1080_17435390_2020_1817598
crossref_primary_10_1007_s40005_022_00583_x
crossref_primary_10_1038_s41563_018_0147_9
crossref_primary_10_1016_j_carbpol_2022_119183
crossref_primary_10_1016_j_jconrel_2021_03_039
crossref_primary_10_2174_1568009618666180628102247
crossref_primary_10_1021_acsami_8b14944
crossref_primary_10_1186_s12943_019_1113_0
crossref_primary_10_1016_j_colsurfb_2023_113157
crossref_primary_10_3390_ijms19071953
crossref_primary_10_1016_j_bioactmat_2024_03_007
crossref_primary_10_1039_D1BM00659B
crossref_primary_10_1007_s00018_020_03572_1
crossref_primary_10_1039_D0NR02096F
crossref_primary_10_1021_acs_nanolett_9b00934
crossref_primary_10_1002_cnma_202400157
crossref_primary_10_1016_j_saa_2024_124559
crossref_primary_10_1039_D0NR04067C
crossref_primary_10_1002_adma_202004788
crossref_primary_10_1016_j_ccr_2023_215027
crossref_primary_10_1016_j_lfs_2018_03_058
crossref_primary_10_1016_j_cclet_2023_109171
crossref_primary_10_1039_D0DT03767B
crossref_primary_10_1039_D3RA01153D
crossref_primary_10_1016_j_pmatsci_2020_100685
crossref_primary_10_1002_chem_201802851
crossref_primary_10_1002_smll_201906832
crossref_primary_10_1002_adhm_201801320
crossref_primary_10_1142_S1793292022300031
crossref_primary_10_1002_adhm_202001277
crossref_primary_10_1002_wnan_1937
crossref_primary_10_1016_j_apmt_2022_101677
crossref_primary_10_1021_acsami_0c00331
crossref_primary_10_2147_IJN_S376216
crossref_primary_10_1021_acs_iecr_8b05331
crossref_primary_10_1007_s13346_023_01502_9
crossref_primary_10_1016_j_cej_2023_147161
crossref_primary_10_1016_j_pharmthera_2020_107521
crossref_primary_10_1080_10717544_2022_2104957
crossref_primary_10_2147_IJN_S238587
crossref_primary_10_1016_j_jiec_2022_11_065
crossref_primary_10_1002_smll_201804131
crossref_primary_10_1039_C9NR06505A
crossref_primary_10_1039_D4TB00741G
crossref_primary_10_2139_ssrn_4058083
crossref_primary_10_1002_adma_202003563
crossref_primary_10_1016_j_cej_2024_157120
crossref_primary_10_1016_j_ijpharm_2021_120895
crossref_primary_10_1039_D2TB00393G
crossref_primary_10_1016_j_apmt_2021_101149
crossref_primary_10_3389_fimmu_2022_938439
crossref_primary_10_1016_j_nano_2018_11_015
crossref_primary_10_1002_adhm_202100590
crossref_primary_10_1016_j_canlet_2020_05_011
crossref_primary_10_1016_j_jddst_2024_105938
crossref_primary_10_1016_j_addr_2019_12_001
crossref_primary_10_1016_j_xcrm_2023_100931
crossref_primary_10_2174_0122115501294423240515110210
crossref_primary_10_1159_000531802
crossref_primary_10_1186_s40164_021_00252_z
crossref_primary_10_1016_j_actbio_2023_05_040
crossref_primary_10_1039_C9CC02148E
crossref_primary_10_1002_adhm_202100335
crossref_primary_10_1021_acsbiomaterials_3c01852
crossref_primary_10_1186_s12951_021_00837_0
crossref_primary_10_1021_acsnano_8b07584
crossref_primary_10_1002_adma_202004647
crossref_primary_10_1002_adma_202209799
crossref_primary_10_1002_adtp_202400345
crossref_primary_10_1016_j_breast_2016_09_002
crossref_primary_10_1016_j_biomaterials_2018_05_019
crossref_primary_10_1021_acsami_2c20388
crossref_primary_10_1016_j_nantod_2018_11_001
crossref_primary_10_1088_1748_605X_abe7b3
crossref_primary_10_1016_j_ejps_2021_106004
crossref_primary_10_1016_j_jcis_2024_08_205
crossref_primary_10_1016_j_tips_2017_10_009
crossref_primary_10_1002_adfm_202104136
crossref_primary_10_2174_1381612825666190710114108
crossref_primary_10_1002_advs_202204881
crossref_primary_10_1016_j_jconrel_2024_10_010
crossref_primary_10_1016_j_actbio_2022_04_044
crossref_primary_10_1021_acsnano_8b08785
crossref_primary_10_1002_advs_202002667
crossref_primary_10_1002_advs_201900037
crossref_primary_10_3389_fimmu_2023_1199173
crossref_primary_10_1021_acsami_9b02756
crossref_primary_10_2147_IJN_S430877
crossref_primary_10_1016_j_ijbiomac_2025_141740
crossref_primary_10_1021_acsanm_2c03350
crossref_primary_10_1080_19768354_2024_2336249
crossref_primary_10_1002_advs_202000494
crossref_primary_10_1557_s43579_022_00280_8
crossref_primary_10_1002_adtp_201900181
crossref_primary_10_1002_smtd_202101531
crossref_primary_10_1002_adhm_202200041
crossref_primary_10_1088_1748_605X_ace4b0
crossref_primary_10_1002_adbi_201800232
crossref_primary_10_1039_D1TB01001H
crossref_primary_10_1021_acs_molpharmaceut_3c00671
crossref_primary_10_1080_10643389_2024_2448048
crossref_primary_10_1016_j_cej_2022_140729
crossref_primary_10_1093_lifemeta_loae017
crossref_primary_10_1039_C7MH00305F
crossref_primary_10_1021_acsami_1c23983
crossref_primary_10_34172_PS_2023_27
crossref_primary_10_1002_adhm_201900047
crossref_primary_10_1007_s10311_020_01062_1
crossref_primary_10_1002_adfm_202002753
crossref_primary_10_1155_2020_4327479
crossref_primary_10_1016_j_jconrel_2017_03_013
crossref_primary_10_3389_fnano_2022_911063
crossref_primary_10_1007_s12274_017_1628_x
crossref_primary_10_1016_j_cej_2021_130536
crossref_primary_10_1021_acsami_7b01365
crossref_primary_10_1039_D0BM00623H
crossref_primary_10_1166_jbn_2022_3241
crossref_primary_10_1186_s12951_022_01316_w
crossref_primary_10_1016_j_cej_2024_155023
crossref_primary_10_1016_j_cej_2022_139634
crossref_primary_10_1039_C7CC09532E
crossref_primary_10_1016_j_biomaterials_2025_123107
crossref_primary_10_1039_C9NR04768A
crossref_primary_10_1039_D0NR06271E
crossref_primary_10_1002_adma_202202715
crossref_primary_10_1002_adhm_202002071
crossref_primary_10_1039_D1NR01449H
crossref_primary_10_1038_s41423_019_0306_1
crossref_primary_10_1016_j_colsurfb_2019_05_008
crossref_primary_10_1021_acs_nanolett_4c01767
crossref_primary_10_1007_s12034_020_02247_8
crossref_primary_10_1016_j_nantod_2018_06_008
crossref_primary_10_1002_adhm_201800525
crossref_primary_10_1016_j_ijbiomac_2023_126071
crossref_primary_10_1039_C9BM01170F
crossref_primary_10_1007_s40820_021_00622_6
crossref_primary_10_1021_acs_chemrev_8b00626
crossref_primary_10_1002_adfm_201604258
crossref_primary_10_1007_s10072_021_05234_x
crossref_primary_10_1021_acs_chemrev_6b00525
crossref_primary_10_1016_j_canlet_2022_01_012
crossref_primary_10_1016_j_cclet_2019_03_001
crossref_primary_10_1039_D0TB00529K
crossref_primary_10_1002_adfm_202008171
crossref_primary_10_1002_smtd_202400018
crossref_primary_10_1021_acsami_9b03889
crossref_primary_10_3390_biom11121912
crossref_primary_10_1038_s41598_017_09520_7
crossref_primary_10_1016_j_jconrel_2020_07_001
crossref_primary_10_1021_acsami_3c02929
Cites_doi 10.1073/pnas.1106645108
10.1021/nn405773r
10.1189/jlb.0609385
10.1021/ja5029364
10.1007/s00330-014-3167-0
10.1038/nrc2255
10.1038/nrc1187
10.1016/j.ccr.2013.11.007
10.1002/anie.200900984
10.1038/sj.gt.3301058
10.1021/acsbiomaterials.5b00181
10.1186/1471-2407-11-167
10.1155/2012/948098
10.1016/j.tet.2011.07.076
10.1200/JCO.2011.35.9315
10.1016/j.bios.2003.11.019
10.1039/C0CC03554H
10.1038/nature13165
10.1158/0008-5472.CAN-13-1196
10.1007/s11095-010-0149-z
10.1007/s10334-004-0079-z
10.1158/1078-0432.CCR-13-1787
10.1038/377155a0
10.1593/neo.04628
10.1080/10731190903043218
10.1182/blood-2004-03-1109
10.7314/APJCP.2015.16.9.3917
10.1021/ic049559g
10.4049/jimmunol.177.2.1272
10.1021/ja403167p
10.1038/nrc2468
10.1002/jbm.a.32760
10.4049/jimmunol.177.10.7303
10.1002/nbm.3325
10.1038/nrc2540
10.1007/s12032-014-0352-6
10.1038/nrc1886
10.1186/1476-9255-10-23
10.1002/nbm.1000
10.1002/anie.200604775
10.2741/2692
10.1038/35025220
10.1158/0008-5472.CAN-08-1405
10.1021/ja312610j
10.1158/0008-5472.CAN-11-2994
10.1002/wnan.116
10.1002/jmri.23891
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acsnano.5b06779
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 647
ExternalDocumentID PMC5242343
26650065
10_1021_acsnano_5b06779
a45816179
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA EB000073
– fundername: Intramural NIH HHS
  grantid: Z99 EB999999
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
LG6
ID FETCH-LOGICAL-a495t-d08ce7832596ce5c70f16a54912253522c8257529b2f76a27ed4810c936593713
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Aug 21 18:09:38 EDT 2025
Thu Jul 10 19:05:23 EDT 2025
Sat May 31 02:06:56 EDT 2025
Tue Jul 01 01:33:57 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Thu Aug 27 13:44:17 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hypoxia
chemotherapy response
hyaluronic acid (HA)
manganese dioxide (MnO2)
mannose receptor
tumor associated macrophages (TAMs)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a495t-d08ce7832596ce5c70f16a54912253522c8257529b2f76a27ed4810c936593713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1021/acsnano.5b06779
PMID 26650065
PQID 1760924686
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242343
proquest_miscellaneous_1760924686
pubmed_primary_26650065
crossref_primary_10_1021_acsnano_5b06779
crossref_citationtrail_10_1021_acsnano_5b06779
acs_journals_10_1021_acsnano_5b06779
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-26
PublicationDateYYYYMMDD 2016-01-26
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
26910459 - ACS Nano. 2016 Mar 22;10(3):3872. doi: 10.1021/acsnano.6b01206.
References_xml – ident: ref15/cit15
  doi: 10.1073/pnas.1106645108
– ident: ref19/cit19
  doi: 10.1021/nn405773r
– ident: ref12/cit12
  doi: 10.1189/jlb.0609385
– ident: ref28/cit28
  doi: 10.1021/ja5029364
– ident: ref39/cit39
  doi: 10.1007/s00330-014-3167-0
– ident: ref1/cit1
  doi: 10.1038/nrc2255
– ident: ref43/cit43
  doi: 10.1038/nrc1187
– ident: ref9/cit9
  doi: 10.1016/j.ccr.2013.11.007
– ident: ref34/cit34
  doi: 10.1002/anie.200900984
– ident: ref16/cit16
  doi: 10.1038/sj.gt.3301058
– ident: ref20/cit20
  doi: 10.1021/acsbiomaterials.5b00181
– ident: ref41/cit41
  doi: 10.1186/1471-2407-11-167
– ident: ref11/cit11
  doi: 10.1155/2012/948098
– ident: ref29/cit29
  doi: 10.1016/j.tet.2011.07.076
– ident: ref6/cit6
  doi: 10.1200/JCO.2011.35.9315
– ident: ref18/cit18
  doi: 10.1016/j.bios.2003.11.019
– ident: ref35/cit35
  doi: 10.1039/C0CC03554H
– ident: ref36/cit36
  doi: 10.1038/nature13165
– ident: ref13/cit13
  doi: 10.1158/0008-5472.CAN-13-1196
– ident: ref47/cit47
  doi: 10.1007/s11095-010-0149-z
– ident: ref45/cit45
  doi: 10.1007/s10334-004-0079-z
– ident: ref7/cit7
  doi: 10.1158/1078-0432.CCR-13-1787
– ident: ref37/cit37
  doi: 10.1038/377155a0
– ident: ref46/cit46
  doi: 10.1593/neo.04628
– ident: ref5/cit5
  doi: 10.1080/10731190903043218
– ident: ref8/cit8
  doi: 10.1182/blood-2004-03-1109
– ident: ref17/cit17
  doi: 10.7314/APJCP.2015.16.9.3917
– ident: ref24/cit24
  doi: 10.1021/ic049559g
– ident: ref32/cit32
  doi: 10.4049/jimmunol.177.2.1272
– ident: ref26/cit26
  doi: 10.1021/ja403167p
– ident: ref42/cit42
  doi: 10.1038/nrc2468
– ident: ref21/cit21
  doi: 10.1002/jbm.a.32760
– ident: ref31/cit31
  doi: 10.4049/jimmunol.177.10.7303
– ident: ref38/cit38
  doi: 10.1002/nbm.3325
– ident: ref2/cit2
  doi: 10.1038/nrc2540
– ident: ref14/cit14
  doi: 10.1007/s12032-014-0352-6
– ident: ref4/cit4
  doi: 10.1038/nrc1886
– ident: ref33/cit33
  doi: 10.1186/1476-9255-10-23
– ident: ref22/cit22
  doi: 10.1002/nbm.1000
– ident: ref25/cit25
  doi: 10.1002/anie.200604775
– ident: ref10/cit10
  doi: 10.2741/2692
– ident: ref44/cit44
  doi: 10.1038/35025220
– ident: ref3/cit3
  doi: 10.1158/0008-5472.CAN-08-1405
– ident: ref23/cit23
  doi: 10.1021/ja312610j
– ident: ref27/cit27
  doi: 10.1158/0008-5472.CAN-11-2994
– ident: ref30/cit30
  doi: 10.1002/wnan.116
– ident: ref40/cit40
  doi: 10.1002/jmri.23891
– reference: 26910459 - ACS Nano. 2016 Mar 22;10(3):3872. doi: 10.1021/acsnano.6b01206.
SSID ssj0057876
Score 2.6469195
Snippet Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 633
SubjectTerms Animals
Antineoplastic Agents - pharmacology
Cell Line, Tumor
Cell Proliferation
Doxorubicin - pharmacology
Female
Gene Expression
Hyaluronic Acid - chemistry
Hydrogen Peroxide - metabolism
Hypoxia - drug therapy
Hypoxia - metabolism
Hypoxia - pathology
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Lipopolysaccharides - pharmacology
Macrophages - drug effects
Macrophages - metabolism
Macrophages - pathology
Mammary Glands, Animal - drug effects
Mammary Glands, Animal - metabolism
Mammary Glands, Animal - pathology
Mammary Neoplasms, Experimental - drug therapy
Mammary Neoplasms, Experimental - metabolism
Mammary Neoplasms, Experimental - pathology
Manganese Compounds - chemistry
Manganese Compounds - pharmacology
Mice
Mice, Inbred BALB C
Nanoparticles - chemistry
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - metabolism
Neovascularization, Pathologic - pathology
Oxides - chemistry
Oxides - pharmacology
Phenotype
Title Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia
URI http://dx.doi.org/10.1021/acsnano.5b06779
https://www.ncbi.nlm.nih.gov/pubmed/26650065
https://www.proquest.com/docview/1760924686
https://pubmed.ncbi.nlm.nih.gov/PMC5242343
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODA-7G8ZKQeuGSxs46dHJfSaoW0qIJW6i3ya7uhxamaRGL5SfxKZvJYul1VcI498mM8_sYz-YaQXb5ImVapjGIufCSckZERhkdGMgHoO2O6rZ8y_yJnx-LzSXLylyz6egQ_5h-0rYIO5TgxSHaW3SZ3Ypkq9LOme98Go4t6J7sAMjjIgCLWLD5bAvAastXmNbSFLa-nSF65cw4edNlaVUtViKkmZ-OmNmP7a5vI8d_TeUju98iTTjtVeURu-fCY3LvCR_iE_P5YlOAff2_wbc3RuQ6nGitU0k9F-bNwnoItBie7z6Wj-2GJOkORdKD_kWtFv3ZJt56aFT1sa4ad0qPmR3kZDZrQSsbKYUuwZRWt28RdOufReXHm6eHShxIfhqkOjk5rwPTIRj5IobPVBYxFPyXHB_tHe7OoL-YQafDB6six1HoF9iPJpPWJVWzBpQbvlINFQRRowVdVSZyZeKGkjpV3IuXMwoYmyNk3eUZ2Qhn8C0KZcFkmWOpj44Tx3CyUmjgpnFaJZc6NyC6sct4fxipv4-wxz_ulz_ulH5HxoAK57QnRsS7H-c0d3q87XHRcIDc3fTfoVA7nFYMwsF9lA4NRkoHPK1M5Is87HVsLA7CUICYcEbWhfesGyAW--SUUy5YTPEFcLCYv_2_qr8hdAH7tU1IsX5Od-rLxbwBc1eZte6z-AN_dJB0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAH3tDlaaQeuGRrZx07OS6l1QLdqsBW6i2yY283tHWqJpFYfhK_krHzoNuqElwTe-THePyNPf4GoU06j4kUMQ9CykzAtOKBYooGihMG6Dsh0udPme7zySH7fBQdrSHSvYWBRpQgqfSX-H_ZBegWfLPSFsNIOc6z5Ba6DVAkdO7WePt7Z3ud-vHmHhn8ZAATPZnPNQFuN8rK1d3oGsS8Gil5aevZfYC-9o32EScnw7pSw-zXFT7H_-nVQ3S_xaF43CjOI7Rm7GN07xI74RP0-0NegLf8o3YnbRpPpT2WLl8l_pgXP3NtMFhmcLnbyDq8YxdOg7CjIGifdS3xtyYE12C1xAc-g9gxntVnxUXQ6YWX7PKILcCylbjyYbx4SoPT_MTgg4WxhTsmxtJqPK4A4Ttu8k4KnizPoS3yKTrc3ZltT4I2tUMgwSOrAk3izAiwJlHCMxNlgswpl-CrUrAvDhNm4LmKKExUOBdchsJoFlOSwbxGjsFv9Ayt28KaDYQJ00nCSGxCpZkyVM2FGGnOtBRRRrQeoE0Y5bRdmmXqb91DmrZDn7ZDP0DDThPSrKVHd1k6Tm-u8L6vcN4wg9xc9F2nWimsXnclA_NV1NAYwQl4wDzmA_S8UbVeGECnyCHEARIrStgXcMzgq39svvAM4ZFDyWz04t-6_hbdmcyme-nep_0vL9FdgIT-kCnkr9B6dVGb1wC7KvXGr7Q_fvosfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2Dhi2w96P7KkBPeziTHZkyT5mbYPskSLYGqA3Q7LkxmtnB7UNLPtJ-5UjbcVoWhTYrrZMSDJFfRSpj4Ts-lnElIyEF_jcetxo4WmufU8LxgF9x0y19VNmh2K64J-Pw2N3KQzvwkAnKpBUtUF8XNUrkzmGAf8DPC9UUQ5Djbxn8U1yC4N26HKN975v7C-qoOhiyeArA6DoCX2uCMAdKa22d6QrMPNytuSF7Wdynyz6jrdZJ6fDptbD9PclTsf_HdkDcs_hUTruFOghuWGLR-TuBZbCx-TPx7wEr_lHgyduhs5UcaKwbiXdz8tfubEULDS43i7Djh4US9QkilQE7nrXmn7rUnEt1Ws6byuJndCj5md57m30o5WM9cSWYOEqWrfpvHTme2f5qaXzpS1KPC6mqjB0XAPSR47yjRQ6Xa-gL-oJWUwOjvamnivx4CnwzGrPsCi1EqxKGIvUhqlkmS8U-Kw-2BnEhil4sDIMYh1kUqhAWsMjn6Xwb0Nk8hs9JTtFWdjnhDJu4pizyAbacG19nUk5MoIbJcOUGTMguzDLiVuiVdJG3wM_cVOfuKkfkOFGG5LU0aRjtY6z6z9433-w6hhCrm_6bqNeCaxiDM3A_yob6IwUDDxhEYkBedapWy8MIFSISHFA5JYi9g2QIXz7TZEvW6bwENEyH734t6G_Jbfn-5Pk66fDLy_JHUCG7VlTIF6Rnfq8sa8BfdX6TbvY_gLvzS8B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioconjugated+Manganese+Dioxide+Nanoparticles+Enhance+Chemotherapy+Response+by+Priming+Tumor-Associated+Macrophages+toward+M1-like+Phenotype+and+Attenuating+Tumor+Hypoxia&rft.jtitle=ACS+nano&rft.au=Song%2C+Manli&rft.au=Liu%2C+Ting&rft.au=Shi%2C+Changrong&rft.au=Zhang%2C+Xiangzhong&rft.date=2016-01-26&rft.eissn=1936-086X&rft.volume=10&rft.issue=1&rft.spage=633&rft_id=info:doi/10.1021%2Facsnano.5b06779&rft_id=info%3Apmid%2F26650065&rft.externalDocID=26650065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon