Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia
Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urg...
Saved in:
Published in | ACS nano Vol. 10; no. 1; pp. 633 - 647 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T 1- and T 2-MRI performance for tumor imaging and detection. |
---|---|
AbstractList | Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T 1- and T 2-MRI performance for tumor imaging and detection. Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T1- and T2-MRI performance for tumor imaging and detection.Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T1- and T2-MRI performance for tumor imaging and detection. Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO 2 NPs) toward hydrogen peroxide (H 2 O 2 ) for the simultaneous production of O 2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO 2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO 2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannanconjugated MnO 2 particle (Man-HA-MnO 2 ) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1 α ) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO 2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO 2 NPs toward endogenous H 2 O 2 highly enhanced T 1 - and T 2 -MRI performance for tumor imaging and detection. Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of hypoxic region of tumors have been known to cooperate with tumor cells, and promote proliferation and chemoresistance. Therefore, there is an urgent need for new strategies to alleviate tumor hypoxia and enhance chemotherapy response in solid tumors. Herein, we have taken advantage of high accumulation of TAMs in hypoxic regions of tumor and high reactivity of manganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the simultaneous production of O2 and regulation of pH to effectively alleviate tumor hypoxia by targeted delivery of MnO2 NPs to the hypoxic area. Furthermore, we also utilized the ability of hyaluronic acid (HA) modification in reprogramming anti-inflammatory, pro-tumoral M2 TAMs to pro-inflammatory, antitumor M1 macrophages to further enhance the ability of MnO2 NPs to lessen tumor hypoxia and modulate chemoresistance. The HA-coated, mannan-conjugated MnO2 particle (Man-HA-MnO2) treatment significantly increased tumor oxygenation and down-regulated hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the tumor. Combination treatment of the tumors with Man-HA-MnO2 NPs and doxorubicin significantly increased apparent diffusion coefficient (ADC) values of breast tumor, inhibited tumor growth and tumor cell proliferation as compared with chemotherapy alone. In addition, the reaction of Man-HA-MnO2 NPs toward endogenous H2O2 highly enhanced T1- and T2-MRI performance for tumor imaging and detection. |
Author | Song, Manli Shi, Changrong Zhang, Xiangzhong Chen, Xiaoyuan Liu, Ting |
AuthorAffiliation | State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health Xiamen University National Institutes of Health Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering |
AuthorAffiliation_xml | – name: National Institutes of Health – name: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health – name: Xiamen University – name: Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering – name: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China – name: Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States |
Author_xml | – sequence: 1 givenname: Manli surname: Song fullname: Song, Manli – sequence: 2 givenname: Ting surname: Liu fullname: Liu, Ting email: tingliu20072008@yahoo.com – sequence: 3 givenname: Changrong surname: Shi fullname: Shi, Changrong – sequence: 4 givenname: Xiangzhong surname: Zhang fullname: Zhang, Xiangzhong email: zhangxzh@xmu.edu.cn – sequence: 5 givenname: Xiaoyuan surname: Chen fullname: Chen, Xiaoyuan email: shawn.chen@nih.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26650065$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl-P1CAUxRuzxv2jz74ZHk1Md4EWaF9MxnF1TVbdmDXxjTD0TsvYQgWq9iv5KWUzdaIm-gSBc373crin2ZF1FrLsMcHnBFNyoXSwyrpztsFciPpedkLqgue44p-ODntGjrPTEHYYM1EJ_iA7ppwzjDk7yX68ME47u5taFaFBb5VtlYUA6KVx300D6F3Cj8pHo3sI6NJ2ympA6w4GFzvwapzRBwijs8mzmdGNN4OxLbqdBufzVQhOm4WsvRs71SZKdN-UT0ck781nQDcdWBfnEZCyDVrFCHZS8UBBV_OYelEPs_tb1Qd4tKxn2cdXl7frq_z6_es369V1rsqaxbzBlQZRFZTVXAPTAm8JV6ysCaWsYJTqijLBaL2hW8EVFdCUFcE6ZcXqQpDiLHu-547TZoBGg41e9XJML1N-lk4Z-eeNNZ1s3VfJaEmLskiApwvAuy8ThCgHEzT0fUrWTUESwXFNS17xJH3ye61DkV8flAQXe0FKLwQP24OEYHk3AnIZAbmMQHKwvxzaxBSnu2vW9P_xPdv70oXcucnbFPI_1T8BDlDKOg |
CitedBy_id | crossref_primary_10_1126_sciadv_aaz6579 crossref_primary_10_3390_pharmaceutics16020179 crossref_primary_10_1016_j_ajps_2018_07_003 crossref_primary_10_3389_fimmu_2023_1128840 crossref_primary_10_1007_s12672_024_01186_8 crossref_primary_10_1002_adma_201904156 crossref_primary_10_1021_acsnano_8b09221 crossref_primary_10_1039_C8TB00931G crossref_primary_10_1039_D2BM01508K crossref_primary_10_1016_j_addr_2020_06_006 crossref_primary_10_1016_j_nantod_2020_100851 crossref_primary_10_1007_s11095_018_2480_8 crossref_primary_10_1039_D0QM00323A crossref_primary_10_1002_adfm_201907066 crossref_primary_10_3389_fimmu_2022_1000927 crossref_primary_10_3390_ijms23031496 crossref_primary_10_1016_j_carbpol_2022_119821 crossref_primary_10_1016_j_actbio_2023_11_027 crossref_primary_10_1039_C6RA28161C crossref_primary_10_1039_D0NR05945E crossref_primary_10_1016_j_ccr_2021_214345 crossref_primary_10_1039_D1CS01097B crossref_primary_10_1093_nsr_nwaa034 crossref_primary_10_1080_2162402X_2021_1887552 crossref_primary_10_1016_j_addr_2022_114136 crossref_primary_10_1186_s13045_022_01320_5 crossref_primary_10_1016_j_bioactmat_2021_07_023 crossref_primary_10_3390_molecules24010009 crossref_primary_10_1007_s11356_021_12997_5 crossref_primary_10_1016_j_biomaterials_2018_04_051 crossref_primary_10_1016_j_onano_2022_100099 crossref_primary_10_1186_s12951_023_02203_8 crossref_primary_10_1002_smll_202305174 crossref_primary_10_1016_j_ijbiomac_2024_130960 crossref_primary_10_1007_s40820_021_00674_8 crossref_primary_10_1021_jacs_7b05559 crossref_primary_10_1016_j_canlet_2022_215975 crossref_primary_10_1021_acsnano_2c10893 crossref_primary_10_1016_j_bioactmat_2023_11_017 crossref_primary_10_1021_acsnano_4c08828 crossref_primary_10_1186_s40824_023_00350_5 crossref_primary_10_1002_adfm_201906195 crossref_primary_10_1021_acs_cgd_3c01058 crossref_primary_10_1038_s41427_018_0091_9 crossref_primary_10_3389_fimmu_2024_1379365 crossref_primary_10_1021_acs_molpharmaceut_3c00846 crossref_primary_10_1016_j_actbio_2023_03_021 crossref_primary_10_1016_j_apsb_2021_03_033 crossref_primary_10_1002_adma_202002054 crossref_primary_10_1016_j_biomaterials_2017_08_030 crossref_primary_10_1021_acsami_3c06535 crossref_primary_10_1016_j_biopha_2022_113483 crossref_primary_10_1016_j_ccr_2021_214126 crossref_primary_10_1016_j_ijpharm_2019_01_048 crossref_primary_10_1007_s11427_017_9256_1 crossref_primary_10_1016_j_actbio_2022_08_020 crossref_primary_10_1016_j_tips_2020_08_003 crossref_primary_10_1109_TMECH_2023_3321758 crossref_primary_10_1002_smtd_202201404 crossref_primary_10_3390_pharmaceutics13101670 crossref_primary_10_1016_j_ijpharm_2024_125101 crossref_primary_10_1002_adma_202005562 crossref_primary_10_1002_jin2_63 crossref_primary_10_1016_j_bioactmat_2024_05_030 crossref_primary_10_1002_EXP_20210166 crossref_primary_10_3390_nano10091700 crossref_primary_10_1039_C9NR00918C crossref_primary_10_3390_jcm9103226 crossref_primary_10_1016_j_phrs_2020_104885 crossref_primary_10_1039_C7NR09612G crossref_primary_10_1016_j_biomaterials_2018_04_027 crossref_primary_10_3389_fbioe_2020_00537 crossref_primary_10_1021_acsnano_3c12387 crossref_primary_10_1016_j_addr_2019_09_005 crossref_primary_10_3389_fchem_2021_797094 crossref_primary_10_1021_acsami_3c05497 crossref_primary_10_1021_acsnano_8b01893 crossref_primary_10_3389_fimmu_2022_1049164 crossref_primary_10_1002_adfm_201603440 crossref_primary_10_1016_j_bioactmat_2024_05_042 crossref_primary_10_1002_advs_201801155 crossref_primary_10_1002_smll_202203240 crossref_primary_10_1038_s41419_022_04711_1 crossref_primary_10_1016_j_colsurfb_2016_10_039 crossref_primary_10_1039_D4DT02605E crossref_primary_10_1016_j_apsb_2020_09_014 crossref_primary_10_1166_mex_2020_1813 crossref_primary_10_1002_adma_201905271 crossref_primary_10_3390_pharmaceutics16010061 crossref_primary_10_1021_acsami_1c21828 crossref_primary_10_1002_adhm_202303963 crossref_primary_10_1007_s11427_020_1939_1 crossref_primary_10_1016_j_tibtech_2021_01_007 crossref_primary_10_3389_fbioe_2023_1248421 crossref_primary_10_1016_j_biomaterials_2020_120456 crossref_primary_10_1016_j_jconrel_2020_05_039 crossref_primary_10_1007_s13233_018_6067_3 crossref_primary_10_1016_j_ijpharm_2019_118636 crossref_primary_10_1039_D0TB01373K crossref_primary_10_1007_s11033_021_06876_y crossref_primary_10_1002_adtp_202200108 crossref_primary_10_1016_j_cjche_2019_12_013 crossref_primary_10_1186_s12951_019_0507_x crossref_primary_10_1039_D0SC01649G crossref_primary_10_1021_acsnano_1c00033 crossref_primary_10_1080_1061186X_2020_1815209 crossref_primary_10_1186_s12951_021_01134_6 crossref_primary_10_1039_C8NH00191J crossref_primary_10_1002_adfm_202304381 crossref_primary_10_3390_pharmaceutics14081682 crossref_primary_10_1016_j_biomaterials_2023_122396 crossref_primary_10_1155_2022_5775696 crossref_primary_10_1002_adma_201700996 crossref_primary_10_1016_j_cej_2022_135566 crossref_primary_10_1093_nsr_nwx062 crossref_primary_10_1002_jcp_27027 crossref_primary_10_1039_D3BM01144E crossref_primary_10_1016_j_bioactmat_2020_12_010 crossref_primary_10_1186_s40824_023_00462_y crossref_primary_10_1016_j_biomaterials_2020_120329 crossref_primary_10_1088_2053_1583_aa652f crossref_primary_10_1016_j_jcis_2023_05_031 crossref_primary_10_1021_acsami_8b17660 crossref_primary_10_1016_j_jcis_2020_09_028 crossref_primary_10_1021_acsabm_3c00253 crossref_primary_10_1038_s41467_017_01050_0 crossref_primary_10_1002_cam4_5489 crossref_primary_10_1007_s00604_018_3099_5 crossref_primary_10_1016_j_biopha_2023_114833 crossref_primary_10_1039_C9NR06450H crossref_primary_10_1002_adhm_202300313 crossref_primary_10_1039_D1TB00486G crossref_primary_10_1016_j_phrs_2017_05_004 crossref_primary_10_1038_s41551_024_01221_7 crossref_primary_10_1007_s40843_018_9261_x crossref_primary_10_1021_acsami_6b15387 crossref_primary_10_1039_C6NR09895A crossref_primary_10_1186_s12951_022_01592_6 crossref_primary_10_1002_cben_202200056 crossref_primary_10_1016_j_carbpol_2019_115295 crossref_primary_10_1002_sstr_202400149 crossref_primary_10_1021_acsnano_7b03308 crossref_primary_10_1080_1061186X_2019_1648478 crossref_primary_10_1016_j_cej_2023_142159 crossref_primary_10_1039_C9TB00541B crossref_primary_10_1016_j_addr_2023_114829 crossref_primary_10_1016_j_nantod_2023_101827 crossref_primary_10_1021_acs_nanolett_8b02670 crossref_primary_10_1039_C9NA00786E crossref_primary_10_1016_j_jconrel_2024_09_008 crossref_primary_10_1016_j_actbio_2022_07_044 crossref_primary_10_1186_s12645_023_00182_x crossref_primary_10_1016_j_biomaterials_2019_03_027 crossref_primary_10_1016_j_biomaterials_2018_08_004 crossref_primary_10_1039_C8NH00274F crossref_primary_10_1002_adma_201902007 crossref_primary_10_1039_C9SC01070J crossref_primary_10_1039_C9NR09071A crossref_primary_10_1002_cbic_201900387 crossref_primary_10_1002_adfm_201804901 crossref_primary_10_1016_j_jconrel_2020_10_031 crossref_primary_10_1002_bmm2_12136 crossref_primary_10_1002_adhm_202201733 crossref_primary_10_1016_j_nantod_2019_05_008 crossref_primary_10_1186_s13045_017_0430_2 crossref_primary_10_1515_ntrev_2023_0133 crossref_primary_10_1002_advs_202301764 crossref_primary_10_1016_j_canlet_2019_03_032 crossref_primary_10_1016_j_actbio_2025_01_003 crossref_primary_10_1039_C9SC03161H crossref_primary_10_3390_pharmaceutics15030943 crossref_primary_10_1016_j_actbio_2022_06_026 crossref_primary_10_1021_acsnano_7b04737 crossref_primary_10_1021_acs_biomac_3c00523 crossref_primary_10_1002_tcr_202100331 crossref_primary_10_1039_D0NR02580A crossref_primary_10_1016_j_jare_2021_02_004 crossref_primary_10_1039_D0TB02514C crossref_primary_10_1021_acsabm_0c00368 crossref_primary_10_1016_j_nantod_2021_101163 crossref_primary_10_1186_s40364_017_0106_7 crossref_primary_10_1021_acsnano_9b04954 crossref_primary_10_1007_s12274_021_3781_5 crossref_primary_10_1016_j_biomaterials_2018_09_017 crossref_primary_10_3390_pharmaceutics16050636 crossref_primary_10_1002_advs_202403347 crossref_primary_10_1016_j_jiec_2020_10_019 crossref_primary_10_1016_j_apsusc_2016_12_204 crossref_primary_10_3389_fchem_2020_00831 crossref_primary_10_1016_j_cej_2020_124450 crossref_primary_10_3389_fmats_2019_00286 crossref_primary_10_3390_pharmaceutics13111867 crossref_primary_10_1021_acs_analchem_9b01053 crossref_primary_10_1039_D4BM00815D crossref_primary_10_1002_adma_202007576 crossref_primary_10_1016_j_ijbiomac_2022_12_033 crossref_primary_10_1021_acsabm_3c00544 crossref_primary_10_1021_acsnano_7b02376 crossref_primary_10_1016_j_nantod_2021_101109 crossref_primary_10_1021_acsami_8b07570 crossref_primary_10_1021_acsnano_0c07071 crossref_primary_10_1016_j_nantod_2022_101583 crossref_primary_10_1016_j_bbrc_2018_03_175 crossref_primary_10_1016_j_jcis_2023_11_086 crossref_primary_10_1002_adfm_201600676 crossref_primary_10_1021_acs_molpharmaceut_1c00085 crossref_primary_10_1002_adma_202108263 crossref_primary_10_3390_ijms222413668 crossref_primary_10_3390_pharmaceutics15030997 crossref_primary_10_1016_j_actbio_2025_03_002 crossref_primary_10_1016_j_taap_2024_117155 crossref_primary_10_1039_C9MH01565E crossref_primary_10_1016_j_cclet_2023_108821 crossref_primary_10_1021_acs_bioconjchem_9b00448 crossref_primary_10_1002_adhm_202302111 crossref_primary_10_3390_cancers15071984 crossref_primary_10_1021_acsabm_1c00461 crossref_primary_10_3389_fbioe_2022_890257 crossref_primary_10_1021_acsnano_0c09120 crossref_primary_10_1016_j_biomaterials_2019_119515 crossref_primary_10_1002_adma_202004172 crossref_primary_10_1016_j_jcis_2024_05_067 crossref_primary_10_1111_php_13292 crossref_primary_10_1039_D0BM00125B crossref_primary_10_1016_j_cclet_2017_05_023 crossref_primary_10_1016_j_cej_2020_125478 crossref_primary_10_1002_adhm_201900612 crossref_primary_10_1016_j_lfs_2017_12_036 crossref_primary_10_1021_acs_bioconjchem_8b00319 crossref_primary_10_1039_D0TB02631J crossref_primary_10_1016_j_ejcb_2021_151153 crossref_primary_10_1016_j_jconrel_2022_12_009 crossref_primary_10_1002_adhm_202300028 crossref_primary_10_1016_j_biomaterials_2019_03_005 crossref_primary_10_1186_s13046_019_1095_1 crossref_primary_10_1039_C7NJ04242F crossref_primary_10_1021_acsomega_0c05922 crossref_primary_10_1016_j_jconrel_2016_12_032 crossref_primary_10_1080_07391102_2023_2283157 crossref_primary_10_1039_D3TB01066J crossref_primary_10_1002_smll_202103569 crossref_primary_10_1002_advs_201700847 crossref_primary_10_1039_C9NR09869K crossref_primary_10_2147_IJN_S453265 crossref_primary_10_3390_cancers11121855 crossref_primary_10_1002_adhm_202303543 crossref_primary_10_1039_C9NR03374B crossref_primary_10_1016_j_jconrel_2021_11_028 crossref_primary_10_1002_smtd_202000566 crossref_primary_10_1016_j_cej_2020_124494 crossref_primary_10_1021_acs_cgd_2c00900 crossref_primary_10_1002_adma_201602111 crossref_primary_10_1002_smll_201803791 crossref_primary_10_1016_j_bioactmat_2020_09_014 crossref_primary_10_1186_s12951_024_03005_2 crossref_primary_10_1016_j_ccr_2023_215548 crossref_primary_10_1002_adhm_202100518 crossref_primary_10_1002_adfm_202106123 crossref_primary_10_1186_s40580_024_00456_z crossref_primary_10_1021_acsanm_3c03729 crossref_primary_10_1007_s40820_019_0305_x crossref_primary_10_1039_D3TB01538F crossref_primary_10_1021_acsnano_6b04156 crossref_primary_10_1039_D3NR01976D crossref_primary_10_1080_10717544_2019_1693706 crossref_primary_10_1021_acsami_9b12129 crossref_primary_10_1002_adma_202008065 crossref_primary_10_3390_pharmaceutics13081167 crossref_primary_10_1039_D1BM00172H crossref_primary_10_1016_j_addr_2019_06_007 crossref_primary_10_1016_j_biomaterials_2019_01_004 crossref_primary_10_1016_j_ijbiomac_2018_11_089 crossref_primary_10_1016_j_matt_2022_04_032 crossref_primary_10_1021_acs_biomac_9b00788 crossref_primary_10_1002_ppsc_201800078 crossref_primary_10_1021_acsami_8b01818 crossref_primary_10_1002_EXP_20230134 crossref_primary_10_3390_biom11030395 crossref_primary_10_1039_D0SC03082A crossref_primary_10_1002_adfm_202101804 crossref_primary_10_1016_j_jconrel_2019_12_028 crossref_primary_10_1002_jcp_27533 crossref_primary_10_1016_j_semcancer_2022_02_022 crossref_primary_10_1016_j_colsurfa_2021_128184 crossref_primary_10_3389_fmats_2022_857385 crossref_primary_10_1016_j_matt_2019_03_007 crossref_primary_10_1002_adfm_202407535 crossref_primary_10_1002_adhm_202300191 crossref_primary_10_1002_smll_202200116 crossref_primary_10_1039_D1BM00508A crossref_primary_10_1039_D0NR08050K crossref_primary_10_3390_pharmaceutics15010144 crossref_primary_10_1016_j_cej_2022_137147 crossref_primary_10_1016_j_nano_2017_03_022 crossref_primary_10_1017_erm_2022_8 crossref_primary_10_1186_s40824_023_00369_8 crossref_primary_10_1002_anbr_202200093 crossref_primary_10_1016_j_smim_2017_09_004 crossref_primary_10_1039_C9TB01613A crossref_primary_10_1155_2019_3687537 crossref_primary_10_1002_smll_202004345 crossref_primary_10_1002_adfm_201900095 crossref_primary_10_1016_j_smim_2017_09_007 crossref_primary_10_3390_molecules25071508 crossref_primary_10_1016_j_ijbiomac_2024_139090 crossref_primary_10_1002_adma_201801964 crossref_primary_10_1016_j_cej_2021_130356 crossref_primary_10_1021_acs_nanolett_0c01268 crossref_primary_10_2147_IJN_S393862 crossref_primary_10_1016_j_ejphar_2022_175229 crossref_primary_10_1002_smll_202305728 crossref_primary_10_2147_IJN_S301855 crossref_primary_10_1016_j_apsb_2020_05_003 crossref_primary_10_2174_1574888X15666200225093210 crossref_primary_10_1016_j_cej_2022_140688 crossref_primary_10_3390_bios11090339 crossref_primary_10_1007_s12274_016_1205_8 crossref_primary_10_1021_acs_inorgchem_9b03280 crossref_primary_10_1016_j_biomaterials_2019_119578 crossref_primary_10_1016_j_cej_2019_122079 crossref_primary_10_1016_j_apsb_2020_05_008 crossref_primary_10_1016_j_ijpx_2024_100302 crossref_primary_10_1016_j_jconrel_2019_12_042 crossref_primary_10_2217_nnm_2016_0117 crossref_primary_10_1039_D0CC02782K crossref_primary_10_1016_j_biomaterials_2019_119580 crossref_primary_10_1039_D0TB01766C crossref_primary_10_1016_j_cej_2020_124521 crossref_primary_10_1039_D3TB02842A crossref_primary_10_1002_smll_202107160 crossref_primary_10_1016_j_nantod_2025_102689 crossref_primary_10_1016_j_addr_2017_09_006 crossref_primary_10_1016_j_ccr_2019_213022 crossref_primary_10_1016_j_ijpharm_2022_122488 crossref_primary_10_1021_acs_nanolett_8b03568 crossref_primary_10_1002_adma_201904639 crossref_primary_10_1016_j_biomaterials_2019_119467 crossref_primary_10_1039_C7BM00230K crossref_primary_10_1002_smsc_202200024 crossref_primary_10_1016_j_talanta_2018_11_024 crossref_primary_10_1021_acsami_8b22579 crossref_primary_10_1021_acsnano_1c04068 crossref_primary_10_1088_1361_6528_ac2843 crossref_primary_10_1007_s10334_023_01091_1 crossref_primary_10_1016_j_jcis_2021_06_174 crossref_primary_10_1016_j_ijpharm_2022_122139 crossref_primary_10_1002_adhm_202400746 crossref_primary_10_1039_C7CS00471K crossref_primary_10_1021_acsami_8b10564 crossref_primary_10_1021_acs_bioconjchem_8b00068 crossref_primary_10_1039_D4PY00595C crossref_primary_10_1038_cddis_2016_255 crossref_primary_10_1177_0883911520913913 crossref_primary_10_1039_C8SC03694B crossref_primary_10_1016_j_dyepig_2022_110095 crossref_primary_10_1002_adbi_201700084 crossref_primary_10_1186_s12645_022_00117_y crossref_primary_10_1039_D3TB00779K crossref_primary_10_1016_j_jinorgbio_2023_112133 crossref_primary_10_1016_j_matchemphys_2022_127178 crossref_primary_10_3389_fonc_2022_978276 crossref_primary_10_1002_adtp_202000191 crossref_primary_10_1016_j_intimp_2021_108164 crossref_primary_10_1016_j_nantod_2024_102386 crossref_primary_10_1021_acsami_3c00468 crossref_primary_10_1002_adma_201905823 crossref_primary_10_1016_j_ccr_2024_215801 crossref_primary_10_1016_j_ejps_2022_106338 crossref_primary_10_3389_fchem_2017_00109 crossref_primary_10_1016_j_apsb_2020_04_004 crossref_primary_10_1039_D4BM00853G crossref_primary_10_1002_wnan_1527 crossref_primary_10_1039_D0TB00436G crossref_primary_10_1080_17435390_2020_1817598 crossref_primary_10_1007_s40005_022_00583_x crossref_primary_10_1038_s41563_018_0147_9 crossref_primary_10_1016_j_carbpol_2022_119183 crossref_primary_10_1016_j_jconrel_2021_03_039 crossref_primary_10_2174_1568009618666180628102247 crossref_primary_10_1021_acsami_8b14944 crossref_primary_10_1186_s12943_019_1113_0 crossref_primary_10_1016_j_colsurfb_2023_113157 crossref_primary_10_3390_ijms19071953 crossref_primary_10_1016_j_bioactmat_2024_03_007 crossref_primary_10_1039_D1BM00659B crossref_primary_10_1007_s00018_020_03572_1 crossref_primary_10_1039_D0NR02096F crossref_primary_10_1021_acs_nanolett_9b00934 crossref_primary_10_1002_cnma_202400157 crossref_primary_10_1016_j_saa_2024_124559 crossref_primary_10_1039_D0NR04067C crossref_primary_10_1002_adma_202004788 crossref_primary_10_1016_j_ccr_2023_215027 crossref_primary_10_1016_j_lfs_2018_03_058 crossref_primary_10_1016_j_cclet_2023_109171 crossref_primary_10_1039_D0DT03767B crossref_primary_10_1039_D3RA01153D crossref_primary_10_1016_j_pmatsci_2020_100685 crossref_primary_10_1002_chem_201802851 crossref_primary_10_1002_smll_201906832 crossref_primary_10_1002_adhm_201801320 crossref_primary_10_1142_S1793292022300031 crossref_primary_10_1002_adhm_202001277 crossref_primary_10_1002_wnan_1937 crossref_primary_10_1016_j_apmt_2022_101677 crossref_primary_10_1021_acsami_0c00331 crossref_primary_10_2147_IJN_S376216 crossref_primary_10_1021_acs_iecr_8b05331 crossref_primary_10_1007_s13346_023_01502_9 crossref_primary_10_1016_j_cej_2023_147161 crossref_primary_10_1016_j_pharmthera_2020_107521 crossref_primary_10_1080_10717544_2022_2104957 crossref_primary_10_2147_IJN_S238587 crossref_primary_10_1016_j_jiec_2022_11_065 crossref_primary_10_1002_smll_201804131 crossref_primary_10_1039_C9NR06505A crossref_primary_10_1039_D4TB00741G crossref_primary_10_2139_ssrn_4058083 crossref_primary_10_1002_adma_202003563 crossref_primary_10_1016_j_cej_2024_157120 crossref_primary_10_1016_j_ijpharm_2021_120895 crossref_primary_10_1039_D2TB00393G crossref_primary_10_1016_j_apmt_2021_101149 crossref_primary_10_3389_fimmu_2022_938439 crossref_primary_10_1016_j_nano_2018_11_015 crossref_primary_10_1002_adhm_202100590 crossref_primary_10_1016_j_canlet_2020_05_011 crossref_primary_10_1016_j_jddst_2024_105938 crossref_primary_10_1016_j_addr_2019_12_001 crossref_primary_10_1016_j_xcrm_2023_100931 crossref_primary_10_2174_0122115501294423240515110210 crossref_primary_10_1159_000531802 crossref_primary_10_1186_s40164_021_00252_z crossref_primary_10_1016_j_actbio_2023_05_040 crossref_primary_10_1039_C9CC02148E crossref_primary_10_1002_adhm_202100335 crossref_primary_10_1021_acsbiomaterials_3c01852 crossref_primary_10_1186_s12951_021_00837_0 crossref_primary_10_1021_acsnano_8b07584 crossref_primary_10_1002_adma_202004647 crossref_primary_10_1002_adma_202209799 crossref_primary_10_1002_adtp_202400345 crossref_primary_10_1016_j_breast_2016_09_002 crossref_primary_10_1016_j_biomaterials_2018_05_019 crossref_primary_10_1021_acsami_2c20388 crossref_primary_10_1016_j_nantod_2018_11_001 crossref_primary_10_1088_1748_605X_abe7b3 crossref_primary_10_1016_j_ejps_2021_106004 crossref_primary_10_1016_j_jcis_2024_08_205 crossref_primary_10_1016_j_tips_2017_10_009 crossref_primary_10_1002_adfm_202104136 crossref_primary_10_2174_1381612825666190710114108 crossref_primary_10_1002_advs_202204881 crossref_primary_10_1016_j_jconrel_2024_10_010 crossref_primary_10_1016_j_actbio_2022_04_044 crossref_primary_10_1021_acsnano_8b08785 crossref_primary_10_1002_advs_202002667 crossref_primary_10_1002_advs_201900037 crossref_primary_10_3389_fimmu_2023_1199173 crossref_primary_10_1021_acsami_9b02756 crossref_primary_10_2147_IJN_S430877 crossref_primary_10_1016_j_ijbiomac_2025_141740 crossref_primary_10_1021_acsanm_2c03350 crossref_primary_10_1080_19768354_2024_2336249 crossref_primary_10_1002_advs_202000494 crossref_primary_10_1557_s43579_022_00280_8 crossref_primary_10_1002_adtp_201900181 crossref_primary_10_1002_smtd_202101531 crossref_primary_10_1002_adhm_202200041 crossref_primary_10_1088_1748_605X_ace4b0 crossref_primary_10_1002_adbi_201800232 crossref_primary_10_1039_D1TB01001H crossref_primary_10_1021_acs_molpharmaceut_3c00671 crossref_primary_10_1080_10643389_2024_2448048 crossref_primary_10_1016_j_cej_2022_140729 crossref_primary_10_1093_lifemeta_loae017 crossref_primary_10_1039_C7MH00305F crossref_primary_10_1021_acsami_1c23983 crossref_primary_10_34172_PS_2023_27 crossref_primary_10_1002_adhm_201900047 crossref_primary_10_1007_s10311_020_01062_1 crossref_primary_10_1002_adfm_202002753 crossref_primary_10_1155_2020_4327479 crossref_primary_10_1016_j_jconrel_2017_03_013 crossref_primary_10_3389_fnano_2022_911063 crossref_primary_10_1007_s12274_017_1628_x crossref_primary_10_1016_j_cej_2021_130536 crossref_primary_10_1021_acsami_7b01365 crossref_primary_10_1039_D0BM00623H crossref_primary_10_1166_jbn_2022_3241 crossref_primary_10_1186_s12951_022_01316_w crossref_primary_10_1016_j_cej_2024_155023 crossref_primary_10_1016_j_cej_2022_139634 crossref_primary_10_1039_C7CC09532E crossref_primary_10_1016_j_biomaterials_2025_123107 crossref_primary_10_1039_C9NR04768A crossref_primary_10_1039_D0NR06271E crossref_primary_10_1002_adma_202202715 crossref_primary_10_1002_adhm_202002071 crossref_primary_10_1039_D1NR01449H crossref_primary_10_1038_s41423_019_0306_1 crossref_primary_10_1016_j_colsurfb_2019_05_008 crossref_primary_10_1021_acs_nanolett_4c01767 crossref_primary_10_1007_s12034_020_02247_8 crossref_primary_10_1016_j_nantod_2018_06_008 crossref_primary_10_1002_adhm_201800525 crossref_primary_10_1016_j_ijbiomac_2023_126071 crossref_primary_10_1039_C9BM01170F crossref_primary_10_1007_s40820_021_00622_6 crossref_primary_10_1021_acs_chemrev_8b00626 crossref_primary_10_1002_adfm_201604258 crossref_primary_10_1007_s10072_021_05234_x crossref_primary_10_1021_acs_chemrev_6b00525 crossref_primary_10_1016_j_canlet_2022_01_012 crossref_primary_10_1016_j_cclet_2019_03_001 crossref_primary_10_1039_D0TB00529K crossref_primary_10_1002_adfm_202008171 crossref_primary_10_1002_smtd_202400018 crossref_primary_10_1021_acsami_9b03889 crossref_primary_10_3390_biom11121912 crossref_primary_10_1038_s41598_017_09520_7 crossref_primary_10_1016_j_jconrel_2020_07_001 crossref_primary_10_1021_acsami_3c02929 |
Cites_doi | 10.1073/pnas.1106645108 10.1021/nn405773r 10.1189/jlb.0609385 10.1021/ja5029364 10.1007/s00330-014-3167-0 10.1038/nrc2255 10.1038/nrc1187 10.1016/j.ccr.2013.11.007 10.1002/anie.200900984 10.1038/sj.gt.3301058 10.1021/acsbiomaterials.5b00181 10.1186/1471-2407-11-167 10.1155/2012/948098 10.1016/j.tet.2011.07.076 10.1200/JCO.2011.35.9315 10.1016/j.bios.2003.11.019 10.1039/C0CC03554H 10.1038/nature13165 10.1158/0008-5472.CAN-13-1196 10.1007/s11095-010-0149-z 10.1007/s10334-004-0079-z 10.1158/1078-0432.CCR-13-1787 10.1038/377155a0 10.1593/neo.04628 10.1080/10731190903043218 10.1182/blood-2004-03-1109 10.7314/APJCP.2015.16.9.3917 10.1021/ic049559g 10.4049/jimmunol.177.2.1272 10.1021/ja403167p 10.1038/nrc2468 10.1002/jbm.a.32760 10.4049/jimmunol.177.10.7303 10.1002/nbm.3325 10.1038/nrc2540 10.1007/s12032-014-0352-6 10.1038/nrc1886 10.1186/1476-9255-10-23 10.1002/nbm.1000 10.1002/anie.200604775 10.2741/2692 10.1038/35025220 10.1158/0008-5472.CAN-08-1405 10.1021/ja312610j 10.1158/0008-5472.CAN-11-2994 10.1002/wnan.116 10.1002/jmri.23891 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsnano.5b06779 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 647 |
ExternalDocumentID | PMC5242343 26650065 10_1021_acsnano_5b06779 a45816179 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA EB000073 – fundername: Intramural NIH HHS grantid: Z99 EB999999 |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 5PM LG6 |
ID | FETCH-LOGICAL-a495t-d08ce7832596ce5c70f16a54912253522c8257529b2f76a27ed4810c936593713 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Aug 21 18:09:38 EDT 2025 Thu Jul 10 19:05:23 EDT 2025 Sat May 31 02:06:56 EDT 2025 Tue Jul 01 01:33:57 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Thu Aug 27 13:44:17 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | hypoxia chemotherapy response hyaluronic acid (HA) manganese dioxide (MnO2) mannose receptor tumor associated macrophages (TAMs) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a495t-d08ce7832596ce5c70f16a54912253522c8257529b2f76a27ed4810c936593713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1021/acsnano.5b06779 |
PMID | 26650065 |
PQID | 1760924686 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242343 proquest_miscellaneous_1760924686 pubmed_primary_26650065 crossref_primary_10_1021_acsnano_5b06779 crossref_citationtrail_10_1021_acsnano_5b06779 acs_journals_10_1021_acsnano_5b06779 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-26 |
PublicationDateYYYYMMDD | 2016-01-26 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 26910459 - ACS Nano. 2016 Mar 22;10(3):3872. doi: 10.1021/acsnano.6b01206. |
References_xml | – ident: ref15/cit15 doi: 10.1073/pnas.1106645108 – ident: ref19/cit19 doi: 10.1021/nn405773r – ident: ref12/cit12 doi: 10.1189/jlb.0609385 – ident: ref28/cit28 doi: 10.1021/ja5029364 – ident: ref39/cit39 doi: 10.1007/s00330-014-3167-0 – ident: ref1/cit1 doi: 10.1038/nrc2255 – ident: ref43/cit43 doi: 10.1038/nrc1187 – ident: ref9/cit9 doi: 10.1016/j.ccr.2013.11.007 – ident: ref34/cit34 doi: 10.1002/anie.200900984 – ident: ref16/cit16 doi: 10.1038/sj.gt.3301058 – ident: ref20/cit20 doi: 10.1021/acsbiomaterials.5b00181 – ident: ref41/cit41 doi: 10.1186/1471-2407-11-167 – ident: ref11/cit11 doi: 10.1155/2012/948098 – ident: ref29/cit29 doi: 10.1016/j.tet.2011.07.076 – ident: ref6/cit6 doi: 10.1200/JCO.2011.35.9315 – ident: ref18/cit18 doi: 10.1016/j.bios.2003.11.019 – ident: ref35/cit35 doi: 10.1039/C0CC03554H – ident: ref36/cit36 doi: 10.1038/nature13165 – ident: ref13/cit13 doi: 10.1158/0008-5472.CAN-13-1196 – ident: ref47/cit47 doi: 10.1007/s11095-010-0149-z – ident: ref45/cit45 doi: 10.1007/s10334-004-0079-z – ident: ref7/cit7 doi: 10.1158/1078-0432.CCR-13-1787 – ident: ref37/cit37 doi: 10.1038/377155a0 – ident: ref46/cit46 doi: 10.1593/neo.04628 – ident: ref5/cit5 doi: 10.1080/10731190903043218 – ident: ref8/cit8 doi: 10.1182/blood-2004-03-1109 – ident: ref17/cit17 doi: 10.7314/APJCP.2015.16.9.3917 – ident: ref24/cit24 doi: 10.1021/ic049559g – ident: ref32/cit32 doi: 10.4049/jimmunol.177.2.1272 – ident: ref26/cit26 doi: 10.1021/ja403167p – ident: ref42/cit42 doi: 10.1038/nrc2468 – ident: ref21/cit21 doi: 10.1002/jbm.a.32760 – ident: ref31/cit31 doi: 10.4049/jimmunol.177.10.7303 – ident: ref38/cit38 doi: 10.1002/nbm.3325 – ident: ref2/cit2 doi: 10.1038/nrc2540 – ident: ref14/cit14 doi: 10.1007/s12032-014-0352-6 – ident: ref4/cit4 doi: 10.1038/nrc1886 – ident: ref33/cit33 doi: 10.1186/1476-9255-10-23 – ident: ref22/cit22 doi: 10.1002/nbm.1000 – ident: ref25/cit25 doi: 10.1002/anie.200604775 – ident: ref10/cit10 doi: 10.2741/2692 – ident: ref44/cit44 doi: 10.1038/35025220 – ident: ref3/cit3 doi: 10.1158/0008-5472.CAN-08-1405 – ident: ref23/cit23 doi: 10.1021/ja312610j – ident: ref27/cit27 doi: 10.1158/0008-5472.CAN-11-2994 – ident: ref30/cit30 doi: 10.1002/wnan.116 – ident: ref40/cit40 doi: 10.1002/jmri.23891 – reference: 26910459 - ACS Nano. 2016 Mar 22;10(3):3872. doi: 10.1021/acsnano.6b01206. |
SSID | ssj0057876 |
Score | 2.6469195 |
Snippet | Hypoxia promotes not only the invasiveness of tumor cells, but also chemoresistance in cancer. Tumor associated macrophages (TAMs) residing at the site of... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 633 |
SubjectTerms | Animals Antineoplastic Agents - pharmacology Cell Line, Tumor Cell Proliferation Doxorubicin - pharmacology Female Gene Expression Hyaluronic Acid - chemistry Hydrogen Peroxide - metabolism Hypoxia - drug therapy Hypoxia - metabolism Hypoxia - pathology Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Lipopolysaccharides - pharmacology Macrophages - drug effects Macrophages - metabolism Macrophages - pathology Mammary Glands, Animal - drug effects Mammary Glands, Animal - metabolism Mammary Glands, Animal - pathology Mammary Neoplasms, Experimental - drug therapy Mammary Neoplasms, Experimental - metabolism Mammary Neoplasms, Experimental - pathology Manganese Compounds - chemistry Manganese Compounds - pharmacology Mice Mice, Inbred BALB C Nanoparticles - chemistry Neovascularization, Pathologic - drug therapy Neovascularization, Pathologic - metabolism Neovascularization, Pathologic - pathology Oxides - chemistry Oxides - pharmacology Phenotype |
Title | Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia |
URI | http://dx.doi.org/10.1021/acsnano.5b06779 https://www.ncbi.nlm.nih.gov/pubmed/26650065 https://www.proquest.com/docview/1760924686 https://pubmed.ncbi.nlm.nih.gov/PMC5242343 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODA-7G8ZKQeuGSxs46dHJfSaoW0qIJW6i3ya7uhxamaRGL5SfxKZvJYul1VcI498mM8_sYz-YaQXb5ImVapjGIufCSckZERhkdGMgHoO2O6rZ8y_yJnx-LzSXLylyz6egQ_5h-0rYIO5TgxSHaW3SZ3Ypkq9LOme98Go4t6J7sAMjjIgCLWLD5bAvAastXmNbSFLa-nSF65cw4edNlaVUtViKkmZ-OmNmP7a5vI8d_TeUju98iTTjtVeURu-fCY3LvCR_iE_P5YlOAff2_wbc3RuQ6nGitU0k9F-bNwnoItBie7z6Wj-2GJOkORdKD_kWtFv3ZJt56aFT1sa4ad0qPmR3kZDZrQSsbKYUuwZRWt28RdOufReXHm6eHShxIfhqkOjk5rwPTIRj5IobPVBYxFPyXHB_tHe7OoL-YQafDB6six1HoF9iPJpPWJVWzBpQbvlINFQRRowVdVSZyZeKGkjpV3IuXMwoYmyNk3eUZ2Qhn8C0KZcFkmWOpj44Tx3CyUmjgpnFaJZc6NyC6sct4fxipv4-wxz_ulz_ulH5HxoAK57QnRsS7H-c0d3q87XHRcIDc3fTfoVA7nFYMwsF9lA4NRkoHPK1M5Is87HVsLA7CUICYcEbWhfesGyAW--SUUy5YTPEFcLCYv_2_qr8hdAH7tU1IsX5Od-rLxbwBc1eZte6z-AN_dJB0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAH3tDlaaQeuGRrZx07OS6l1QLdqsBW6i2yY283tHWqJpFYfhK_krHzoNuqElwTe-THePyNPf4GoU06j4kUMQ9CykzAtOKBYooGihMG6Dsh0udPme7zySH7fBQdrSHSvYWBRpQgqfSX-H_ZBegWfLPSFsNIOc6z5Ba6DVAkdO7WePt7Z3ud-vHmHhn8ZAATPZnPNQFuN8rK1d3oGsS8Gil5aevZfYC-9o32EScnw7pSw-zXFT7H_-nVQ3S_xaF43CjOI7Rm7GN07xI74RP0-0NegLf8o3YnbRpPpT2WLl8l_pgXP3NtMFhmcLnbyDq8YxdOg7CjIGifdS3xtyYE12C1xAc-g9gxntVnxUXQ6YWX7PKILcCylbjyYbx4SoPT_MTgg4WxhTsmxtJqPK4A4Ttu8k4KnizPoS3yKTrc3ZltT4I2tUMgwSOrAk3izAiwJlHCMxNlgswpl-CrUrAvDhNm4LmKKExUOBdchsJoFlOSwbxGjsFv9Ayt28KaDYQJ00nCSGxCpZkyVM2FGGnOtBRRRrQeoE0Y5bRdmmXqb91DmrZDn7ZDP0DDThPSrKVHd1k6Tm-u8L6vcN4wg9xc9F2nWimsXnclA_NV1NAYwQl4wDzmA_S8UbVeGECnyCHEARIrStgXcMzgq39svvAM4ZFDyWz04t-6_hbdmcyme-nep_0vL9FdgIT-kCnkr9B6dVGb1wC7KvXGr7Q_fvosfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2Dhi2w96P7KkBPeziTHZkyT5mbYPskSLYGqA3Q7LkxmtnB7UNLPtJ-5UjbcVoWhTYrrZMSDJFfRSpj4Ts-lnElIyEF_jcetxo4WmufU8LxgF9x0y19VNmh2K64J-Pw2N3KQzvwkAnKpBUtUF8XNUrkzmGAf8DPC9UUQ5Djbxn8U1yC4N26HKN975v7C-qoOhiyeArA6DoCX2uCMAdKa22d6QrMPNytuSF7Wdynyz6jrdZJ6fDptbD9PclTsf_HdkDcs_hUTruFOghuWGLR-TuBZbCx-TPx7wEr_lHgyduhs5UcaKwbiXdz8tfubEULDS43i7Djh4US9QkilQE7nrXmn7rUnEt1Ws6byuJndCj5md57m30o5WM9cSWYOEqWrfpvHTme2f5qaXzpS1KPC6mqjB0XAPSR47yjRQ6Xa-gL-oJWUwOjvamnivx4CnwzGrPsCi1EqxKGIvUhqlkmS8U-Kw-2BnEhil4sDIMYh1kUqhAWsMjn6Xwb0Nk8hs9JTtFWdjnhDJu4pizyAbacG19nUk5MoIbJcOUGTMguzDLiVuiVdJG3wM_cVOfuKkfkOFGG5LU0aRjtY6z6z9433-w6hhCrm_6bqNeCaxiDM3A_yob6IwUDDxhEYkBedapWy8MIFSISHFA5JYi9g2QIXz7TZEvW6bwENEyH734t6G_Jbfn-5Pk66fDLy_JHUCG7VlTIF6Rnfq8sa8BfdX6TbvY_gLvzS8B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioconjugated+Manganese+Dioxide+Nanoparticles+Enhance+Chemotherapy+Response+by+Priming+Tumor-Associated+Macrophages+toward+M1-like+Phenotype+and+Attenuating+Tumor+Hypoxia&rft.jtitle=ACS+nano&rft.au=Song%2C+Manli&rft.au=Liu%2C+Ting&rft.au=Shi%2C+Changrong&rft.au=Zhang%2C+Xiangzhong&rft.date=2016-01-26&rft.eissn=1936-086X&rft.volume=10&rft.issue=1&rft.spage=633&rft_id=info:doi/10.1021%2Facsnano.5b06779&rft_id=info%3Apmid%2F26650065&rft.externalDocID=26650065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |