Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm di...
Saved in:
Published in | ACS nano Vol. 14; no. 1; pp. 948 - 963 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors. |
---|---|
AbstractList | The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors. The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors. |
Author | Zheng, Ming Li, Han Fagan, Jeffrey A Gordeev, Georgy Flavel, Benjamin S Krupke, Ralph Dehm, Simone Selvasundaram, Pranauv Balaji Wenseleers, Wim Garrity, Oisin Cambré, Sofie Peyyety, Naga Anirudh Reich, Stephanie |
AuthorAffiliation | Physics Department Materials Science and Engineering Division Institute of Nanotechnology Institute of Materials Science Department of Physics |
AuthorAffiliation_xml | – name: Physics Department – name: Department of Physics – name: Institute of Nanotechnology – name: Institute of Materials Science – name: Materials Science and Engineering Division |
Author_xml | – sequence: 1 givenname: Han surname: Li fullname: Li, Han email: han.li@kit.edu organization: Institute of Nanotechnology – sequence: 2 givenname: Georgy surname: Gordeev fullname: Gordeev, Georgy organization: Department of Physics – sequence: 3 givenname: Oisin surname: Garrity fullname: Garrity, Oisin organization: Department of Physics – sequence: 4 givenname: Naga Anirudh surname: Peyyety fullname: Peyyety, Naga Anirudh organization: Institute of Materials Science – sequence: 5 givenname: Pranauv Balaji surname: Selvasundaram fullname: Selvasundaram, Pranauv Balaji organization: Institute of Materials Science – sequence: 6 givenname: Simone surname: Dehm fullname: Dehm, Simone organization: Institute of Nanotechnology – sequence: 7 givenname: Ralph surname: Krupke fullname: Krupke, Ralph organization: Institute of Materials Science – sequence: 8 givenname: Sofie orcidid: 0000-0001-7471-7678 surname: Cambré fullname: Cambré, Sofie organization: Physics Department – sequence: 9 givenname: Wim surname: Wenseleers fullname: Wenseleers, Wim organization: Physics Department – sequence: 10 givenname: Stephanie surname: Reich fullname: Reich, Stephanie organization: Department of Physics – sequence: 11 givenname: Ming orcidid: 0000-0002-8058-1348 surname: Zheng fullname: Zheng, Ming organization: Materials Science and Engineering Division – sequence: 12 givenname: Jeffrey A orcidid: 0000-0003-1483-5554 surname: Fagan fullname: Fagan, Jeffrey A email: jeffrey.fagan@nist.gov organization: Materials Science and Engineering Division – sequence: 13 givenname: Benjamin S orcidid: 0000-0002-8213-8673 surname: Flavel fullname: Flavel, Benjamin S email: benjamin.flavel@kit.edu organization: Institute of Nanotechnology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31742998$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUtrGzEQFiWhebTn3soeC2EdSauVpUuhOE5bMAnEDelNjNazjsKu5Ei7gfz7KNgxzaGX0TDfY8R8J-TAB4-EfGF0wihn59AkDz5MtKWKC_GBHDNdyZIq-fdg39fsiJyk9EBpPVVT-ZEcVWwquNbqmNglbiDC4IIvQlssN9i41jXF0vl1h-U8u2esx_g2uYOuK2YQbRZc5dXDaDEVzhfDPRYLiGssLxz0OGTJDa5dj5_IYQtdws-795TcXs7_zH6Vi-ufv2c_FiUIXQ9lw7WQUkulhWVC1WK6woYryXgrBBWcaQYSqGBohYJ2JSUoVluVa5tRW52S71vfzWh7XDXohwid2UTXQ3w2AZx5j3h3b9bhyUitBa1VNvi2M4jhccQ0mN6lBrsOPIYxGV4xKSqej5qp51tqE0NKEdv9GkbNazJml4zZJZMVX__93Z7_FkUmnG0JWWkewhh9PtZ_7V4AesicPg |
CitedBy_id | crossref_primary_10_1038_s41598_021_88079_w crossref_primary_10_1021_acs_jpclett_3c01950 crossref_primary_10_1002_smll_202400303 crossref_primary_10_1093_bulcsj_uoae024 crossref_primary_10_1016_j_carbon_2023_118750 crossref_primary_10_1021_acsnano_1c04972 crossref_primary_10_1002_smll_202102585 crossref_primary_10_3390_ma13173808 crossref_primary_10_1002_adfm_202107411 crossref_primary_10_1021_acscentsci_2c01038 crossref_primary_10_1039_D0MH00845A crossref_primary_10_1021_acsnano_4c02226 crossref_primary_10_1063_5_0030809 crossref_primary_10_1039_D3NH00023K crossref_primary_10_1002_adom_202300236 crossref_primary_10_1021_acsaelm_3c00072 crossref_primary_10_1021_acsnano_3c11921 crossref_primary_10_1021_acs_nanolett_1c00295 crossref_primary_10_1021_jacs_1c02245 crossref_primary_10_1021_acsnano_0c06181 crossref_primary_10_1126_sciadv_abe0084 crossref_primary_10_1039_D1NR06635H crossref_primary_10_1063_5_0035820 crossref_primary_10_1021_acs_analchem_1c00168 crossref_primary_10_1021_acsanm_0c02813 crossref_primary_10_1016_j_carbon_2023_03_012 crossref_primary_10_1002_aelm_202200698 crossref_primary_10_1021_acs_chemmater_4c00232 crossref_primary_10_1021_acs_chemrev_9b00835 crossref_primary_10_1021_acsnano_2c03949 crossref_primary_10_1021_acsaelm_2c01469 crossref_primary_10_1063_5_0049550 crossref_primary_10_1002_advs_202207218 crossref_primary_10_1016_j_carbon_2021_04_079 crossref_primary_10_1021_acsnano_0c08352 crossref_primary_10_1016_j_carbon_2022_03_071 crossref_primary_10_1002_smsc_202400011 crossref_primary_10_1021_acsnano_2c12853 crossref_primary_10_1016_j_seppur_2024_127120 crossref_primary_10_1021_acsnano_3c04314 crossref_primary_10_1038_s41467_023_38133_0 crossref_primary_10_1007_s12274_022_4248_z crossref_primary_10_1002_aenm_202002880 crossref_primary_10_1016_j_tca_2021_178928 crossref_primary_10_1016_j_jiec_2022_08_038 crossref_primary_10_1002_smll_202206774 crossref_primary_10_1038_s41598_020_66264_7 crossref_primary_10_1002_advs_202200054 crossref_primary_10_1021_acs_accounts_0c00210 crossref_primary_10_1021_acs_jpcc_2c00959 crossref_primary_10_1016_j_molliq_2022_120425 crossref_primary_10_1021_acs_jpcc_1c01390 crossref_primary_10_1038_s41598_021_89839_4 crossref_primary_10_3390_nano12193380 crossref_primary_10_1016_j_carbon_2024_118813 crossref_primary_10_1016_j_jece_2022_109261 crossref_primary_10_1021_acssensors_4c00377 crossref_primary_10_1002_adfm_202107119 crossref_primary_10_1063_5_0065730 crossref_primary_10_1016_j_carbon_2022_12_071 crossref_primary_10_1002_adfm_202004476 crossref_primary_10_1021_acsnano_2c03883 crossref_primary_10_1002_admi_202101591 crossref_primary_10_1002_adom_202101576 crossref_primary_10_3762_bjoc_20_113 crossref_primary_10_3390_nano12122094 crossref_primary_10_1016_j_carbon_2022_01_062 crossref_primary_10_1002_advs_202001778 crossref_primary_10_1016_j_carbon_2020_09_012 crossref_primary_10_1002_marc_202100327 crossref_primary_10_1039_D2NR01630C crossref_primary_10_1063_5_0058591 crossref_primary_10_1021_acsapm_2c01022 crossref_primary_10_1016_j_carbon_2020_04_044 crossref_primary_10_1016_j_carbon_2024_119000 crossref_primary_10_1021_acs_jpcc_2c00330 crossref_primary_10_1039_D2NR03883H crossref_primary_10_1021_acsami_3c11990 |
Cites_doi | 10.1021/ja402762e 10.1007/s12274-014-0680-z 10.1038/nnano.2007.290 10.1021/ja312235n 10.1021/ja304244g 10.1021/acsnano.5b01123 10.1038/nnano.2015.1 10.1021/jz5017813 10.1021/nl0703727 10.1103/PhysRevB.99.045404 10.1021/jacs.6b09135 10.1039/C9NA00280D 10.1039/c3cp52752b 10.1016/S1369-7021(11)70187-0 10.1007/s12274-009-9006-y 10.1038/nchem.1711 10.1021/nn405934y 10.1021/nn4062116 10.1039/C6NH00062B 10.1038/ncomms12056 10.1021/acsnano.5b05572 10.1038/ncomms1313 10.1021/nn401998r 10.1021/acsnano.8b06511 10.1021/acs.jpcc.5b07947 10.1021/ac0508954 10.1021/nl050133o 10.1038/nchem.2496 10.1021/nn506869h 10.1103/PhysRevB.78.165408 10.1038/nature13434 10.1039/c2nr32769d 10.1021/nl0508624 10.1038/nnano.2007.142 10.1142/9789814287005_0018 10.1002/aenm.201703241 10.1038/s41563-018-0109-2 10.1038/nphoton.2013.309 10.1201/9781315367231 10.1126/science.1091911 10.1021/jp1017136 10.1002/adma.201201728 10.1038/nnano.2010.68 10.1021/nl5025613 10.1021/jp1030174 10.1021/acs.langmuir.6b02759 10.1002/adma.200700773 10.1021/acsnano.8b09579 10.1021/acs.langmuir.6b00605 10.1088/1361-6528/aad359 10.1021/ja0777640 10.1002/adma.201304873 10.1021/nn200458t 10.1021/nl504189p 10.1038/nature21051 10.1021/nn4004956 10.1021/jz4013596 10.1103/PhysRevB.72.205438 10.1021/nl034428i 10.1103/PhysRevLett.104.207401 10.1021/nn4002165 10.1103/PhysRevLett.103.146802 10.1038/nnano.2012.52 10.1063/1.4996586 10.1016/S0006-3495(00)76713-0 10.1021/jacs.7b09142 10.1021/acsnano.8b02213 10.1021/nn500756a 10.1002/adma.201405686 10.1038/nnano.2006.52 10.7567/1882-0786/ab369e 10.1103/PhysRevB.71.035416 10.1103/PhysRevB.95.155436 10.1007/s41061-016-0098-z 10.1016/j.carbon.2016.05.002 10.1002/admi.201700727 10.1002/adfm.200400130 10.1039/C5NR06020F 10.1002/anie.201007324 |
ContentType | Journal Article |
Copyright | Copyright © 2019 American Chemical Society 2019 American Chemical Society |
Copyright_xml | – notice: Copyright © 2019 American Chemical Society 2019 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsnano.9b08244 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 963 |
ExternalDocumentID | 10_1021_acsnano_9b08244 31742998 a815440712 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a495t-c2946696894b148547dec28612f44042191a6a041eb48afd66a815b8a81f421b3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Tue Sep 17 21:21:31 EDT 2024 Sat Aug 17 05:45:52 EDT 2024 Fri Aug 23 03:48:15 EDT 2024 Sat Nov 02 12:26:59 EDT 2024 Thu Aug 27 22:10:37 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | polymer dextran chiral sorting PEG ATPE SWCNT |
Language | English |
License | This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a495t-c2946696894b148547dec28612f44042191a6a041eb48afd66a815b8a81f421b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8058-1348 0000-0001-7471-7678 0000-0002-8213-8673 0000-0003-1483-5554 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6994058 |
PMID | 31742998 |
PQID | 2316432936 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994058 proquest_miscellaneous_2316432936 crossref_primary_10_1021_acsnano_9b08244 pubmed_primary_31742998 acs_journals_10_1021_acsnano_9b08244 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-28 |
PublicationDateYYYYMMDD | 2020-01-28 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 Sorensen H. (ref58/cit58) 2007 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 Albertsson P. A. K. (ref53/cit53) 1971 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 Schuck P. (ref80/cit80) 2016 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 Avouris P. (ref1/cit1) 2009 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1021/ja402762e – ident: ref57/cit57 doi: 10.1007/s12274-014-0680-z – ident: ref16/cit16 doi: 10.1038/nnano.2007.290 – ident: ref72/cit72 doi: 10.1021/ja312235n – ident: ref37/cit37 doi: 10.1021/ja304244g – ident: ref39/cit39 doi: 10.1021/acsnano.5b01123 – ident: ref52/cit52 doi: 10.1038/nnano.2015.1 – ident: ref19/cit19 doi: 10.1021/jz5017813 – ident: ref81/cit81 doi: 10.1021/nl0703727 – ident: ref70/cit70 doi: 10.1103/PhysRevB.99.045404 – ident: ref62/cit62 doi: 10.1021/jacs.6b09135 – ident: ref76/cit76 doi: 10.1039/C9NA00280D – ident: ref2/cit2 doi: 10.1039/c3cp52752b – ident: ref3/cit3 doi: 10.1016/S1369-7021(11)70187-0 – ident: ref36/cit36 doi: 10.1007/s12274-009-9006-y – ident: ref50/cit50 doi: 10.1038/nchem.1711 – ident: ref54/cit54 doi: 10.1021/nn405934y – ident: ref20/cit20 doi: 10.1021/nn4062116 – ident: ref44/cit44 doi: 10.1039/C6NH00062B – ident: ref23/cit23 doi: 10.1038/ncomms12056 – ident: ref73/cit73 doi: 10.1021/acsnano.5b05572 – ident: ref21/cit21 doi: 10.1038/ncomms1313 – ident: ref74/cit74 doi: 10.1021/nn401998r – ident: ref5/cit5 doi: 10.1021/acsnano.8b06511 – ident: ref26/cit26 doi: 10.1021/acs.jpcc.5b07947 – ident: ref9/cit9 doi: 10.1021/ac0508954 – ident: ref8/cit8 doi: 10.1021/nl050133o – ident: ref49/cit49 doi: 10.1038/nchem.2496 – ident: ref11/cit11 doi: 10.1021/nn506869h – ident: ref66/cit66 doi: 10.1103/PhysRevB.78.165408 – ident: ref14/cit14 doi: 10.1038/nature13434 – volume-title: Chromatography and Capillary Electrophoresis in Food Analysis year: 2007 ident: ref58/cit58 contributor: fullname: Sorensen H. – ident: ref64/cit64 doi: 10.1039/c2nr32769d – ident: ref47/cit47 doi: 10.1021/nl0508624 – ident: ref35/cit35 doi: 10.1038/nnano.2007.142 – start-page: 174 volume-title: Nanoscience and Technology: A Collection of Reviews from Nature Journals year: 2009 ident: ref1/cit1 doi: 10.1142/9789814287005_0018 contributor: fullname: Avouris P. – ident: ref48/cit48 doi: 10.1002/aenm.201703241 – ident: ref4/cit4 doi: 10.1038/s41563-018-0109-2 – ident: ref51/cit51 doi: 10.1038/nphoton.2013.309 – volume-title: Sedimentation Velocity Analytical Ultracentrifugation: Discrete Species and Size-Distributions of Macromolecules and Particles year: 2016 ident: ref80/cit80 doi: 10.1201/9781315367231 contributor: fullname: Schuck P. – ident: ref13/cit13 doi: 10.1126/science.1091911 – ident: ref24/cit24 doi: 10.1021/jp1017136 – ident: ref27/cit27 doi: 10.1002/adma.201201728 – ident: ref30/cit30 doi: 10.1038/nnano.2010.68 – ident: ref38/cit38 doi: 10.1021/nl5025613 – ident: ref28/cit28 doi: 10.1021/jp1030174 – ident: ref71/cit71 doi: 10.1021/acs.langmuir.6b02759 – ident: ref46/cit46 doi: 10.1002/adma.200700773 – ident: ref56/cit56 doi: 10.1021/acsnano.8b09579 – ident: ref78/cit78 doi: 10.1021/acs.langmuir.6b00605 – ident: ref32/cit32 doi: 10.1088/1361-6528/aad359 – ident: ref18/cit18 doi: 10.1021/ja0777640 – ident: ref42/cit42 doi: 10.1002/adma.201304873 – ident: ref60/cit60 doi: 10.1021/nn200458t – ident: ref55/cit55 doi: 10.1021/nl504189p – ident: ref15/cit15 doi: 10.1038/nature21051 – ident: ref25/cit25 doi: 10.1021/nn4004956 – ident: ref29/cit29 doi: 10.1021/jz4013596 – volume-title: Partition of Cell Particles and Macromolecules year: 1971 ident: ref53/cit53 contributor: fullname: Albertsson P. A. K. – ident: ref67/cit67 doi: 10.1103/PhysRevB.72.205438 – ident: ref61/cit61 doi: 10.1021/nl034428i – ident: ref68/cit68 doi: 10.1103/PhysRevLett.104.207401 – ident: ref77/cit77 doi: 10.1021/nn4002165 – ident: ref65/cit65 doi: 10.1103/PhysRevLett.103.146802 – ident: ref40/cit40 doi: 10.1038/nnano.2012.52 – ident: ref75/cit75 doi: 10.1063/1.4996586 – ident: ref79/cit79 doi: 10.1016/S0006-3495(00)76713-0 – ident: ref34/cit34 doi: 10.1021/jacs.7b09142 – ident: ref41/cit41 doi: 10.1021/acsnano.8b02213 – ident: ref10/cit10 doi: 10.1021/nn500756a – ident: ref7/cit7 doi: 10.1002/adma.201405686 – ident: ref12/cit12 doi: 10.1038/nnano.2006.52 – ident: ref33/cit33 doi: 10.7567/1882-0786/ab369e – ident: ref69/cit69 doi: 10.1103/PhysRevB.71.035416 – ident: ref63/cit63 doi: 10.1103/PhysRevB.95.155436 – ident: ref6/cit6 doi: 10.1007/s41061-016-0098-z – ident: ref17/cit17 doi: 10.1016/j.carbon.2016.05.002 – ident: ref22/cit22 doi: 10.1002/admi.201700727 – ident: ref43/cit43 doi: 10.1002/adfm.200400130 – ident: ref59/cit59 doi: 10.1039/C5NR06020F – ident: ref45/cit45 doi: 10.1002/anie.201007324 |
SSID | ssj0057876 |
Score | 2.6181488 |
Snippet | The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in... The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 948 |
Title | Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime |
URI | http://dx.doi.org/10.1021/acsnano.9b08244 https://www.ncbi.nlm.nih.gov/pubmed/31742998 https://search.proquest.com/docview/2316432936 https://pubmed.ncbi.nlm.nih.gov/PMC6994058 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbo9tIeoIUW0gdypT1w8ZJ4vY5zRNtFCAGHLkjconFit1HBQZvshV_fcZLd7kOoveQQPyTb45lvPOPPhPQlJICG0rI4hBE6KEYwpYVliUCsjyZP5815x_WNvLgTl_ej-79k0ZsRfB6dQlY5cOUg0WithHhFXvMYt4ZHQePpQul6uZNtABkdZEQRSxafrQ68GcqqdTO0hS03UyRXbM75XputVTVUhT7V5PdgXutB9rxN5Pjv4bwjux3ypGetqLwnO8btk7crfIQHRE9NSwVeOlpa2rxNb4uMTrH0wbCJT5rx1_Vniz_-GJ6OYaaxAerpsp5rU9HCUYSV9MonmbPvBTz6lBv6w_wsHs0Hcnc-uR1fsO4RBgboO9Us456BPpEqERpdp5GIc5NxhcDIempBVHgRSAhFZLRQYHMpQUUjrfBrsVQPP5KeK505IjS2iMYyOQRsL3IBIFAhiDDnPJTKGghIH2cn7TZRlTbxcR6l3ZSl3ZQF5GSxdOlTS8nxctVvi6VNcdv4WAg4U86rFGEtYjHEOjIgh-1SLztDSOWttApIvCYEywqeknu9xBW_GmpumSSIgNWn_xvJZ_KGe_c9jBhXX0ivns3NV8Q4tT5upPsPviv3Hw |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8qcBgcNjZg6zaYJ3Hg4pKkjuMcp66obAVpK0jcIjuxIRo4U5Ne9tfvOR8dBU2CSw7-Umw_-_2e3_PPAIdcxhIVpaGRJ0M0UDSjQjFDY4ZYH1WeyurzjrNzPrlk367Cqx543V0Y_IkSWyprJ_4_dgH_GNOstMUgVqi0GFuDjTBCdenA0GjW7b1O_HjjR0Y7GcHEksznUQNOG6XlqjZ6BDEfRkreUz0nr-DH8qfriJNfg0WlBumfB3yOz-nVNrxscSj50gjOa-hp-wa27rET7oCa6YYYvLCkMKR-qd7kKZlh7q2mYxdC4y7vz7sUdyhPRnKusALu2kW1ULokuSUIMsnUhZzTr7m8cwE45Ke-zu_0LlyejC9GE9o-yUAlWlIVTQPHRx9zETOFhlTIokyngUCYZBzRIG5_vuTSY75WTEiTcS6FHyqBX4O5argH67aw-h2QyCA2S_lQYn2WMSkZbg_My4LA48Jo2YdDHJ2kXVJlUnvLAz9phyxph6wPR90MJr8bgo7_F_3czXCCi8h5RqTVxaJMEOQiMkPkw_vwtpnxZWMIsJzOFn2IVmRhWcARdK_m2PymJurmcYx4WLx_Wk8-wYvJxdk0mZ6ef_8Am4Ez7D2fBuIjrFfzhd5H9FOpg1rg_wK4yP-E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BIlVwKFAoLI_iShy4eEmC4zhHtLCi5aGq25W4RXZit1HBWW2yl_56xkl2xYKQ6CUHvxS_Zr7xjD8DHHMZS1SUhkaeDNFA0YwKxQyNGWJ9VHkqq887bu_41Yh9vw_v20th7i4M_kSJLZW1E9_t6nFmWoYB_xTTrbRFL1aouBhbhpUw8mvn7Hl_OJO_bgnyxpeMtjICijmhz6sGnEZKy0WN9ApmvoyWfKZ-Buswmv94HXXytzetVC_994LT8X97tgEfWzxKzpsFtAlL2n6CtWcshVughrohCC8sKQypX6w3eUqGmPug6aULpXGX-CezFHc4T_pyorACSu-imipdktwSBJvkxoWe04tcPrpAHPJT_84f9TaMBpe_-le0fZqBSrSoKpoGjpc-5iJmCg2qkEWZTgOBcMk4wkEUg77k0mO-VkxIk3EuhR8qgV-DuersM3RsYfUukMggRkv5mcT6LGNSMhQTzMuCwOPCaNmFYxydpN1aZVJ7zQM_aYcsaYesCyezWUzGDVHH20W_zmY5wc3kPCTS6mJaJgh2EaEhAuJd2Glmfd4YAi2nu0UXooX1MC_giLoXc2z-pybs5nGMuFjsva8nR_Dhx8Ugufl2d70Pq4Gz7z2fBuIAOtVkqg8RBFXqS73mnwDgXgIN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separation+of+Specific+Single-Enantiomer+Single-Wall+Carbon+Nanotubes+in+the+Large-Diameter+Regime&rft.jtitle=ACS+nano&rft.au=Li%2C+Han&rft.au=Gordeev%2C+Georgy&rft.au=Garrity%2C+Oisin&rft.au=Peyyety%2C+Naga+Anirudh&rft.date=2020-01-28&rft.eissn=1936-086X&rft.volume=14&rft.issue=1&rft.spage=948&rft.epage=963&rft_id=info:doi/10.1021%2Facsnano.9b08244&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |