Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime

The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm di...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 1; pp. 948 - 963
Main Authors Li, Han, Gordeev, Georgy, Garrity, Oisin, Peyyety, Naga Anirudh, Selvasundaram, Pranauv Balaji, Dehm, Simone, Krupke, Ralph, Cambré, Sofie, Wenseleers, Wim, Reich, Stephanie, Zheng, Ming, Fagan, Jeffrey A, Flavel, Benjamin S
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
AbstractList The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
Author Zheng, Ming
Li, Han
Fagan, Jeffrey A
Gordeev, Georgy
Flavel, Benjamin S
Krupke, Ralph
Dehm, Simone
Selvasundaram, Pranauv Balaji
Wenseleers, Wim
Garrity, Oisin
Cambré, Sofie
Peyyety, Naga Anirudh
Reich, Stephanie
AuthorAffiliation Physics Department
Materials Science and Engineering Division
Institute of Nanotechnology
Institute of Materials Science
Department of Physics
AuthorAffiliation_xml – name: Physics Department
– name: Department of Physics
– name: Institute of Nanotechnology
– name: Institute of Materials Science
– name: Materials Science and Engineering Division
Author_xml – sequence: 1
  givenname: Han
  surname: Li
  fullname: Li, Han
  email: han.li@kit.edu
  organization: Institute of Nanotechnology
– sequence: 2
  givenname: Georgy
  surname: Gordeev
  fullname: Gordeev, Georgy
  organization: Department of Physics
– sequence: 3
  givenname: Oisin
  surname: Garrity
  fullname: Garrity, Oisin
  organization: Department of Physics
– sequence: 4
  givenname: Naga Anirudh
  surname: Peyyety
  fullname: Peyyety, Naga Anirudh
  organization: Institute of Materials Science
– sequence: 5
  givenname: Pranauv Balaji
  surname: Selvasundaram
  fullname: Selvasundaram, Pranauv Balaji
  organization: Institute of Materials Science
– sequence: 6
  givenname: Simone
  surname: Dehm
  fullname: Dehm, Simone
  organization: Institute of Nanotechnology
– sequence: 7
  givenname: Ralph
  surname: Krupke
  fullname: Krupke, Ralph
  organization: Institute of Materials Science
– sequence: 8
  givenname: Sofie
  orcidid: 0000-0001-7471-7678
  surname: Cambré
  fullname: Cambré, Sofie
  organization: Physics Department
– sequence: 9
  givenname: Wim
  surname: Wenseleers
  fullname: Wenseleers, Wim
  organization: Physics Department
– sequence: 10
  givenname: Stephanie
  surname: Reich
  fullname: Reich, Stephanie
  organization: Department of Physics
– sequence: 11
  givenname: Ming
  orcidid: 0000-0002-8058-1348
  surname: Zheng
  fullname: Zheng, Ming
  organization: Materials Science and Engineering Division
– sequence: 12
  givenname: Jeffrey A
  orcidid: 0000-0003-1483-5554
  surname: Fagan
  fullname: Fagan, Jeffrey A
  email: jeffrey.fagan@nist.gov
  organization: Materials Science and Engineering Division
– sequence: 13
  givenname: Benjamin S
  orcidid: 0000-0002-8213-8673
  surname: Flavel
  fullname: Flavel, Benjamin S
  email: benjamin.flavel@kit.edu
  organization: Institute of Nanotechnology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31742998$$D View this record in MEDLINE/PubMed
BookMark eNp1UUtrGzEQFiWhebTn3soeC2EdSauVpUuhOE5bMAnEDelNjNazjsKu5Ei7gfz7KNgxzaGX0TDfY8R8J-TAB4-EfGF0wihn59AkDz5MtKWKC_GBHDNdyZIq-fdg39fsiJyk9EBpPVVT-ZEcVWwquNbqmNglbiDC4IIvQlssN9i41jXF0vl1h-U8u2esx_g2uYOuK2YQbRZc5dXDaDEVzhfDPRYLiGssLxz0OGTJDa5dj5_IYQtdws-795TcXs7_zH6Vi-ufv2c_FiUIXQ9lw7WQUkulhWVC1WK6woYryXgrBBWcaQYSqGBohYJ2JSUoVluVa5tRW52S71vfzWh7XDXohwid2UTXQ3w2AZx5j3h3b9bhyUitBa1VNvi2M4jhccQ0mN6lBrsOPIYxGV4xKSqej5qp51tqE0NKEdv9GkbNazJml4zZJZMVX__93Z7_FkUmnG0JWWkewhh9PtZ_7V4AesicPg
CitedBy_id crossref_primary_10_1038_s41598_021_88079_w
crossref_primary_10_1021_acs_jpclett_3c01950
crossref_primary_10_1002_smll_202400303
crossref_primary_10_1093_bulcsj_uoae024
crossref_primary_10_1016_j_carbon_2023_118750
crossref_primary_10_1021_acsnano_1c04972
crossref_primary_10_1002_smll_202102585
crossref_primary_10_3390_ma13173808
crossref_primary_10_1002_adfm_202107411
crossref_primary_10_1021_acscentsci_2c01038
crossref_primary_10_1039_D0MH00845A
crossref_primary_10_1021_acsnano_4c02226
crossref_primary_10_1063_5_0030809
crossref_primary_10_1039_D3NH00023K
crossref_primary_10_1002_adom_202300236
crossref_primary_10_1021_acsaelm_3c00072
crossref_primary_10_1021_acsnano_3c11921
crossref_primary_10_1021_acs_nanolett_1c00295
crossref_primary_10_1021_jacs_1c02245
crossref_primary_10_1021_acsnano_0c06181
crossref_primary_10_1126_sciadv_abe0084
crossref_primary_10_1039_D1NR06635H
crossref_primary_10_1063_5_0035820
crossref_primary_10_1021_acs_analchem_1c00168
crossref_primary_10_1021_acsanm_0c02813
crossref_primary_10_1016_j_carbon_2023_03_012
crossref_primary_10_1002_aelm_202200698
crossref_primary_10_1021_acs_chemmater_4c00232
crossref_primary_10_1021_acs_chemrev_9b00835
crossref_primary_10_1021_acsnano_2c03949
crossref_primary_10_1021_acsaelm_2c01469
crossref_primary_10_1063_5_0049550
crossref_primary_10_1002_advs_202207218
crossref_primary_10_1016_j_carbon_2021_04_079
crossref_primary_10_1021_acsnano_0c08352
crossref_primary_10_1016_j_carbon_2022_03_071
crossref_primary_10_1002_smsc_202400011
crossref_primary_10_1021_acsnano_2c12853
crossref_primary_10_1016_j_seppur_2024_127120
crossref_primary_10_1021_acsnano_3c04314
crossref_primary_10_1038_s41467_023_38133_0
crossref_primary_10_1007_s12274_022_4248_z
crossref_primary_10_1002_aenm_202002880
crossref_primary_10_1016_j_tca_2021_178928
crossref_primary_10_1016_j_jiec_2022_08_038
crossref_primary_10_1002_smll_202206774
crossref_primary_10_1038_s41598_020_66264_7
crossref_primary_10_1002_advs_202200054
crossref_primary_10_1021_acs_accounts_0c00210
crossref_primary_10_1021_acs_jpcc_2c00959
crossref_primary_10_1016_j_molliq_2022_120425
crossref_primary_10_1021_acs_jpcc_1c01390
crossref_primary_10_1038_s41598_021_89839_4
crossref_primary_10_3390_nano12193380
crossref_primary_10_1016_j_carbon_2024_118813
crossref_primary_10_1016_j_jece_2022_109261
crossref_primary_10_1021_acssensors_4c00377
crossref_primary_10_1002_adfm_202107119
crossref_primary_10_1063_5_0065730
crossref_primary_10_1016_j_carbon_2022_12_071
crossref_primary_10_1002_adfm_202004476
crossref_primary_10_1021_acsnano_2c03883
crossref_primary_10_1002_admi_202101591
crossref_primary_10_1002_adom_202101576
crossref_primary_10_3762_bjoc_20_113
crossref_primary_10_3390_nano12122094
crossref_primary_10_1016_j_carbon_2022_01_062
crossref_primary_10_1002_advs_202001778
crossref_primary_10_1016_j_carbon_2020_09_012
crossref_primary_10_1002_marc_202100327
crossref_primary_10_1039_D2NR01630C
crossref_primary_10_1063_5_0058591
crossref_primary_10_1021_acsapm_2c01022
crossref_primary_10_1016_j_carbon_2020_04_044
crossref_primary_10_1016_j_carbon_2024_119000
crossref_primary_10_1021_acs_jpcc_2c00330
crossref_primary_10_1039_D2NR03883H
crossref_primary_10_1021_acsami_3c11990
Cites_doi 10.1021/ja402762e
10.1007/s12274-014-0680-z
10.1038/nnano.2007.290
10.1021/ja312235n
10.1021/ja304244g
10.1021/acsnano.5b01123
10.1038/nnano.2015.1
10.1021/jz5017813
10.1021/nl0703727
10.1103/PhysRevB.99.045404
10.1021/jacs.6b09135
10.1039/C9NA00280D
10.1039/c3cp52752b
10.1016/S1369-7021(11)70187-0
10.1007/s12274-009-9006-y
10.1038/nchem.1711
10.1021/nn405934y
10.1021/nn4062116
10.1039/C6NH00062B
10.1038/ncomms12056
10.1021/acsnano.5b05572
10.1038/ncomms1313
10.1021/nn401998r
10.1021/acsnano.8b06511
10.1021/acs.jpcc.5b07947
10.1021/ac0508954
10.1021/nl050133o
10.1038/nchem.2496
10.1021/nn506869h
10.1103/PhysRevB.78.165408
10.1038/nature13434
10.1039/c2nr32769d
10.1021/nl0508624
10.1038/nnano.2007.142
10.1142/9789814287005_0018
10.1002/aenm.201703241
10.1038/s41563-018-0109-2
10.1038/nphoton.2013.309
10.1201/9781315367231
10.1126/science.1091911
10.1021/jp1017136
10.1002/adma.201201728
10.1038/nnano.2010.68
10.1021/nl5025613
10.1021/jp1030174
10.1021/acs.langmuir.6b02759
10.1002/adma.200700773
10.1021/acsnano.8b09579
10.1021/acs.langmuir.6b00605
10.1088/1361-6528/aad359
10.1021/ja0777640
10.1002/adma.201304873
10.1021/nn200458t
10.1021/nl504189p
10.1038/nature21051
10.1021/nn4004956
10.1021/jz4013596
10.1103/PhysRevB.72.205438
10.1021/nl034428i
10.1103/PhysRevLett.104.207401
10.1021/nn4002165
10.1103/PhysRevLett.103.146802
10.1038/nnano.2012.52
10.1063/1.4996586
10.1016/S0006-3495(00)76713-0
10.1021/jacs.7b09142
10.1021/acsnano.8b02213
10.1021/nn500756a
10.1002/adma.201405686
10.1038/nnano.2006.52
10.7567/1882-0786/ab369e
10.1103/PhysRevB.71.035416
10.1103/PhysRevB.95.155436
10.1007/s41061-016-0098-z
10.1016/j.carbon.2016.05.002
10.1002/admi.201700727
10.1002/adfm.200400130
10.1039/C5NR06020F
10.1002/anie.201007324
ContentType Journal Article
Copyright Copyright © 2019 American Chemical Society 2019 American Chemical Society
Copyright_xml – notice: Copyright © 2019 American Chemical Society 2019 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsnano.9b08244
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 963
ExternalDocumentID 10_1021_acsnano_9b08244
31742998
a815440712
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a495t-c2946696894b148547dec28612f44042191a6a041eb48afd66a815b8a81f421b3
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Tue Sep 17 21:21:31 EDT 2024
Sat Aug 17 05:45:52 EDT 2024
Fri Aug 23 03:48:15 EDT 2024
Sat Nov 02 12:26:59 EDT 2024
Thu Aug 27 22:10:37 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords polymer
dextran
chiral sorting
PEG
ATPE
SWCNT
Language English
License This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a495t-c2946696894b148547dec28612f44042191a6a041eb48afd66a815b8a81f421b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8058-1348
0000-0001-7471-7678
0000-0002-8213-8673
0000-0003-1483-5554
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6994058
PMID 31742998
PQID 2316432936
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994058
proquest_miscellaneous_2316432936
crossref_primary_10_1021_acsnano_9b08244
pubmed_primary_31742998
acs_journals_10_1021_acsnano_9b08244
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-01-28
PublicationDateYYYYMMDD 2020-01-28
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
Sorensen H. (ref58/cit58) 2007
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
Albertsson P. A. K. (ref53/cit53) 1971
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
Schuck P. (ref80/cit80) 2016
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
Avouris P. (ref1/cit1) 2009
ref70/cit70
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1021/ja402762e
– ident: ref57/cit57
  doi: 10.1007/s12274-014-0680-z
– ident: ref16/cit16
  doi: 10.1038/nnano.2007.290
– ident: ref72/cit72
  doi: 10.1021/ja312235n
– ident: ref37/cit37
  doi: 10.1021/ja304244g
– ident: ref39/cit39
  doi: 10.1021/acsnano.5b01123
– ident: ref52/cit52
  doi: 10.1038/nnano.2015.1
– ident: ref19/cit19
  doi: 10.1021/jz5017813
– ident: ref81/cit81
  doi: 10.1021/nl0703727
– ident: ref70/cit70
  doi: 10.1103/PhysRevB.99.045404
– ident: ref62/cit62
  doi: 10.1021/jacs.6b09135
– ident: ref76/cit76
  doi: 10.1039/C9NA00280D
– ident: ref2/cit2
  doi: 10.1039/c3cp52752b
– ident: ref3/cit3
  doi: 10.1016/S1369-7021(11)70187-0
– ident: ref36/cit36
  doi: 10.1007/s12274-009-9006-y
– ident: ref50/cit50
  doi: 10.1038/nchem.1711
– ident: ref54/cit54
  doi: 10.1021/nn405934y
– ident: ref20/cit20
  doi: 10.1021/nn4062116
– ident: ref44/cit44
  doi: 10.1039/C6NH00062B
– ident: ref23/cit23
  doi: 10.1038/ncomms12056
– ident: ref73/cit73
  doi: 10.1021/acsnano.5b05572
– ident: ref21/cit21
  doi: 10.1038/ncomms1313
– ident: ref74/cit74
  doi: 10.1021/nn401998r
– ident: ref5/cit5
  doi: 10.1021/acsnano.8b06511
– ident: ref26/cit26
  doi: 10.1021/acs.jpcc.5b07947
– ident: ref9/cit9
  doi: 10.1021/ac0508954
– ident: ref8/cit8
  doi: 10.1021/nl050133o
– ident: ref49/cit49
  doi: 10.1038/nchem.2496
– ident: ref11/cit11
  doi: 10.1021/nn506869h
– ident: ref66/cit66
  doi: 10.1103/PhysRevB.78.165408
– ident: ref14/cit14
  doi: 10.1038/nature13434
– volume-title: Chromatography and Capillary Electrophoresis in Food Analysis
  year: 2007
  ident: ref58/cit58
  contributor:
    fullname: Sorensen H.
– ident: ref64/cit64
  doi: 10.1039/c2nr32769d
– ident: ref47/cit47
  doi: 10.1021/nl0508624
– ident: ref35/cit35
  doi: 10.1038/nnano.2007.142
– start-page: 174
  volume-title: Nanoscience and Technology: A Collection of Reviews from Nature Journals
  year: 2009
  ident: ref1/cit1
  doi: 10.1142/9789814287005_0018
  contributor:
    fullname: Avouris P.
– ident: ref48/cit48
  doi: 10.1002/aenm.201703241
– ident: ref4/cit4
  doi: 10.1038/s41563-018-0109-2
– ident: ref51/cit51
  doi: 10.1038/nphoton.2013.309
– volume-title: Sedimentation Velocity Analytical Ultracentrifugation: Discrete Species and Size-Distributions of Macromolecules and Particles
  year: 2016
  ident: ref80/cit80
  doi: 10.1201/9781315367231
  contributor:
    fullname: Schuck P.
– ident: ref13/cit13
  doi: 10.1126/science.1091911
– ident: ref24/cit24
  doi: 10.1021/jp1017136
– ident: ref27/cit27
  doi: 10.1002/adma.201201728
– ident: ref30/cit30
  doi: 10.1038/nnano.2010.68
– ident: ref38/cit38
  doi: 10.1021/nl5025613
– ident: ref28/cit28
  doi: 10.1021/jp1030174
– ident: ref71/cit71
  doi: 10.1021/acs.langmuir.6b02759
– ident: ref46/cit46
  doi: 10.1002/adma.200700773
– ident: ref56/cit56
  doi: 10.1021/acsnano.8b09579
– ident: ref78/cit78
  doi: 10.1021/acs.langmuir.6b00605
– ident: ref32/cit32
  doi: 10.1088/1361-6528/aad359
– ident: ref18/cit18
  doi: 10.1021/ja0777640
– ident: ref42/cit42
  doi: 10.1002/adma.201304873
– ident: ref60/cit60
  doi: 10.1021/nn200458t
– ident: ref55/cit55
  doi: 10.1021/nl504189p
– ident: ref15/cit15
  doi: 10.1038/nature21051
– ident: ref25/cit25
  doi: 10.1021/nn4004956
– ident: ref29/cit29
  doi: 10.1021/jz4013596
– volume-title: Partition of Cell Particles and Macromolecules
  year: 1971
  ident: ref53/cit53
  contributor:
    fullname: Albertsson P. A. K.
– ident: ref67/cit67
  doi: 10.1103/PhysRevB.72.205438
– ident: ref61/cit61
  doi: 10.1021/nl034428i
– ident: ref68/cit68
  doi: 10.1103/PhysRevLett.104.207401
– ident: ref77/cit77
  doi: 10.1021/nn4002165
– ident: ref65/cit65
  doi: 10.1103/PhysRevLett.103.146802
– ident: ref40/cit40
  doi: 10.1038/nnano.2012.52
– ident: ref75/cit75
  doi: 10.1063/1.4996586
– ident: ref79/cit79
  doi: 10.1016/S0006-3495(00)76713-0
– ident: ref34/cit34
  doi: 10.1021/jacs.7b09142
– ident: ref41/cit41
  doi: 10.1021/acsnano.8b02213
– ident: ref10/cit10
  doi: 10.1021/nn500756a
– ident: ref7/cit7
  doi: 10.1002/adma.201405686
– ident: ref12/cit12
  doi: 10.1038/nnano.2006.52
– ident: ref33/cit33
  doi: 10.7567/1882-0786/ab369e
– ident: ref69/cit69
  doi: 10.1103/PhysRevB.71.035416
– ident: ref63/cit63
  doi: 10.1103/PhysRevB.95.155436
– ident: ref6/cit6
  doi: 10.1007/s41061-016-0098-z
– ident: ref17/cit17
  doi: 10.1016/j.carbon.2016.05.002
– ident: ref22/cit22
  doi: 10.1002/admi.201700727
– ident: ref43/cit43
  doi: 10.1002/adfm.200400130
– ident: ref59/cit59
  doi: 10.1039/C5NR06020F
– ident: ref45/cit45
  doi: 10.1002/anie.201007324
SSID ssj0057876
Score 2.6181488
Snippet The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in...
The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 948
Title Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
URI http://dx.doi.org/10.1021/acsnano.9b08244
https://www.ncbi.nlm.nih.gov/pubmed/31742998
https://search.proquest.com/docview/2316432936
https://pubmed.ncbi.nlm.nih.gov/PMC6994058
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbo9tIeoIUW0gdypT1w8ZJ4vY5zRNtFCAGHLkjconFit1HBQZvshV_fcZLd7kOoveQQPyTb45lvPOPPhPQlJICG0rI4hBE6KEYwpYVliUCsjyZP5815x_WNvLgTl_ej-79k0ZsRfB6dQlY5cOUg0WithHhFXvMYt4ZHQePpQul6uZNtABkdZEQRSxafrQ68GcqqdTO0hS03UyRXbM75XputVTVUhT7V5PdgXutB9rxN5Pjv4bwjux3ypGetqLwnO8btk7crfIQHRE9NSwVeOlpa2rxNb4uMTrH0wbCJT5rx1_Vniz_-GJ6OYaaxAerpsp5rU9HCUYSV9MonmbPvBTz6lBv6w_wsHs0Hcnc-uR1fsO4RBgboO9Us456BPpEqERpdp5GIc5NxhcDIempBVHgRSAhFZLRQYHMpQUUjrfBrsVQPP5KeK505IjS2iMYyOQRsL3IBIFAhiDDnPJTKGghIH2cn7TZRlTbxcR6l3ZSl3ZQF5GSxdOlTS8nxctVvi6VNcdv4WAg4U86rFGEtYjHEOjIgh-1SLztDSOWttApIvCYEywqeknu9xBW_GmpumSSIgNWn_xvJZ_KGe_c9jBhXX0ivns3NV8Q4tT5upPsPviv3Hw
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8qcBgcNjZg6zaYJ3Hg4pKkjuMcp66obAVpK0jcIjuxIRo4U5Ne9tfvOR8dBU2CSw7-Umw_-_2e3_PPAIdcxhIVpaGRJ0M0UDSjQjFDY4ZYH1WeyurzjrNzPrlk367Cqx543V0Y_IkSWyprJ_4_dgH_GNOstMUgVqi0GFuDjTBCdenA0GjW7b1O_HjjR0Y7GcHEksznUQNOG6XlqjZ6BDEfRkreUz0nr-DH8qfriJNfg0WlBumfB3yOz-nVNrxscSj50gjOa-hp-wa27rET7oCa6YYYvLCkMKR-qd7kKZlh7q2mYxdC4y7vz7sUdyhPRnKusALu2kW1ULokuSUIMsnUhZzTr7m8cwE45Ke-zu_0LlyejC9GE9o-yUAlWlIVTQPHRx9zETOFhlTIokyngUCYZBzRIG5_vuTSY75WTEiTcS6FHyqBX4O5argH67aw-h2QyCA2S_lQYn2WMSkZbg_My4LA48Jo2YdDHJ2kXVJlUnvLAz9phyxph6wPR90MJr8bgo7_F_3czXCCi8h5RqTVxaJMEOQiMkPkw_vwtpnxZWMIsJzOFn2IVmRhWcARdK_m2PymJurmcYx4WLx_Wk8-wYvJxdk0mZ6ef_8Am4Ez7D2fBuIjrFfzhd5H9FOpg1rg_wK4yP-E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BIlVwKFAoLI_iShy4eEmC4zhHtLCi5aGq25W4RXZit1HBWW2yl_56xkl2xYKQ6CUHvxS_Zr7xjD8DHHMZS1SUhkaeDNFA0YwKxQyNGWJ9VHkqq887bu_41Yh9vw_v20th7i4M_kSJLZW1E9_t6nFmWoYB_xTTrbRFL1aouBhbhpUw8mvn7Hl_OJO_bgnyxpeMtjICijmhz6sGnEZKy0WN9ApmvoyWfKZ-Buswmv94HXXytzetVC_994LT8X97tgEfWzxKzpsFtAlL2n6CtWcshVughrohCC8sKQypX6w3eUqGmPug6aULpXGX-CezFHc4T_pyorACSu-imipdktwSBJvkxoWe04tcPrpAHPJT_84f9TaMBpe_-le0fZqBSrSoKpoGjpc-5iJmCg2qkEWZTgOBcMk4wkEUg77k0mO-VkxIk3EuhR8qgV-DuersM3RsYfUukMggRkv5mcT6LGNSMhQTzMuCwOPCaNmFYxydpN1aZVJ7zQM_aYcsaYesCyezWUzGDVHH20W_zmY5wc3kPCTS6mJaJgh2EaEhAuJd2Glmfd4YAi2nu0UXooX1MC_giLoXc2z-pybs5nGMuFjsva8nR_Dhx8Ugufl2d70Pq4Gz7z2fBuIAOtVkqg8RBFXqS73mnwDgXgIN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separation+of+Specific+Single-Enantiomer+Single-Wall+Carbon+Nanotubes+in+the+Large-Diameter+Regime&rft.jtitle=ACS+nano&rft.au=Li%2C+Han&rft.au=Gordeev%2C+Georgy&rft.au=Garrity%2C+Oisin&rft.au=Peyyety%2C+Naga+Anirudh&rft.date=2020-01-28&rft.eissn=1936-086X&rft.volume=14&rft.issue=1&rft.spage=948&rft.epage=963&rft_id=info:doi/10.1021%2Facsnano.9b08244&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon